Changeset - 6938bcacc41e
[Not reviewed]
0 10 0
MH - 4 years ago 2021-03-22 11:59:28
contact@maxhenger.nl
turn put stmt into call expr, make compiling great again
10 files changed with 441 insertions and 198 deletions:
0 comments (0 inline, 0 general)
src/protocol/ast.rs
Show inline comments
 
@@ -110,7 +110,6 @@ define_new_ast_id!(ReturnStatementId, StatementId, ReturnStatement, Statement::R
 
define_new_ast_id!(AssertStatementId, StatementId, AssertStatement, Statement::Assert, statements);
 
define_new_ast_id!(GotoStatementId, StatementId, GotoStatement, Statement::Goto, statements);
 
define_new_ast_id!(NewStatementId, StatementId, NewStatement, Statement::New, statements);
 
define_new_ast_id!(PutStatementId, StatementId, PutStatement, Statement::Put, statements);
 
define_new_ast_id!(ExpressionStatementId, StatementId, ExpressionStatement, Statement::Expression, statements);
 

	
 
define_aliased_ast_id!(ExpressionId, Id<Expression>, Expression, expressions);
 
@@ -421,14 +420,6 @@ impl Heap {
 
            self.statements.alloc_with_id(|id| Statement::New(f(NewStatementId(id)))),
 
        )
 
    }
 
    pub fn alloc_put_statement(
 
        &mut self,
 
        f: impl FnOnce(PutStatementId) -> PutStatement,
 
    ) -> PutStatementId {
 
        PutStatementId(
 
            self.statements.alloc_with_id(|id| Statement::Put(f(PutStatementId(id)))),
 
        )
 
    }
 
    pub fn alloc_labeled_statement(
 
        &mut self,
 
        f: impl FnOnce(LabeledStatementId) -> LabeledStatement,
 
@@ -908,6 +899,7 @@ pub enum Constant {
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Method {
 
    Get,
 
    Put,
 
    Fires,
 
    Create,
 
    Symbolic(MethodSymbolic)
 
@@ -1271,7 +1263,6 @@ pub enum Statement {
 
    Assert(AssertStatement),
 
    Goto(GotoStatement),
 
    New(NewStatement),
 
    Put(PutStatement),
 
    Expression(ExpressionStatement),
 
}
 

	
 
@@ -1432,12 +1423,6 @@ impl Statement {
 
            _ => panic!("Unable to cast `Statement` to `NewStatement`"),
 
        }
 
    }
 
    pub fn as_put(&self) -> &PutStatement {
 
        match self {
 
            Statement::Put(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `PutStatement`"),
 
        }
 
    }
 
    pub fn as_expression(&self) -> &ExpressionStatement {
 
        match self {
 
            Statement::Expression(result) => result,
 
@@ -1457,7 +1442,6 @@ impl Statement {
 
            Statement::EndSynchronous(stmt) => stmt.next = Some(next),
 
            Statement::Assert(stmt) => stmt.next = Some(next),
 
            Statement::New(stmt) => stmt.next = Some(next),
 
            Statement::Put(stmt) => stmt.next = Some(next),
 
            Statement::Expression(stmt) => stmt.next = Some(next),
 
            Statement::Return(_)
 
            | Statement::Break(_)
 
@@ -1490,7 +1474,6 @@ impl SyntaxElement for Statement {
 
            Statement::Assert(stmt) => stmt.position(),
 
            Statement::Goto(stmt) => stmt.position(),
 
            Statement::New(stmt) => stmt.position(),
 
            Statement::Put(stmt) => stmt.position(),
 
            Statement::Expression(stmt) => stmt.position(),
 
        }
 
    }
 
@@ -1883,23 +1866,6 @@ impl SyntaxElement for NewStatement {
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct PutStatement {
 
    pub this: PutStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub port: ExpressionId,
 
    pub message: ExpressionId,
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for PutStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct ExpressionStatement {
 
    pub this: ExpressionStatementId,
 
@@ -1925,7 +1891,6 @@ pub enum ExpressionParent {
 
    Return(ReturnStatementId),
 
    Assert(AssertStatementId),
 
    New(NewStatementId),
 
    Put(PutStatementId, u32), // index of arg
 
    ExpressionStmt(ExpressionStatementId),
 
    Expression(ExpressionId, u32) // index within expression (e.g LHS or RHS of expression)
 
}
 
@@ -2040,6 +2005,13 @@ impl Expression {
 
            Expression::Variable(expr) => &expr.parent,
 
        }
 
    }
 
    pub fn parent_expr_id(&self) -> Option<ExpressionId> {
 
        if let ExpressionParent::Expression(id, _) = self.parent() {
 
            Some(*id)
 
        } else {
 
            None
 
        }
 
    }
 
    pub fn set_parent(&mut self, parent: ExpressionParent) {
 
        match self {
 
            Expression::Assignment(expr) => expr.parent = parent,
src/protocol/ast_printer.rs
Show inline comments
 
@@ -485,16 +485,6 @@ impl ASTWriter {
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            },
 
            Statement::Put(stmt) => {
 
                self.kv(indent).with_id(PREFIX_PUT_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Put");
 
                self.kv(indent2).with_s_key("Port");
 
                self.write_expr(heap, stmt.port, indent3);
 
                self.kv(indent2).with_s_key("Message");
 
                self.write_expr(heap, stmt.message, indent3);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            },
 
            Statement::Expression(stmt) => {
 
                self.kv(indent).with_id(PREFIX_EXPR_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("ExpressionStatement");
 
@@ -628,6 +618,7 @@ impl ASTWriter {
 
                let method = self.kv(indent2).with_s_key("Method");
 
                match &expr.method {
 
                    Method::Get => { method.with_s_val("get"); },
 
                    Method::Put => { method.with_s_val("put"); },
 
                    Method::Fires => { method.with_s_val("fires"); },
 
                    Method::Create => { method.with_s_val("create"); },
 
                    Method::Symbolic(symbolic) => {
 
@@ -749,7 +740,6 @@ fn write_expression_parent(target: &mut String, parent: &ExpressionParent) {
 
        EP::Return(id) => format!("ReturnStmt({})", id.0.index),
 
        EP::Assert(id) => format!("AssertStmt({})", id.0.index),
 
        EP::New(id) => format!("NewStmt({})", id.0.index),
 
        EP::Put(id, idx) => format!("PutStmt({}, {})", id.0.index, idx),
 
        EP::ExpressionStmt(id) => format!("ExprStmt({})", id.0.index),
 
        EP::Expression(id, idx) => format!("Expr({}, {})", id.index, idx)
 
    };
src/protocol/eval.rs
Show inline comments
 
@@ -1499,10 +1499,24 @@ impl Store {
 
            }
 
            Expression::Constant(expr) => Ok(Value::from_constant(&expr.value)),
 
            Expression::Call(expr) => match &expr.method {
 
                Method::Create => {
 
                Method::Get => {
 
                    assert_eq!(1, expr.arguments.len());
 
                    let length = self.eval(h, ctx, expr.arguments[0])?;
 
                    Ok(Value::create_message(length))
 
                    let value = self.eval(h, ctx, expr.arguments[0])?;
 
                    match ctx.get(value.clone()) {
 
                        None => Err(EvalContinuation::BlockGet(value)),
 
                        Some(result) => Ok(result),
 
                    }
 
                }
 
                Method::Put => {
 
                    assert_eq!(2, expr.arguments.len());
 
                    let port_value = self.eval(h, ctx, expr.arguments[0])?;
 
                    let msg_value = self.eval(h, ctx, expr.arguments[1])?;
 
                    if ctx.did_put(port_value.clone()) {
 
                        // Return bogus, replacing this at some point anyway
 
                        Ok(Value::Message(MessageValue(None)))
 
                    } else {
 
                        Err(EvalContinuation::Put(port_value, msg_value))
 
                    }
 
                }
 
                Method::Fires => {
 
                    assert_eq!(1, expr.arguments.len());
 
@@ -1512,13 +1526,10 @@ impl Store {
 
                        Some(result) => Ok(result),
 
                    }
 
                }
 
                Method::Get => {
 
                Method::Create => {
 
                    assert_eq!(1, expr.arguments.len());
 
                    let value = self.eval(h, ctx, expr.arguments[0])?;
 
                    match ctx.get(value.clone()) {
 
                        None => Err(EvalContinuation::BlockGet(value)),
 
                        Some(result) => Ok(result),
 
                    }
 
                    let length = self.eval(h, ctx, expr.arguments[0])?;
 
                    Ok(Value::create_message(length))
 
                }
 
                Method::Symbolic(_symbol) => unimplemented!(),
 
            },
 
@@ -1696,15 +1707,6 @@ impl Prompt {
 
                    _ => unreachable!("not a symbolic call expression")
 
                }
 
            }
 
            Statement::Put(stmt) => {
 
                // Evaluate port and message
 
                let port = self.store.eval(h, ctx, stmt.port)?;
 
                let message = self.store.eval(h, ctx, stmt.message)?;
 
                // Continue to next statement
 
                self.position = stmt.next;
 
                // Signal the put upwards
 
                Err(EvalContinuation::Put(port, message))
 
            }
 
            Statement::Expression(stmt) => {
 
                // Evaluate expression
 
                let _value = self.store.eval(h, ctx, stmt.expression)?;
src/protocol/lexer.rs
Show inline comments
 
@@ -1414,7 +1414,7 @@ impl Lexer<'_> {
 

	
 
        if self.consume_namespaced_identifier_spilled().is_ok() &&
 
            self.consume_whitespace(false).is_ok() &&
 
            self.maybe_consume_poly_args_spilled_without_pos_recovery().is_ok() &&
 
            self.maybe_consume_poly_args_spilled_without_pos_recovery() &&
 
            self.consume_whitespace(false).is_ok() &&
 
            self.source.next() == Some(b'(') {
 
            // Seems like we have a function call or an enum literal
 
@@ -1432,6 +1432,9 @@ impl Lexer<'_> {
 
        if self.has_keyword(b"get") {
 
            self.consume_keyword(b"get")?;
 
            method = Method::Get;
 
        } else if self.has_keyword(b"put") {
 
            self.consume_keyword(b"put")?;
 
            method = Method::Put;
 
        } else if self.has_keyword(b"fires") {
 
            self.consume_keyword(b"fires")?;
 
            method = Method::Fires;
 
@@ -1553,8 +1556,6 @@ impl Lexer<'_> {
 
            self.consume_goto_statement(h)?.upcast()
 
        } else if self.has_keyword(b"new") {
 
            self.consume_new_statement(h)?.upcast()
 
        } else if self.has_keyword(b"put") {
 
            self.consume_put_statement(h)?.upcast()
 
        } else if self.has_label() {
 
            self.consume_labeled_statement(h)?.upcast()
 
        } else {
 
@@ -1899,22 +1900,6 @@ impl Lexer<'_> {
 
        self.consume_string(b";")?;
 
        Ok(h.alloc_new_statement(|this| NewStatement { this, position, expression, next: None }))
 
    }
 
    fn consume_put_statement(&mut self, h: &mut Heap) -> Result<PutStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        self.consume_keyword(b"put")?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b"(")?;
 
        let port = self.consume_expression(h)?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b",")?;
 
        self.consume_whitespace(false)?;
 
        let message = self.consume_expression(h)?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b")")?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b";")?;
 
        Ok(h.alloc_put_statement(|this| PutStatement { this, position, port, message, next: None }))
 
    }
 
    fn consume_expression_statement(
 
        &mut self,
 
        h: &mut Heap,
src/protocol/mod.rs
Show inline comments
 
@@ -294,4 +294,16 @@ impl EvalContext<'_> {
 
            },
 
        }
 
    }
 
    fn did_put(&mut self, port: Value) -> bool {
 
        match self {
 
            EvalContext::Nonsync(_) => unreachable!("did_put in nonsync context"),
 
            EvalContext::Sync(context) => match port {
 
                Value::Output(OutputValue(port)) => {
 
                    context.is_firing(port).unwrap_or(false)
 
                },
 
                Value::Input(_) => unreachable!("did_put on input port"),
 
                _ => unreachable!("did_put on non-port value")
 
            }
 
        }
 
    }
 
}
src/protocol/parser/depth_visitor.rs
Show inline comments
 
@@ -118,9 +118,6 @@ pub(crate) trait Visitor: Sized {
 
    fn visit_new_statement(&mut self, h: &mut Heap, stmt: NewStatementId) -> VisitorResult {
 
        recursive_new_statement(self, h, stmt)
 
    }
 
    fn visit_put_statement(&mut self, h: &mut Heap, stmt: PutStatementId) -> VisitorResult {
 
        recursive_put_statement(self, h, stmt)
 
    }
 
    fn visit_expression_statement(
 
        &mut self,
 
        h: &mut Heap,
 
@@ -320,7 +317,6 @@ fn recursive_statement<T: Visitor>(this: &mut T, h: &mut Heap, stmt: StatementId
 
        Statement::Assert(stmt) => this.visit_assert_statement(h, stmt.this),
 
        Statement::Goto(stmt) => this.visit_goto_statement(h, stmt.this),
 
        Statement::New(stmt) => this.visit_new_statement(h, stmt.this),
 
        Statement::Put(stmt) => this.visit_put_statement(h, stmt.this),
 
        Statement::Expression(stmt) => this.visit_expression_statement(h, stmt.this),
 
        Statement::EndSynchronous(stmt) => this.visit_end_synchronous_statement(h, stmt.this),
 
        Statement::EndWhile(stmt) => this.visit_end_while_statement(h, stmt.this),
 
@@ -424,15 +420,6 @@ fn recursive_new_statement<T: Visitor>(
 
    recursive_call_expression_as_expression(this, h, h[stmt].expression)
 
}
 

	
 
fn recursive_put_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: PutStatementId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[stmt].port)?;
 
    this.visit_expression(h, h[stmt].message)
 
}
 

	
 
fn recursive_expression_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
@@ -969,10 +956,6 @@ impl Visitor for LinkStatements {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_put_statement(&mut self, _h: &mut Heap, stmt: PutStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_expression_statement(
 
        &mut self,
 
        _h: &mut Heap,
src/protocol/parser/type_resolver.rs
Show inline comments
 
/// type_resolver.rs
 
///
 
/// Performs type inference and type checking
 
///
 
/// TODO: Needs an optimization pass
 
/// TODO: Needs a cleanup pass
 

	
 
use std::collections::{HashMap, HashSet, VecDeque};
 

	
 
use crate::protocol::ast::*;
 
@@ -12,7 +19,9 @@ use super::visitor::{
 
    VisitorResult
 
};
 
use std::collections::hash_map::Entry;
 
use crate::protocol::parser::type_resolver::InferenceTypePart::IntegerLike;
 

	
 
const MESSAGE_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::Message ];
 
const BOOL_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::Bool ];
 
const NUMBERLIKE_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::NumberLike ];
 
const INTEGERLIKE_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::IntegerLike ];
 
@@ -181,6 +190,13 @@ impl InferenceType {
 
        Self{ has_marker, is_done, parts }
 
    }
 

	
 
    fn replace_subtree(&mut self, start_idx: usize, with: &[InferenceTypePart]) {
 
         let end_idx = Self::find_subtree_end_idx(&self.parts, start_idx);
 
        debug_assert_eq!(with.len(), Self::find_subtree_end_idx(with, 0));
 
        self.parts.splice(start_idx..end_idx, with.iter().cloned());
 
        self.recompute_is_done();
 
    }
 

	
 
    // TODO: @performance, might all be done inline in the type inference methods
 
    fn recompute_is_done(&mut self) {
 
        self.is_done = self.parts.iter().all(|v| v.is_concrete());
 
@@ -229,10 +245,15 @@ impl InferenceType {
 
        }
 
    }
 

	
 
    /// Returns an iterator over all markers and the partial type tree that
 
    /// follows those markers.
 
    fn marker_iter(&self) -> InferenceTypeMarkerIter {
 
        InferenceTypeMarkerIter::new(&self.parts)
 
    }
 

	
 
    /// Attempts to find a marker with a specific value appearing at or after
 
    /// the specified index. If found then the partial type tree's bounding
 
    /// indices that follow that marker are returned.
 
    fn find_subtree_idx_for_marker(&self, marker: usize, mut idx: usize) -> Option<(usize, usize)> {
 
        // Seek ahead to find a marker
 
        let marker = InferenceTypePart::Marker(marker);
 
@@ -700,9 +721,12 @@ pub(crate) struct TypeResolvingVisitor {
 
    polyvars: Vec<ConcreteType>,
 
    // Mapping from parser type to inferred type. We attempt to continue to
 
    // specify these types until we're stuck or we've fully determined the type.
 
    infer_types: HashMap<VariableId, InferenceType>,
 
    expr_types: HashMap<ExpressionId, InferenceType>,
 
    extra_data: HashMap<ExpressionId, ExtraData>,
 
    var_types: HashMap<VariableId, VarData>,      // types of variables
 
    expr_types: HashMap<ExpressionId, InferenceType>,   // types of expressions
 
    extra_data: HashMap<ExpressionId, ExtraData>,       // data for function call inference
 

	
 
    // Keeping track of which expressions need to be reinferred because the
 
    // expressions they're linked to made progression on an associated type
 
    expr_queued: HashSet<ExpressionId>,
 
}
 

	
 
@@ -715,6 +739,11 @@ struct ExtraData {
 
    returned: InferenceType,
 
}
 

	
 
struct VarData {
 
    var_type: InferenceType,
 
    used_at: Vec<ExpressionId>,
 
}
 

	
 
impl TypeResolvingVisitor {
 
    pub(crate) fn new() -> Self {
 
        TypeResolvingVisitor{
 
@@ -722,7 +751,7 @@ impl TypeResolvingVisitor {
 
            stmt_buffer: Vec::with_capacity(STMT_BUFFER_INIT_CAPACITY),
 
            expr_buffer: Vec::with_capacity(EXPR_BUFFER_INIT_CAPACITY),
 
            polyvars: Vec::new(),
 
            infer_types: HashMap::new(),
 
            var_types: HashMap::new(),
 
            expr_types: HashMap::new(),
 
            extra_data: HashMap::new(),
 
            expr_queued: HashSet::new(),
 
@@ -734,7 +763,7 @@ impl TypeResolvingVisitor {
 
        self.stmt_buffer.clear();
 
        self.expr_buffer.clear();
 
        self.polyvars.clear();
 
        self.infer_types.clear();
 
        self.var_types.clear();
 
        self.expr_types.clear();
 
    }
 
}
 
@@ -751,9 +780,9 @@ impl Visitor2 for TypeResolvingVisitor {
 

	
 
        for param_id in comp_def.parameters.clone() {
 
            let param = &ctx.heap[param_id];
 
            let infer_type = self.determine_inference_type_from_parser_type(ctx, param.parser_type, true);
 
            debug_assert!(infer_type.is_done, "expected component arguments to be concrete types");
 
            self.infer_types.insert(param_id.upcast(), infer_type);
 
            let var_type = self.determine_inference_type_from_parser_type(ctx, param.parser_type, true);
 
            debug_assert!(var_type.is_done, "expected component arguments to be concrete types");
 
            self.var_types.insert(param_id.upcast(), VarData{ var_type, used_at: Vec::new() });
 
        }
 

	
 
        let body_stmt_id = ctx.heap[id].body;
 
@@ -769,9 +798,9 @@ impl Visitor2 for TypeResolvingVisitor {
 

	
 
        for param_id in func_def.parameters.clone() {
 
            let param = &ctx.heap[param_id];
 
            let infer_type = self.determine_inference_type_from_parser_type(ctx, param.parser_type, true);
 
            debug_assert!(infer_type.is_done, "expected function arguments to be concrete types");
 
            self.infer_types.insert(param_id.upcast(), infer_type);
 
            let var_type = self.determine_inference_type_from_parser_type(ctx, param.parser_type, true);
 
            debug_assert!(var_type.is_done, "expected function arguments to be concrete types");
 
            self.var_types.insert(param_id.upcast(), VarData{ var_type, used_at: Vec::new() });
 
        }
 

	
 
        let body_stmt_id = ctx.heap[id].body;
 
@@ -795,8 +824,8 @@ impl Visitor2 for TypeResolvingVisitor {
 
        let memory_stmt = &ctx.heap[id];
 

	
 
        let local = &ctx.heap[memory_stmt.variable];
 
        let infer_type = self.determine_inference_type_from_parser_type(ctx, local.parser_type, true);
 
        self.infer_types.insert(memory_stmt.variable.upcast(), infer_type);
 
        let var_type = self.determine_inference_type_from_parser_type(ctx, local.parser_type, true);
 
        self.var_types.insert(memory_stmt.variable.upcast(), VarData{ var_type, used_at: Vec::new() });
 

	
 
        let expr_id = memory_stmt.initial;
 
        self.visit_expr(ctx, expr_id)?;
 
@@ -808,12 +837,12 @@ impl Visitor2 for TypeResolvingVisitor {
 
        let channel_stmt = &ctx.heap[id];
 

	
 
        let from_local = &ctx.heap[channel_stmt.from];
 
        let from_infer_type = self.determine_inference_type_from_parser_type(ctx, from_local.parser_type, true);
 
        self.infer_types.insert(from_local.this.upcast(), from_infer_type);
 
        let from_var_type = self.determine_inference_type_from_parser_type(ctx, from_local.parser_type, true);
 
        self.var_types.insert(from_local.this.upcast(), VarData{ var_type: from_var_type, used_at: Vec::new() });
 

	
 
        let to_local = &ctx.heap[channel_stmt.to];
 
        let to_infer_type = self.determine_inference_type_from_parser_type(ctx, to_local.parser_type, true);
 
        self.infer_types.insert(to_local.this.upcast(), to_infer_type);
 
        let to_var_type = self.determine_inference_type_from_parser_type(ctx, to_local.parser_type, true);
 
        self.var_types.insert(to_local.this.upcast(), VarData{ var_type: to_var_type, used_at: Vec::new() });
 

	
 
        Ok(())
 
    }
 
@@ -878,19 +907,6 @@ impl Visitor2 for TypeResolvingVisitor {
 
        self.visit_call_expr(ctx, call_expr_id)
 
    }
 

	
 
    fn visit_put_stmt(&mut self, ctx: &mut Ctx, id: PutStatementId) -> VisitorResult {
 
        let put_stmt = &ctx.heap[id];
 

	
 
        let port_expr_id = put_stmt.port;
 
        let msg_expr_id = put_stmt.message;
 
        // TODO: What what?
 

	
 
        self.visit_expr(ctx, port_expr_id)?;
 
        self.visit_expr(ctx, msg_expr_id)?;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_expr_stmt(&mut self, ctx: &mut Ctx, id: ExpressionStatementId) -> VisitorResult {
 
        let expr_stmt = &ctx.heap[id];
 
        let subexpr_id = expr_stmt.expression;
 
@@ -952,11 +968,72 @@ impl Visitor2 for TypeResolvingVisitor {
 
        let unary_expr = &ctx.heap[id];
 
        let arg_expr_id = unary_expr.expression;
 

	
 
        self.visit_expr(ctx, arg_expr_id);
 
        self.visit_expr(ctx, arg_expr_id)?;
 

	
 
        self.progress_unary_expr(ctx, id)
 
    }
 

	
 
    fn visit_indexing_expr(&mut self, ctx: &mut Ctx, id: IndexingExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let indexing_expr = &ctx.heap[id];
 
        let subject_expr_id = indexing_expr.subject;
 
        let index_expr_id = indexing_expr.index;
 

	
 
        self.visit_expr(ctx, subject_expr_id)?;
 
        self.visit_expr(ctx, index_expr_id)?;
 

	
 
        self.progress_indexing_expr(ctx, id)
 
    }
 

	
 
    fn visit_slicing_expr(&mut self, ctx: &mut Ctx, id: SlicingExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let slicing_expr = &ctx.heap[id];
 
        let subject_expr_id = slicing_expr.subject;
 
        let from_expr_id = slicing_expr.from_index;
 
        let to_expr_id = slicing_expr.to_index;
 

	
 
        self.visit_expr(ctx, subject_expr_id)?;
 
        self.visit_expr(ctx, from_expr_id)?;
 
        self.visit_expr(ctx, to_expr_id)?;
 

	
 
        self.progress_slicing_expr(ctx, id)
 
    }
 

	
 
    fn visit_select_expr(&mut self, ctx: &mut Ctx, id: SelectExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let select_expr = &ctx.heap[id];
 
        let subject_expr_id = select_expr.subject;
 

	
 
        self.visit_expr(ctx, subject_expr_id)?;
 

	
 
        self.progress_select_expr(ctx, id)
 
    }
 

	
 
    fn visit_array_expr(&mut self, ctx: &mut Ctx, id: ArrayExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let array_expr = &ctx.heap[id];
 
        // TODO: @performance
 
        for element_id in array_expr.elements.clone().into_iter() {
 
            self.visit_expr(ctx, element_id)?;
 
        }
 

	
 
        self.progress_array_expr(ctx, id)
 
    }
 

	
 
    fn visit_constant_expr(&mut self, ctx: &mut Ctx, id: ConstantExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 
        self.progress_constant_expr(ctx, id)
 
    }
 

	
 
    fn visit_call_expr(&mut self, ctx: &mut Ctx, id: CallExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 
@@ -970,6 +1047,18 @@ impl Visitor2 for TypeResolvingVisitor {
 

	
 
        self.progress_call_expr(ctx, id)
 
    }
 

	
 
    fn visit_variable_expr(&mut self, ctx: &mut Ctx, id: VariableExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let var_expr = &ctx.heap[id];
 
        debug_assert!(var_expr.declaration.is_some());
 
        let var_data = self.var_types.get_mut(var_expr.declaration.as_ref().unwrap()).unwrap();
 
        var_data.used_at.push(upcast_id);
 

	
 
        self.progress_variable_expr(ctx, id)
 
    }
 
}
 

	
 
macro_rules! debug_assert_expr_ids_unique_and_known {
 
@@ -1209,6 +1298,79 @@ impl TypeResolvingVisitor {
 
        Ok(())
 
    }
 

	
 
    fn progress_select_expr(&mut self, ctx: &mut Ctx, id: SelectExpressionId) -> Result<(), ParseError2> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let subject_id = expr.subject;
 

	
 
        let (progress_subject, progress_expr) = match &expr.field {
 
            Field::Length => {
 
                let progress_subject = self.apply_forced_constraint(ctx, subject_id, &ARRAYLIKE_TEMPLATE)?;
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &INTEGERLIKE_TEMPLATE)?;
 
                (progress_subject, progress_expr)
 
            },
 
            Field::Symbolic(_field) => {
 
                todo!("implement select expr for symbolic fields");
 
            }
 
        };
 

	
 
        if progress_subject { self.queue_expr(subject_id); }
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_array_expr(&mut self, ctx: &mut Ctx, id: ArrayExpressionId) -> Result<(), ParseError2> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let expr_elements = expr.elements.clone(); // TODO: @performance
 

	
 
        // All elements should have an equal type
 
        let progress = self.apply_equal_n_constraint(ctx, upcast_id, &expr_elements)?;
 
        let mut any_progress = false;
 
        for (progress_arg, arg_id) in progress.iter().zip(expr_elements.iter()) {
 
            if *progress_arg {
 
                any_progress = true;
 
                self.queue_expr(*arg_id);
 
            }
 
        }
 

	
 
        // And the output should be an array of the element types
 
        let mut expr_progress = self.apply_forced_constraint(ctx, upcast_id, &ARRAY_TEMPLATE)?;
 
        if !expr_elements.is_empty() {
 
            let first_arg_id = expr_elements[0];
 
            let (inner_expr_progress, arg_progress) = self.apply_equal2_constraint(
 
                ctx, upcast_id, upcast_id, 1, first_arg_id, 0
 
            )?;
 

	
 
            expr_progress = expr_progress || inner_expr_progress;
 

	
 
            // Note that if the array type progressed the type of the arguments,
 
            // then we should enqueue this progression function again
 
            if arg_progress { self.queue_expr(upcast_id); }
 
        }
 

	
 
        if expr_progress { self.queue_expr_parent(ctx, upcast_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_constant_expr(&mut self, ctx: &mut Ctx, id: ConstantExpressionId) -> Result<(), ParseError2> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let template = match &expr.value {
 
            Constant::Null => &MESSAGE_TEMPLATE,
 
            Constant::Integer(_) => &INTEGERLIKE_TEMPLATE,
 
            Constant::True | Constant::False => &BOOL_TEMPLATE,
 
            Constant::Character(_) => todo!("character literals")
 
        };
 

	
 
        let progress = self.apply_forced_constraint(ctx, upcast_id, template)?;
 
        if progress { self.queue_expr_parent(ctx, upcast_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    // TODO: @cleanup, see how this can be cleaned up once I implement
 
    //  polymorphic struct/enum/union literals. These likely follow the same
 
    //  pattern as here.
 
@@ -1247,7 +1409,7 @@ impl TypeResolvingVisitor {
 
            }
 
            if progress_arg {
 
                // Progressed argument expression
 
                self.queue_expr(arg_id);
 
                self.expr_queued.insert(arg_id);
 
            }
 
        }
 

	
 
@@ -1273,7 +1435,9 @@ impl TypeResolvingVisitor {
 
            }
 
        }
 
        if progress_expr {
 
            self.queue_expr_parent(ctx, upcast_id);
 
            if let Some(parent_id) = ctx.heap[upcast_id].parent_expr_id() {
 
                self.expr_queued.insert(parent_id);
 
            }
 
        }
 

	
 
        // If we had an error in the polymorphic variable's inference, then we
 
@@ -1292,12 +1456,12 @@ impl TypeResolvingVisitor {
 
            // For each polymorphic argument: first extend the signature type,
 
            // then reapply the equal2 constraint to the expressions
 
            let poly_type = &extra.poly_vars[poly_idx];
 
            for (arg_idx, arg_type) in extra.embedded.iter_mut().enumerate() {
 
            for (arg_idx, sig_type) in extra.embedded.iter_mut().enumerate() {
 
                let mut seek_idx = 0;
 
                let mut modified_sig = false;
 
                while let Some((start_idx, end_idx)) = arg_type.find_subtree_idx_for_marker(poly_idx, seek_idx) {
 
                while let Some((start_idx, end_idx)) = sig_type.find_subtree_idx_for_marker(poly_idx, seek_idx) {
 
                    let modified_at_marker = Self::apply_forced_constraint_types(
 
                        arg_type, start_idx, &poly_type.parts, 0
 
                        sig_type, start_idx, &poly_type.parts, 0
 
                    ).unwrap();
 
                    modified_sig = modified_sig || modified_at_marker;
 
                    seek_idx = end_idx;
 
@@ -1308,14 +1472,85 @@ impl TypeResolvingVisitor {
 
                // Part of signature was modified, so update expression used as
 
                // argument as well
 
                let arg_expr_id = expr.arguments[arg_idx];
 
                let arg_type = self.expr_types.get_mut(arg_expr_id).unwrap();
 
                Self::apply_equal2_constraint_types(ctx, arg_expr_id, )
 
                let arg_type: *mut _ = self.expr_types.get_mut(&arg_expr_id).unwrap();
 
                let (progress_arg, _) = Self::apply_equal2_constraint_types(
 
                    ctx, arg_expr_id, arg_type, 0, sig_type, 0
 
                ).expect("no inference error at argument type");
 
                if progress_arg { self.expr_queued.insert(arg_expr_id); }
 
            }
 

	
 
            // Again: do the same for the return type
 
            let sig_type = &mut extra.returned;
 
            let mut seek_idx = 0;
 
            let mut modified_sig = false;
 
            while let Some((start_idx, end_idx)) = sig_type.find_subtree_idx_for_marker(poly_idx, seek_idx) {
 
                let modified_at_marker = Self::apply_forced_constraint_types(
 
                    sig_type, start_idx, &poly_type.parts, 0
 
                ).unwrap();
 
                modified_sig = modified_sig || modified_at_marker;
 
                seek_idx = end_idx;
 
            }
 

	
 
            if modified_sig {
 
                let ret_type = self.expr_types.get_mut(&upcast_id).unwrap();
 
                let (progress_ret, _) = Self::apply_equal2_constraint_types(
 
                    ctx, upcast_id, ret_type, 0, sig_type, 0
 
                ).expect("no inference error at return type");
 
                if progress_ret {
 
                    if let Some(parent_id) = ctx.heap[upcast_id].parent_expr_id() {
 
                        self.expr_queued.insert(parent_id);
 
                    }
 
                }
 
            }
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_variable_expr(&mut self, ctx: &mut Ctx, id: VariableExpressionId) -> Result<(), ParseError2> {
 
        let upcast_id = id.upcast();
 
        let var_expr = &ctx.heap[id];
 
        let var_id = var_expr.declaration.unwrap();
 

	
 
        // Retrieve shared variable type and expression type and apply inference
 
        let var_data = self.var_types.get_mut(&var_id).unwrap();
 
        let expr_type = self.expr_types.get_mut(&upcast_id).unwrap();
 

	
 
        let infer_res = unsafe{ InferenceType::infer_subtrees_for_both_types(
 
            &mut var_data.var_type as *mut _, 0, expr_type, 0
 
        ) };
 
        if infer_res == DualInferenceResult::Incompatible {
 
            let var_decl = &ctx.heap[var_id];
 
            return Err(ParseError2::new_error(
 
                &ctx.module.source, var_decl.position(),
 
                &format!(
 
                    "Conflicting types for this variable, previously assigned the type '{}'",
 
                    var_data.var_type.display_name(&ctx.heap)
 
                )
 
            ).with_postfixed_info(
 
                &ctx.module.source, var_expr.position,
 
                &format!(
 
                    "But inferred to have incompatible type '{}' here",
 
                    expr_type.display_name(&ctx.heap)
 
                )
 
            ))
 
        }
 

	
 
        let progress_var = infer_res.modified_lhs();
 
        let progress_expr = infer_res.modified_rhs();
 

	
 
        if progress_var {
 
            for other_expr in var_data.used_at.iter() {
 
                if *other_expr != upcast_id {
 
                    self.expr_queued.insert(*other_expr);
 
                }
 
            }
 
        }
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn queue_expr_parent(&mut self, ctx: &Ctx, expr_id: ExpressionId) {
 
        if let ExpressionParent::Expression(parent_expr_id, _) = &ctx.heap[expr_id].parent() {
 
            self.expr_queued.insert(*parent_expr_id);
 
@@ -1442,8 +1677,9 @@ impl TypeResolvingVisitor {
 

	
 
        if args_res.modified_lhs() { 
 
            unsafe {
 
                (*expr_type).parts.drain(start_idx..);
 
                (*expr_type).parts.extend_from_slice(&((*arg2_type).parts[start_idx..]));
 
                let end_idx = InferenceType::find_subtree_end_idx(&(*arg2_type).parts, start_idx);
 
                let subtree = &((*arg2_type).parts[start_idx..end_idx]);
 
                (*expr_type).replace_subtree(start_idx, subtree);
 
            }
 
            progress_expr = true;
 
            progress_arg1 = true;
 
@@ -1452,6 +1688,66 @@ impl TypeResolvingVisitor {
 
        Ok((progress_expr, progress_arg1, progress_arg2))
 
    }
 

	
 
    // TODO: @optimize Since we only deal with a single type this might be done
 
    //  a lot more efficiently, methinks (disregarding the allocations here)
 
    fn apply_equal_n_constraint(
 
        &mut self, ctx: &Ctx, expr_id: ExpressionId, args: &[ExpressionId],
 
    ) -> Result<Vec<bool>, ParseError2> {
 
        // Early exit
 
        match args.len() {
 
            0 => return Ok(vec!()),         // nothing to progress
 
            1 => return Ok(vec![false]),    // only one type, so nothing to infer
 
            _ => {}
 
        }
 

	
 
        let mut progress = Vec::new();
 
        progress.resize(args.len(), false);
 

	
 
        // Do pairwise inference, keep track of the last entry we made progress
 
        // on. Once done we need to update everything to the most-inferred type.
 
        let mut arg_iter = args.iter();
 
        let mut last_arg_id = *arg_iter.next().unwrap();
 
        let mut last_lhs_progressed = 0;
 
        let mut lhs_arg_idx = 0;
 

	
 
        while let Some(next_arg_id) = arg_iter.next() {
 
            let arg1_type: *mut _ = self.expr_types.get_mut(&last_arg_id).unwrap();
 
            let arg2_type: *mut _ = self.expr_types.get_mut(next_arg_id).unwrap();
 

	
 
            let res = unsafe {
 
                InferenceType::infer_subtrees_for_both_types(arg1_type, 0, arg2_type, 0)
 
            };
 

	
 
            if res == DualInferenceResult::Incompatible {
 
                return Err(self.construct_arg_type_error(ctx, expr_id, last_arg_id, *next_arg_id));
 
            }
 

	
 
            if res.modified_lhs() {
 
                // We re-inferred something on the left hand side, so everything
 
                // up until now should be re-inferred.
 
                progress[lhs_arg_idx] = true;
 
                last_lhs_progressed = lhs_arg_idx;
 
            }
 
            progress[lhs_arg_idx + 1] = res.modified_rhs();
 

	
 
            last_arg_id = *next_arg_id;
 
            lhs_arg_idx += 1;
 
        }
 

	
 
        // Re-infer everything. Note that we do not need to re-infer the type
 
        // exactly at `last_lhs_progressed`, but only everything up to it.
 
        let last_type: *mut _ = self.expr_types.get_mut(args.last().unwrap()).unwrap();
 
        for arg_idx in 0..last_lhs_progressed {
 
            let arg_type: *mut _ = self.expr_types.get_mut(&args[arg_idx]).unwrap();
 
            unsafe{
 
                (*arg_type).replace_subtree(0, &(*last_type).parts);
 
            }
 
            progress[arg_idx] = true;
 
        }
 

	
 
        Ok(progress)
 
    }
 

	
 
    /// Determines the `InferenceType` for the expression based on the
 
    /// expression parent. Note that if the parent is another expression, we do
 
    /// not take special action, instead we let parent expressions fix the type
 
@@ -1489,16 +1785,6 @@ impl TypeResolvingVisitor {
 
                // Must be a component call, which we assign a "Void" return
 
                // type
 
                InferenceType::new(false, true, vec![ITP::Void]),
 
            EP::Put(_, 0) =>
 
                // TODO: Change put to be a builtin function
 
                // port of "put" call
 
                InferenceType::new(false, false, vec![ITP::Output, ITP::Unknown]),
 
            EP::Put(_, 1) =>
 
                // TODO: Change put to be a builtin function
 
                // message of "put" call
 
                InferenceType::new(false, true, vec![ITP::Message]),
 
            EP::Put(_, _) =>
 
                unreachable!()
 
        };
 

	
 
        match self.expr_types.entry(expr_id) {
 
@@ -1568,6 +1854,16 @@ impl TypeResolvingVisitor {
 
                    InferenceType::new(true, false, vec![ITP::Marker(0), ITP::Unknown])
 
                )
 
            },
 
            Method::Put => {
 
                // void Put<T>(output<T> port, T msg)
 
                (
 
                    vec![
 
                        InferenceType::new(true, false, vec![ITP::Output, ITP::Marker(0), ITP::Unknown]),
 
                        InferenceType::new(true, false, vec![ITP::Marker(0), ITP::Unknown])
 
                    ],
 
                    InferenceType::new(false, true, vec![ITP::Void])
 
                )
 
            }
 
            Method::Symbolic(symbolic) => {
 
                let definition = &ctx.heap[symbolic.definition.unwrap()];
 

	
 
@@ -1663,10 +1959,11 @@ impl TypeResolvingVisitor {
 
                },
 
                PTV::Symbolic(symbolic) => {
 
                    debug_assert!(symbolic.variant.is_some(), "symbolic variant not yet determined");
 
                    match symbolic.variant.unwrap() {
 
                    match symbolic.variant.as_ref().unwrap() {
 
                        SymbolicParserTypeVariant::PolyArg(_, arg_idx) => {
 
                            // Retrieve concrete type of argument and add it to
 
                            // the inference type.
 
                            let arg_idx = *arg_idx;
 
                            debug_assert!(symbolic.poly_args.is_empty()); // TODO: @hkt
 

	
 
                            if parser_type_in_body {
 
@@ -1683,7 +1980,7 @@ impl TypeResolvingVisitor {
 
                        SymbolicParserTypeVariant::Definition(definition_id) => {
 
                            // TODO: @cleanup
 
                            if cfg!(debug_assertions) {
 
                                let definition = &ctx.heap[definition_id];
 
                                let definition = &ctx.heap[*definition_id];
 
                                debug_assert!(definition.is_struct() || definition.is_enum()); // TODO: @function_ptrs
 
                                let num_poly = match definition {
 
                                    Definition::Struct(v) => v.poly_vars.len(),
 
@@ -1693,7 +1990,7 @@ impl TypeResolvingVisitor {
 
                                debug_assert_eq!(symbolic.poly_args.len(), num_poly);
 
                            }
 

	
 
                            infer_type.push(ITP::Instance(definition_id, symbolic.poly_args.len()));
 
                            infer_type.push(ITP::Instance(*definition_id, symbolic.poly_args.len()));
 
                            let mut poly_arg_idx = symbolic.poly_args.len();
 
                            while poly_arg_idx > 0 {
 
                                poly_arg_idx -= 1;
 
@@ -1823,6 +2120,7 @@ impl TypeResolvingVisitor {
 
                Method::Create => unreachable!(),
 
                Method::Fires => (String::from('T'), String::from("fires")),
 
                Method::Get => (String::from('T'), String::from("get")),
 
                Method::Put => (String::from('T'), String::from("put")),
 
                Method::Symbolic(symbolic) => {
 
                    let definition = &ctx.heap[symbolic.definition.unwrap()];
 
                    let poly_var = match definition {
src/protocol/parser/type_table.rs
Show inline comments
 
@@ -181,8 +181,8 @@ pub struct StructField {
 
}
 

	
 
pub struct FunctionType {
 
    return_type: ParserTypeId,
 
    arguments: Vec<FunctionArgument>
 
    pub return_type: ParserTypeId,
 
    pub arguments: Vec<FunctionArgument>
 
}
 

	
 
pub struct ComponentType {
 
@@ -641,7 +641,8 @@ impl TypeTable {
 

	
 
        // Construct polymorphic arguments
 
        let mut poly_args = self.create_initial_poly_args(&definition.poly_vars);
 
        self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, definition.return_type)?;
 
        let return_type_id = definition.return_type;
 
        self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, return_type_id)?;
 
        for argument in &arguments {
 
            self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, argument.parser_type)?;
 
        }
src/protocol/parser/visitor.rs
Show inline comments
 
@@ -134,10 +134,6 @@ pub(crate) trait Visitor2 {
 
                let this = stmt.this;
 
                self.visit_new_stmt(ctx, this)
 
            },
 
            Statement::Put(stmt) => {
 
                let this = stmt.this;
 
                self.visit_put_stmt(ctx, this)
 
            },
 
            Statement::Expression(stmt) => {
 
                let this = stmt.this;
 
                self.visit_expr_stmt(ctx, this)
 
@@ -173,7 +169,6 @@ pub(crate) trait Visitor2 {
 
    fn visit_assert_stmt(&mut self, _ctx: &mut Ctx, _id: AssertStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_goto_stmt(&mut self, _ctx: &mut Ctx, _id: GotoStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_new_stmt(&mut self, _ctx: &mut Ctx, _id: NewStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_put_stmt(&mut self, _ctx: &mut Ctx, _id: PutStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_expr_stmt(&mut self, _ctx: &mut Ctx, _id: ExpressionStatementId) -> VisitorResult { Ok(()) }
 

	
 
    // Expressions
src/protocol/parser/visitor_linker.rs
Show inline comments
 
@@ -561,32 +561,6 @@ impl Visitor2 for ValidityAndLinkerVisitor {
 
        Ok(())
 
    }
 

	
 
    fn visit_put_stmt(&mut self, ctx: &mut Ctx, id: PutStatementId) -> VisitorResult {
 
        // TODO: Make `put` an expression. Perhaps silly, but much easier to
 
        //  perform typechecking
 
        if self.performing_breadth_pass {
 
            let put_stmt = &ctx.heap[id];
 
            if self.in_sync.is_none() {
 
                return Err(ParseError2::new_error(
 
                    &ctx.module.source, put_stmt.position, "Put must be called in a synchronous block"
 
                ));
 
            }
 
        } else {
 
            let put_stmt = &ctx.heap[id];
 
            let port = put_stmt.port;
 
            let message = put_stmt.message;
 

	
 
            debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
            self.expr_parent = ExpressionParent::Put(id, 0);
 
            self.visit_expr(ctx, port)?;
 
            self.expr_parent = ExpressionParent::Put(id, 1);
 
            self.visit_expr(ctx, message)?;
 
            self.expr_parent = ExpressionParent::None;
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_expr_stmt(&mut self, ctx: &mut Ctx, id: ExpressionStatementId) -> VisitorResult {
 
        if !self.performing_breadth_pass {
 
            let expr_id = ctx.heap[id].expression;
 
@@ -779,15 +753,16 @@ impl Visitor2 for ValidityAndLinkerVisitor {
 
        debug_assert!(!self.performing_breadth_pass);
 

	
 
        let call_expr = &mut ctx.heap[id];
 
        let num_expr_args = call_expr.arguments.len();
 

	
 
        // Resolve the method to the appropriate definition and check the
 
        // legality of the particular method call.
 
        // TODO: @cleanup Unify in some kind of signature call, see similar
 
        //  cleanup comments with this `match` format.
 
        let num_args;
 
        let num_definition_args;
 
        match &mut call_expr.method {
 
            Method::Create => {
 
                num_args = 1;
 
                num_definition_args = 1;
 
            },
 
            Method::Fires => {
 
                if !self.def_type.is_primitive() {
 
@@ -796,7 +771,13 @@ impl Visitor2 for ValidityAndLinkerVisitor {
 
                        "A call to 'fires' may only occur in primitive component definitions"
 
                    ));
 
                }
 
                num_args = 1;
 
                if self.in_sync.is_none() {
 
                    return Err(ParseError2::new_error(
 
                        &ctx.module.source, call_expr.position,
 
                        "A call to 'fires' may only occur inside synchronous blocks"
 
                    ));
 
                }
 
                num_definition_args = 1;
 
            },
 
            Method::Get => {
 
                if !self.def_type.is_primitive() {
 
@@ -805,8 +786,29 @@ impl Visitor2 for ValidityAndLinkerVisitor {
 
                        "A call to 'get' may only occur in primitive component definitions"
 
                    ));
 
                }
 
                num_args = 1;
 
                if self.in_sync.is_none() {
 
                    return Err(ParseError2::new_error(
 
                        &ctx.module.source, call_expr.position,
 
                        "A call to 'get' may only occur inside synchronous blocks"
 
                    ));
 
                }
 
                num_definition_args = 1;
 
            },
 
            Method::Put => {
 
                if !self.def_type.is_primitive() {
 
                    return Err(ParseError2::new_error(
 
                        &ctx.module.source, call_expr.position,
 
                        "A call to 'put' may only occur in primitive component definitions"
 
                    ));
 
                }
 
                if self.in_sync.is_none() {
 
                    return Err(ParseError2::new_error(
 
                        &ctx.module.source, call_expr.position,
 
                        "A call to 'put' may only occur inside synchronous blocks"
 
                    ));
 
                }
 
                num_definition_args = 2;
 
            }
 
            Method::Symbolic(symbolic) => {
 
                // Find symbolic method
 
                let found_symbol = self.find_symbol_of_type(
 
@@ -830,9 +832,9 @@ impl Visitor2 for ValidityAndLinkerVisitor {
 
                };
 

	
 
                symbolic.definition = Some(definition_id);
 
                match ctx.types.get_base_definition(&definition_id).unwrap() {
 
                    Definition::Function(definition) => {
 
                        num_args = definition.parameters.len();
 
                match &ctx.types.get_base_definition(&definition_id).unwrap().definition {
 
                    DefinedTypeVariant::Function(definition) => {
 
                        num_definition_args = definition.arguments.len();
 
                    },
 
                    _ => unreachable!(),
 
                }
 
@@ -842,18 +844,18 @@ impl Visitor2 for ValidityAndLinkerVisitor {
 
        // Check the poly args and the number of variables in the call
 
        // expression
 
        self.visit_call_poly_args(ctx, id)?;
 
        if call_expr.arguments.len() != num_args {
 
        let call_expr = &mut ctx.heap[id];
 
        if num_expr_args != num_definition_args {
 
            return Err(ParseError2::new_error(
 
                &ctx.module.source, call_expr.position,
 
                &format!(
 
                    "This call expects {} arguments, but {} were provided",
 
                    num_args, call_expr.arguments.len()
 
                    num_definition_args, num_expr_args
 
                )
 
            ));
 
        }
 

	
 
        // Recurse into all of the arguments and set the expression's parent
 
        let call_expr = &mut ctx.heap[id];
 
        let upcast_id = id.upcast();
 

	
 
        let old_num_exprs = self.expression_buffer.len();
 
@@ -1478,6 +1480,9 @@ impl ValidityAndLinkerVisitor {
 
            Method::Get => {
 
                1
 
            },
 
            Method::Put => {
 
                1
 
            }
 
            Method::Symbolic(symbolic) => {
 
                let definition = &ctx.heap[symbolic.definition.unwrap()];
 
                if let Definition::Function(definition) = definition {
0 comments (0 inline, 0 general)