Changeset - 6938bcacc41e
[Not reviewed]
0 10 0
MH - 4 years ago 2021-03-22 11:59:28
contact@maxhenger.nl
turn put stmt into call expr, make compiling great again
10 files changed with 441 insertions and 198 deletions:
0 comments (0 inline, 0 general)
src/protocol/ast.rs
Show inline comments
 
@@ -65,97 +65,96 @@ macro_rules! define_new_ast_id {
 
        }
 

	
 
        impl IndexMut<$name> for Heap {
 
            fn index_mut(&mut self, index: $name) -> &mut Self::Output {
 
                if let $wrapper_type(v) = &mut self.$indexed_arena[index.0] {
 
                    v
 
                } else {
 
                    unreachable!()
 
                }
 
            }
 
        }
 
    }
 
}
 

	
 
define_aliased_ast_id!(RootId, Id<Root>, Root, protocol_descriptions);
 
define_aliased_ast_id!(PragmaId, Id<Pragma>, Pragma, pragmas);
 
define_aliased_ast_id!(ImportId, Id<Import>, Import, imports);
 
define_aliased_ast_id!(ParserTypeId, Id<ParserType>, ParserType, parser_types);
 

	
 
define_aliased_ast_id!(VariableId, Id<Variable>, Variable, variables);
 
define_new_ast_id!(ParameterId, VariableId, Parameter, Variable::Parameter, variables);
 
define_new_ast_id!(LocalId, VariableId, Local, Variable::Local, variables);
 

	
 
define_aliased_ast_id!(DefinitionId, Id<Definition>, Definition, definitions);
 
define_new_ast_id!(StructId, DefinitionId, StructDefinition, Definition::Struct, definitions);
 
define_new_ast_id!(EnumId, DefinitionId, EnumDefinition, Definition::Enum, definitions);
 
define_new_ast_id!(ComponentId, DefinitionId, Component, Definition::Component, definitions);
 
define_new_ast_id!(FunctionId, DefinitionId, Function, Definition::Function, definitions);
 

	
 
define_aliased_ast_id!(StatementId, Id<Statement>, Statement, statements);
 
define_new_ast_id!(BlockStatementId, StatementId, BlockStatement, Statement::Block, statements);
 
define_new_ast_id!(LocalStatementId, StatementId, LocalStatement, Statement::Local, statements);
 
define_new_ast_id!(MemoryStatementId, LocalStatementId);
 
define_new_ast_id!(ChannelStatementId, LocalStatementId);
 
define_new_ast_id!(SkipStatementId, StatementId, SkipStatement, Statement::Skip, statements);
 
define_new_ast_id!(LabeledStatementId, StatementId, LabeledStatement, Statement::Labeled, statements);
 
define_new_ast_id!(IfStatementId, StatementId, IfStatement, Statement::If, statements);
 
define_new_ast_id!(EndIfStatementId, StatementId, EndIfStatement, Statement::EndIf, statements);
 
define_new_ast_id!(WhileStatementId, StatementId, WhileStatement, Statement::While, statements);
 
define_new_ast_id!(EndWhileStatementId, StatementId, EndWhileStatement, Statement::EndWhile, statements);
 
define_new_ast_id!(BreakStatementId, StatementId, BreakStatement, Statement::Break, statements);
 
define_new_ast_id!(ContinueStatementId, StatementId, ContinueStatement, Statement::Continue, statements);
 
define_new_ast_id!(SynchronousStatementId, StatementId, SynchronousStatement, Statement::Synchronous, statements);
 
define_new_ast_id!(EndSynchronousStatementId, StatementId, EndSynchronousStatement, Statement::EndSynchronous, statements);
 
define_new_ast_id!(ReturnStatementId, StatementId, ReturnStatement, Statement::Return, statements);
 
define_new_ast_id!(AssertStatementId, StatementId, AssertStatement, Statement::Assert, statements);
 
define_new_ast_id!(GotoStatementId, StatementId, GotoStatement, Statement::Goto, statements);
 
define_new_ast_id!(NewStatementId, StatementId, NewStatement, Statement::New, statements);
 
define_new_ast_id!(PutStatementId, StatementId, PutStatement, Statement::Put, statements);
 
define_new_ast_id!(ExpressionStatementId, StatementId, ExpressionStatement, Statement::Expression, statements);
 

	
 
define_aliased_ast_id!(ExpressionId, Id<Expression>, Expression, expressions);
 
define_new_ast_id!(AssignmentExpressionId, ExpressionId, AssignmentExpression, Expression::Assignment, expressions);
 
define_new_ast_id!(ConditionalExpressionId, ExpressionId, ConditionalExpression, Expression::Conditional, expressions);
 
define_new_ast_id!(BinaryExpressionId, ExpressionId, BinaryExpression, Expression::Binary, expressions);
 
define_new_ast_id!(UnaryExpressionId, ExpressionId, UnaryExpression, Expression::Unary, expressions);
 
define_new_ast_id!(IndexingExpressionId, ExpressionId, IndexingExpression, Expression::Indexing, expressions);
 
define_new_ast_id!(SlicingExpressionId, ExpressionId, SlicingExpression, Expression::Slicing, expressions);
 
define_new_ast_id!(SelectExpressionId, ExpressionId, SelectExpression, Expression::Select, expressions);
 
define_new_ast_id!(ArrayExpressionId, ExpressionId, ArrayExpression, Expression::Array, expressions);
 
define_new_ast_id!(ConstantExpressionId, ExpressionId, ConstantExpression, Expression::Constant, expressions);
 
define_new_ast_id!(CallExpressionId, ExpressionId, CallExpression, Expression::Call, expressions);
 
define_new_ast_id!(VariableExpressionId, ExpressionId, VariableExpression, Expression::Variable, expressions);
 

	
 
// TODO: @cleanup - pub qualifiers can be removed once done
 
#[derive(Debug, serde::Serialize, serde::Deserialize)]
 
pub struct Heap {
 
    // Root arena, contains the entry point for different modules. Each root
 
    // contains lists of IDs that correspond to the other arenas.
 
    pub(crate) protocol_descriptions: Arena<Root>,
 
    // Contents of a file, these are the elements the `Root` elements refer to
 
    pragmas: Arena<Pragma>,
 
    pub(crate) imports: Arena<Import>,
 
    identifiers: Arena<Identifier>,
 
    pub(crate) parser_types: Arena<ParserType>,
 
    pub(crate) variables: Arena<Variable>,
 
    pub(crate) definitions: Arena<Definition>,
 
    pub(crate) statements: Arena<Statement>,
 
    pub(crate) expressions: Arena<Expression>,
 
}
 

	
 
impl Heap {
 
    pub fn new() -> Heap {
 
        Heap {
 
            // string_alloc: StringAllocator::new(),
 
            protocol_descriptions: Arena::new(),
 
            pragmas: Arena::new(),
 
            imports: Arena::new(),
 
            identifiers: Arena::new(),
 
            parser_types: Arena::new(),
 
            variables: Arena::new(),
 
            definitions: Arena::new(),
 
            statements: Arena::new(),
 
            expressions: Arena::new(),
 
        }
 
    }
 
    pub fn alloc_parser_type(
 
@@ -376,104 +375,96 @@ impl Heap {
 
    ) -> SynchronousStatementId {
 
        SynchronousStatementId(self.statements.alloc_with_id(|id| {
 
            Statement::Synchronous(f(SynchronousStatementId(id)))
 
        }))
 
    }
 
    pub fn alloc_end_synchronous_statement(
 
        &mut self,
 
        f: impl FnOnce(EndSynchronousStatementId) -> EndSynchronousStatement,
 
    ) -> EndSynchronousStatementId {
 
        EndSynchronousStatementId(self.statements.alloc_with_id(|id| {
 
            Statement::EndSynchronous(f(EndSynchronousStatementId(id)))
 
        }))
 
    }
 
    pub fn alloc_return_statement(
 
        &mut self,
 
        f: impl FnOnce(ReturnStatementId) -> ReturnStatement,
 
    ) -> ReturnStatementId {
 
        ReturnStatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::Return(f(ReturnStatementId(id)))),
 
        )
 
    }
 
    pub fn alloc_assert_statement(
 
        &mut self,
 
        f: impl FnOnce(AssertStatementId) -> AssertStatement,
 
    ) -> AssertStatementId {
 
        AssertStatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::Assert(f(AssertStatementId(id)))),
 
        )
 
    }
 
    pub fn alloc_goto_statement(
 
        &mut self,
 
        f: impl FnOnce(GotoStatementId) -> GotoStatement,
 
    ) -> GotoStatementId {
 
        GotoStatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::Goto(f(GotoStatementId(id)))),
 
        )
 
    }
 
    pub fn alloc_new_statement(
 
        &mut self,
 
        f: impl FnOnce(NewStatementId) -> NewStatement,
 
    ) -> NewStatementId {
 
        NewStatementId(
 
            self.statements.alloc_with_id(|id| Statement::New(f(NewStatementId(id)))),
 
        )
 
    }
 
    pub fn alloc_put_statement(
 
        &mut self,
 
        f: impl FnOnce(PutStatementId) -> PutStatement,
 
    ) -> PutStatementId {
 
        PutStatementId(
 
            self.statements.alloc_with_id(|id| Statement::Put(f(PutStatementId(id)))),
 
        )
 
    }
 
    pub fn alloc_labeled_statement(
 
        &mut self,
 
        f: impl FnOnce(LabeledStatementId) -> LabeledStatement,
 
    ) -> LabeledStatementId {
 
        LabeledStatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::Labeled(f(LabeledStatementId(id)))),
 
        )
 
    }
 
    pub fn alloc_expression_statement(
 
        &mut self,
 
        f: impl FnOnce(ExpressionStatementId) -> ExpressionStatement,
 
    ) -> ExpressionStatementId {
 
        ExpressionStatementId(
 
            self.statements.alloc_with_id(|id| {
 
                Statement::Expression(f(ExpressionStatementId(id)))
 
            }),
 
        )
 
    }
 
    pub fn alloc_struct_definition(&mut self, f: impl FnOnce(StructId) -> StructDefinition) -> StructId {
 
        StructId(self.definitions.alloc_with_id(|id| {
 
            Definition::Struct(f(StructId(id)))
 
        }))
 
    }
 
    pub fn alloc_enum_definition(&mut self, f: impl FnOnce(EnumId) -> EnumDefinition) -> EnumId {
 
        EnumId(self.definitions.alloc_with_id(|id| {
 
            Definition::Enum(f(EnumId(id)))
 
        }))
 
    }
 
    pub fn alloc_component(&mut self, f: impl FnOnce(ComponentId) -> Component) -> ComponentId {
 
        ComponentId(self.definitions.alloc_with_id(|id| {
 
            Definition::Component(f(ComponentId(id)))
 
        }))
 
    }
 
    pub fn alloc_function(&mut self, f: impl FnOnce(FunctionId) -> Function) -> FunctionId {
 
        FunctionId(
 
            self.definitions
 
                .alloc_with_id(|id| Definition::Function(f(FunctionId(id)))),
 
        )
 
    }
 
    pub fn alloc_pragma(&mut self, f: impl FnOnce(PragmaId) -> Pragma) -> PragmaId {
 
        self.pragmas.alloc_with_id(|id| f(id))
 
    }
 
    pub fn alloc_import(&mut self, f: impl FnOnce(ImportId) -> Import) -> ImportId {
 
        self.imports.alloc_with_id(|id| f(id))
 
    }
 
    pub fn alloc_protocol_description(&mut self, f: impl FnOnce(RootId) -> Root) -> RootId {
 
        self.protocol_descriptions.alloc_with_id(|id| f(id))
 
@@ -863,96 +854,97 @@ impl Display for Type {
 
            PrimitiveType::Short => {
 
                write!(f, "short")?;
 
            }
 
            PrimitiveType::Int => {
 
                write!(f, "int")?;
 
            }
 
            PrimitiveType::Long => {
 
                write!(f, "long")?;
 
            }
 
            PrimitiveType::Symbolic(data) => {
 
                // Type data is in ASCII range.
 
                if let Some(id) = &data.definition {
 
                    write!(
 
                        f, "Symbolic({}, id: {})", 
 
                        String::from_utf8_lossy(&data.identifier.value),
 
                        id.index
 
                    )?;
 
                } else {
 
                    write!(
 
                        f, "Symbolic({}, id: Unresolved)",
 
                        String::from_utf8_lossy(&data.identifier.value)
 
                    )?;
 
                }
 
            }
 
        }
 
        if self.array {
 
            write!(f, "[]")
 
        } else {
 
            Ok(())
 
        }
 
    }
 
}
 

	
 
type CharacterData = Vec<u8>;
 
type IntegerData = i64;
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Constant {
 
    Null, // message
 
    True,
 
    False,
 
    Character(CharacterData),
 
    Integer(IntegerData),
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Method {
 
    Get,
 
    Put,
 
    Fires,
 
    Create,
 
    Symbolic(MethodSymbolic)
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct MethodSymbolic {
 
    pub(crate) identifier: NamespacedIdentifier,
 
    pub(crate) definition: Option<DefinitionId>
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Field {
 
    Length,
 
    Symbolic(Identifier),
 
}
 
impl Field {
 
    pub fn is_length(&self) -> bool {
 
        match self {
 
            Field::Length => true,
 
            _ => false,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, serde::Serialize, serde::Deserialize)]
 
pub enum Scope {
 
    Definition(DefinitionId),
 
    Regular(BlockStatementId),
 
    Synchronous((SynchronousStatementId, BlockStatementId)),
 
}
 

	
 
impl Scope {
 
    pub fn is_block(&self) -> bool {
 
        match &self {
 
            Scope::Definition(_) => false,
 
            Scope::Regular(_) => true,
 
            Scope::Synchronous(_) => true,
 
        }
 
    }
 
    pub fn to_block(&self) -> BlockStatementId {
 
        match &self {
 
            Scope::Regular(id) => *id,
 
            Scope::Synchronous((_, id)) => *id,
 
            _ => panic!("unable to get BlockStatement from Scope")
 
        }
 
    }
 
}
 
@@ -1226,97 +1218,96 @@ pub struct Component {
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    pub parameters: Vec<ParameterId>,
 
    pub body: StatementId,
 
}
 

	
 
impl SyntaxElement for Component {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct Function {
 
    pub this: FunctionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub return_type: ParserTypeId,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    pub parameters: Vec<ParameterId>,
 
    pub body: StatementId,
 
}
 

	
 
impl SyntaxElement for Function {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Statement {
 
    Block(BlockStatement),
 
    Local(LocalStatement),
 
    Skip(SkipStatement),
 
    Labeled(LabeledStatement),
 
    If(IfStatement),
 
    EndIf(EndIfStatement),
 
    While(WhileStatement),
 
    EndWhile(EndWhileStatement),
 
    Break(BreakStatement),
 
    Continue(ContinueStatement),
 
    Synchronous(SynchronousStatement),
 
    EndSynchronous(EndSynchronousStatement),
 
    Return(ReturnStatement),
 
    Assert(AssertStatement),
 
    Goto(GotoStatement),
 
    New(NewStatement),
 
    Put(PutStatement),
 
    Expression(ExpressionStatement),
 
}
 

	
 
impl Statement {
 
    pub fn as_block(&self) -> &BlockStatement {
 
        match self {
 
            Statement::Block(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `BlockStatement`"),
 
        }
 
    }
 
    pub fn as_block_mut(&mut self) -> &mut BlockStatement {
 
        match self {
 
            Statement::Block(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `BlockStatement`"),
 
        }
 
    }
 
    pub fn as_local(&self) -> &LocalStatement {
 
        match self {
 
            Statement::Local(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `LocalStatement`"),
 
        }
 
    }
 
    pub fn as_memory(&self) -> &MemoryStatement {
 
        self.as_local().as_memory()
 
    }
 
    pub fn as_channel(&self) -> &ChannelStatement {
 
        self.as_local().as_channel()
 
    }
 
    pub fn as_skip(&self) -> &SkipStatement {
 
        match self {
 
            Statement::Skip(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `SkipStatement`"),
 
        }
 
    }
 
    pub fn as_labeled(&self) -> &LabeledStatement {
 
        match self {
 
            Statement::Labeled(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `LabeledStatement`"),
 
        }
 
    }
 
    pub fn as_labeled_mut(&mut self) -> &mut LabeledStatement {
 
        match self {
 
            Statement::Labeled(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `LabeledStatement`"),
 
        }
 
    }
 
    pub fn as_if(&self) -> &IfStatement {
 
        match self {
 
@@ -1387,155 +1378,147 @@ impl Statement {
 
    pub fn as_synchronous(&self) -> &SynchronousStatement {
 
        match self {
 
            Statement::Synchronous(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `SynchronousStatement`"),
 
        }
 
    }
 
    pub fn as_synchronous_mut(&mut self) -> &mut SynchronousStatement {
 
        match self {
 
            Statement::Synchronous(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `SynchronousStatement`"),
 
        }
 
    }
 
    pub fn as_end_synchronous(&self) -> &EndSynchronousStatement {
 
        match self {
 
            Statement::EndSynchronous(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `EndSynchronousStatement`"),
 
        }
 
    }
 
    pub fn as_return(&self) -> &ReturnStatement {
 
        match self {
 
            Statement::Return(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `ReturnStatement`"),
 
        }
 
    }
 
    pub fn as_assert(&self) -> &AssertStatement {
 
        match self {
 
            Statement::Assert(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `AssertStatement`"),
 
        }
 
    }
 
    pub fn as_goto(&self) -> &GotoStatement {
 
        match self {
 
            Statement::Goto(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `GotoStatement`"),
 
        }
 
    }
 
    pub fn as_goto_mut(&mut self) -> &mut GotoStatement {
 
        match self {
 
            Statement::Goto(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `GotoStatement`"),
 
        }
 
    }
 
    pub fn as_new(&self) -> &NewStatement {
 
        match self {
 
            Statement::New(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `NewStatement`"),
 
        }
 
    }
 
    pub fn as_put(&self) -> &PutStatement {
 
        match self {
 
            Statement::Put(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `PutStatement`"),
 
        }
 
    }
 
    pub fn as_expression(&self) -> &ExpressionStatement {
 
        match self {
 
            Statement::Expression(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `ExpressionStatement`"),
 
        }
 
    }
 
    pub fn link_next(&mut self, next: StatementId) {
 
        match self {
 
            Statement::Block(_) => todo!(),
 
            Statement::Local(stmt) => match stmt {
 
                LocalStatement::Channel(stmt) => stmt.next = Some(next),
 
                LocalStatement::Memory(stmt) => stmt.next = Some(next),
 
            },
 
            Statement::Skip(stmt) => stmt.next = Some(next),
 
            Statement::EndIf(stmt) => stmt.next = Some(next),
 
            Statement::EndWhile(stmt) => stmt.next = Some(next),
 
            Statement::EndSynchronous(stmt) => stmt.next = Some(next),
 
            Statement::Assert(stmt) => stmt.next = Some(next),
 
            Statement::New(stmt) => stmt.next = Some(next),
 
            Statement::Put(stmt) => stmt.next = Some(next),
 
            Statement::Expression(stmt) => stmt.next = Some(next),
 
            Statement::Return(_)
 
            | Statement::Break(_)
 
            | Statement::Continue(_)
 
            | Statement::Synchronous(_)
 
            | Statement::Goto(_)
 
            | Statement::While(_)
 
            | Statement::Labeled(_)
 
            | Statement::If(_) => unreachable!(),
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for Statement {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            Statement::Block(stmt) => stmt.position(),
 
            Statement::Local(stmt) => stmt.position(),
 
            Statement::Skip(stmt) => stmt.position(),
 
            Statement::Labeled(stmt) => stmt.position(),
 
            Statement::If(stmt) => stmt.position(),
 
            Statement::EndIf(stmt) => stmt.position(),
 
            Statement::While(stmt) => stmt.position(),
 
            Statement::EndWhile(stmt) => stmt.position(),
 
            Statement::Break(stmt) => stmt.position(),
 
            Statement::Continue(stmt) => stmt.position(),
 
            Statement::Synchronous(stmt) => stmt.position(),
 
            Statement::EndSynchronous(stmt) => stmt.position(),
 
            Statement::Return(stmt) => stmt.position(),
 
            Statement::Assert(stmt) => stmt.position(),
 
            Statement::Goto(stmt) => stmt.position(),
 
            Statement::New(stmt) => stmt.position(),
 
            Statement::Put(stmt) => stmt.position(),
 
            Statement::Expression(stmt) => stmt.position(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct BlockStatement {
 
    pub this: BlockStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub statements: Vec<StatementId>,
 
    // Phase 2: linker
 
    pub parent_scope: Option<Scope>,
 
    pub relative_pos_in_parent: u32,
 
    pub locals: Vec<LocalId>,
 
    pub labels: Vec<LabeledStatementId>,
 
}
 

	
 
impl BlockStatement {
 
    pub fn parent_block(&self, h: &Heap) -> Option<BlockStatementId> {
 
        let parent = self.parent_scope.unwrap();
 
        match parent {
 
            Scope::Definition(_) => {
 
                // If the parent scope is a definition, then there is no
 
                // parent block.
 
                None
 
            }
 
            Scope::Synchronous((parent, _)) => {
 
                // It is always the case that when this function is called,
 
                // the parent of a synchronous statement is a block statement:
 
                // nested synchronous statements are flagged illegal,
 
                // and that happens before resolving variables that
 
                // creates the parent_scope references in the first place.
 
                Some(h[parent].parent_scope(h).unwrap().to_block())
 
            }
 
            Scope::Regular(parent) => {
 
                // A variable scope is either a definition, sync, or block.
 
                Some(parent)
 
            }
 
        }
 
    }
 
    pub fn first(&self) -> StatementId {
 
        // It is an invariant (guaranteed by the lexer) that block statements have at least one stmt
 
        *self.statements.first().unwrap()
 
    }
 
}
 

	
 
impl SyntaxElement for BlockStatement {
 
@@ -1838,139 +1821,121 @@ impl SyntaxElement for ReturnStatement {
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct AssertStatement {
 
    pub this: AssertStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub expression: ExpressionId,
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for AssertStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct GotoStatement {
 
    pub this: GotoStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub label: Identifier,
 
    // Phase 2: linker
 
    pub target: Option<LabeledStatementId>,
 
}
 

	
 
impl SyntaxElement for GotoStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct NewStatement {
 
    pub this: NewStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub expression: CallExpressionId,
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for NewStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct PutStatement {
 
    pub this: PutStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub port: ExpressionId,
 
    pub message: ExpressionId,
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for PutStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct ExpressionStatement {
 
    pub this: ExpressionStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub expression: ExpressionId,
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for ExpressionStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, PartialEq, Eq, Clone, Copy, serde::Serialize, serde::Deserialize)]
 
pub enum ExpressionParent {
 
    None, // only set during initial parsing
 
    Memory(MemoryStatementId),
 
    If(IfStatementId),
 
    While(WhileStatementId),
 
    Return(ReturnStatementId),
 
    Assert(AssertStatementId),
 
    New(NewStatementId),
 
    Put(PutStatementId, u32), // index of arg
 
    ExpressionStmt(ExpressionStatementId),
 
    Expression(ExpressionId, u32) // index within expression (e.g LHS or RHS of expression)
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Expression {
 
    Assignment(AssignmentExpression),
 
    Conditional(ConditionalExpression),
 
    Binary(BinaryExpression),
 
    Unary(UnaryExpression),
 
    Indexing(IndexingExpression),
 
    Slicing(SlicingExpression),
 
    Select(SelectExpression),
 
    Array(ArrayExpression),
 
    Constant(ConstantExpression),
 
    Call(CallExpression),
 
    Variable(VariableExpression),
 
}
 

	
 
impl Expression {
 
    pub fn as_assignment(&self) -> &AssignmentExpression {
 
        match self {
 
            Expression::Assignment(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `AssignmentExpression`"),
 
        }
 
    }
 
    pub fn as_conditional(&self) -> &ConditionalExpression {
 
        match self {
 
            Expression::Conditional(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `ConditionalExpression`"),
 
        }
 
    }
 
    pub fn as_binary(&self) -> &BinaryExpression {
 
        match self {
 
            Expression::Binary(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `BinaryExpression`"),
 
        }
 
    }
 
    pub fn as_unary(&self) -> &UnaryExpression {
 
        match self {
 
            Expression::Unary(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `UnaryExpression`"),
 
        }
 
    }
 
    pub fn as_indexing(&self) -> &IndexingExpression {
 
        match self {
 
            Expression::Indexing(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `IndexingExpression`"),
 
@@ -1995,96 +1960,103 @@ impl Expression {
 
        }
 
    }
 
    pub fn as_constant(&self) -> &ConstantExpression {
 
        match self {
 
            Expression::Constant(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `ConstantExpression`"),
 
        }
 
    }
 
    pub fn as_call(&self) -> &CallExpression {
 
        match self {
 
            Expression::Call(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `CallExpression`"),
 
        }
 
    }
 
    pub fn as_call_mut(&mut self) -> &mut CallExpression {
 
        match self {
 
            Expression::Call(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `CallExpression`"),
 
        }
 
    }
 
    pub fn as_variable(&self) -> &VariableExpression {
 
        match self {
 
            Expression::Variable(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `VariableExpression`"),
 
        }
 
    }
 
    pub fn as_variable_mut(&mut self) -> &mut VariableExpression {
 
        match self {
 
            Expression::Variable(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `VariableExpression`"),
 
        }
 
    }
 
    // TODO: @cleanup
 
    pub fn parent(&self) -> &ExpressionParent {
 
        match self {
 
            Expression::Assignment(expr) => &expr.parent,
 
            Expression::Conditional(expr) => &expr.parent,
 
            Expression::Binary(expr) => &expr.parent,
 
            Expression::Unary(expr) => &expr.parent,
 
            Expression::Indexing(expr) => &expr.parent,
 
            Expression::Slicing(expr) => &expr.parent,
 
            Expression::Select(expr) => &expr.parent,
 
            Expression::Array(expr) => &expr.parent,
 
            Expression::Constant(expr) => &expr.parent,
 
            Expression::Call(expr) => &expr.parent,
 
            Expression::Variable(expr) => &expr.parent,
 
        }
 
    }
 
    pub fn parent_expr_id(&self) -> Option<ExpressionId> {
 
        if let ExpressionParent::Expression(id, _) = self.parent() {
 
            Some(*id)
 
        } else {
 
            None
 
        }
 
    }
 
    pub fn set_parent(&mut self, parent: ExpressionParent) {
 
        match self {
 
            Expression::Assignment(expr) => expr.parent = parent,
 
            Expression::Conditional(expr) => expr.parent = parent,
 
            Expression::Binary(expr) => expr.parent = parent,
 
            Expression::Unary(expr) => expr.parent = parent,
 
            Expression::Indexing(expr) => expr.parent = parent,
 
            Expression::Slicing(expr) => expr.parent = parent,
 
            Expression::Select(expr) => expr.parent = parent,
 
            Expression::Array(expr) => expr.parent = parent,
 
            Expression::Constant(expr) => expr.parent = parent,
 
            Expression::Call(expr) => expr.parent = parent,
 
            Expression::Variable(expr) => expr.parent = parent,
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for Expression {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            Expression::Assignment(expr) => expr.position(),
 
            Expression::Conditional(expr) => expr.position(),
 
            Expression::Binary(expr) => expr.position(),
 
            Expression::Unary(expr) => expr.position(),
 
            Expression::Indexing(expr) => expr.position(),
 
            Expression::Slicing(expr) => expr.position(),
 
            Expression::Select(expr) => expr.position(),
 
            Expression::Array(expr) => expr.position(),
 
            Expression::Constant(expr) => expr.position(),
 
            Expression::Call(expr) => expr.position(),
 
            Expression::Variable(expr) => expr.position(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum AssignmentOperator {
 
    Set,
 
    Multiplied,
 
    Divided,
 
    Remained,
 
    Added,
 
    Subtracted,
 
    ShiftedLeft,
 
    ShiftedRight,
 
    BitwiseAnded,
 
    BitwiseXored,
 
    BitwiseOred,
src/protocol/ast_printer.rs
Show inline comments
 
@@ -440,106 +440,96 @@ impl ASTWriter {
 
                    .with_opt_ascii_val(stmt.label.as_ref().map(|v| v.value.as_slice()));
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(stmt.target.as_ref().map(|v| &v.0.index));
 
            },
 
            Statement::Synchronous(stmt) => {
 
                self.kv(indent).with_id(PREFIX_SYNC_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Synchronous");
 
                self.kv(indent2).with_s_key("EndSync")
 
                    .with_opt_disp_val(stmt.end_sync.as_ref().map(|v| &v.0.index));
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, stmt.body, indent3);
 
            },
 
            Statement::EndSynchronous(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDSYNC_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndSynchronous");
 
                self.kv(indent2).with_s_key("StartSync").with_disp_val(&stmt.start_sync.0.index);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            },
 
            Statement::Return(stmt) => {
 
                self.kv(indent).with_id(PREFIX_RETURN_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Return");
 
                self.kv(indent2).with_s_key("Expression");
 
                self.write_expr(heap, stmt.expression, indent3);
 
            },
 
            Statement::Assert(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ASSERT_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Assert");
 
                self.kv(indent2).with_s_key("Expression");
 
                self.write_expr(heap, stmt.expression, indent3);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            },
 
            Statement::Goto(stmt) => {
 
                self.kv(indent).with_id(PREFIX_GOTO_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Goto");
 
                self.kv(indent2).with_s_key("Label").with_ascii_val(&stmt.label.value);
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(stmt.target.as_ref().map(|v| &v.0.index));
 
            },
 
            Statement::New(stmt) => {
 
                self.kv(indent).with_id(PREFIX_NEW_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("New");
 
                self.kv(indent2).with_s_key("Expression");
 
                self.write_expr(heap, stmt.expression.upcast(), indent3);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            },
 
            Statement::Put(stmt) => {
 
                self.kv(indent).with_id(PREFIX_PUT_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Put");
 
                self.kv(indent2).with_s_key("Port");
 
                self.write_expr(heap, stmt.port, indent3);
 
                self.kv(indent2).with_s_key("Message");
 
                self.write_expr(heap, stmt.message, indent3);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            },
 
            Statement::Expression(stmt) => {
 
                self.kv(indent).with_id(PREFIX_EXPR_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("ExpressionStatement");
 
                self.write_expr(heap, stmt.expression, indent2);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            }
 
        }
 
    }
 

	
 
    fn write_expr(&mut self, heap: &Heap, expr_id: ExpressionId, indent: usize) {
 
        let expr = &heap[expr_id];
 
        let indent2 = indent + 1;
 
        let indent3 = indent2 + 1;
 

	
 
        match expr {
 
            Expression::Assignment(expr) => {
 
                self.kv(indent).with_id(PREFIX_ASSIGNMENT_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("AssignmentExpr");
 
                self.kv(indent2).with_s_key("Operation").with_debug_val(&expr.operation);
 
                self.kv(indent2).with_s_key("Left");
 
                self.write_expr(heap, expr.left, indent3);
 
                self.kv(indent2).with_s_key("Right");
 
                self.write_expr(heap, expr.right, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Conditional(expr) => {
 
                self.kv(indent).with_id(PREFIX_CONDITIONAL_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("ConditionalExpr");
 
                self.kv(indent2).with_s_key("Condition");
 
                self.write_expr(heap, expr.test, indent3);
 
                self.kv(indent2).with_s_key("TrueExpression");
 
                self.write_expr(heap, expr.true_expression, indent3);
 
                self.kv(indent2).with_s_key("FalseExpression");
 
                self.write_expr(heap, expr.false_expression, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Binary(expr) => {
 
                self.kv(indent).with_id(PREFIX_BINARY_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("BinaryExpr");
 
                self.kv(indent2).with_s_key("Operation").with_debug_val(&expr.operation);
 
                self.kv(indent2).with_s_key("Left");
 
                self.write_expr(heap, expr.left, indent3);
 
                self.kv(indent2).with_s_key("Right");
 
                self.write_expr(heap, expr.right, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
@@ -583,96 +573,97 @@ impl ASTWriter {
 
                self.write_expr(heap, expr.subject, indent3);
 

	
 
                match &expr.field {
 
                    Field::Length => {
 
                        self.kv(indent2).with_s_key("Field").with_s_val("length");
 
                    },
 
                    Field::Symbolic(field) => {
 
                        self.kv(indent2).with_s_key("Field").with_ascii_val(&field.value);
 
                    }
 
                }
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Array(expr) => {
 
                self.kv(indent).with_id(PREFIX_ARRAY_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("ArrayExpr");
 
                self.kv(indent2).with_s_key("Elements");
 
                for expr_id in &expr.elements {
 
                    self.write_expr(heap, *expr_id, indent3);
 
                }
 

	
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Constant(expr) => {
 
                self.kv(indent).with_id(PREFIX_CONST_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("ConstantExpr");
 

	
 
                let val = self.kv(indent2).with_s_key("Value");
 
                match &expr.value {
 
                    Constant::Null => { val.with_s_val("null"); },
 
                    Constant::True => { val.with_s_val("true"); },
 
                    Constant::False => { val.with_s_val("false"); },
 
                    Constant::Character(char) => { val.with_ascii_val(char); },
 
                    Constant::Integer(int) => { val.with_disp_val(int); },
 
                }
 

	
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Call(expr) => {
 
                self.kv(indent).with_id(PREFIX_CALL_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("CallExpr");
 

	
 
                // Method
 
                let method = self.kv(indent2).with_s_key("Method");
 
                match &expr.method {
 
                    Method::Get => { method.with_s_val("get"); },
 
                    Method::Put => { method.with_s_val("put"); },
 
                    Method::Fires => { method.with_s_val("fires"); },
 
                    Method::Create => { method.with_s_val("create"); },
 
                    Method::Symbolic(symbolic) => {
 
                        method.with_s_val("symbolic");
 
                        self.kv(indent3).with_s_key("Name").with_ascii_val(&symbolic.identifier.value);
 
                        self.kv(indent3).with_s_key("Definition")
 
                            .with_opt_disp_val(symbolic.definition.as_ref().map(|v| &v.index));
 
                    }
 
                }
 

	
 
                // Arguments
 
                self.kv(indent2).with_s_key("Arguments");
 
                for arg_id in &expr.arguments {
 
                    self.write_expr(heap, *arg_id, indent3);
 
                }
 

	
 
                // Parent
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Variable(expr) => {
 
                self.kv(indent).with_id(PREFIX_VARIABLE_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("VariableExpr");
 
                self.kv(indent2).with_s_key("Name").with_ascii_val(&expr.identifier.value);
 
                self.kv(indent2).with_s_key("Definition")
 
                    .with_opt_disp_val(expr.declaration.as_ref().map(|v| &v.index));
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            }
 
        }
 
    }
 

	
 
    fn write_local(&mut self, heap: &Heap, local_id: LocalId, indent: usize) {
 
        let local = &heap[local_id];
 
        let indent2 = indent + 1;
 

	
 
        self.kv(indent).with_id(PREFIX_LOCAL_ID, local_id.0.index)
 
            .with_s_key("Local");
 

	
 
        self.kv(indent2).with_s_key("Name").with_ascii_val(&local.identifier.value);
 
        self.kv(indent2).with_s_key("Type")
 
            .with_custom_val(|w| write_type(w, heap, &heap[local.parser_type]));
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Printing Utilities
 
    //--------------------------------------------------------------------------
 

	
 
@@ -704,53 +695,52 @@ fn write_type(target: &mut String, heap: &Heap, t: &ParserType) {
 
        PTV::Array(id) => { target.write_str("array"); embedded.push(*id) }
 
        PTV::Message => { target.write_str("msg"); }
 
        PTV::Bool => { target.write_str("bool"); }
 
        PTV::Byte => { target.write_str("byte"); }
 
        PTV::Short => { target.write_str("short"); }
 
        PTV::Int => { target.write_str("int"); }
 
        PTV::Long => { target.write_str("long"); }
 
        PTV::String => { target.write_str("str"); }
 
        PTV::IntegerLiteral => { target.write_str("int_lit"); }
 
        PTV::Inferred => { target.write_str("auto"); }
 
        PTV::Symbolic(symbolic) => {
 
            target.write_str(&String::from_utf8_lossy(&symbolic.identifier.value));
 
            match symbolic.variant {
 
                Some(SymbolicParserTypeVariant::PolyArg(def_id, idx)) => {
 
                    target.write_str(&format!("{{def: {}, idx: {}}}", def_id.index, idx));
 
                },
 
                Some(SymbolicParserTypeVariant::Definition(def_id)) => {
 
                    target.write_str(&format!("{{def: {}}}", def_id.index));
 
                },
 
                None => {
 
                    target.write_str("{None}");
 
                }
 
            }
 
            embedded.extend(&symbolic.poly_args);
 
        }
 
    };
 

	
 
    if !embedded.is_empty() {
 
        target.write_str("<");
 
        for (idx, embedded_id) in embedded.into_iter().enumerate() {
 
            if idx != 0 { target.write_str(", "); }
 
            write_type(target, heap, &heap[embedded_id]);
 
        }
 
        target.write_str(">");
 
    }
 
}
 

	
 
fn write_expression_parent(target: &mut String, parent: &ExpressionParent) {
 
    use ExpressionParent as EP;
 

	
 
    *target = match parent {
 
        EP::None => String::from("None"),
 
        EP::Memory(id) => format!("MemoryStmt({})", id.0.0.index),
 
        EP::If(id) => format!("IfStmt({})", id.0.index),
 
        EP::While(id) => format!("WhileStmt({})", id.0.index),
 
        EP::Return(id) => format!("ReturnStmt({})", id.0.index),
 
        EP::Assert(id) => format!("AssertStmt({})", id.0.index),
 
        EP::New(id) => format!("NewStmt({})", id.0.index),
 
        EP::Put(id, idx) => format!("PutStmt({}, {})", id.0.index, idx),
 
        EP::ExpressionStmt(id) => format!("ExprStmt({})", id.0.index),
 
        EP::Expression(id, idx) => format!("Expr({}, {})", id.index, idx)
 
    };
 
}
 
\ No newline at end of file
src/protocol/eval.rs
Show inline comments
 
@@ -1454,116 +1454,127 @@ impl Store {
 
                    _ => {}
 
                }
 
                right = self.eval(h, ctx, expr.right)?;
 
                match expr.operation {
 
                    BinaryOperator::Equality => Ok(left.eq(&right)),
 
                    BinaryOperator::Inequality => Ok(left.neq(&right)),
 
                    BinaryOperator::LessThan => Ok(left.lt(&right)),
 
                    BinaryOperator::LessThanEqual => Ok(left.lte(&right)),
 
                    BinaryOperator::GreaterThan => Ok(left.gt(&right)),
 
                    BinaryOperator::GreaterThanEqual => Ok(left.gte(&right)),
 
                    BinaryOperator::Remainder => Ok(left.modulus(&right)),
 
                    BinaryOperator::Add => Ok(left.plus(&right)),
 
                    _ => unimplemented!("{:?}", expr.operation),
 
                }
 
            }
 
            Expression::Unary(expr) => {
 
                let mut value = self.eval(h, ctx, expr.expression)?;
 
                match expr.operation {
 
                    UnaryOperation::PostIncrement => {
 
                        self.update(h, ctx, expr.expression, value.plus(&ONE))?;
 
                    }
 
                    UnaryOperation::PreIncrement => {
 
                        value = value.plus(&ONE);
 
                        self.update(h, ctx, expr.expression, value.clone())?;
 
                    }
 
                    UnaryOperation::PostDecrement => {
 
                        self.update(h, ctx, expr.expression, value.minus(&ONE))?;
 
                    }
 
                    UnaryOperation::PreDecrement => {
 
                        value = value.minus(&ONE);
 
                        self.update(h, ctx, expr.expression, value.clone())?;
 
                    }
 
                    _ => unimplemented!(),
 
                }
 
                Ok(value)
 
            }
 
            Expression::Indexing(expr) => self.get(h, ctx, expr.this.upcast()),
 
            Expression::Slicing(_expr) => unimplemented!(),
 
            Expression::Select(expr) => self.get(h, ctx, expr.this.upcast()),
 
            Expression::Array(expr) => {
 
                let mut elements = Vec::new();
 
                for &elem in expr.elements.iter() {
 
                    elements.push(self.eval(h, ctx, elem)?);
 
                }
 
                todo!()
 
            }
 
            Expression::Constant(expr) => Ok(Value::from_constant(&expr.value)),
 
            Expression::Call(expr) => match &expr.method {
 
                Method::Create => {
 
                Method::Get => {
 
                    assert_eq!(1, expr.arguments.len());
 
                    let length = self.eval(h, ctx, expr.arguments[0])?;
 
                    Ok(Value::create_message(length))
 
                    let value = self.eval(h, ctx, expr.arguments[0])?;
 
                    match ctx.get(value.clone()) {
 
                        None => Err(EvalContinuation::BlockGet(value)),
 
                        Some(result) => Ok(result),
 
                    }
 
                }
 
                Method::Put => {
 
                    assert_eq!(2, expr.arguments.len());
 
                    let port_value = self.eval(h, ctx, expr.arguments[0])?;
 
                    let msg_value = self.eval(h, ctx, expr.arguments[1])?;
 
                    if ctx.did_put(port_value.clone()) {
 
                        // Return bogus, replacing this at some point anyway
 
                        Ok(Value::Message(MessageValue(None)))
 
                    } else {
 
                        Err(EvalContinuation::Put(port_value, msg_value))
 
                    }
 
                }
 
                Method::Fires => {
 
                    assert_eq!(1, expr.arguments.len());
 
                    let value = self.eval(h, ctx, expr.arguments[0])?;
 
                    match ctx.fires(value.clone()) {
 
                        None => Err(EvalContinuation::BlockFires(value)),
 
                        Some(result) => Ok(result),
 
                    }
 
                }
 
                Method::Get => {
 
                Method::Create => {
 
                    assert_eq!(1, expr.arguments.len());
 
                    let value = self.eval(h, ctx, expr.arguments[0])?;
 
                    match ctx.get(value.clone()) {
 
                        None => Err(EvalContinuation::BlockGet(value)),
 
                        Some(result) => Ok(result),
 
                    }
 
                    let length = self.eval(h, ctx, expr.arguments[0])?;
 
                    Ok(Value::create_message(length))
 
                }
 
                Method::Symbolic(_symbol) => unimplemented!(),
 
            },
 
            Expression::Variable(expr) => self.get(h, ctx, expr.this.upcast()),
 
        }
 
    }
 
}
 

	
 
type EvalResult = Result<Value, EvalContinuation>;
 
pub enum EvalContinuation {
 
    Stepping,
 
    Inconsistent,
 
    Terminal,
 
    SyncBlockStart,
 
    SyncBlockEnd,
 
    NewComponent(DefinitionId, Vec<Value>),
 
    BlockFires(Value),
 
    BlockGet(Value),
 
    Put(Value, Value),
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub(crate) struct Prompt {
 
    definition: DefinitionId,
 
    store: Store,
 
    position: Option<StatementId>,
 
}
 

	
 
impl Prompt {
 
    pub fn new(h: &Heap, def: DefinitionId, args: &Vec<Value>) -> Self {
 
        let mut prompt =
 
            Prompt { definition: def, store: Store::new(), position: Some((&h[def]).body()) };
 
        prompt.set_arguments(h, args);
 
        prompt
 
    }
 
    fn set_arguments(&mut self, h: &Heap, args: &Vec<Value>) {
 
        let def = &h[self.definition];
 
        let params = def.parameters();
 
        assert_eq!(params.len(), args.len());
 
        for (param, value) in params.iter().zip(args.iter()) {
 
            let hparam = &h[*param];
 
            let parser_type = &h[hparam.parser_type];
 
            assert!(value.is_type_compatible(h, parser_type));
 
            self.store.initialize(h, param.upcast(), value.clone());
 
        }
 
    }
 
    pub fn step(&mut self, h: &Heap, ctx: &mut EvalContext) -> EvalResult {
 
        if self.position.is_none() {
 
@@ -1651,105 +1662,96 @@ impl Prompt {
 
            Statement::Break(stmt) => {
 
                // Continue to end of while
 
                self.position = stmt.target.map(EndWhileStatementId::upcast);
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::Continue(stmt) => {
 
                // Continue to beginning of while
 
                self.position = stmt.target.map(WhileStatementId::upcast);
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::Assert(stmt) => {
 
                // Evaluate expression
 
                let value = self.store.eval(h, ctx, stmt.expression)?;
 
                if value.as_boolean().0 {
 
                    // Continue to next statement
 
                    self.position = stmt.next;
 
                    Err(EvalContinuation::Stepping)
 
                } else {
 
                    // Assertion failed: inconsistent
 
                    Err(EvalContinuation::Inconsistent)
 
                }
 
            }
 
            Statement::Return(stmt) => {
 
                // Evaluate expression
 
                let value = self.store.eval(h, ctx, stmt.expression)?;
 
                // Done with evaluation
 
                Ok(value)
 
            }
 
            Statement::Goto(stmt) => {
 
                // Continue to target
 
                self.position = stmt.target.map(|x| x.upcast());
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::New(stmt) => {
 
                let expr = &h[stmt.expression];
 
                let mut args = Vec::new();
 
                for &arg in expr.arguments.iter() {
 
                    let value = self.store.eval(h, ctx, arg)?;
 
                    args.push(value);
 
                }
 
                self.position = stmt.next;
 
                match &expr.method {
 
                    Method::Symbolic(symbolic) => {
 
                         Err(EvalContinuation::NewComponent(symbolic.definition.unwrap(), args))
 
                    },
 
                    _ => unreachable!("not a symbolic call expression")
 
                }
 
            }
 
            Statement::Put(stmt) => {
 
                // Evaluate port and message
 
                let port = self.store.eval(h, ctx, stmt.port)?;
 
                let message = self.store.eval(h, ctx, stmt.message)?;
 
                // Continue to next statement
 
                self.position = stmt.next;
 
                // Signal the put upwards
 
                Err(EvalContinuation::Put(port, message))
 
            }
 
            Statement::Expression(stmt) => {
 
                // Evaluate expression
 
                let _value = self.store.eval(h, ctx, stmt.expression)?;
 
                // Continue to next statement
 
                self.position = stmt.next;
 
                Err(EvalContinuation::Stepping)
 
            }
 
        }
 
    }
 
    // fn compute_function(_h: &Heap, _fun: FunctionId, _args: &Vec<Value>) -> Option<Value> {
 
    // let mut prompt = Self::new(h, fun.upcast(), args);
 
    // let mut context = EvalContext::None;
 
    // loop {
 
    //     let result = prompt.step(h, &mut context);
 
    //     match result {
 
    //         Ok(val) => return Some(val),
 
    //         Err(cont) => match cont {
 
    //             EvalContinuation::Stepping => continue,
 
    //             EvalContinuation::Inconsistent => return None,
 
    //             // Functions never terminate without returning
 
    //             EvalContinuation::Terminal => unreachable!(),
 
    //             // Functions never encounter any blocking behavior
 
    //             EvalContinuation::SyncBlockStart => unreachable!(),
 
    //             EvalContinuation::SyncBlockEnd => unreachable!(),
 
    //             EvalContinuation::NewComponent(_, _) => unreachable!(),
 
    //             EvalContinuation::BlockFires(val) => unreachable!(),
 
    //             EvalContinuation::BlockGet(val) => unreachable!(),
 
    //             EvalContinuation::Put(port, msg) => unreachable!(),
 
    //         },
 
    //     }
 
    // }
 
    // }
 
}
 

	
 
// #[cfg(test)]
 
// mod tests {
 
//     extern crate test_generator;
 

	
 
//     use std::fs::File;
 
//     use std::io::Read;
 
//     use std::path::Path;
 
//     use test_generator::test_resources;
 

	
 
//     use super::*;
 

	
 
//     #[test_resources("testdata/eval/positive/*.pdl")]
 
//     fn batch1(resource: &str) {
 
//         let path = Path::new(resource);
src/protocol/lexer.rs
Show inline comments
 
@@ -1369,114 +1369,117 @@ impl Lexer<'_> {
 
            self.consume_keyword(b"null")?;
 
            value = Constant::Null;
 
        } else if self.has_keyword(b"true") {
 
            self.consume_keyword(b"true")?;
 
            value = Constant::True;
 
        } else if self.has_keyword(b"false") {
 
            self.consume_keyword(b"false")?;
 
            value = Constant::False;
 
        } else if self.source.next() == Some(b'\'') {
 
            self.source.consume();
 
            let mut data = Vec::new();
 
            let mut next = self.source.next();
 
            while next != Some(b'\'') && (is_vchar(next) || next == Some(b' ')) {
 
                data.push(next.unwrap());
 
                self.source.consume();
 
                next = self.source.next();
 
            }
 
            if next != Some(b'\'') || data.is_empty() {
 
                return Err(self.error_at_pos("Expected character constant"));
 
            }
 
            self.source.consume();
 
            value = Constant::Character(data);
 
        } else {
 
            if !self.has_integer() {
 
                return Err(self.error_at_pos("Expected integer constant"));
 
            }
 

	
 
            value = Constant::Integer(self.consume_integer()?);
 
        }
 
        Ok(h.alloc_constant_expression(|this| ConstantExpression {
 
            this,
 
            position,
 
            value,
 
            parent: ExpressionParent::None,
 
        }))
 
    }
 
    fn has_call_expression(&mut self) -> bool {
 
        // We need to prevent ambiguity with various operators (because we may
 
        // be specifying polymorphic variables) and variables.
 
        if self.has_builtin_keyword() {
 
            return true;
 
        }
 

	
 
        let backup_pos = self.source.pos();
 
        let mut result = false;
 

	
 
        if self.consume_namespaced_identifier_spilled().is_ok() &&
 
            self.consume_whitespace(false).is_ok() &&
 
            self.maybe_consume_poly_args_spilled_without_pos_recovery().is_ok() &&
 
            self.maybe_consume_poly_args_spilled_without_pos_recovery() &&
 
            self.consume_whitespace(false).is_ok() &&
 
            self.source.next() == Some(b'(') {
 
            // Seems like we have a function call or an enum literal
 
            result = true;
 
        }
 

	
 
        self.source.seek(backup_pos);
 
        return result;
 
    }
 
    fn consume_call_expression(&mut self, h: &mut Heap) -> Result<CallExpressionId, ParseError2> {
 
        let position = self.source.pos();
 

	
 
        // Consume method identifier
 
        let method;
 
        if self.has_keyword(b"get") {
 
            self.consume_keyword(b"get")?;
 
            method = Method::Get;
 
        } else if self.has_keyword(b"put") {
 
            self.consume_keyword(b"put")?;
 
            method = Method::Put;
 
        } else if self.has_keyword(b"fires") {
 
            self.consume_keyword(b"fires")?;
 
            method = Method::Fires;
 
        } else if self.has_keyword(b"create") {
 
            self.consume_keyword(b"create")?;
 
            method = Method::Create;
 
        } else {
 
            let identifier = self.consume_namespaced_identifier()?;
 
            method = Method::Symbolic(MethodSymbolic{
 
                identifier,
 
                definition: None
 
            })
 
        }
 

	
 
        // Consume polymorphic arguments
 
        self.consume_whitespace(false)?;
 
        let poly_args = self.consume_polymorphic_args(h, true)?;
 

	
 
        // Consume arguments to call
 
        self.consume_whitespace(false)?;
 
        let mut arguments = Vec::new();
 
        self.consume_string(b"(")?;
 
        self.consume_whitespace(false)?;
 
        if !self.has_string(b")") {
 
            // TODO: allow trailing comma
 
            while self.source.next().is_some() {
 
                arguments.push(self.consume_expression(h)?);
 
                self.consume_whitespace(false)?;
 
                if self.has_string(b")") {
 
                    break;
 
                }
 
                self.consume_string(b",")?;
 
                self.consume_whitespace(false)?
 
            }
 
        }
 
        self.consume_string(b")")?;
 
        Ok(h.alloc_call_expression(|this| CallExpression {
 
            this,
 
            position,
 
            method,
 
            arguments,
 
            poly_args,
 
            parent: ExpressionParent::None,
 
        }))
 
    }
 
    fn consume_variable_expression(
 
        &mut self,
 
        h: &mut Heap,
 
@@ -1508,98 +1511,96 @@ impl Lexer<'_> {
 
        if self.level >= MAX_LEVEL {
 
            return Err(self.error_at_pos("Too deeply nested statement"));
 
        }
 
        self.level += 1;
 
        let result = self.consume_statement_impl(h, wrap_in_block);
 
        self.level -= 1;
 
        result
 
    }
 
    fn has_label(&mut self) -> bool {
 
        // To prevent ambiguity with expression statements consisting only of an
 
        // identifier or a namespaced identifier, we look ahead and match on the
 
        // *single* colon that signals a labeled statement.
 
        let backup_pos = self.source.pos();
 
        let mut result = false;
 
        if self.consume_identifier_spilled().is_ok() {
 
            // next character is ':', second character is NOT ':'
 
            result = Some(b':') == self.source.next() && Some(b':') != self.source.lookahead(1)
 
        }
 
        self.source.seek(backup_pos);
 
        return result;
 
    }
 
    fn consume_statement_impl(&mut self, h: &mut Heap, wrap_in_block: bool) -> Result<StatementId, ParseError2> {
 
        // Parse and allocate statement
 
        let mut must_wrap = true;
 
        let mut stmt_id = if self.has_string(b"{") {
 
            must_wrap = false;
 
            self.consume_block_statement(h)?
 
        } else if self.has_keyword(b"skip") {
 
            must_wrap = false;
 
            self.consume_skip_statement(h)?.upcast()
 
        } else if self.has_keyword(b"if") {
 
            self.consume_if_statement(h)?.upcast()
 
        } else if self.has_keyword(b"while") {
 
            self.consume_while_statement(h)?.upcast()
 
        } else if self.has_keyword(b"break") {
 
            self.consume_break_statement(h)?.upcast()
 
        } else if self.has_keyword(b"continue") {
 
            self.consume_continue_statement(h)?.upcast()
 
        } else if self.has_keyword(b"synchronous") {
 
            self.consume_synchronous_statement(h)?.upcast()
 
        } else if self.has_keyword(b"return") {
 
            self.consume_return_statement(h)?.upcast()
 
        } else if self.has_keyword(b"assert") {
 
            self.consume_assert_statement(h)?.upcast()
 
        } else if self.has_keyword(b"goto") {
 
            self.consume_goto_statement(h)?.upcast()
 
        } else if self.has_keyword(b"new") {
 
            self.consume_new_statement(h)?.upcast()
 
        } else if self.has_keyword(b"put") {
 
            self.consume_put_statement(h)?.upcast()
 
        } else if self.has_label() {
 
            self.consume_labeled_statement(h)?.upcast()
 
        } else {
 
            self.consume_expression_statement(h)?.upcast()
 
        };
 

	
 
        // Wrap if desired and if needed
 
        if must_wrap && wrap_in_block {
 
            let position = h[stmt_id].position();
 
            let block_wrapper = h.alloc_block_statement(|this| BlockStatement{
 
                this,
 
                position,
 
                statements: vec![stmt_id],
 
                parent_scope: None,
 
                relative_pos_in_parent: 0,
 
                locals: Vec::new(),
 
                labels: Vec::new()
 
            });
 

	
 
            stmt_id = block_wrapper.upcast();
 
        }
 

	
 
        Ok(stmt_id)
 
    }
 
    fn has_local_statement(&mut self) -> bool {
 
        /* To avoid ambiguity, we look ahead to find either the
 
        channel keyword that signals a variable declaration, or
 
        a type annotation followed by another identifier.
 
        Example:
 
          my_type[] x = {5}; // memory statement
 
          my_var[5] = x; // assignment expression, expression statement
 
        Note how both the local and the assignment
 
        start with arbitrary identifier followed by [. */
 
        if self.has_keyword(b"channel") {
 
            return true;
 
        }
 
        if self.has_statement_keyword() {
 
            return false;
 
        }
 
        let backup_pos = self.source.pos();
 
        let mut result = false;
 
        if self.maybe_consume_type_spilled_without_pos_recovery() {
 
            // We seem to have a valid type, do we now have an identifier?
 
            if self.consume_whitespace(true).is_ok() {
 
                result = self.has_identifier();
 
            }
 
        }
 

	
 
@@ -1854,112 +1855,96 @@ impl Lexer<'_> {
 
        let position = self.source.pos();
 
        self.consume_keyword(b"return")?;
 
        self.consume_whitespace(false)?;
 
        let expression = if self.has_string(b"(") {
 
            self.consume_paren_expression(h)
 
        } else {
 
            self.consume_expression(h)
 
        }?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b";")?;
 
        Ok(h.alloc_return_statement(|this| ReturnStatement { this, position, expression }))
 
    }
 
    fn consume_assert_statement(&mut self, h: &mut Heap) -> Result<AssertStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        self.consume_keyword(b"assert")?;
 
        self.consume_whitespace(false)?;
 
        let expression = if self.has_string(b"(") {
 
            self.consume_paren_expression(h)
 
        } else {
 
            self.consume_expression(h)
 
        }?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b";")?;
 
        Ok(h.alloc_assert_statement(|this| AssertStatement {
 
            this,
 
            position,
 
            expression,
 
            next: None,
 
        }))
 
    }
 
    fn consume_goto_statement(&mut self, h: &mut Heap) -> Result<GotoStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        self.consume_keyword(b"goto")?;
 
        self.consume_whitespace(false)?;
 
        let label = self.consume_identifier()?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b";")?;
 
        Ok(h.alloc_goto_statement(|this| GotoStatement { this, position, label, target: None }))
 
    }
 
    fn consume_new_statement(&mut self, h: &mut Heap) -> Result<NewStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        self.consume_keyword(b"new")?;
 
        self.consume_whitespace(false)?;
 
        let expression = self.consume_call_expression(h)?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b";")?;
 
        Ok(h.alloc_new_statement(|this| NewStatement { this, position, expression, next: None }))
 
    }
 
    fn consume_put_statement(&mut self, h: &mut Heap) -> Result<PutStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        self.consume_keyword(b"put")?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b"(")?;
 
        let port = self.consume_expression(h)?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b",")?;
 
        self.consume_whitespace(false)?;
 
        let message = self.consume_expression(h)?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b")")?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b";")?;
 
        Ok(h.alloc_put_statement(|this| PutStatement { this, position, port, message, next: None }))
 
    }
 
    fn consume_expression_statement(
 
        &mut self,
 
        h: &mut Heap,
 
    ) -> Result<ExpressionStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        let expression = self.consume_expression(h)?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b";")?;
 
        Ok(h.alloc_expression_statement(|this| ExpressionStatement {
 
            this,
 
            position,
 
            expression,
 
            next: None,
 
        }))
 
    }
 

	
 
    // ====================
 
    // Symbol definitions
 
    // ====================
 

	
 
    fn has_symbol_definition(&self) -> bool {
 
        self.has_keyword(b"composite")
 
            || self.has_keyword(b"primitive")
 
            || self.has_type_keyword()
 
            || self.has_identifier()
 
    }
 
    fn consume_symbol_definition(&mut self, h: &mut Heap) -> Result<DefinitionId, ParseError2> {
 
        if self.has_keyword(b"struct") {
 
            Ok(self.consume_struct_definition(h)?.upcast())
 
        } else if self.has_keyword(b"enum") {
 
            Ok(self.consume_enum_definition(h)?.upcast())
 
        } else if self.has_keyword(b"composite") || self.has_keyword(b"primitive") {
 
            Ok(self.consume_component_definition(h)?.upcast())
 
        } else {
 
            Ok(self.consume_function_definition(h)?.upcast())
 
        }
 
    }
 
    fn consume_struct_definition(&mut self, h: &mut Heap) -> Result<StructId, ParseError2> {
 
        // Parse "struct" keyword, optional polyvars and its identifier
 
        let struct_pos = self.source.pos();
 
        self.consume_keyword(b"struct")?;
 
        self.consume_whitespace(true)?;
 
        let struct_ident = self.consume_identifier()?;
 
        let poly_vars = self.consume_polymorphic_vars()?;
 
        self.consume_whitespace(false)?;
 

	
 
        // Parse struct fields
 
        self.consume_string(b"{")?;
src/protocol/mod.rs
Show inline comments
 
@@ -249,49 +249,61 @@ impl EvalContext<'_> {
 
                            moved_ports.insert(*port);
 
                        }
 
                        _ => {}
 
                    }
 
                }
 
                context.new_component(moved_ports, init_state)
 
            }
 
            EvalContext::Sync(_) => unreachable!(),
 
        }
 
    }
 
    fn new_channel(&mut self) -> [Value; 2] {
 
        match self {
 
            // EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(context) => {
 
                let [from, to] = context.new_port_pair();
 
                let from = Value::Output(OutputValue(from));
 
                let to = Value::Input(InputValue(to));
 
                return [from, to];
 
            }
 
            EvalContext::Sync(_) => unreachable!(),
 
        }
 
    }
 
    fn fires(&mut self, port: Value) -> Option<Value> {
 
        match self {
 
            // EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(_) => unreachable!(),
 
            EvalContext::Sync(context) => match port {
 
                Value::Output(OutputValue(port)) => context.is_firing(port).map(Value::from),
 
                Value::Input(InputValue(port)) => context.is_firing(port).map(Value::from),
 
                _ => unreachable!(),
 
            },
 
        }
 
    }
 
    fn get(&mut self, port: Value) -> Option<Value> {
 
        match self {
 
            // EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(_) => unreachable!(),
 
            EvalContext::Sync(context) => match port {
 
                Value::Output(OutputValue(port)) => {
 
                    context.read_msg(port).map(Value::receive_message)
 
                }
 
                Value::Input(InputValue(port)) => {
 
                    context.read_msg(port).map(Value::receive_message)
 
                }
 
                _ => unreachable!(),
 
            },
 
        }
 
    }
 
    fn did_put(&mut self, port: Value) -> bool {
 
        match self {
 
            EvalContext::Nonsync(_) => unreachable!("did_put in nonsync context"),
 
            EvalContext::Sync(context) => match port {
 
                Value::Output(OutputValue(port)) => {
 
                    context.is_firing(port).unwrap_or(false)
 
                },
 
                Value::Input(_) => unreachable!("did_put on input port"),
 
                _ => unreachable!("did_put on non-port value")
 
            }
 
        }
 
    }
 
}
src/protocol/parser/depth_visitor.rs
Show inline comments
 
@@ -73,99 +73,96 @@ pub(crate) trait Visitor: Sized {
 
    }
 
    fn visit_skip_statement(&mut self, _h: &mut Heap, _stmt: SkipStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_if_statement(&mut self, h: &mut Heap, stmt: IfStatementId) -> VisitorResult {
 
        recursive_if_statement(self, h, stmt)
 
    }
 
    fn visit_end_if_statement(&mut self, _h: &mut Heap, _stmt: EndIfStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_while_statement(&mut self, h: &mut Heap, stmt: WhileStatementId) -> VisitorResult {
 
        recursive_while_statement(self, h, stmt)
 
    }
 
    fn visit_end_while_statement(&mut self, _h: &mut Heap, _stmt: EndWhileStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_break_statement(&mut self, _h: &mut Heap, _stmt: BreakStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_continue_statement(
 
        &mut self,
 
        _h: &mut Heap,
 
        _stmt: ContinueStatementId,
 
    ) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        recursive_synchronous_statement(self, h, stmt)
 
    }
 
    fn visit_end_synchronous_statement(&mut self, _h: &mut Heap, _stmt: EndSynchronousStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_return_statement(&mut self, h: &mut Heap, stmt: ReturnStatementId) -> VisitorResult {
 
        recursive_return_statement(self, h, stmt)
 
    }
 
    fn visit_assert_statement(&mut self, h: &mut Heap, stmt: AssertStatementId) -> VisitorResult {
 
        recursive_assert_statement(self, h, stmt)
 
    }
 
    fn visit_goto_statement(&mut self, _h: &mut Heap, _stmt: GotoStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_new_statement(&mut self, h: &mut Heap, stmt: NewStatementId) -> VisitorResult {
 
        recursive_new_statement(self, h, stmt)
 
    }
 
    fn visit_put_statement(&mut self, h: &mut Heap, stmt: PutStatementId) -> VisitorResult {
 
        recursive_put_statement(self, h, stmt)
 
    }
 
    fn visit_expression_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: ExpressionStatementId,
 
    ) -> VisitorResult {
 
        recursive_expression_statement(self, h, stmt)
 
    }
 

	
 
    fn visit_expression(&mut self, h: &mut Heap, expr: ExpressionId) -> VisitorResult {
 
        recursive_expression(self, h, expr)
 
    }
 
    fn visit_assignment_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: AssignmentExpressionId,
 
    ) -> VisitorResult {
 
        recursive_assignment_expression(self, h, expr)
 
    }
 
    fn visit_conditional_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: ConditionalExpressionId,
 
    ) -> VisitorResult {
 
        recursive_conditional_expression(self, h, expr)
 
    }
 
    fn visit_binary_expression(&mut self, h: &mut Heap, expr: BinaryExpressionId) -> VisitorResult {
 
        recursive_binary_expression(self, h, expr)
 
    }
 
    fn visit_unary_expression(&mut self, h: &mut Heap, expr: UnaryExpressionId) -> VisitorResult {
 
        recursive_unary_expression(self, h, expr)
 
    }
 
    fn visit_indexing_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: IndexingExpressionId,
 
    ) -> VisitorResult {
 
        recursive_indexing_expression(self, h, expr)
 
    }
 
    fn visit_slicing_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: SlicingExpressionId,
 
    ) -> VisitorResult {
 
        recursive_slicing_expression(self, h, expr)
 
    }
 
    fn visit_select_expression(&mut self, h: &mut Heap, expr: SelectExpressionId) -> VisitorResult {
 
        recursive_select_expression(self, h, expr)
 
    }
 
@@ -275,97 +272,96 @@ fn recursive_composite_definition<T: Visitor>(
 
fn recursive_primitive_definition<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    def: ComponentId,
 
) -> VisitorResult {
 
    for &param in h[def].parameters.clone().iter() {
 
        recursive_parameter_as_variable(this, h, param)?;
 
    }
 
    this.visit_statement(h, h[def].body)
 
}
 

	
 
fn recursive_function_definition<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    def: FunctionId,
 
) -> VisitorResult {
 
    for &param in h[def].parameters.clone().iter() {
 
        recursive_parameter_as_variable(this, h, param)?;
 
    }
 
    this.visit_statement(h, h[def].body)
 
}
 

	
 
fn recursive_variable_declaration<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    decl: VariableId,
 
) -> VisitorResult {
 
    match h[decl].clone() {
 
        Variable::Parameter(decl) => this.visit_parameter_declaration(h, decl.this),
 
        Variable::Local(decl) => this.visit_local_declaration(h, decl.this),
 
    }
 
}
 

	
 
fn recursive_statement<T: Visitor>(this: &mut T, h: &mut Heap, stmt: StatementId) -> VisitorResult {
 
    match h[stmt].clone() {
 
        Statement::Block(stmt) => this.visit_block_statement(h, stmt.this),
 
        Statement::Local(stmt) => this.visit_local_statement(h, stmt.this()),
 
        Statement::Skip(stmt) => this.visit_skip_statement(h, stmt.this),
 
        Statement::Labeled(stmt) => this.visit_labeled_statement(h, stmt.this),
 
        Statement::If(stmt) => this.visit_if_statement(h, stmt.this),
 
        Statement::While(stmt) => this.visit_while_statement(h, stmt.this),
 
        Statement::Break(stmt) => this.visit_break_statement(h, stmt.this),
 
        Statement::Continue(stmt) => this.visit_continue_statement(h, stmt.this),
 
        Statement::Synchronous(stmt) => this.visit_synchronous_statement(h, stmt.this),
 
        Statement::Return(stmt) => this.visit_return_statement(h, stmt.this),
 
        Statement::Assert(stmt) => this.visit_assert_statement(h, stmt.this),
 
        Statement::Goto(stmt) => this.visit_goto_statement(h, stmt.this),
 
        Statement::New(stmt) => this.visit_new_statement(h, stmt.this),
 
        Statement::Put(stmt) => this.visit_put_statement(h, stmt.this),
 
        Statement::Expression(stmt) => this.visit_expression_statement(h, stmt.this),
 
        Statement::EndSynchronous(stmt) => this.visit_end_synchronous_statement(h, stmt.this),
 
        Statement::EndWhile(stmt) => this.visit_end_while_statement(h, stmt.this),
 
        Statement::EndIf(stmt) => this.visit_end_if_statement(h, stmt.this),
 
    }
 
}
 

	
 
fn recursive_block_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    block: BlockStatementId,
 
) -> VisitorResult {
 
    for &local in h[block].locals.clone().iter() {
 
        recursive_local_as_variable(this, h, local)?;
 
    }
 
    for &stmt in h[block].statements.clone().iter() {
 
        this.visit_statement(h, stmt)?;
 
    }
 
    Ok(())
 
}
 

	
 
fn recursive_local_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: LocalStatementId,
 
) -> VisitorResult {
 
    match h[stmt].clone() {
 
        LocalStatement::Channel(stmt) => this.visit_channel_statement(h, stmt.this),
 
        LocalStatement::Memory(stmt) => this.visit_memory_statement(h, stmt.this),
 
    }
 
}
 

	
 
fn recursive_memory_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: MemoryStatementId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[stmt].initial)
 
}
 

	
 
fn recursive_labeled_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: LabeledStatementId,
 
) -> VisitorResult {
 
    this.visit_statement(h, h[stmt].body)
 
}
 

	
 
@@ -379,105 +375,96 @@ fn recursive_if_statement<T: Visitor>(
 
    this.visit_statement(h, h[stmt].false_body)
 
}
 

	
 
fn recursive_while_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: WhileStatementId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[stmt].test)?;
 
    this.visit_statement(h, h[stmt].body)
 
}
 

	
 
fn recursive_synchronous_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: SynchronousStatementId,
 
) -> VisitorResult {
 
    // TODO: Check where this was used for
 
    // for &param in h[stmt].parameters.clone().iter() {
 
    //     recursive_parameter_as_variable(this, h, param)?;
 
    // }
 
    this.visit_statement(h, h[stmt].body)
 
}
 

	
 
fn recursive_return_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: ReturnStatementId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[stmt].expression)
 
}
 

	
 
fn recursive_assert_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: AssertStatementId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[stmt].expression)
 
}
 

	
 
fn recursive_new_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: NewStatementId,
 
) -> VisitorResult {
 
    recursive_call_expression_as_expression(this, h, h[stmt].expression)
 
}
 

	
 
fn recursive_put_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: PutStatementId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[stmt].port)?;
 
    this.visit_expression(h, h[stmt].message)
 
}
 

	
 
fn recursive_expression_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: ExpressionStatementId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[stmt].expression)
 
}
 

	
 
fn recursive_expression<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    expr: ExpressionId,
 
) -> VisitorResult {
 
    match h[expr].clone() {
 
        Expression::Assignment(expr) => this.visit_assignment_expression(h, expr.this),
 
        Expression::Conditional(expr) => this.visit_conditional_expression(h, expr.this),
 
        Expression::Binary(expr) => this.visit_binary_expression(h, expr.this),
 
        Expression::Unary(expr) => this.visit_unary_expression(h, expr.this),
 
        Expression::Indexing(expr) => this.visit_indexing_expression(h, expr.this),
 
        Expression::Slicing(expr) => this.visit_slicing_expression(h, expr.this),
 
        Expression::Select(expr) => this.visit_select_expression(h, expr.this),
 
        Expression::Array(expr) => this.visit_array_expression(h, expr.this),
 
        Expression::Constant(expr) => this.visit_constant_expression(h, expr.this),
 
        Expression::Call(expr) => this.visit_call_expression(h, expr.this),
 
        Expression::Variable(expr) => this.visit_variable_expression(h, expr.this),
 
    }
 
}
 

	
 
fn recursive_assignment_expression<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    expr: AssignmentExpressionId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[expr].left)?;
 
    this.visit_expression(h, h[expr].right)
 
}
 

	
 
fn recursive_conditional_expression<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    expr: ConditionalExpressionId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[expr].test)?;
 
    this.visit_expression(h, h[expr].true_expression)?;
 
    this.visit_expression(h, h[expr].false_expression)
 
}
 

	
 
fn recursive_binary_expression<T: Visitor>(
 
@@ -924,100 +911,96 @@ impl Visitor for LinkStatements {
 
    fn visit_continue_statement(
 
        &mut self,
 
        _h: &mut Heap,
 
        _stmt: ContinueStatementId,
 
    ) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        // Allocate a pseudo-statement, that is added for helping the evaluator to issue a command
 
        // that marks the end of the synchronous block. Every evaluation has to pause at this
 
        // point, only to resume later when the thread is selected as unique thread to continue.
 
        let end_sync_id = h[stmt].end_sync;
 
        assert!(end_sync_id.is_some());
 
        let end_sync_id = end_sync_id.unwrap();
 

	
 
        assert!(self.prev.is_none());
 
        self.visit_statement(h, h[stmt].body)?;
 
        // The body's next statement points to the pseudo element
 
        if let Some(UniqueStatementId(prev)) = self.prev.take() {
 
            h[prev].link_next(end_sync_id.upcast());
 
        }
 
        // Use the pseudo-statement as the statement where the next pointer is updated
 
        // self.prev = Some(UniqueStatementId(end_sync_id.upcast()));
 
        Ok(())
 
    }
 
    fn visit_end_synchronous_statement(&mut self, _h: &mut Heap, stmt: EndSynchronousStatementId) -> VisitorResult {
 
        assert!(self.prev.is_none());
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_return_statement(&mut self, _h: &mut Heap, _stmt: ReturnStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_assert_statement(&mut self, _h: &mut Heap, stmt: AssertStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_goto_statement(&mut self, _h: &mut Heap, _stmt: GotoStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_new_statement(&mut self, _h: &mut Heap, stmt: NewStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_put_statement(&mut self, _h: &mut Heap, stmt: PutStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_expression_statement(
 
        &mut self,
 
        _h: &mut Heap,
 
        stmt: ExpressionStatementId,
 
    ) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_expression(&mut self, _h: &mut Heap, _expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
pub(crate) struct BuildLabels {
 
    block: Option<BlockStatementId>,
 
    sync_enclosure: Option<SynchronousStatementId>,
 
}
 

	
 
impl BuildLabels {
 
    pub(crate) fn new() -> Self {
 
        BuildLabels { block: None, sync_enclosure: None }
 
    }
 
}
 

	
 
impl Visitor for BuildLabels {
 
    fn visit_block_statement(&mut self, h: &mut Heap, stmt: BlockStatementId) -> VisitorResult {
 
        assert_eq!(self.block, h[stmt].parent_block(h));
 
        let old = self.block;
 
        self.block = Some(stmt);
 
        recursive_block_statement(self, h, stmt)?;
 
        self.block = old;
 
        Ok(())
 
    }
 
    fn visit_labeled_statement(&mut self, h: &mut Heap, stmt: LabeledStatementId) -> VisitorResult {
 
        assert!(!self.block.is_none());
 
        // Store label in current block (on the fly)
 
        h[self.block.unwrap()].labels.push(stmt);
 
        // Update synchronous scope of label
 
        h[stmt].in_sync = self.sync_enclosure;
 
        recursive_labeled_statement(self, h, stmt)
 
    }
 
    fn visit_while_statement(&mut self, h: &mut Heap, stmt: WhileStatementId) -> VisitorResult {
 
        h[stmt].in_sync = self.sync_enclosure;
 
        recursive_while_statement(self, h, stmt)
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
src/protocol/parser/type_resolver.rs
Show inline comments
 
/// type_resolver.rs
 
///
 
/// Performs type inference and type checking
 
///
 
/// TODO: Needs an optimization pass
 
/// TODO: Needs a cleanup pass
 

	
 
use std::collections::{HashMap, HashSet, VecDeque};
 

	
 
use crate::protocol::ast::*;
 
use crate::protocol::inputsource::*;
 
use super::type_table::*;
 
use super::symbol_table::*;
 
use super::visitor::{
 
    STMT_BUFFER_INIT_CAPACITY,
 
    EXPR_BUFFER_INIT_CAPACITY,
 
    Ctx,
 
    Visitor2,
 
    VisitorResult
 
};
 
use std::collections::hash_map::Entry;
 
use crate::protocol::parser::type_resolver::InferenceTypePart::IntegerLike;
 

	
 
const MESSAGE_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::Message ];
 
const BOOL_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::Bool ];
 
const NUMBERLIKE_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::NumberLike ];
 
const INTEGERLIKE_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::IntegerLike ];
 
const ARRAY_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::Array, InferenceTypePart::Unknown ];
 
const ARRAYLIKE_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::ArrayLike, InferenceTypePart::Unknown ];
 
const PORTLIKE_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::PortLike, InferenceTypePart::Unknown ];
 

	
 
/// TODO: @performance Turn into PartialOrd+Ord to simplify checks
 
#[derive(Debug, Clone, Eq, PartialEq)]
 
pub(crate) enum InferenceTypePart {
 
    // A marker with an identifier which we can use to seek subsections of the 
 
    // inferred type
 
    Marker(usize),
 
    // Completely unknown type, needs to be inferred
 
    Unknown,
 
    // Partially known type, may be inferred to to be the appropriate related 
 
    // type.
 
    // IndexLike,      // index into array/slice
 
    NumberLike,     // any kind of integer/float
 
    IntegerLike,    // any kind of integer
 
    ArrayLike,      // array or slice. Note that this must have a subtype
 
    PortLike,       // input or output port
 
    // Special types that cannot be instantiated by the user
 
    Void, // For builtin functions that do not return anything
 
    // Concrete types without subtypes
 
    Message,
 
    Bool,
 
    Byte,
 
    Short,
 
    Int,
 
    Long,
 
    String,
 
    // One subtype
 
    Array,
 
    Slice,
 
    Input,
 
    Output,
 
    // A user-defined type with any number of subtypes
 
    Instance(DefinitionId, usize)
 
}
 

	
 
impl InferenceTypePart {
 
    fn is_marker(&self) -> bool {
 
        if let InferenceTypePart::Marker(_) = self { true } else { false }
 
    }
 

	
 
    /// Checks if the type is concrete, markers are interpreted as concrete
 
    /// types.
 
@@ -136,148 +145,160 @@ impl InferenceTypePart {
 
                (*num_args as i32) - 1
 
            }
 
        }
 
    }
 
}
 

	
 
impl From<ConcreteTypeVariant> for InferenceTypePart {
 
    fn from(v: ConcreteTypeVariant) -> InferenceTypePart {
 
        use ConcreteTypeVariant as CTV;
 
        use InferenceTypePart as ITP;
 

	
 
        match v {
 
            CTV::Message => ITP::Message,
 
            CTV::Bool => ITP::Bool,
 
            CTV::Byte => ITP::Byte,
 
            CTV::Short => ITP::Short,
 
            CTV::Int => ITP::Int,
 
            CTV::Long => ITP::Long,
 
            CTV::String => ITP::String,
 
            CTV::Array => ITP::Array,
 
            CTV::Slice => ITP::Slice,
 
            CTV::Input => ITP::Input,
 
            CTV::Output => ITP::Output,
 
            CTV::Instance(id, num) => ITP::Instance(id, num),
 
        }
 
    }
 
}
 

	
 
struct InferenceType {
 
    has_marker: bool,
 
    is_done: bool,
 
    parts: Vec<InferenceTypePart>,
 
}
 

	
 
impl InferenceType {
 
    fn new(has_marker: bool, is_done: bool, parts: Vec<InferenceTypePart>) -> Self {
 
        if cfg!(debug_assertions) {
 
            debug_assert!(!parts.is_empty());
 
            if !has_marker {
 
                debug_assert!(parts.iter().all(|v| !v.is_marker()));
 
            }
 
            if is_done {
 
                debug_assert!(parts.iter().all(|v| v.is_concrete()));
 
            }
 
        }
 
        Self{ has_marker, is_done, parts }
 
    }
 

	
 
    fn replace_subtree(&mut self, start_idx: usize, with: &[InferenceTypePart]) {
 
         let end_idx = Self::find_subtree_end_idx(&self.parts, start_idx);
 
        debug_assert_eq!(with.len(), Self::find_subtree_end_idx(with, 0));
 
        self.parts.splice(start_idx..end_idx, with.iter().cloned());
 
        self.recompute_is_done();
 
    }
 

	
 
    // TODO: @performance, might all be done inline in the type inference methods
 
    fn recompute_is_done(&mut self) {
 
        self.is_done = self.parts.iter().all(|v| v.is_concrete());
 
    }
 

	
 
    /// Checks if type is, or may be inferred as, a number
 
    // TODO: @float
 
    fn might_be_number(&self) -> bool {
 
        use InferenceTypePart as ITP;
 

	
 
        // TODO: @marker?
 
        if self.parts.len() != 1 { return false; }
 
        match self.parts[0] {
 
            ITP::Unknown | ITP::NumberLike | ITP::IntegerLike |
 
            ITP::Byte | ITP::Short | ITP::Int | ITP::Long =>
 
                true,
 
            _ =>
 
                false,
 
        }
 
    }
 

	
 
    /// Checks if type is, or may be inferred as, an integer
 
    fn might_be_integer(&self) -> bool {
 
        use InferenceTypePart as ITP;
 

	
 
        // TODO: @marker?
 
        if self.parts.len() != 1 { return false; }
 
        match self.parts[0] {
 
            ITP::Unknown | ITP::IntegerLike |
 
            ITP::Byte | ITP::Short | ITP::Int | ITP::Long =>
 
                true,
 
            _ =>
 
                false,
 
        }
 
    }
 

	
 
    /// Checks if type is, or may be inferred as, a boolean
 
    fn might_be_boolean(&self) -> bool {
 
        use InferenceTypePart as ITP;
 

	
 
        // TODO: @marker?
 
        if self.parts.len() != 1 { return false; }
 
        match self.parts[0] {
 
            ITP::Unknown | ITP::Bool => true,
 
            _ => false
 
        }
 
    }
 

	
 
    /// Returns an iterator over all markers and the partial type tree that
 
    /// follows those markers.
 
    fn marker_iter(&self) -> InferenceTypeMarkerIter {
 
        InferenceTypeMarkerIter::new(&self.parts)
 
    }
 

	
 
    /// Attempts to find a marker with a specific value appearing at or after
 
    /// the specified index. If found then the partial type tree's bounding
 
    /// indices that follow that marker are returned.
 
    fn find_subtree_idx_for_marker(&self, marker: usize, mut idx: usize) -> Option<(usize, usize)> {
 
        // Seek ahead to find a marker
 
        let marker = InferenceTypePart::Marker(marker);
 
        while idx < self.parts.len() {
 
            if marker == self.parts[idx] {
 
                // Found the marker
 
                let start_idx = idx + 1;
 
                let end_idx = Self::find_subtree_end_idx(&self.parts, start_idx);
 
                return Some((start_idx, end_idx))
 
            }
 

	
 
            idx += 1;
 
        }
 

	
 
        None
 
    }
 

	
 
    /// Given that the `parts` are a depth-first serialized tree of types, this
 
    /// function finds the subtree anchored at a specific node. The returned 
 
    /// index is exclusive.
 
    fn find_subtree_end_idx(parts: &[InferenceTypePart], start_idx: usize) -> usize {
 
        let mut depth = 1;
 
        let mut idx = start_idx;
 

	
 
        while idx < parts.len() {
 
            depth += parts[idx].depth_change();
 
            if depth == 0 {
 
                return idx + 1;
 
            }
 
            idx += 1;
 
        }
 

	
 
        // If here, then the inference type is malformed
 
        unreachable!();
 
    }
 

	
 
    /// Call that attempts to infer the part at `to_infer.parts[to_infer_idx]` 
 
    /// using the subtree at `template.parts[template_idx]`. Will return 
 
    /// `Some(depth_change_due_to_traversal)` if type inference has been 
 
    /// applied. In this case the indices will also be modified to point to the 
 
    /// next part in both templates. If type inference has not (or: could not) 
 
    /// be applied then `None` will be returned. Note that this might mean that 
 
    /// the types are incompatible.
 
    ///
 
    /// As this is a helper functions, some assumptions: the parts are not 
 
    /// exactly equal, and neither of them contains a marker. Also: only the
 
    /// `to_infer` parts are checked for inference. It might be that this 
 
    /// function returns `None`, but that that `template` is still compatible
 
@@ -655,366 +676,434 @@ impl DualInferenceResult {
 
        match self {
 
            DualInferenceResult::First | DualInferenceResult::Both => true,
 
            _ => false
 
        }
 
    }
 
    fn modified_rhs(&self) -> bool {
 
        match self {
 
            DualInferenceResult::Second | DualInferenceResult::Both => true,
 
            _ => false
 
        }
 
    }
 
}
 

	
 
#[derive(PartialEq, Eq)]
 
enum SingleInferenceResult {
 
    Unmodified,
 
    Modified,
 
    Incompatible
 
}
 

	
 
enum DefinitionType{
 
    None,
 
    Component(ComponentId),
 
    Function(FunctionId),
 
}
 

	
 
/// This particular visitor will recurse depth-first into the AST and ensures
 
/// that all expressions have the appropriate types. At the moment this implies:
 
///
 
///     - Type checking arguments to unary and binary operators.
 
///     - Type checking assignment, indexing, slicing and select expressions.
 
///     - Checking arguments to functions and component instantiations.
 
///
 
/// This will be achieved by slowly descending into the AST. At any given
 
/// expression we may depend on
 
pub(crate) struct TypeResolvingVisitor {
 
    definition_type: DefinitionType,
 

	
 
    // Buffers for iteration over substatements and subexpressions
 
    stmt_buffer: Vec<StatementId>,
 
    expr_buffer: Vec<ExpressionId>,
 

	
 
    // If instantiating a monomorph of a polymorphic proctype, then we store the
 
    // values of the polymorphic values here. There should be as many, and in
 
    // the same order as, in the definition's polyargs.
 
    polyvars: Vec<ConcreteType>,
 
    // Mapping from parser type to inferred type. We attempt to continue to
 
    // specify these types until we're stuck or we've fully determined the type.
 
    infer_types: HashMap<VariableId, InferenceType>,
 
    expr_types: HashMap<ExpressionId, InferenceType>,
 
    extra_data: HashMap<ExpressionId, ExtraData>,
 
    var_types: HashMap<VariableId, VarData>,      // types of variables
 
    expr_types: HashMap<ExpressionId, InferenceType>,   // types of expressions
 
    extra_data: HashMap<ExpressionId, ExtraData>,       // data for function call inference
 

	
 
    // Keeping track of which expressions need to be reinferred because the
 
    // expressions they're linked to made progression on an associated type
 
    expr_queued: HashSet<ExpressionId>,
 
}
 

	
 
// TODO: @rename used for calls and struct literals, maybe union literals?
 
struct ExtraData {
 
    /// Progression of polymorphic variables (if any)
 
    poly_vars: Vec<InferenceType>,
 
    /// Progression of types of call arguments or struct members
 
    embedded: Vec<InferenceType>,
 
    returned: InferenceType,
 
}
 

	
 
struct VarData {
 
    var_type: InferenceType,
 
    used_at: Vec<ExpressionId>,
 
}
 

	
 
impl TypeResolvingVisitor {
 
    pub(crate) fn new() -> Self {
 
        TypeResolvingVisitor{
 
            definition_type: DefinitionType::None,
 
            stmt_buffer: Vec::with_capacity(STMT_BUFFER_INIT_CAPACITY),
 
            expr_buffer: Vec::with_capacity(EXPR_BUFFER_INIT_CAPACITY),
 
            polyvars: Vec::new(),
 
            infer_types: HashMap::new(),
 
            var_types: HashMap::new(),
 
            expr_types: HashMap::new(),
 
            extra_data: HashMap::new(),
 
            expr_queued: HashSet::new(),
 
        }
 
    }
 

	
 
    fn reset(&mut self) {
 
        self.definition_type = DefinitionType::None;
 
        self.stmt_buffer.clear();
 
        self.expr_buffer.clear();
 
        self.polyvars.clear();
 
        self.infer_types.clear();
 
        self.var_types.clear();
 
        self.expr_types.clear();
 
    }
 
}
 

	
 
impl Visitor2 for TypeResolvingVisitor {
 
    // Definitions
 

	
 
    fn visit_component_definition(&mut self, ctx: &mut Ctx, id: ComponentId) -> VisitorResult {
 
        self.reset();
 
        self.definition_type = DefinitionType::Component(id);
 

	
 
        let comp_def = &ctx.heap[id];
 
        debug_assert_eq!(comp_def.poly_vars.len(), self.polyvars.len(), "component polyvars do not match imposed polyvars");
 

	
 
        for param_id in comp_def.parameters.clone() {
 
            let param = &ctx.heap[param_id];
 
            let infer_type = self.determine_inference_type_from_parser_type(ctx, param.parser_type, true);
 
            debug_assert!(infer_type.is_done, "expected component arguments to be concrete types");
 
            self.infer_types.insert(param_id.upcast(), infer_type);
 
            let var_type = self.determine_inference_type_from_parser_type(ctx, param.parser_type, true);
 
            debug_assert!(var_type.is_done, "expected component arguments to be concrete types");
 
            self.var_types.insert(param_id.upcast(), VarData{ var_type, used_at: Vec::new() });
 
        }
 

	
 
        let body_stmt_id = ctx.heap[id].body;
 
        self.visit_stmt(ctx, body_stmt_id)
 
    }
 

	
 
    fn visit_function_definition(&mut self, ctx: &mut Ctx, id: FunctionId) -> VisitorResult {
 
        self.reset();
 
        self.definition_type = DefinitionType::Function(id);
 

	
 
        let func_def = &ctx.heap[id];
 
        debug_assert_eq!(func_def.poly_vars.len(), self.polyvars.len(), "function polyvars do not match imposed polyvars");
 

	
 
        for param_id in func_def.parameters.clone() {
 
            let param = &ctx.heap[param_id];
 
            let infer_type = self.determine_inference_type_from_parser_type(ctx, param.parser_type, true);
 
            debug_assert!(infer_type.is_done, "expected function arguments to be concrete types");
 
            self.infer_types.insert(param_id.upcast(), infer_type);
 
            let var_type = self.determine_inference_type_from_parser_type(ctx, param.parser_type, true);
 
            debug_assert!(var_type.is_done, "expected function arguments to be concrete types");
 
            self.var_types.insert(param_id.upcast(), VarData{ var_type, used_at: Vec::new() });
 
        }
 

	
 
        let body_stmt_id = ctx.heap[id].body;
 
        self.visit_stmt(ctx, body_stmt_id)
 
    }
 

	
 
    // Statements
 

	
 
    fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
 
        // Transfer statements for traversal
 
        let block = &ctx.heap[id];
 

	
 
        for stmt_id in block.statements.clone() {
 
            self.visit_stmt(ctx, stmt_id);
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_local_memory_stmt(&mut self, ctx: &mut Ctx, id: MemoryStatementId) -> VisitorResult {
 
        let memory_stmt = &ctx.heap[id];
 

	
 
        let local = &ctx.heap[memory_stmt.variable];
 
        let infer_type = self.determine_inference_type_from_parser_type(ctx, local.parser_type, true);
 
        self.infer_types.insert(memory_stmt.variable.upcast(), infer_type);
 
        let var_type = self.determine_inference_type_from_parser_type(ctx, local.parser_type, true);
 
        self.var_types.insert(memory_stmt.variable.upcast(), VarData{ var_type, used_at: Vec::new() });
 

	
 
        let expr_id = memory_stmt.initial;
 
        self.visit_expr(ctx, expr_id)?;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_local_channel_stmt(&mut self, ctx: &mut Ctx, id: ChannelStatementId) -> VisitorResult {
 
        let channel_stmt = &ctx.heap[id];
 

	
 
        let from_local = &ctx.heap[channel_stmt.from];
 
        let from_infer_type = self.determine_inference_type_from_parser_type(ctx, from_local.parser_type, true);
 
        self.infer_types.insert(from_local.this.upcast(), from_infer_type);
 
        let from_var_type = self.determine_inference_type_from_parser_type(ctx, from_local.parser_type, true);
 
        self.var_types.insert(from_local.this.upcast(), VarData{ var_type: from_var_type, used_at: Vec::new() });
 

	
 
        let to_local = &ctx.heap[channel_stmt.to];
 
        let to_infer_type = self.determine_inference_type_from_parser_type(ctx, to_local.parser_type, true);
 
        self.infer_types.insert(to_local.this.upcast(), to_infer_type);
 
        let to_var_type = self.determine_inference_type_from_parser_type(ctx, to_local.parser_type, true);
 
        self.var_types.insert(to_local.this.upcast(), VarData{ var_type: to_var_type, used_at: Vec::new() });
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult {
 
        let labeled_stmt = &ctx.heap[id];
 
        let substmt_id = labeled_stmt.body;
 
        self.visit_stmt(ctx, substmt_id)
 
    }
 

	
 
    fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
 
        let if_stmt = &ctx.heap[id];
 

	
 
        let true_body_id = if_stmt.true_body;
 
        let false_body_id = if_stmt.false_body;
 
        let test_expr_id = if_stmt.test;
 

	
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_stmt(ctx, true_body_id)?;
 
        self.visit_stmt(ctx, false_body_id)?;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult {
 
        let while_stmt = &ctx.heap[id];
 

	
 
        let body_id = while_stmt.body;
 
        let test_expr_id = while_stmt.test;
 

	
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_stmt(ctx, body_id)?;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult {
 
        let sync_stmt = &ctx.heap[id];
 
        let body_id = sync_stmt.body;
 

	
 
        self.visit_stmt(ctx, body_id)
 
    }
 

	
 
    fn visit_return_stmt(&mut self, ctx: &mut Ctx, id: ReturnStatementId) -> VisitorResult {
 
        let return_stmt = &ctx.heap[id];
 
        let expr_id = return_stmt.expression;
 

	
 
        self.visit_expr(ctx, expr_id)
 
    }
 

	
 
    fn visit_assert_stmt(&mut self, ctx: &mut Ctx, id: AssertStatementId) -> VisitorResult {
 
        let assert_stmt = &ctx.heap[id];
 
        let test_expr_id = assert_stmt.expression;
 

	
 
        self.visit_expr(ctx, test_expr_id)
 
    }
 

	
 
    fn visit_new_stmt(&mut self, ctx: &mut Ctx, id: NewStatementId) -> VisitorResult {
 
        let new_stmt = &ctx.heap[id];
 
        let call_expr_id = new_stmt.expression;
 

	
 
        self.visit_call_expr(ctx, call_expr_id)
 
    }
 

	
 
    fn visit_put_stmt(&mut self, ctx: &mut Ctx, id: PutStatementId) -> VisitorResult {
 
        let put_stmt = &ctx.heap[id];
 

	
 
        let port_expr_id = put_stmt.port;
 
        let msg_expr_id = put_stmt.message;
 
        // TODO: What what?
 

	
 
        self.visit_expr(ctx, port_expr_id)?;
 
        self.visit_expr(ctx, msg_expr_id)?;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_expr_stmt(&mut self, ctx: &mut Ctx, id: ExpressionStatementId) -> VisitorResult {
 
        let expr_stmt = &ctx.heap[id];
 
        let subexpr_id = expr_stmt.expression;
 

	
 
        self.visit_expr(ctx, subexpr_id)
 
    }
 

	
 
    // Expressions
 

	
 
    fn visit_assignment_expr(&mut self, ctx: &mut Ctx, id: AssignmentExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let assign_expr = &ctx.heap[id];
 
        let left_expr_id = assign_expr.left;
 
        let right_expr_id = assign_expr.right;
 

	
 
        self.visit_expr(ctx, left_expr_id)?;
 
        self.visit_expr(ctx, right_expr_id)?;
 

	
 
        self.progress_assignment_expr(ctx, id)
 
    }
 

	
 
    fn visit_conditional_expr(&mut self, ctx: &mut Ctx, id: ConditionalExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let conditional_expr = &ctx.heap[id];
 
        let test_expr_id = conditional_expr.test;
 
        let true_expr_id = conditional_expr.true_expression;
 
        let false_expr_id = conditional_expr.false_expression;
 

	
 
        self.expr_types.insert(test_expr_id, InferenceType::new(false, true, vec![InferenceTypePart::Bool]));
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_expr(ctx, true_expr_id)?;
 
        self.visit_expr(ctx, false_expr_id)?;
 

	
 
        self.progress_conditional_expr(ctx, id)
 
    }
 

	
 
    fn visit_binary_expr(&mut self, ctx: &mut Ctx, id: BinaryExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let binary_expr = &ctx.heap[id];
 
        let lhs_expr_id = binary_expr.left;
 
        let rhs_expr_id = binary_expr.right;
 

	
 
        self.visit_expr(ctx, lhs_expr_id)?;
 
        self.visit_expr(ctx, rhs_expr_id)?;
 

	
 
        self.progress_binary_expr(ctx, id)
 
    }
 

	
 
    fn visit_unary_expr(&mut self, ctx: &mut Ctx, id: UnaryExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let unary_expr = &ctx.heap[id];
 
        let arg_expr_id = unary_expr.expression;
 

	
 
        self.visit_expr(ctx, arg_expr_id);
 
        self.visit_expr(ctx, arg_expr_id)?;
 

	
 
        self.progress_unary_expr(ctx, id)
 
    }
 

	
 
    fn visit_indexing_expr(&mut self, ctx: &mut Ctx, id: IndexingExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let indexing_expr = &ctx.heap[id];
 
        let subject_expr_id = indexing_expr.subject;
 
        let index_expr_id = indexing_expr.index;
 

	
 
        self.visit_expr(ctx, subject_expr_id)?;
 
        self.visit_expr(ctx, index_expr_id)?;
 

	
 
        self.progress_indexing_expr(ctx, id)
 
    }
 

	
 
    fn visit_slicing_expr(&mut self, ctx: &mut Ctx, id: SlicingExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let slicing_expr = &ctx.heap[id];
 
        let subject_expr_id = slicing_expr.subject;
 
        let from_expr_id = slicing_expr.from_index;
 
        let to_expr_id = slicing_expr.to_index;
 

	
 
        self.visit_expr(ctx, subject_expr_id)?;
 
        self.visit_expr(ctx, from_expr_id)?;
 
        self.visit_expr(ctx, to_expr_id)?;
 

	
 
        self.progress_slicing_expr(ctx, id)
 
    }
 

	
 
    fn visit_select_expr(&mut self, ctx: &mut Ctx, id: SelectExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let select_expr = &ctx.heap[id];
 
        let subject_expr_id = select_expr.subject;
 

	
 
        self.visit_expr(ctx, subject_expr_id)?;
 

	
 
        self.progress_select_expr(ctx, id)
 
    }
 

	
 
    fn visit_array_expr(&mut self, ctx: &mut Ctx, id: ArrayExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let array_expr = &ctx.heap[id];
 
        // TODO: @performance
 
        for element_id in array_expr.elements.clone().into_iter() {
 
            self.visit_expr(ctx, element_id)?;
 
        }
 

	
 
        self.progress_array_expr(ctx, id)
 
    }
 

	
 
    fn visit_constant_expr(&mut self, ctx: &mut Ctx, id: ConstantExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 
        self.progress_constant_expr(ctx, id)
 
    }
 

	
 
    fn visit_call_expr(&mut self, ctx: &mut Ctx, id: CallExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 
        self.insert_initial_call_polymorph_data(ctx, id);
 

	
 
        // TODO: @performance
 
        let call_expr = &ctx.heap[id];
 
        for arg_expr_id in call_expr.arguments.clone() {
 
            self.visit_expr(ctx, arg_expr_id)?;
 
        }
 

	
 
        self.progress_call_expr(ctx, id)
 
    }
 

	
 
    fn visit_variable_expr(&mut self, ctx: &mut Ctx, id: VariableExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let var_expr = &ctx.heap[id];
 
        debug_assert!(var_expr.declaration.is_some());
 
        let var_data = self.var_types.get_mut(var_expr.declaration.as_ref().unwrap()).unwrap();
 
        var_data.used_at.push(upcast_id);
 

	
 
        self.progress_variable_expr(ctx, id)
 
    }
 
}
 

	
 
macro_rules! debug_assert_expr_ids_unique_and_known {
 
    // Base case for a single expression ID
 
    ($resolver:ident, $id:ident) => {
 
        if cfg!(debug_assertions) {
 
            $resolver.expr_types.contains_key(&$id);
 
        }
 
    };
 
    // Base case for two expression IDs
 
    ($resolver:ident, $id1:ident, $id2:ident) => {
 
        debug_assert_ne!($id1, $id2);
 
        debug_assert_expr_ids_unique_and_known!($resolver, $id1);
 
        debug_assert_expr_ids_unique_and_known!($resolver, $id2);
 
    };
 
    // Generic case
 
    ($resolver:ident, $id1:ident, $id2:ident, $($tail:ident),+) => {
 
        debug_assert_ne!($id1, $id2);
 
        debug_assert_expr_ids_unique_and_known!($resolver, $id1);
 
        debug_assert_expr_ids_unique_and_known!($resolver, $id2, $($tail),+);
 
    };
 
}
 

	
 
macro_rules! debug_assert_ptrs_distinct {
 
    // Base case
 
    ($ptr1:ident, $ptr2:ident) => {
 
        debug_assert!(!std::ptr::eq($ptr1, $ptr2));
 
    };
 
    // Generic case
 
    ($ptr1:ident, $ptr2:ident, $($tail:ident),+) => {
 
        debug_assert_ptrs_distinct!($ptr1, $ptr2);
 
        debug_assert_ptrs_distinct!($ptr2, $($tail),+);
 
    };
 
}
 

	
 
enum TypeConstraintResult {
 
    Progress, // Success: Made progress in applying constraints
 
    NoProgess, // Success: But did not make any progress in applying constraints
 
    ErrExprType, // Error: Expression type did not match the argument(s) of the expression type
 
    ErrArgType, // Error: Expression argument types did not match
 
}
 

	
 
impl TypeResolvingVisitor {
 
    fn progress_assignment_expr(&mut self, ctx: &mut Ctx, id: AssignmentExpressionId) -> Result<(), ParseError2> {
 
        use AssignmentOperator as AO;
 

	
 
        // TODO: Assignable check
 
        let upcast_id = id.upcast();
 
@@ -1164,203 +1253,349 @@ impl TypeResolvingVisitor {
 
        Ok(())
 
    }
 

	
 
    fn progress_indexing_expr(&mut self, ctx: &mut Ctx, id: IndexingExpressionId) -> Result<(), ParseError2> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let subject_id = expr.subject;
 
        let index_id = expr.index;
 

	
 
        // Make sure subject is arraylike and index is integerlike
 
        let progress_subject_base = self.apply_forced_constraint(ctx, subject_id, &ARRAYLIKE_TEMPLATE)?;
 
        let progress_index = self.apply_forced_constraint(ctx, index_id, &INTEGERLIKE_TEMPLATE)?;
 

	
 
        // Make sure if output is of T then subject is Array<T>
 
        let (progress_expr, progress_subject) =
 
            self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 0, subject_id, 1)?;
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_subject_base || progress_subject { self.queue_expr(subject_id); }
 
        if progress_index { self.queue_expr(index_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_slicing_expr(&mut self, ctx: &mut Ctx, id: SlicingExpressionId) -> Result<(), ParseError2> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let subject_id = expr.subject;
 
        let from_id = expr.from_index;
 
        let to_id = expr.to_index;
 

	
 
        // Make sure subject is arraylike and indices are of equal integerlike
 
        let progress_subject_base = self.apply_forced_constraint(ctx, subject_id, &ARRAYLIKE_TEMPLATE)?;
 
        let progress_idx_base = self.apply_forced_constraint(ctx, from_id, &INTEGERLIKE_TEMPLATE)?;
 
        let (progress_from, progress_to) = self.apply_equal2_constraint(ctx, upcast_id, from_id, 0, to_id, 0)?;
 

	
 
        // Make sure if output is of T then subject is Array<T>
 
        let (progress_expr, progress_subject) =
 
            self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 0, subject_id, 1)?;
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_subject_base || progress_subject { self.queue_expr(subject_id); }
 
        if progress_idx_base || progress_from { self.queue_expr(from_id); }
 
        if progress_idx_base || progress_to { self.queue_expr(to_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_select_expr(&mut self, ctx: &mut Ctx, id: SelectExpressionId) -> Result<(), ParseError2> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let subject_id = expr.subject;
 

	
 
        let (progress_subject, progress_expr) = match &expr.field {
 
            Field::Length => {
 
                let progress_subject = self.apply_forced_constraint(ctx, subject_id, &ARRAYLIKE_TEMPLATE)?;
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &INTEGERLIKE_TEMPLATE)?;
 
                (progress_subject, progress_expr)
 
            },
 
            Field::Symbolic(_field) => {
 
                todo!("implement select expr for symbolic fields");
 
            }
 
        };
 

	
 
        if progress_subject { self.queue_expr(subject_id); }
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_array_expr(&mut self, ctx: &mut Ctx, id: ArrayExpressionId) -> Result<(), ParseError2> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let expr_elements = expr.elements.clone(); // TODO: @performance
 

	
 
        // All elements should have an equal type
 
        let progress = self.apply_equal_n_constraint(ctx, upcast_id, &expr_elements)?;
 
        let mut any_progress = false;
 
        for (progress_arg, arg_id) in progress.iter().zip(expr_elements.iter()) {
 
            if *progress_arg {
 
                any_progress = true;
 
                self.queue_expr(*arg_id);
 
            }
 
        }
 

	
 
        // And the output should be an array of the element types
 
        let mut expr_progress = self.apply_forced_constraint(ctx, upcast_id, &ARRAY_TEMPLATE)?;
 
        if !expr_elements.is_empty() {
 
            let first_arg_id = expr_elements[0];
 
            let (inner_expr_progress, arg_progress) = self.apply_equal2_constraint(
 
                ctx, upcast_id, upcast_id, 1, first_arg_id, 0
 
            )?;
 

	
 
            expr_progress = expr_progress || inner_expr_progress;
 

	
 
            // Note that if the array type progressed the type of the arguments,
 
            // then we should enqueue this progression function again
 
            if arg_progress { self.queue_expr(upcast_id); }
 
        }
 

	
 
        if expr_progress { self.queue_expr_parent(ctx, upcast_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_constant_expr(&mut self, ctx: &mut Ctx, id: ConstantExpressionId) -> Result<(), ParseError2> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let template = match &expr.value {
 
            Constant::Null => &MESSAGE_TEMPLATE,
 
            Constant::Integer(_) => &INTEGERLIKE_TEMPLATE,
 
            Constant::True | Constant::False => &BOOL_TEMPLATE,
 
            Constant::Character(_) => todo!("character literals")
 
        };
 

	
 
        let progress = self.apply_forced_constraint(ctx, upcast_id, template)?;
 
        if progress { self.queue_expr_parent(ctx, upcast_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    // TODO: @cleanup, see how this can be cleaned up once I implement
 
    //  polymorphic struct/enum/union literals. These likely follow the same
 
    //  pattern as here.
 
    fn progress_call_expr(&mut self, ctx: &mut Ctx, id: CallExpressionId) -> Result<(), ParseError2> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let extra = self.extra_data.get_mut(&upcast_id).unwrap();
 

	
 
        // Check if we can make progress using the arguments and/or return types
 
        // while keeping track of the polyvars we've extended
 
        let mut poly_progress = HashSet::new();
 
        debug_assert_eq!(extra.embedded.len(), expr.arguments.len());
 
        let mut poly_infer_error = false;
 

	
 
        for (arg_idx, arg_id) in expr.arguments.clone().into_iter().enumerate() {
 
            let signature_type = &mut extra.embedded[arg_idx];
 
            let argument_type: *mut _ = self.expr_types.get_mut(&arg_id).unwrap();
 
            let (progress_sig, progress_arg) = Self::apply_equal2_constraint_types(
 
                ctx, upcast_id, signature_type, 0, argument_type, 0
 
            )?;
 

	
 
            if progress_sig {
 
                // Progressed signature, so also apply inference to the 
 
                // polymorph types using the markers 
 
                debug_assert!(signature_type.has_marker, "progress on signature argument type without markers");
 
                for (poly_idx, poly_section) in signature_type.marker_iter() {
 
                    let polymorph_type = &mut extra.poly_vars[poly_idx];
 
                    match Self::apply_forced_constraint_types(
 
                        polymorph_type, 0, poly_section, 0
 
                    ) {
 
                        Ok(true) => { poly_progress.insert(poly_idx); },
 
                        Ok(false) => {},
 
                        Err(()) => { poly_infer_error = true; }
 
                    }
 
                }
 
            }
 
            if progress_arg {
 
                // Progressed argument expression
 
                self.queue_expr(arg_id);
 
                self.expr_queued.insert(arg_id);
 
            }
 
        }
 

	
 
        // Do the same for the return type
 
        let signature_type = &mut extra.returned;
 
        let expr_type: *mut _ = self.expr_types.get_mut(&upcast_id).unwrap();
 
        let (progress_sig, progress_expr) = Self::apply_equal2_constraint_types(
 
            ctx, upcast_id, signature_type, 0, expr_type, 0
 
        )?;
 

	
 
        if progress_sig {
 
            // As above: apply inference to polyargs as well
 
            debug_assert!(signature_type.has_marker, "progress on signature return type without markers");
 
            for (poly_idx, poly_section) in signature_type.marker_iter() {
 
                let polymorph_type = &mut extra.poly_vars[poly_idx];
 
                match Self::apply_forced_constraint_types(
 
                    polymorph_type, 0, poly_section, 0
 
                ) {
 
                    Ok(true) => { poly_progress.insert(poly_idx); },
 
                    Ok(false) => {},
 
                    Err(()) => { poly_infer_error = true; }
 
                }
 
            }
 
        }
 
        if progress_expr {
 
            self.queue_expr_parent(ctx, upcast_id);
 
            if let Some(parent_id) = ctx.heap[upcast_id].parent_expr_id() {
 
                self.expr_queued.insert(parent_id);
 
            }
 
        }
 

	
 
        // If we had an error in the polymorphic variable's inference, then we
 
        // need to provide a human readable error: find a pair of inference
 
        // types in the arguments/return type that do not agree on the
 
        // polymorphic variable's type
 
        if poly_infer_error { return Err(self.construct_poly_arg_error(ctx, id)) }
 

	
 
        // If we did not have an error in the polymorph inference above, then
 
        // reapplying the polymorph type to each argument type and the return
 
        // type should always succeed.
 
        // TODO: @performance If the algorithm is changed to be more "on demand
 
        //  argument re-evaluation", instead of "all-argument re-evaluation",
 
        //  then this is no longer true
 
        for poly_idx in poly_progress.into_iter() {
 
            // For each polymorphic argument: first extend the signature type,
 
            // then reapply the equal2 constraint to the expressions
 
            let poly_type = &extra.poly_vars[poly_idx];
 
            for (arg_idx, arg_type) in extra.embedded.iter_mut().enumerate() {
 
            for (arg_idx, sig_type) in extra.embedded.iter_mut().enumerate() {
 
                let mut seek_idx = 0;
 
                let mut modified_sig = false;
 
                while let Some((start_idx, end_idx)) = arg_type.find_subtree_idx_for_marker(poly_idx, seek_idx) {
 
                while let Some((start_idx, end_idx)) = sig_type.find_subtree_idx_for_marker(poly_idx, seek_idx) {
 
                    let modified_at_marker = Self::apply_forced_constraint_types(
 
                        arg_type, start_idx, &poly_type.parts, 0
 
                        sig_type, start_idx, &poly_type.parts, 0
 
                    ).unwrap();
 
                    modified_sig = modified_sig || modified_at_marker;
 
                    seek_idx = end_idx;
 
                }
 

	
 
                if !modified_sig { continue; }
 

	
 
                // Part of signature was modified, so update expression used as
 
                // argument as well
 
                let arg_expr_id = expr.arguments[arg_idx];
 
                let arg_type = self.expr_types.get_mut(arg_expr_id).unwrap();
 
                Self::apply_equal2_constraint_types(ctx, arg_expr_id, )
 
                let arg_type: *mut _ = self.expr_types.get_mut(&arg_expr_id).unwrap();
 
                let (progress_arg, _) = Self::apply_equal2_constraint_types(
 
                    ctx, arg_expr_id, arg_type, 0, sig_type, 0
 
                ).expect("no inference error at argument type");
 
                if progress_arg { self.expr_queued.insert(arg_expr_id); }
 
            }
 

	
 
            // Again: do the same for the return type
 
            let sig_type = &mut extra.returned;
 
            let mut seek_idx = 0;
 
            let mut modified_sig = false;
 
            while let Some((start_idx, end_idx)) = sig_type.find_subtree_idx_for_marker(poly_idx, seek_idx) {
 
                let modified_at_marker = Self::apply_forced_constraint_types(
 
                    sig_type, start_idx, &poly_type.parts, 0
 
                ).unwrap();
 
                modified_sig = modified_sig || modified_at_marker;
 
                seek_idx = end_idx;
 
            }
 

	
 
            if modified_sig {
 
                let ret_type = self.expr_types.get_mut(&upcast_id).unwrap();
 
                let (progress_ret, _) = Self::apply_equal2_constraint_types(
 
                    ctx, upcast_id, ret_type, 0, sig_type, 0
 
                ).expect("no inference error at return type");
 
                if progress_ret {
 
                    if let Some(parent_id) = ctx.heap[upcast_id].parent_expr_id() {
 
                        self.expr_queued.insert(parent_id);
 
                    }
 
                }
 
            }
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_variable_expr(&mut self, ctx: &mut Ctx, id: VariableExpressionId) -> Result<(), ParseError2> {
 
        let upcast_id = id.upcast();
 
        let var_expr = &ctx.heap[id];
 
        let var_id = var_expr.declaration.unwrap();
 

	
 
        // Retrieve shared variable type and expression type and apply inference
 
        let var_data = self.var_types.get_mut(&var_id).unwrap();
 
        let expr_type = self.expr_types.get_mut(&upcast_id).unwrap();
 

	
 
        let infer_res = unsafe{ InferenceType::infer_subtrees_for_both_types(
 
            &mut var_data.var_type as *mut _, 0, expr_type, 0
 
        ) };
 
        if infer_res == DualInferenceResult::Incompatible {
 
            let var_decl = &ctx.heap[var_id];
 
            return Err(ParseError2::new_error(
 
                &ctx.module.source, var_decl.position(),
 
                &format!(
 
                    "Conflicting types for this variable, previously assigned the type '{}'",
 
                    var_data.var_type.display_name(&ctx.heap)
 
                )
 
            ).with_postfixed_info(
 
                &ctx.module.source, var_expr.position,
 
                &format!(
 
                    "But inferred to have incompatible type '{}' here",
 
                    expr_type.display_name(&ctx.heap)
 
                )
 
            ))
 
        }
 

	
 
        let progress_var = infer_res.modified_lhs();
 
        let progress_expr = infer_res.modified_rhs();
 

	
 
        if progress_var {
 
            for other_expr in var_data.used_at.iter() {
 
                if *other_expr != upcast_id {
 
                    self.expr_queued.insert(*other_expr);
 
                }
 
            }
 
        }
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn queue_expr_parent(&mut self, ctx: &Ctx, expr_id: ExpressionId) {
 
        if let ExpressionParent::Expression(parent_expr_id, _) = &ctx.heap[expr_id].parent() {
 
            self.expr_queued.insert(*parent_expr_id);
 
        }
 
    }
 

	
 
    fn queue_expr(&mut self, expr_id: ExpressionId) {
 
        self.expr_queued.insert(expr_id);
 
    }
 

	
 
    /// Applies a forced type constraint: the type associated with the supplied
 
    /// expression will be molded into the provided "template". The template may
 
    /// be fully specified (e.g. a bool) or contain "inference" variables (e.g.
 
    /// an array of T)
 
    fn apply_forced_constraint(
 
        &mut self, ctx: &mut Ctx, expr_id: ExpressionId, template: &[InferenceTypePart]
 
    ) -> Result<bool, ParseError2> {
 
        debug_assert_expr_ids_unique_and_known!(self, expr_id);
 
        let expr_type = self.expr_types.get_mut(&expr_id).unwrap();
 
        match InferenceType::infer_subtree_for_single_type(expr_type, 0, template, 0) {
 
            SingleInferenceResult::Modified => Ok(true),
 
            SingleInferenceResult::Unmodified => Ok(false),
 
            SingleInferenceResult::Incompatible => Err(
 
                self.construct_template_type_error(ctx, expr_id, template)
 
            )
 
        }
 
    }
 

	
 
    fn apply_forced_constraint_types(
 
        to_infer: *mut InferenceType, to_infer_start_idx: usize,
 
        template: &[InferenceTypePart], template_start_idx: usize
 
    ) -> Result<bool, ()> {
 
        match InferenceType::infer_subtree_for_single_type(
 
            unsafe{ &mut *to_infer }, to_infer_start_idx,
 
            template, template_start_idx
 
        ) {
 
            SingleInferenceResult::Modified => Ok(true),
 
            SingleInferenceResult::Unmodified => Ok(false),
 
            SingleInferenceResult::Incompatible => Err(()),
 
        }
 
    }
 

	
 
    /// Applies a type constraint that expects the two provided types to be
 
    /// equal. We attempt to make progress in inferring the types. If the call
 
    /// is successful then the composition of all types are made equal.
 
    /// The "parent" `expr_id` is provided to construct errors.
 
    fn apply_equal2_constraint(
 
        &mut self, ctx: &Ctx, expr_id: ExpressionId,
 
@@ -1397,348 +1632,410 @@ impl TypeResolvingVisitor {
 

	
 
        if infer_res == DualInferenceResult::Incompatible {
 
            return Err(ParseError2::new_error(
 
                &ctx.module.source, ctx.heap[expr_id].position(),
 
                "TODO: Write me, apply_equal2_constraint_types"
 
            ));
 
        }
 

	
 
        Ok((infer_res.modified_lhs(), infer_res.modified_rhs()))
 
    }
 

	
 
    /// Applies a type constraint that expects all three provided types to be
 
    /// equal. In case we can make progress in inferring the types then we
 
    /// attempt to do so. If the call is successful then the composition of all
 
    /// types is made equal.
 
    fn apply_equal3_constraint(
 
        &mut self, ctx: &Ctx, expr_id: ExpressionId,
 
        arg1_id: ExpressionId, arg2_id: ExpressionId,
 
        start_idx: usize
 
    ) -> Result<(bool, bool, bool), ParseError2> {
 
        // Safety: all expression IDs are always distinct, and we do not modify
 
        //  the container
 
        debug_assert_expr_ids_unique_and_known!(self, expr_id, arg1_id, arg2_id);
 
        let expr_type: *mut _ = self.expr_types.get_mut(&expr_id).unwrap();
 
        let arg1_type: *mut _ = self.expr_types.get_mut(&arg1_id).unwrap();
 
        let arg2_type: *mut _ = self.expr_types.get_mut(&arg2_id).unwrap();
 

	
 
        let expr_res = unsafe{
 
            InferenceType::infer_subtrees_for_both_types(expr_type, start_idx, arg1_type, start_idx)
 
        };
 
        if expr_res == DualInferenceResult::Incompatible {
 
            return Err(self.construct_expr_type_error(ctx, expr_id, arg1_id));
 
        }
 

	
 
        let args_res = unsafe{
 
            InferenceType::infer_subtrees_for_both_types(arg1_type, start_idx, arg2_type, start_idx) };
 
        if args_res == DualInferenceResult::Incompatible {
 
            return Err(self.construct_arg_type_error(ctx, expr_id, arg1_id, arg2_id));
 
        }
 

	
 
        // If all types are compatible, but the second call caused the arg1_type
 
        // to be expanded, then we must also assign this to expr_type.
 
        let mut progress_expr = expr_res.modified_lhs();
 
        let mut progress_arg1 = expr_res.modified_rhs();
 
        let mut progress_arg2 = args_res.modified_rhs();
 

	
 
        if args_res.modified_lhs() { 
 
            unsafe {
 
                (*expr_type).parts.drain(start_idx..);
 
                (*expr_type).parts.extend_from_slice(&((*arg2_type).parts[start_idx..]));
 
                let end_idx = InferenceType::find_subtree_end_idx(&(*arg2_type).parts, start_idx);
 
                let subtree = &((*arg2_type).parts[start_idx..end_idx]);
 
                (*expr_type).replace_subtree(start_idx, subtree);
 
            }
 
            progress_expr = true;
 
            progress_arg1 = true;
 
        }
 

	
 
        Ok((progress_expr, progress_arg1, progress_arg2))
 
    }
 

	
 
    // TODO: @optimize Since we only deal with a single type this might be done
 
    //  a lot more efficiently, methinks (disregarding the allocations here)
 
    fn apply_equal_n_constraint(
 
        &mut self, ctx: &Ctx, expr_id: ExpressionId, args: &[ExpressionId],
 
    ) -> Result<Vec<bool>, ParseError2> {
 
        // Early exit
 
        match args.len() {
 
            0 => return Ok(vec!()),         // nothing to progress
 
            1 => return Ok(vec![false]),    // only one type, so nothing to infer
 
            _ => {}
 
        }
 

	
 
        let mut progress = Vec::new();
 
        progress.resize(args.len(), false);
 

	
 
        // Do pairwise inference, keep track of the last entry we made progress
 
        // on. Once done we need to update everything to the most-inferred type.
 
        let mut arg_iter = args.iter();
 
        let mut last_arg_id = *arg_iter.next().unwrap();
 
        let mut last_lhs_progressed = 0;
 
        let mut lhs_arg_idx = 0;
 

	
 
        while let Some(next_arg_id) = arg_iter.next() {
 
            let arg1_type: *mut _ = self.expr_types.get_mut(&last_arg_id).unwrap();
 
            let arg2_type: *mut _ = self.expr_types.get_mut(next_arg_id).unwrap();
 

	
 
            let res = unsafe {
 
                InferenceType::infer_subtrees_for_both_types(arg1_type, 0, arg2_type, 0)
 
            };
 

	
 
            if res == DualInferenceResult::Incompatible {
 
                return Err(self.construct_arg_type_error(ctx, expr_id, last_arg_id, *next_arg_id));
 
            }
 

	
 
            if res.modified_lhs() {
 
                // We re-inferred something on the left hand side, so everything
 
                // up until now should be re-inferred.
 
                progress[lhs_arg_idx] = true;
 
                last_lhs_progressed = lhs_arg_idx;
 
            }
 
            progress[lhs_arg_idx + 1] = res.modified_rhs();
 

	
 
            last_arg_id = *next_arg_id;
 
            lhs_arg_idx += 1;
 
        }
 

	
 
        // Re-infer everything. Note that we do not need to re-infer the type
 
        // exactly at `last_lhs_progressed`, but only everything up to it.
 
        let last_type: *mut _ = self.expr_types.get_mut(args.last().unwrap()).unwrap();
 
        for arg_idx in 0..last_lhs_progressed {
 
            let arg_type: *mut _ = self.expr_types.get_mut(&args[arg_idx]).unwrap();
 
            unsafe{
 
                (*arg_type).replace_subtree(0, &(*last_type).parts);
 
            }
 
            progress[arg_idx] = true;
 
        }
 

	
 
        Ok(progress)
 
    }
 

	
 
    /// Determines the `InferenceType` for the expression based on the
 
    /// expression parent. Note that if the parent is another expression, we do
 
    /// not take special action, instead we let parent expressions fix the type
 
    /// of subexpressions before they have a chance to call this function.
 
    /// Hence: if the expression type is already set, this function doesn't do
 
    /// anything.
 
    fn insert_initial_expr_inference_type(
 
        &mut self, ctx: &mut Ctx, expr_id: ExpressionId
 
    ) -> Result<(), ParseError2> {
 
        use ExpressionParent as EP;
 
        use InferenceTypePart as ITP;
 

	
 
        let expr = &ctx.heap[expr_id];
 
        let inference_type = match expr.parent() {
 
            EP::None =>
 
                // Should have been set by linker
 
                unreachable!(),
 
            EP::Memory(_) | EP::ExpressionStmt(_) | EP::Expression(_, _) =>
 
                // Determined during type inference
 
                InferenceType::new(false, false, vec![ITP::Unknown]),
 
            EP::If(_) | EP::While(_) | EP::Assert(_) =>
 
                // Must be a boolean
 
                InferenceType::new(false, true, vec![ITP::Bool]),
 
            EP::Return(_) =>
 
                // Must match the return type of the function
 
                if let DefinitionType::Function(func_id) = self.definition_type {
 
                    let return_parser_type_id = ctx.heap[func_id].return_type;
 
                    self.determine_inference_type_from_parser_type(ctx, return_parser_type_id, true)
 
                } else {
 
                    // Cannot happen: definition always set upon body traversal
 
                    // and "return" calls in components are illegal.
 
                    unreachable!();
 
                },
 
            EP::New(_) =>
 
                // Must be a component call, which we assign a "Void" return
 
                // type
 
                InferenceType::new(false, true, vec![ITP::Void]),
 
            EP::Put(_, 0) =>
 
                // TODO: Change put to be a builtin function
 
                // port of "put" call
 
                InferenceType::new(false, false, vec![ITP::Output, ITP::Unknown]),
 
            EP::Put(_, 1) =>
 
                // TODO: Change put to be a builtin function
 
                // message of "put" call
 
                InferenceType::new(false, true, vec![ITP::Message]),
 
            EP::Put(_, _) =>
 
                unreachable!()
 
        };
 

	
 
        match self.expr_types.entry(expr_id) {
 
            Entry::Vacant(vacant) => {
 
                vacant.insert(inference_type);
 
            },
 
            Entry::Occupied(mut preexisting) => {
 
                // We already have an entry, this happens if our parent fixed
 
                // our type (e.g. we're used in a conditional expression's test)
 
                // but we have a different type.
 
                // TODO: Is this ever called? Seems like it can't
 
                debug_assert!(false, "I am actually called, my ID is {}", expr_id.index);
 
                let old_type = preexisting.get_mut();
 
                if let SingleInferenceResult::Incompatible = InferenceType::infer_subtree_for_single_type(
 
                    old_type, 0, &inference_type.parts, 0
 
                ) {
 
                    return Err(self.construct_expr_type_error(ctx, expr_id, expr_id))
 
                }
 
            }
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn insert_initial_call_polymorph_data(
 
        &mut self, ctx: &mut Ctx, call_id: CallExpressionId
 
    ) {
 
        use InferenceTypePart as ITP;
 

	
 
        // Note: the polymorph variables may be partially specified and may
 
        // contain references to the wrapping definition's (i.e. the proctype
 
        // we are currently visiting) polymorphic arguments.
 
        //
 
        // The arguments of the call may refer to polymorphic variables in the
 
        // definition of the function we're calling, not of the wrapping
 
        // definition. We insert markers in these inferred types to be able to
 
        // map them back and forth to the polymorphic arguments of the function
 
        // we are calling.
 
        let call = &ctx.heap[call_id];
 
        debug_assert!(!call.poly_args.is_empty());
 

	
 
        // Handle the polymorphic variables themselves
 
        let mut poly_vars = Vec::with_capacity(call.poly_args.len());
 
        for poly_arg_type_id in call.poly_args.clone() { // TODO: @performance
 
            poly_vars.push(self.determine_inference_type_from_parser_type(ctx, poly_arg_type_id, true));
 
        }
 

	
 
        // Handle the arguments
 
        // TODO: @cleanup: Maybe factor this out for reuse in the validator/linker, should also
 
        //  make the code slightly more robust.
 
        let (embedded_types, return_type) = match &call.method {
 
            Method::Create => {
 
                // Not polymorphic
 
                unreachable!("insert initial polymorph data for builtin 'create()' call")
 
            },
 
            Method::Fires => {
 
                // bool fires<T>(PortLike<T> arg)
 
                (
 
                    vec![InferenceType::new(true, false, vec![ITP::PortLike, ITP::Marker(0), ITP::Unknown])],
 
                    InferenceType::new(false, true, vec![ITP::Bool])
 
                )
 
            },
 
            Method::Get => {
 
                // T get<T>(input<T> arg)
 
                (
 
                    vec![InferenceType::new(true, false, vec![ITP::Input, ITP::Marker(0), ITP::Unknown])],
 
                    InferenceType::new(true, false, vec![ITP::Marker(0), ITP::Unknown])
 
                )
 
            },
 
            Method::Put => {
 
                // void Put<T>(output<T> port, T msg)
 
                (
 
                    vec![
 
                        InferenceType::new(true, false, vec![ITP::Output, ITP::Marker(0), ITP::Unknown]),
 
                        InferenceType::new(true, false, vec![ITP::Marker(0), ITP::Unknown])
 
                    ],
 
                    InferenceType::new(false, true, vec![ITP::Void])
 
                )
 
            }
 
            Method::Symbolic(symbolic) => {
 
                let definition = &ctx.heap[symbolic.definition.unwrap()];
 

	
 
                match definition {
 
                    Definition::Component(definition) => {
 
                        let mut parameter_types = Vec::with_capacity(definition.parameters.len());
 
                        for param_id in definition.parameters.clone() {
 
                            let param = &ctx.heap[param_id];
 
                            let param_parser_type_id = param.parser_type;
 
                            parameter_types.push(self.determine_inference_type_from_parser_type(ctx, param_parser_type_id, false));
 
                        }
 

	
 
                        (parameter_types, InferenceType::new(false, true, vec![InferenceTypePart::Void]))
 
                    },
 
                    Definition::Function(definition) => {
 
                        let mut parameter_types = Vec::with_capacity(definition.parameters.len());
 
                        for param_id in definition.parameters.clone() {
 
                            let param = &ctx.heap[param_id];
 
                            let param_parser_type_id = param.parser_type;
 
                            parameter_types.push(self.determine_inference_type_from_parser_type(ctx, param_parser_type_id, false));
 
                        }
 

	
 
                        let return_type = self.determine_inference_type_from_parser_type(ctx, definition.return_type, false);
 
                        (parameter_types, return_type)
 
                    },
 
                    Definition::Struct(_) | Definition::Enum(_) => {
 
                        unreachable!("insert initial polymorph data for struct/enum");
 
                    }
 
                }
 
            }
 
        };
 

	
 
        self.extra_data.insert(call_id.upcast(), ExtraData {
 
            poly_vars,
 
            embedded: embedded_types,
 
            returned: return_type
 
        });
 
    }
 

	
 
    /// Determines the initial InferenceType from the provided ParserType. This
 
    /// may be called with two kinds of intentions:
 
    /// 1. To resolve a ParserType within the body of a function, or on
 
    ///     polymorphic arguments to calls/instantiations within that body. This
 
    ///     means that the polymorphic variables are known and can be replaced
 
    ///     with the monomorph we're instantiating.
 
    /// 2. To resolve a ParserType on a called function's definition or on
 
    ///     an instantiated datatype's members. This means that the polymorphic
 
    ///     arguments inside those ParserTypes refer to the polymorphic
 
    ///     variables in the called/instantiated type's definition.
 
    /// In the second case we place InferenceTypePart::Marker instances such
 
    /// that we can perform type inference on the polymorphic variables.
 
    fn determine_inference_type_from_parser_type(
 
        &mut self, ctx: &Ctx, parser_type_id: ParserTypeId,
 
        parser_type_in_body: bool
 
    ) -> InferenceType {
 
        use ParserTypeVariant as PTV;
 
        use InferenceTypePart as ITP;
 

	
 
        let mut to_consider = VecDeque::with_capacity(16);
 
        to_consider.push_back(parser_type_id);
 

	
 
        let mut infer_type = Vec::new();
 
        let mut has_inferred = false;
 
        let mut has_markers = false;
 

	
 
        while !to_consider.is_empty() {
 
            let parser_type_id = to_consider.pop_front().unwrap();
 
            let parser_type = &ctx.heap[parser_type_id];
 
            match &parser_type.variant {
 
                PTV::Message => { infer_type.push(ITP::Message); },
 
                PTV::Bool => { infer_type.push(ITP::Bool); },
 
                PTV::Byte => { infer_type.push(ITP::Byte); },
 
                PTV::Short => { infer_type.push(ITP::Short); },
 
                PTV::Int => { infer_type.push(ITP::Int); },
 
                PTV::Long => { infer_type.push(ITP::Long); },
 
                PTV::String => { infer_type.push(ITP::String); },
 
                PTV::IntegerLiteral => { unreachable!("integer literal type on variable type"); },
 
                PTV::Inferred => {
 
                    infer_type.push(ITP::Unknown);
 
                    has_inferred = true;
 
                },
 
                PTV::Array(subtype_id) => {
 
                    infer_type.push(ITP::Array);
 
                    to_consider.push_front(*subtype_id);
 
                },
 
                PTV::Input(subtype_id) => {
 
                    infer_type.push(ITP::Input);
 
                    to_consider.push_front(*subtype_id);
 
                },
 
                PTV::Output(subtype_id) => {
 
                    infer_type.push(ITP::Output);
 
                    to_consider.push_front(*subtype_id);
 
                },
 
                PTV::Symbolic(symbolic) => {
 
                    debug_assert!(symbolic.variant.is_some(), "symbolic variant not yet determined");
 
                    match symbolic.variant.unwrap() {
 
                    match symbolic.variant.as_ref().unwrap() {
 
                        SymbolicParserTypeVariant::PolyArg(_, arg_idx) => {
 
                            // Retrieve concrete type of argument and add it to
 
                            // the inference type.
 
                            let arg_idx = *arg_idx;
 
                            debug_assert!(symbolic.poly_args.is_empty()); // TODO: @hkt
 

	
 
                            if parser_type_in_body {
 
                                debug_assert!(arg_idx < self.polyvars.len());
 
                                for concrete_part in &self.polyvars[arg_idx].v {
 
                                    infer_type.push(ITP::from(*concrete_part));
 
                                }
 
                            } else {
 
                                has_markers = true;
 
                                infer_type.push(ITP::Marker(arg_idx));
 
                                infer_type.push(ITP::Unknown);
 
                            }
 
                        },
 
                        SymbolicParserTypeVariant::Definition(definition_id) => {
 
                            // TODO: @cleanup
 
                            if cfg!(debug_assertions) {
 
                                let definition = &ctx.heap[definition_id];
 
                                let definition = &ctx.heap[*definition_id];
 
                                debug_assert!(definition.is_struct() || definition.is_enum()); // TODO: @function_ptrs
 
                                let num_poly = match definition {
 
                                    Definition::Struct(v) => v.poly_vars.len(),
 
                                    Definition::Enum(v) => v.poly_vars.len(),
 
                                    _ => unreachable!(),
 
                                };
 
                                debug_assert_eq!(symbolic.poly_args.len(), num_poly);
 
                            }
 

	
 
                            infer_type.push(ITP::Instance(definition_id, symbolic.poly_args.len()));
 
                            infer_type.push(ITP::Instance(*definition_id, symbolic.poly_args.len()));
 
                            let mut poly_arg_idx = symbolic.poly_args.len();
 
                            while poly_arg_idx > 0 {
 
                                poly_arg_idx -= 1;
 
                                to_consider.push_front(symbolic.poly_args[poly_arg_idx]);
 
                            }
 
                        }
 
                    }
 
                }
 
            }
 
        }
 

	
 
        InferenceType::new(has_markers, !has_inferred, infer_type)
 
    }
 

	
 
    /// Construct an error when an expression's type does not match. This
 
    /// happens if we infer the expression type from its arguments (e.g. the
 
    /// expression type of an addition operator is the type of the arguments)
 
    /// But the expression type was already set due to our parent (e.g. an
 
    /// "if statement" or a "logical not" always expecting a boolean)
 
    fn construct_expr_type_error(
 
        &self, ctx: &Ctx, expr_id: ExpressionId, arg_id: ExpressionId
 
    ) -> ParseError2 {
 
        // TODO: Expand and provide more meaningful information for humans
 
        let expr = &ctx.heap[expr_id];
 
        let arg_expr = &ctx.heap[arg_id];
 
        let expr_type = self.expr_types.get(&expr_id).unwrap();
 
        let arg_type = self.expr_types.get(&arg_id).unwrap();
 

	
 
        return ParseError2::new_error(
 
            &ctx.module.source, expr.position(),
 
            &format!(
 
                "Incompatible types: this expression expected a '{}'", 
 
                expr_type.display_name(&ctx.heap)
 
            )
 
        ).with_postfixed_info(
 
            &ctx.module.source, arg_expr.position(),
 
            &format!(
 
                "But this expression yields a '{}'",
 
                arg_type.display_name(&ctx.heap)
 
            )
 
        )
 
    }
 

	
 
    fn construct_arg_type_error(
 
        &self, ctx: &Ctx, expr_id: ExpressionId,
 
        arg1_id: ExpressionId, arg2_id: ExpressionId
 
    ) -> ParseError2 {
 
        let expr = &ctx.heap[expr_id];
 
@@ -1778,96 +2075,97 @@ impl TypeResolvingVisitor {
 
                "Incompatible types: got a '{}' but expected a '{}'",
 
                expr_type.display_name(&ctx.heap), 
 
                InferenceType::partial_display_name(&ctx.heap, template)
 
            )
 
        )
 
    }
 

	
 
    /// Constructs a human interpretable error in the case that type inference
 
    /// on a polymorphic variable to a function call failed. This may only be
 
    /// caused by a pair of inference types (which may come from arguments or
 
    /// the return type) having two different inferred values for that
 
    /// polymorphic variable.
 
    ///
 
    /// So we find this pair (which may be a argument type or return type
 
    /// conflicting with itself) and construct the error using it.
 
    fn construct_poly_arg_error(
 
        &self, ctx: &Ctx, call_id: CallExpressionId
 
    ) -> ParseError2 {
 
        // Helper function to check for polymorph mismatch between two inference
 
        // types.
 
        fn has_poly_mismatch<'a>(type_a: &'a InferenceType, type_b: &'a InferenceType) -> Option<(usize, &'a [InferenceTypePart], &'a [InferenceTypePart])> {
 
            if !type_a.has_marker || !type_b.has_marker {
 
                return None
 
            }
 

	
 
            for (marker_a, section_a) in type_a.marker_iter() {
 
                for (marker_b, section_b) in type_b.marker_iter() {
 
                    if marker_a != marker_b {
 
                        // Not the same polymorphic variable
 
                        continue;
 
                    }
 

	
 
                    if !InferenceType::check_subtrees(section_a, 0, section_b, 0) {
 
                        // Not compatible
 
                        return Some((marker_a, section_a, section_b))
 
                    }
 
                }
 
            }
 

	
 
            None
 
        }
 

	
 
        // Helpers function to retrieve polyvar name and function name
 
        fn get_poly_var_and_func_name(ctx: &Ctx, poly_var_idx: usize, expr: &CallExpression) -> (String, String) {
 
            match &expr.method {
 
                Method::Create => unreachable!(),
 
                Method::Fires => (String::from('T'), String::from("fires")),
 
                Method::Get => (String::from('T'), String::from("get")),
 
                Method::Put => (String::from('T'), String::from("put")),
 
                Method::Symbolic(symbolic) => {
 
                    let definition = &ctx.heap[symbolic.definition.unwrap()];
 
                    let poly_var = match definition {
 
                        Definition::Struct(_) | Definition::Enum(_) => unreachable!(),
 
                        Definition::Function(definition) => {
 
                            String::from_utf8_lossy(&definition.poly_vars[poly_var_idx].value).to_string()
 
                        },
 
                        Definition::Component(definition) => {
 
                            String::from_utf8_lossy(&definition.poly_vars[poly_var_idx].value).to_string()
 
                        }
 
                    };
 
                    let func_name = String::from_utf8_lossy(&symbolic.identifier.value).to_string();
 
                    (poly_var, func_name)
 
                }
 
            }
 
        }
 

	
 
        // Helper function to construct initial error
 
        fn construct_main_error(ctx: &Ctx, poly_var_idx: usize, expr: &CallExpression) -> ParseError2 {
 
            let (poly_var, func_name) = get_poly_var_and_func_name(ctx, poly_var_idx, expr);
 
            return ParseError2::new_error(
 
                &ctx.module.source, expr.position(),
 
                &format!(
 
                    "Conflicting type for polymorphic variable '{}' of '{}'",
 
                    poly_var, func_name
 
                )
 
            )
 
        }
 

	
 
        // Actual checking
 
        let extra = self.extra_data.get(&call_id.upcast()).unwrap();
 
        let expr = &ctx.heap[call_id];
 

	
 
        // - check return type with itself
 
        if let Some((poly_idx, section_a, section_b)) = has_poly_mismatch(&extra.returned, &extra.returned) {
 
            return construct_main_error(ctx, poly_idx, expr)
 
                .with_postfixed_info(
 
                    &ctx.module.source, expr.position(),
 
                    &format!(
 
                        "The return type inferred the conflicting types '{}' and '{}'",
 
                        InferenceType::partial_display_name(&ctx.heap, section_a),
 
                        InferenceType::partial_display_name(&ctx.heap, section_b)
 
                    )
 
                )
 
        }
 

	
 
        // - check arguments with each other argument and with return type
 
        for (arg_a_idx, arg_a) in extra.embedded.iter().enumerate() {
src/protocol/parser/type_table.rs
Show inline comments
 
@@ -136,98 +136,98 @@ impl DefinedTypeVariant {
 
            DefinedTypeVariant::Union(_) => TypeClass::Union,
 
            DefinedTypeVariant::Struct(_) => TypeClass::Struct,
 
            DefinedTypeVariant::Function(_) => TypeClass::Function,
 
            DefinedTypeVariant::Component(_) => TypeClass::Component
 
        }
 
    }
 
}
 

	
 
/// `EnumType` is the classical C/C++ enum type. It has various variants with
 
/// an assigned integer value. The integer values may be user-defined,
 
/// compiler-defined, or a mix of the two. If a user assigns the same enum
 
/// value multiple times, we assume the user is an expert and we consider both
 
/// variants to be equal to one another.
 
pub struct EnumType {
 
    variants: Vec<EnumVariant>,
 
    representation: PrimitiveType,
 
}
 

	
 
// TODO: Also support maximum u64 value
 
pub struct EnumVariant {
 
    identifier: Identifier,
 
    value: i64,
 
}
 

	
 
/// `UnionType` is the algebraic datatype (or sum type, or discriminated union).
 
/// A value is an element of the union, identified by its tag, and may contain
 
/// a single subtype.
 
pub struct UnionType {
 
    variants: Vec<UnionVariant>,
 
    tag_representation: PrimitiveType
 
}
 

	
 
pub struct UnionVariant {
 
    identifier: Identifier,
 
    parser_type: Option<ParserTypeId>,
 
    tag_value: i64,
 
}
 

	
 
pub struct StructType {
 
    fields: Vec<StructField>,
 
}
 

	
 
pub struct StructField {
 
    identifier: Identifier,
 
    parser_type: ParserTypeId,
 
}
 

	
 
pub struct FunctionType {
 
    return_type: ParserTypeId,
 
    arguments: Vec<FunctionArgument>
 
    pub return_type: ParserTypeId,
 
    pub arguments: Vec<FunctionArgument>
 
}
 

	
 
pub struct ComponentType {
 
    variant: ComponentVariant,
 
    arguments: Vec<FunctionArgument>
 
}
 

	
 
pub struct FunctionArgument {
 
    identifier: Identifier,
 
    parser_type: ParserTypeId,
 
}
 

	
 
//------------------------------------------------------------------------------
 
// Type table
 
//------------------------------------------------------------------------------
 

	
 
// TODO: @cleanup Do I really need this, doesn't make the code that much cleaner
 
struct TypeIterator {
 
    breadcrumbs: Vec<(RootId, DefinitionId)>
 
}
 

	
 
impl TypeIterator {
 
    fn new() -> Self {
 
        Self{ breadcrumbs: Vec::with_capacity(32) }
 
    }
 

	
 
    fn reset(&mut self, root_id: RootId, definition_id: DefinitionId) {
 
        self.breadcrumbs.clear();
 
        self.breadcrumbs.push((root_id, definition_id))
 
    }
 

	
 
    fn push(&mut self, root_id: RootId, definition_id: DefinitionId) {
 
        self.breadcrumbs.push((root_id, definition_id));
 
    }
 

	
 
    fn contains(&self, root_id: RootId, definition_id: DefinitionId) -> bool {
 
        for (stored_root_id, stored_definition_id) in self.breadcrumbs.iter() {
 
            if *stored_root_id == root_id && *stored_definition_id == definition_id { return true; }
 
        }
 

	
 
        return false
 
    }
 

	
 
    fn top(&self) -> Option<(RootId, DefinitionId)> {
 
        self.breadcrumbs.last().map(|(r, d)| (*r, *d))
 
    }
 

	
 
    fn pop(&mut self) {
 
@@ -596,97 +596,98 @@ impl TypeTable {
 

	
 
    /// Resolves the basic function definition to an entry in the type table. It
 
    /// will not instantiate any monomorphized instances of polymorphic function
 
    /// definitions.
 
    fn resolve_base_function_definition(&mut self, ctx: &mut TypeCtx, root_id: RootId, definition_id: DefinitionId) -> Result<bool, ParseError2> {
 
        debug_assert!(ctx.heap[definition_id].is_function());
 
        debug_assert!(!self.lookup.contains_key(&definition_id), "base function already resolved");
 

	
 
        let definition = ctx.heap[definition_id].as_function();
 
        let return_type = definition.return_type;
 

	
 
        // Check the return type
 
        let resolve_result = self.resolve_base_parser_type(
 
            ctx, &definition.poly_vars, root_id, definition.return_type
 
        )?;
 
        if !self.ingest_resolve_result(ctx, resolve_result)? {
 
            return Ok(false)
 
        }
 

	
 
        // Check the argument types
 
        for param_id in &definition.parameters {
 
            let param = &ctx.heap[*param_id];
 
            let resolve_result = self.resolve_base_parser_type(
 
                ctx, &definition.poly_vars, root_id, param.parser_type
 
            )?;
 
            if !self.ingest_resolve_result(ctx, resolve_result)? {
 
                return Ok(false)
 
            }
 
        }
 

	
 
        // Construct arguments to function
 
        let mut arguments = Vec::with_capacity(definition.parameters.len());
 
        for param_id in &definition.parameters {
 
            let param = &ctx.heap[*param_id];
 
            arguments.push(FunctionArgument{
 
                identifier: param.identifier.clone(),
 
                parser_type: param.parser_type,
 
            })
 
        }
 

	
 
        // Check conflict of argument and polyarg identifiers
 
        self.check_identifier_collision(
 
            ctx, root_id, &arguments, |arg| &arg.identifier, "function argument"
 
        )?;
 
        self.check_poly_args_collision(ctx, root_id, &definition.poly_vars)?;
 

	
 
        // Construct polymorphic arguments
 
        let mut poly_args = self.create_initial_poly_args(&definition.poly_vars);
 
        self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, definition.return_type)?;
 
        let return_type_id = definition.return_type;
 
        self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, return_type_id)?;
 
        for argument in &arguments {
 
            self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, argument.parser_type)?;
 
        }
 

	
 
        let is_polymorph = poly_args.iter().any(|arg| arg.is_in_use);
 

	
 
        // Construct entry in type table
 
        self.lookup.insert(definition_id, DefinedType{
 
            ast_definition: definition_id,
 
            definition: DefinedTypeVariant::Function(FunctionType{
 
                return_type,
 
                arguments,
 
            }),
 
            poly_args,
 
            is_polymorph,
 
            is_pointerlike: false, // TODO: @cyclic
 
            monomorphs: Vec::new(),
 
        });
 

	
 
        Ok(true)
 
    }
 

	
 
    /// Resolves the basic component definition to an entry in the type table.
 
    /// It will not instantiate any monomorphized instancees of polymorphic
 
    /// component definitions.
 
    fn resolve_base_component_definition(&mut self, ctx: &mut TypeCtx, root_id: RootId, definition_id: DefinitionId) -> Result<bool, ParseError2> {
 
        debug_assert!(ctx.heap[definition_id].is_component());
 
        debug_assert!(!self.lookup.contains_key(&definition_id), "base component already resolved");
 

	
 
        let definition = ctx.heap[definition_id].as_component();
 
        let component_variant = definition.variant;
 

	
 
        // Check argument types
 
        for param_id in &definition.parameters {
 
            let param = &ctx.heap[*param_id];
 
            let resolve_result = self.resolve_base_parser_type(
 
                ctx, &definition.poly_vars, root_id, param.parser_type
 
            )?;
 
            if !self.ingest_resolve_result(ctx, resolve_result)? {
 
                return Ok(false)
 
            }
 
        }
 

	
 
        // Construct argument types
 
        let mut arguments = Vec::with_capacity(definition.parameters.len());
 
        for param_id in &definition.parameters {
 
            let param = &ctx.heap[*param_id];
 
            arguments.push(FunctionArgument{
src/protocol/parser/visitor.rs
Show inline comments
 
@@ -89,136 +89,131 @@ pub(crate) trait Visitor2 {
 
            },
 
            Statement::Skip(stmt) => {
 
                let this = stmt.this;
 
                self.visit_skip_stmt(ctx, this)
 
            },
 
            Statement::Labeled(stmt) => {
 
                let this = stmt.this;
 
                self.visit_labeled_stmt(ctx, this)
 
            },
 
            Statement::If(stmt) => {
 
                let this = stmt.this;
 
                self.visit_if_stmt(ctx, this)
 
            },
 
            Statement::EndIf(_stmt) => Ok(()),
 
            Statement::While(stmt) => {
 
                let this = stmt.this;
 
                self.visit_while_stmt(ctx, this)
 
            },
 
            Statement::EndWhile(_stmt) => Ok(()),
 
            Statement::Break(stmt) => {
 
                let this = stmt.this;
 
                self.visit_break_stmt(ctx, this)
 
            },
 
            Statement::Continue(stmt) => {
 
                let this = stmt.this;
 
                self.visit_continue_stmt(ctx, this)
 
            },
 
            Statement::Synchronous(stmt) => {
 
                let this = stmt.this;
 
                self.visit_synchronous_stmt(ctx, this)
 
            },
 
            Statement::EndSynchronous(_stmt) => Ok(()),
 
            Statement::Return(stmt) => {
 
                let this = stmt.this;
 
                self.visit_return_stmt(ctx, this)
 
            },
 
            Statement::Assert(stmt) => {
 
                let this = stmt.this;
 
                self.visit_assert_stmt(ctx, this)
 
            },
 
            Statement::Goto(stmt) => {
 
                let this = stmt.this;
 
                self.visit_goto_stmt(ctx, this)
 
            },
 
            Statement::New(stmt) => {
 
                let this = stmt.this;
 
                self.visit_new_stmt(ctx, this)
 
            },
 
            Statement::Put(stmt) => {
 
                let this = stmt.this;
 
                self.visit_put_stmt(ctx, this)
 
            },
 
            Statement::Expression(stmt) => {
 
                let this = stmt.this;
 
                self.visit_expr_stmt(ctx, this)
 
            }
 
        }
 
    }
 

	
 
    fn visit_local_stmt(&mut self, ctx: &mut Ctx, id: LocalStatementId) -> VisitorResult {
 
        match &ctx.heap[id] {
 
            LocalStatement::Channel(stmt) => {
 
                let this = stmt.this;
 
                self.visit_local_channel_stmt(ctx, this)
 
            },
 
            LocalStatement::Memory(stmt) => {
 
                let this = stmt.this;
 
                self.visit_local_memory_stmt(ctx, this)
 
            },
 
        }
 
    }
 

	
 
    // --- enum variant handling
 
    fn visit_block_stmt(&mut self, _ctx: &mut Ctx, _id: BlockStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_local_memory_stmt(&mut self, _ctx: &mut Ctx, _id: MemoryStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_local_channel_stmt(&mut self, _ctx: &mut Ctx, _id: ChannelStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_skip_stmt(&mut self, _ctx: &mut Ctx, _id: SkipStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_labeled_stmt(&mut self, _ctx: &mut Ctx, _id: LabeledStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_if_stmt(&mut self, _ctx: &mut Ctx, _id: IfStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_while_stmt(&mut self, _ctx: &mut Ctx, _id: WhileStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_break_stmt(&mut self, _ctx: &mut Ctx, _id: BreakStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_continue_stmt(&mut self, _ctx: &mut Ctx, _id: ContinueStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_synchronous_stmt(&mut self, _ctx: &mut Ctx, _id: SynchronousStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_return_stmt(&mut self, _ctx: &mut Ctx, _id: ReturnStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_assert_stmt(&mut self, _ctx: &mut Ctx, _id: AssertStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_goto_stmt(&mut self, _ctx: &mut Ctx, _id: GotoStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_new_stmt(&mut self, _ctx: &mut Ctx, _id: NewStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_put_stmt(&mut self, _ctx: &mut Ctx, _id: PutStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_expr_stmt(&mut self, _ctx: &mut Ctx, _id: ExpressionStatementId) -> VisitorResult { Ok(()) }
 

	
 
    // Expressions
 
    // --- enum matching
 
    fn visit_expr(&mut self, ctx: &mut Ctx, id: ExpressionId) -> VisitorResult {
 
        match &ctx.heap[id] {
 
            Expression::Assignment(expr) => {
 
                let this = expr.this;
 
                self.visit_assignment_expr(ctx, this)
 
            },
 
            Expression::Conditional(expr) => {
 
                let this = expr.this;
 
                self.visit_conditional_expr(ctx, this)
 
            }
 
            Expression::Binary(expr) => {
 
                let this = expr.this;
 
                self.visit_binary_expr(ctx, this)
 
            }
 
            Expression::Unary(expr) => {
 
                let this = expr.this;
 
                self.visit_unary_expr(ctx, this)
 
            }
 
            Expression::Indexing(expr) => {
 
                let this = expr.this;
 
                self.visit_indexing_expr(ctx, this)
 
            }
 
            Expression::Slicing(expr) => {
 
                let this = expr.this;
 
                self.visit_slicing_expr(ctx, this)
 
            }
 
            Expression::Select(expr) => {
 
                let this = expr.this;
 
                self.visit_select_expr(ctx, this)
 
            }
 
            Expression::Array(expr) => {
 
                let this = expr.this;
 
                self.visit_array_expr(ctx, this)
 
            }
 
            Expression::Constant(expr) => {
 
                let this = expr.this;
 
                self.visit_constant_expr(ctx, this)
 
            }
 
            Expression::Call(expr) => {
 
                let this = expr.this;
 
                self.visit_call_expr(ctx, this)
 
            }
 
            Expression::Variable(expr) => {
 
                let this = expr.this;
src/protocol/parser/visitor_linker.rs
Show inline comments
 
@@ -516,122 +516,96 @@ impl Visitor2 for ValidityAndLinkerVisitor {
 
                            return Err(ParseError2::new_error(
 
                                &ctx.module.source, symbolic.identifier.position,
 
                                "Could not find a defined component with this name"
 
                            ))
 
                        }
 
                    }
 
                } else {
 
                    return Err(
 
                        ParseError2::new_error(&ctx.module.source, call_expr.position, "Must instantiate a component")
 
                    );
 
                }
 
            };
 

	
 
            // Modify new statement's symbolic call to point to the appropriate
 
            // definition.
 
            let call_expr = &mut ctx.heap[call_expr_id];
 
            match &mut call_expr.method {
 
                Method::Symbolic(method) => method.definition = Some(definition_id),
 
                _ => unreachable!()
 
            }
 
        } else {
 
            // Performing depth pass. The function definition should have been
 
            // resolved in the breadth pass, now we recurse to evaluate the
 
            // arguments
 
            // TODO: @cleanup Maybe just call `visit_call_expr`?
 
            let call_expr_id = ctx.heap[id].expression;
 
            let call_expr = &mut ctx.heap[call_expr_id];
 
            call_expr.parent = ExpressionParent::New(id);
 

	
 
            let old_num_exprs = self.expression_buffer.len();
 
            self.expression_buffer.extend(&call_expr.arguments);
 
            let new_num_exprs = self.expression_buffer.len();
 

	
 
            let old_expr_parent = self.expr_parent;
 

	
 
            for arg_expr_idx in old_num_exprs..new_num_exprs {
 
                let arg_expr_id = self.expression_buffer[arg_expr_idx];
 
                self.expr_parent = ExpressionParent::Expression(call_expr_id.upcast(), arg_expr_idx as u32);
 
                self.visit_expr(ctx, arg_expr_id)?;
 
            }
 

	
 
            self.expression_buffer.truncate(old_num_exprs);
 
            self.expr_parent = old_expr_parent;
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_put_stmt(&mut self, ctx: &mut Ctx, id: PutStatementId) -> VisitorResult {
 
        // TODO: Make `put` an expression. Perhaps silly, but much easier to
 
        //  perform typechecking
 
        if self.performing_breadth_pass {
 
            let put_stmt = &ctx.heap[id];
 
            if self.in_sync.is_none() {
 
                return Err(ParseError2::new_error(
 
                    &ctx.module.source, put_stmt.position, "Put must be called in a synchronous block"
 
                ));
 
            }
 
        } else {
 
            let put_stmt = &ctx.heap[id];
 
            let port = put_stmt.port;
 
            let message = put_stmt.message;
 

	
 
            debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
            self.expr_parent = ExpressionParent::Put(id, 0);
 
            self.visit_expr(ctx, port)?;
 
            self.expr_parent = ExpressionParent::Put(id, 1);
 
            self.visit_expr(ctx, message)?;
 
            self.expr_parent = ExpressionParent::None;
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_expr_stmt(&mut self, ctx: &mut Ctx, id: ExpressionStatementId) -> VisitorResult {
 
        if !self.performing_breadth_pass {
 
            let expr_id = ctx.heap[id].expression;
 

	
 
            debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
            self.expr_parent = ExpressionParent::ExpressionStmt(id);
 
            self.visit_expr(ctx, expr_id)?;
 
            self.expr_parent = ExpressionParent::None;
 
        }
 

	
 
        Ok(())
 
    }
 

	
 

	
 
    //--------------------------------------------------------------------------
 
    // Expression visitors
 
    //--------------------------------------------------------------------------
 

	
 
    fn visit_assignment_expr(&mut self, ctx: &mut Ctx, id: AssignmentExpressionId) -> VisitorResult {
 
        debug_assert!(!self.performing_breadth_pass);
 

	
 
        let upcast_id = id.upcast();
 
        let assignment_expr = &mut ctx.heap[id];
 

	
 
        let left_expr_id = assignment_expr.left;
 
        let right_expr_id = assignment_expr.right;
 
        let old_expr_parent = self.expr_parent;
 
        assignment_expr.parent = old_expr_parent;
 

	
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
 
        self.visit_expr(ctx, left_expr_id)?;
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
 
        self.visit_expr(ctx, right_expr_id)?;
 
        self.expr_parent = old_expr_parent;
 
        Ok(())
 
    }
 

	
 
    fn visit_conditional_expr(&mut self, ctx: &mut Ctx, id: ConditionalExpressionId) -> VisitorResult {
 
        debug_assert!(!self.performing_breadth_pass);
 
        let upcast_id = id.upcast();
 
        let conditional_expr = &mut ctx.heap[id];
 

	
 
        let test_expr_id = conditional_expr.test;
 
        let true_expr_id = conditional_expr.true_expression;
 
        let false_expr_id = conditional_expr.false_expression;
 

	
 
        let old_expr_parent = self.expr_parent;
 
        conditional_expr.parent = old_expr_parent;
 
@@ -734,171 +708,199 @@ impl Visitor2 for ValidityAndLinkerVisitor {
 
        let old_expr_parent = self.expr_parent;
 
        select_expr.parent = old_expr_parent;
 

	
 
        self.expr_parent = ExpressionParent::Expression(id.upcast(), 0);
 
        self.visit_expr(ctx, expr_id)?;
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_array_expr(&mut self, ctx: &mut Ctx, id: ArrayExpressionId) -> VisitorResult {
 
        debug_assert!(!self.performing_breadth_pass);
 

	
 
        let upcast_id = id.upcast();
 
        let array_expr = &mut ctx.heap[id];
 

	
 
        let old_num_exprs = self.expression_buffer.len();
 
        self.expression_buffer.extend(&array_expr.elements);
 
        let new_num_exprs = self.expression_buffer.len();
 

	
 
        let old_expr_parent = self.expr_parent;
 
        array_expr.parent = old_expr_parent;
 

	
 
        for field_expr_idx in old_num_exprs..new_num_exprs {
 
            let field_expr_id = self.expression_buffer[field_expr_idx];
 
            self.expr_parent = ExpressionParent::Expression(upcast_id, field_expr_idx as u32);
 
            self.visit_expr(ctx, field_expr_id)?;
 
        }
 

	
 
        self.expression_buffer.truncate(old_num_exprs);
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_constant_expr(&mut self, ctx: &mut Ctx, id: ConstantExpressionId) -> VisitorResult {
 
        debug_assert!(!self.performing_breadth_pass);
 

	
 
        let constant_expr = &mut ctx.heap[id];
 
        constant_expr.parent = self.expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_call_expr(&mut self, ctx: &mut Ctx, id: CallExpressionId) -> VisitorResult {
 
        debug_assert!(!self.performing_breadth_pass);
 

	
 
        let call_expr = &mut ctx.heap[id];
 
        let num_expr_args = call_expr.arguments.len();
 

	
 
        // Resolve the method to the appropriate definition and check the
 
        // legality of the particular method call.
 
        // TODO: @cleanup Unify in some kind of signature call, see similar
 
        //  cleanup comments with this `match` format.
 
        let num_args;
 
        let num_definition_args;
 
        match &mut call_expr.method {
 
            Method::Create => {
 
                num_args = 1;
 
                num_definition_args = 1;
 
            },
 
            Method::Fires => {
 
                if !self.def_type.is_primitive() {
 
                    return Err(ParseError2::new_error(
 
                        &ctx.module.source, call_expr.position,
 
                        "A call to 'fires' may only occur in primitive component definitions"
 
                    ));
 
                }
 
                num_args = 1;
 
                if self.in_sync.is_none() {
 
                    return Err(ParseError2::new_error(
 
                        &ctx.module.source, call_expr.position,
 
                        "A call to 'fires' may only occur inside synchronous blocks"
 
                    ));
 
                }
 
                num_definition_args = 1;
 
            },
 
            Method::Get => {
 
                if !self.def_type.is_primitive() {
 
                    return Err(ParseError2::new_error(
 
                        &ctx.module.source, call_expr.position,
 
                        "A call to 'get' may only occur in primitive component definitions"
 
                    ));
 
                }
 
                num_args = 1;
 
                if self.in_sync.is_none() {
 
                    return Err(ParseError2::new_error(
 
                        &ctx.module.source, call_expr.position,
 
                        "A call to 'get' may only occur inside synchronous blocks"
 
                    ));
 
                }
 
                num_definition_args = 1;
 
            },
 
            Method::Put => {
 
                if !self.def_type.is_primitive() {
 
                    return Err(ParseError2::new_error(
 
                        &ctx.module.source, call_expr.position,
 
                        "A call to 'put' may only occur in primitive component definitions"
 
                    ));
 
                }
 
                if self.in_sync.is_none() {
 
                    return Err(ParseError2::new_error(
 
                        &ctx.module.source, call_expr.position,
 
                        "A call to 'put' may only occur inside synchronous blocks"
 
                    ));
 
                }
 
                num_definition_args = 2;
 
            }
 
            Method::Symbolic(symbolic) => {
 
                // Find symbolic method
 
                let found_symbol = self.find_symbol_of_type(
 
                    ctx.module.root_id, &ctx.symbols, &ctx.types,
 
                    &symbolic.identifier, TypeClass::Function
 
                );
 
                let definition_id = match found_symbol {
 
                    FindOfTypeResult::Found(definition_id) => definition_id,
 
                    FindOfTypeResult::TypeMismatch(got_type_class) => {
 
                        return Err(ParseError2::new_error(
 
                            &ctx.module.source, symbolic.identifier.position,
 
                            &format!("Only functions can be called, this identifier points to a {}", got_type_class)
 
                        ))
 
                    },
 
                    FindOfTypeResult::NotFound => {
 
                        return Err(ParseError2::new_error(
 
                            &ctx.module.source, symbolic.identifier.position,
 
                            &format!("Could not find a function with this name")
 
                        ))
 
                    }
 
                };
 

	
 
                symbolic.definition = Some(definition_id);
 
                match ctx.types.get_base_definition(&definition_id).unwrap() {
 
                    Definition::Function(definition) => {
 
                        num_args = definition.parameters.len();
 
                match &ctx.types.get_base_definition(&definition_id).unwrap().definition {
 
                    DefinedTypeVariant::Function(definition) => {
 
                        num_definition_args = definition.arguments.len();
 
                    },
 
                    _ => unreachable!(),
 
                }
 
            }
 
        }
 

	
 
        // Check the poly args and the number of variables in the call
 
        // expression
 
        self.visit_call_poly_args(ctx, id)?;
 
        if call_expr.arguments.len() != num_args {
 
        let call_expr = &mut ctx.heap[id];
 
        if num_expr_args != num_definition_args {
 
            return Err(ParseError2::new_error(
 
                &ctx.module.source, call_expr.position,
 
                &format!(
 
                    "This call expects {} arguments, but {} were provided",
 
                    num_args, call_expr.arguments.len()
 
                    num_definition_args, num_expr_args
 
                )
 
            ));
 
        }
 

	
 
        // Recurse into all of the arguments and set the expression's parent
 
        let call_expr = &mut ctx.heap[id];
 
        let upcast_id = id.upcast();
 

	
 
        let old_num_exprs = self.expression_buffer.len();
 
        self.expression_buffer.extend(&call_expr.arguments);
 
        let new_num_exprs = self.expression_buffer.len();
 

	
 
        let old_expr_parent = self.expr_parent;
 
        call_expr.parent = old_expr_parent;
 

	
 
        for arg_expr_idx in old_num_exprs..new_num_exprs {
 
            let arg_expr_id = self.expression_buffer[arg_expr_idx];
 
            self.expr_parent = ExpressionParent::Expression(upcast_id, arg_expr_idx as u32);
 
            self.visit_expr(ctx, arg_expr_id)?;
 
        }
 

	
 
        self.expression_buffer.truncate(old_num_exprs);
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_variable_expr(&mut self, ctx: &mut Ctx, id: VariableExpressionId) -> VisitorResult {
 
        debug_assert!(!self.performing_breadth_pass);
 

	
 
        let var_expr = &ctx.heap[id];
 
        let variable_id = self.find_variable(ctx, self.relative_pos_in_block, &var_expr.identifier)?;
 
        let var_expr = &mut ctx.heap[id];
 
        var_expr.declaration = Some(variable_id);
 
        var_expr.parent = self.expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // ParserType visitors
 
    //--------------------------------------------------------------------------
 

	
 
    fn visit_parser_type(&mut self, ctx: &mut Ctx, id: ParserTypeId) -> VisitorResult {
 
        let old_num_types = self.parser_type_buffer.len();
 
        match self.visit_parser_type_without_buffer_cleanup(ctx, id) {
 
            Ok(_) => {
 
                debug_assert_eq!(self.parser_type_buffer.len(), old_num_types);
 
                Ok(())
 
            },
 
            Err(err) => {
 
                self.parser_type_buffer.truncate(old_num_types);
 
                Err(err)
 
            }
 
@@ -1433,96 +1435,99 @@ impl ValidityAndLinkerVisitor {
 
            },
 
            None => {
 
                // Use the enclosing while statement, the break must be
 
                // nested within that while statement
 
                if self.in_while.is_none() {
 
                    return Err(
 
                        ParseError2::new_error(&ctx.module.source, position, "Break statement is not nested under a while loop")
 
                    );
 
                }
 

	
 
                self.in_while.unwrap()
 
            }
 
        };
 

	
 
        // We have a valid target for the break statement. But we need to
 
        // make sure we will not break out of a synchronous block
 
        {
 
            let target_while = &ctx.heap[target];
 
            if target_while.in_sync != self.in_sync {
 
                // Break is nested under while statement, so can only escape a
 
                // sync block if the sync is nested inside the while statement.
 
                debug_assert!(self.in_sync.is_some());
 
                let sync_stmt = &ctx.heap[self.in_sync.unwrap()];
 
                return Err(
 
                    ParseError2::new_error(&ctx.module.source, position, "Break may not escape the surrounding synchronous block")
 
                        .with_postfixed_info(&ctx.module.source, target_while.position, "The break escapes out of this loop")
 
                        .with_postfixed_info(&ctx.module.source, sync_stmt.position, "And would therefore escape this synchronous block")
 
                );
 
            }
 
        }
 

	
 
        Ok(target)
 
    }
 

	
 
    fn visit_call_poly_args(&mut self, ctx: &mut Ctx, call_id: CallExpressionId) -> VisitorResult {
 
        let call_expr = &ctx.heap[call_id];
 

	
 
        // Determine the polyarg signature
 
        let num_expected_poly_args = match &call_expr.method {
 
            Method::Create => {
 
                0
 
            },
 
            Method::Fires => {
 
                1
 
            },
 
            Method::Get => {
 
                1
 
            },
 
            Method::Put => {
 
                1
 
            }
 
            Method::Symbolic(symbolic) => {
 
                let definition = &ctx.heap[symbolic.definition.unwrap()];
 
                if let Definition::Function(definition) = definition {
 
                    definition.poly_vars.len()
 
                } else {
 
                    debug_assert!(false, "expected function while visiting call poly args");
 
                    unreachable!();
 
                }
 
            }
 
        };
 

	
 
        // We allow zero polyargs to imply all args are inferred. Otherwise the
 
        // number of arguments must be equal
 
        if call_expr.poly_args.is_empty() {
 
            if num_expected_poly_args != 0 {
 
                // Infer all polyargs
 
                // TODO: @cleanup Not nice to use method position as implicitly
 
                //  inferred parser type pos.
 
                let pos = call_expr.position();
 
                for _ in 0..num_expected_poly_args {
 
                    self.parser_type_buffer.push(ctx.heap.alloc_parser_type(|this| ParserType {
 
                        this,
 
                        pos,
 
                        variant: ParserTypeVariant::Inferred,
 
                    }));
 
                }
 

	
 
                let call_expr = &mut ctx.heap[call_id];
 
                call_expr.poly_args.reserve(num_expected_poly_args);
 
                for _ in 0..num_expected_poly_args {
 
                    call_expr.poly_args.push(self.parser_type_buffer.pop().unwrap());
 
                }
 
            }
 
            Ok(())
 
        } else if call_expr.poly_args.len() == num_expected_poly_args {
 
            // Number of args is not 0, so parse all the specified ParserTypes
 
            let old_num_types = self.parser_type_buffer.len();
 
            self.parser_type_buffer.extend(&call_expr.poly_args);
 
            while self.parser_type_buffer.len() > old_num_types {
 
                let parser_type_id = self.parser_type_buffer.pop().unwrap();
 
                self.visit_parser_type(ctx, parser_type_id);
 
            }
 
            self.parser_type_buffer.truncate(old_num_types);
 
            Ok(())
 
        } else {
 
            return Err(ParseError2::new_error(
 
                &ctx.module.source, call_expr.position,
 
                &format!(
0 comments (0 inline, 0 general)