Changeset - 6c04a99de862
[Not reviewed]
0 9 0
Christopher Esterhuyse - 5 years ago 2020-07-15 12:24:04
christopher.esterhuyse@gmail.com
fleshed out socket api. did bugfix: proto components remember whether they did put/get
9 files changed with 99 insertions and 40 deletions:
0 comments (0 inline, 0 general)
Cargo.toml
Show inline comments
 
[package]
 
name = "reowolf_rs"
 
version = "0.1.4"
 
authors = [
 
	"Christopher Esterhuyse <esterhuy@cwi.nl, christopher.esterhuyse@gmail.com>",
 
	"Hans-Dieter Hiep <hdh@cwi.nl>"
 
]
 
edition = "2018"
 

	
 
[dependencies]
 
# convenience macros
 
maplit = "1.0.2"
 
derive_more = "0.99.2"
 

	
 
# runtime
 
bincode = "1.3.1"
 
serde = { version = "1.0.114", features = ["derive"] }
 
getrandom = "0.1.14" # tiny crate. used to guess controller-id
 

	
 
# network
 
mio = { version = "0.7.0", package = "mio", features = ["udp", "tcp", "os-poll"] }
 

	
 
# protocol
 
backtrace = "0.3"
 
lazy_static = "1.4.0"
 

	
 
# socket ffi
 
lazy_static = { version = "1.4.0", optional = true}
 
atomic_refcell = { version = "0.1.6", optional = true }
 

	
 
[dev-dependencies]
 
# test-generator = "0.3.0"
 
crossbeam-utils = "0.7.2"
 
lazy_static = "1.4.0"
 

	
 
[lib]
 
# compile target: dynamically linked library using C ABI
 
crate-type = ["cdylib"]
 

	
 
[features]
 
default = ["ffi", "ffi_socket_api"] # // "session_optimization", 
 
ffi = [] # see src/ffi.rs
 
ffi_socket_api = ["ffi", "lazy_static", "atomic_refcell"]
 
ffi_socket_api = ["ffi", "atomic_refcell"]
 
endpoint_logging = [] # see src/macros.rs
 
session_optimization = [] # see src/runtime/setup.rs
 
\ No newline at end of file
examples/make.py
Show inline comments
 
import os, glob, subprocess, time
 
script_path = os.path.dirname(os.path.realpath(__file__));
 
for c_file in glob.glob(script_path + "/*/*.c", recursive=False):
 
  print("compiling", c_file)
 
  args = [
 
    "gcc",          # compiler
 
    "-std=c11"      # C11 mode
 
    "-L",           # lib path flag
 
    "./",           # where to look for libs
 
    "-lreowolf_rs", # add lib called "reowolf_rs"
 
    "-Wl,-R./",     # pass -R flag to linker: produce relocatable object
 
    c_file,         # input source file
 
    "-o",           # output flag
 
    c_file[:-2]     # output filename
 
  ];
 
  subprocess.run(args)
 
input("Blocking until newline...");
examples/pres_5/bob.c
Show inline comments
 

	
 
#include "../../reowolf.h"
 
#include "../utility.c"
 

	
 

	
 
int main(int argc, char** argv) {
 
	// Create a connector, configured with a protocol defined in a file
 
	char * pdl = buffer_pdl("./eg_protocols.pdl");
 
	Arc_ProtocolDescription * pd = protocol_description_parse(pdl, strlen(pdl));
 
	char logpath[] = "./pres_3_bob.txt";
 
	Connector * c = connector_new_logging(pd, logpath, sizeof(logpath)-1);
 
	rw_err_peek(c);
 

	
 
	// ... with 2 outgoing network connections
 
	PortId ports[4];
 
	char * addr = "127.0.0.1:8000";
 
	connector_add_net_port(c, &ports[0], addr, strlen(addr),
 
			Polarity_Getter, EndpointPolarity_Active);
 
	rw_err_peek(c);
 
	addr = "127.0.0.1:8001";
 
	connector_add_net_port(c, &ports[1], addr, strlen(addr),
 
			Polarity_Getter, EndpointPolarity_Active);
 
	connector_add_port_pair(c, &ports[2], &ports[3]);
 
	connector_add_component(c, "alt_round_merger", 16, ports, 3);
 
	rw_err_peek(c);
 
	
 
	// Connect with peers (5000ms timeout).
 
	connector_connect(c, 5000);
 
	rw_err_peek(c);
 

	
 
	for(int round=0; round<3; round++) {
 
		printf("\----------Round %d\n", round);
 
		printf("----------Round %d\n", round);
 
		connector_get(c, ports[3]);
 
		rw_err_peek(c);
 
		connector_sync(c, 1000);
 
		rw_err_peek(c);
 

	
 
		size_t msg_len = 0;
 
		const char * msg_ptr = connector_gotten_bytes(c, ports[3], &msg_len);
 
		printf("Got msg `%.*s`\n", msg_len, msg_ptr);
 
	}
 
	
 
	printf("Exiting\n");
 
	protocol_description_destroy(pd);
 
	connector_destroy(c);
 
	free(pdl);
 
	sleep(1.0);
 
	return 0;
 
}
 
\ No newline at end of file
src/ffi/socket_api.rs
Show inline comments
 
use super::*;
 
use atomic_refcell::AtomicRefCell;
 
use mio::net::UdpSocket;
 

	
 
use std::{collections::HashMap, ffi::c_void, net::SocketAddr, os::raw::c_int, sync::RwLock};
 
///////////////////////////////////////////////////////////////////
 

	
 
type ConnectorFd = c_int;
 
struct Connector {}
 
struct FdAllocator {
 
    next: Option<ConnectorFd>,
 
    freed: Vec<ConnectorFd>,
 
    next: Option<c_int>,
 
    freed: Vec<c_int>,
 
}
 
enum MaybeConnector {
 
    New,
 
    Bound(SocketAddr),
 
    Connected(Connector),
 
    Bound { local_addr: SocketAddr },
 
    Connected { connector: Connector, putter: PortId, getter: PortId },
 
}
 
#[derive(Default)]
 
struct ConnectorStorage {
 
    fd_to_connector: HashMap<ConnectorFd, AtomicRefCell<MaybeConnector>>,
 
    fd_to_connector: HashMap<c_int, AtomicRefCell<MaybeConnector>>,
 
    fd_allocator: FdAllocator,
 
}
 
///////////////////////////////////////////////////////////////////
 

	
 
impl Default for FdAllocator {
 
    fn default() -> Self {
 
        Self {
 
            next: Some(0), // positive values used only
 
            freed: vec![],
 
        }
 
    }
 
}
 
impl FdAllocator {
 
    fn alloc(&mut self) -> ConnectorFd {
 
    fn alloc(&mut self) -> c_int {
 
        if let Some(fd) = self.freed.pop() {
 
            return fd;
 
        }
 
        if let Some(fd) = self.next {
 
            self.next = fd.checked_add(1);
 
            return fd;
 
        }
 
        panic!("No more Connector FDs to allocate!")
 
    }
 
    fn free(&mut self, fd: ConnectorFd) {
 
    fn free(&mut self, fd: c_int) {
 
        self.freed.push(fd);
 
    }
 
}
 
lazy_static::lazy_static! {
 
    static ref CONNECTOR_STORAGE: RwLock<ConnectorStorage> = Default::default();
 
}
 
///////////////////////////////////////////////////////////////////
 

	
 
#[no_mangle]
 
pub extern "C" fn rw_socket(_domain: c_int, _type: c_int) -> c_int {
 
    // assuming _domain is AF_INET and _type is SOCK_DGRAM
 
    let mut w = if let Ok(w) = CONNECTOR_STORAGE.write() { w } else { return FD_LOCK_POISONED };
 
    let fd = w.fd_allocator.alloc();
 
    w.fd_to_connector.insert(fd, AtomicRefCell::new(MaybeConnector::New));
 
    fd
 
}
 

	
 
#[no_mangle]
 
pub extern "C" fn rw_close(fd: ConnectorFd, _how: c_int) -> c_int {
 
pub extern "C" fn rw_close(fd: c_int, _how: c_int) -> c_int {
 
    // ignoring HOW
 
    let mut w = if let Ok(w) = CONNECTOR_STORAGE.write() { w } else { return FD_LOCK_POISONED };
 
    w.fd_allocator.free(fd);
 
    if w.fd_to_connector.remove(&fd).is_some() {
 
        ERR_OK
 
    } else {
 
        CLOSE_FAIL
 
    }
 
}
 

	
 
#[no_mangle]
 
pub unsafe extern "C" fn rw_bind(
 
    fd: ConnectorFd,
 
    address: *const SocketAddr,
 
    _address_len: usize,
 
    fd: c_int,
 
    local_addr: *const SocketAddr,
 
    _addr_len: usize,
 
) -> c_int {
 
    use MaybeConnector as Mc;
 
    // assuming _domain is AF_INET and _type is SOCK_DGRAM
 
    let r = if let Ok(r) = CONNECTOR_STORAGE.read() { r } else { return FD_LOCK_POISONED };
 
    let mc = if let Some(mc) = r.fd_to_connector.get(&fd) { mc } else { return BAD_FD };
 
    let mc: &mut Mc = &mut mc.borrow_mut();
 
    let _ = if let Mc::New = mc { () } else { return WRONG_STATE };
 
    *mc = Mc::Bound(address.read());
 
    *mc = Mc::Bound { local_addr: local_addr.read() };
 
    ERR_OK
 
}
 

	
 
#[no_mangle]
 
pub extern "C" fn rw_connect(
 
    fd: ConnectorFd,
 
    _address: *const SocketAddr,
 
pub unsafe extern "C" fn rw_connect(
 
    fd: c_int,
 
    peer_addr: *const SocketAddr,
 
    _address_len: usize,
 
) -> c_int {
 
    use MaybeConnector as Mc;
 
    // assuming _domain is AF_INET and _type is SOCK_DGRAM
 
    let r = if let Ok(r) = CONNECTOR_STORAGE.read() { r } else { return FD_LOCK_POISONED };
 
    let mc = if let Some(mc) = r.fd_to_connector.get(&fd) { mc } else { return BAD_FD };
 
    let mc: &mut Mc = &mut mc.borrow_mut();
 
    let _local = if let Mc::Bound(local) = mc { local } else { return WRONG_STATE };
 
    *mc = Mc::Connected(Connector {});
 
    let local_addr =
 
        if let Mc::Bound { local_addr } = mc { local_addr } else { return WRONG_STATE };
 
    let peer_addr = peer_addr.read();
 
    let (connector, [putter, getter]) = {
 
        let mut c = Connector::new(
 
            Box::new(DummyLogger),
 
            crate::TRIVIAL_PD.clone(),
 
            Connector::random_id(),
 
            8,
 
        );
 
        let [putter, getter] = c.new_udp_port(*local_addr, peer_addr).unwrap();
 
        (c, [putter, getter])
 
    };
 
    *mc = Mc::Connected { connector, putter, getter };
 
    ERR_OK
 
}
 
#[no_mangle]
 
pub extern "C" fn rw_send(
 
    fd: ConnectorFd,
 
    _msg: *const c_void,
 
    _len: usize,
 
pub unsafe extern "C" fn rw_send(
 
    fd: c_int,
 
    bytes_ptr: *const c_void,
 
    bytes_len: usize,
 
    _flags: c_int,
 
) -> isize {
 
    use MaybeConnector as Mc;
 
    // assuming _domain is AF_INET and _type is SOCK_DGRAM
 
    // ignoring flags
 
    let r =
 
        if let Ok(r) = CONNECTOR_STORAGE.read() { r } else { return FD_LOCK_POISONED as isize };
 
    let mc = if let Some(mc) = r.fd_to_connector.get(&fd) { mc } else { return BAD_FD as isize };
 
    let mc: &mut Mc = &mut mc.borrow_mut();
 
    let (connector, putter) = if let Mc::Connected { connector, putter, .. } = mc {
 
        (connector, *putter)
 
    } else {
 
        return WRONG_STATE as isize;
 
    };
 
    match connector_put_bytes(connector, putter, bytes_ptr as _, bytes_len) {
 
        ERR_OK => {}
 
        err => return err as isize,
 
    }
 
    connector_sync(connector, -1)
 
}
 

	
 
#[no_mangle]
 
pub unsafe extern "C" fn rw_recv(
 
    fd: c_int,
 
    bytes_ptr: *mut c_void,
 
    bytes_len: usize,
 
    _flags: c_int,
 
) -> isize {
 
    use MaybeConnector as Mc;
 
    // ignoring flags
 
    let r =
 
        if let Ok(r) = CONNECTOR_STORAGE.read() { r } else { return FD_LOCK_POISONED as isize };
 
    let mc = if let Some(mc) = r.fd_to_connector.get(&fd) { mc } else { return BAD_FD as isize };
 
    let mc: &mut Mc = &mut mc.borrow_mut();
 
    let _c = if let Mc::Connected(c) = mc { c } else { return WRONG_STATE as isize };
 
    // TODO
 
    ERR_OK as isize
 
    let (connector, getter) = if let Mc::Connected { connector, getter, .. } = mc {
 
        (connector, *getter)
 
    } else {
 
        return WRONG_STATE as isize;
 
    };
 
    match connector_get(connector, getter) {
 
        ERR_OK => {}
 
        err => return err as isize,
 
    }
 
    match connector_sync(connector, -1) {
 
        0 => {} // singleton batch index
 
        err => return err as isize,
 
    };
 
    let slice = connector.gotten(getter).unwrap().as_slice();
 
    let copied_bytes = slice.len().min(bytes_len);
 
    std::ptr::copy_nonoverlapping(slice.as_ptr(), bytes_ptr as *mut u8, copied_bytes);
 
    copied_bytes as isize
 
}
src/lib.rs
Show inline comments
 
#[macro_use]
 
mod macros;
 

	
 
mod common;
 
mod protocol;
 
mod runtime;
 

	
 
pub use common::{ConnectorId, EndpointPolarity, Payload, Polarity, PortId};
 
pub use protocol::ProtocolDescription;
 
pub use protocol::{ProtocolDescription, TRIVIAL_PD};
 
pub use runtime::{error, Connector, DummyLogger, FileLogger, VecLogger};
 

	
 
#[cfg(feature = "ffi")]
 
pub mod ffi;
src/protocol/mod.rs
Show inline comments
 
mod arena;
 
mod ast;
 
mod eval;
 
pub(crate) mod inputsource;
 
mod lexer;
 
// mod library;
 
mod parser;
 

	
 
lazy_static::lazy_static! {
 
    pub static ref TRIVIAL_PD: std::sync::Arc<ProtocolDescription> = {
 
        std::sync::Arc::new(ProtocolDescription::parse(b"").unwrap())
 
    };
 
}
 

	
 
use crate::common::*;
 
use crate::protocol::ast::*;
 
use crate::protocol::eval::*;
 
use crate::protocol::inputsource::*;
 
use crate::protocol::parser::*;
 

	
 
#[derive(serde::Serialize, serde::Deserialize)]
 
#[repr(C)]
 
pub struct ProtocolDescription {
 
    heap: Heap,
 
    source: InputSource,
 
    root: RootId,
 
}
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub(crate) struct ComponentState {
 
    prompt: Prompt,
 
}
 
pub(crate) enum EvalContext<'a> {
 
    Nonsync(&'a mut NonsyncProtoContext<'a>),
 
    Sync(&'a mut SyncProtoContext<'a>),
 
    // None,
 
}
 
//////////////////////////////////////////////
 

	
 
impl std::fmt::Debug for ProtocolDescription {
 
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
 
        write!(f, "(An opaque protocol description)")
 
    }
 
}
 
impl ProtocolDescription {
 
    pub fn parse(buffer: &[u8]) -> Result<Self, String> {
 
        let mut heap = Heap::new();
 
        let mut source = InputSource::from_buffer(buffer).unwrap();
 
        let mut parser = Parser::new(&mut source);
 
        match parser.parse(&mut heap) {
 
            Ok(root) => {
 
                return Ok(ProtocolDescription { heap, source, root });
 
            }
 
            Err(err) => {
 
                let mut vec: Vec<u8> = Vec::new();
 
                err.write(&source, &mut vec).unwrap();
 
                Err(String::from_utf8_lossy(&vec).to_string())
 
            }
 
        }
 
    }
 
    pub(crate) fn component_polarities(
 
        &self,
 
        identifier: &[u8],
 
    ) -> Result<Vec<Polarity>, AddComponentError> {
 
        use AddComponentError::*;
 
        let h = &self.heap;
 
        let root = &h[self.root];
 
        let def = root.get_definition_ident(h, identifier);
 
        if def.is_none() {
 
            return Err(NoSuchComponent);
 
        }
 
        let def = &h[def.unwrap()];
 
        if !def.is_component() {
 
            return Err(NoSuchComponent);
 
        }
 
        for &param in def.parameters().iter() {
 
            let param = &h[param];
 
            let type_annot = &h[param.type_annotation];
 
            if type_annot.the_type.array {
 
                return Err(NonPortTypeParameters);
 
            }
 
            match type_annot.the_type.primitive {
 
                PrimitiveType::Input | PrimitiveType::Output => continue,
 
                _ => {
 
                    return Err(NonPortTypeParameters);
 
                }
 
            }
 
        }
 
        let mut result = Vec::new();
 
        for &param in def.parameters().iter() {
 
            let param = &h[param];
 
            let type_annot = &h[param.type_annotation];
 
            let ptype = &type_annot.the_type.primitive;
 
            if ptype == &PrimitiveType::Input {
 
                result.push(Polarity::Getter)
 
            } else if ptype == &PrimitiveType::Output {
 
                result.push(Polarity::Putter)
 
            } else {
 
                unreachable!()
 
            }
 
        }
 
        Ok(result)
 
    }
 
    // expects port polarities to be correct
 
    pub(crate) fn new_main_component(&self, identifier: &[u8], ports: &[PortId]) -> ComponentState {
 
        let mut args = Vec::new();
 
        for (&x, y) in ports.iter().zip(self.component_polarities(identifier).unwrap()) {
 
            match y {
 
                Polarity::Getter => args.push(Value::Input(InputValue(x))),
 
                Polarity::Putter => args.push(Value::Output(OutputValue(x))),
 
            }
 
        }
 
        let h = &self.heap;
 
        let root = &h[self.root];
 
        let def = root.get_definition_ident(h, identifier).unwrap();
 
        ComponentState { prompt: Prompt::new(h, def, &args) }
 
    }
 
}
 
impl ComponentState {
 
    pub(crate) fn nonsync_run<'a: 'b, 'b>(
 
        &'a mut self,
 
        context: &'b mut NonsyncProtoContext<'b>,
 
        pd: &'a ProtocolDescription,
 
    ) -> NonsyncBlocker {
 
        let mut context = EvalContext::Nonsync(context);
 
        loop {
 
            let result = self.prompt.step(&pd.heap, &mut context);
 
            match result {
 
                // In component definitions, there are no return statements
 
                Ok(_) => unreachable!(),
 
                Err(cont) => match cont {
 
                    EvalContinuation::Stepping => continue,
 
                    EvalContinuation::Inconsistent => return NonsyncBlocker::Inconsistent,
 
                    EvalContinuation::Terminal => return NonsyncBlocker::ComponentExit,
 
                    EvalContinuation::SyncBlockStart => return NonsyncBlocker::SyncBlockStart,
 
                    // Not possible to end sync block if never entered one
 
                    EvalContinuation::SyncBlockEnd => unreachable!(),
 
                    EvalContinuation::NewComponent(decl, args) => {
 
                        // Look up definition (TODO for now, assume it is a definition)
 
                        let h = &pd.heap;
 
                        let def = h[decl].as_defined().definition;
 
                        let init_state = ComponentState { prompt: Prompt::new(h, def, &args) };
 
                        context.new_component(&args, init_state);
 
                        // Continue stepping
 
                        continue;
 
                    }
 
                    // Outside synchronous blocks, no fires/get/put happens
 
                    EvalContinuation::BlockFires(_) => unreachable!(),
 
                    EvalContinuation::BlockGet(_) => unreachable!(),
 
                    EvalContinuation::Put(_, _) => unreachable!(),
 
                },
 
            }
 
        }
 
    }
 

	
 
    pub(crate) fn sync_run<'a: 'b, 'b>(
 
        &'a mut self,
 
        context: &'b mut SyncProtoContext<'b>,
 
        pd: &'a ProtocolDescription,
 
    ) -> SyncBlocker {
 
        let mut context = EvalContext::Sync(context);
 
        loop {
 
            let result = self.prompt.step(&pd.heap, &mut context);
 
            match result {
 
                // Inside synchronous blocks, there are no return statements
 
                Ok(_) => unreachable!(),
 
                Err(cont) => match cont {
 
                    EvalContinuation::Stepping => continue,
 
                    EvalContinuation::Inconsistent => return SyncBlocker::Inconsistent,
 
                    // First need to exit synchronous block before definition may end
 
                    EvalContinuation::Terminal => unreachable!(),
 
                    // No nested synchronous blocks
 
                    EvalContinuation::SyncBlockStart => unreachable!(),
 
                    EvalContinuation::SyncBlockEnd => return SyncBlocker::SyncBlockEnd,
 
                    // Not possible to create component in sync block
 
                    EvalContinuation::NewComponent(_, _) => unreachable!(),
 
                    EvalContinuation::BlockFires(port) => match port {
 
                        Value::Output(OutputValue(port)) => {
 
                            return SyncBlocker::CouldntCheckFiring(port);
 
                        }
 
                        Value::Input(InputValue(port)) => {
 
                            return SyncBlocker::CouldntCheckFiring(port);
 
                        }
 
                        _ => unreachable!(),
 
                    },
 
                    EvalContinuation::BlockGet(port) => match port {
 
                        Value::Output(OutputValue(port)) => {
 
                            return SyncBlocker::CouldntReadMsg(port);
 
                        }
 
                        Value::Input(InputValue(port)) => {
 
                            return SyncBlocker::CouldntReadMsg(port);
 
                        }
 
                        _ => unreachable!(),
 
                    },
 
                    EvalContinuation::Put(port, message) => {
 
                        let value;
 
                        match port {
 
                            Value::Output(OutputValue(port_value)) => {
 
                                value = port_value;
 
                            }
 
                            Value::Input(InputValue(port_value)) => {
 
                                value = port_value;
 
                            }
 
                            _ => unreachable!(),
 
                        }
 
                        let payload;
 
                        match message {
 
                            Value::Message(MessageValue(None)) => {
 
                                // Putting a null message is inconsistent
 
                                return SyncBlocker::Inconsistent;
 
                            }
 
                            Value::Message(MessageValue(Some(buffer))) => {
 
                                // Create a copy of the payload
 
                                payload = buffer;
 
                            }
 
                            _ => unreachable!(),
 
                        }
 
                        return SyncBlocker::PutMsg(value, payload);
 
                    }
 
                },
 
            }
 
        }
 
    }
 
}
 
impl EvalContext<'_> {
 
    // fn random(&mut self) -> LongValue {
 
    //     match self {
 
    //         // EvalContext::None => unreachable!(),
 
    //         EvalContext::Nonsync(_context) => todo!(),
 
    //         EvalContext::Sync(_) => unreachable!(),
 
    //     }
 
    // }
 
    fn new_component(&mut self, args: &[Value], init_state: ComponentState) -> () {
 
        match self {
 
            // EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(context) => {
 
                let mut moved_ports = HashSet::new();
 
                for arg in args.iter() {
 
                    match arg {
 
                        Value::Output(OutputValue(port)) => {
 
                            moved_ports.insert(*port);
 
                        }
 
                        Value::Input(InputValue(port)) => {
 
                            moved_ports.insert(*port);
 
                        }
 
                        _ => {}
 
                    }
 
                }
 
                context.new_component(moved_ports, init_state)
 
            }
 
            EvalContext::Sync(_) => unreachable!(),
 
        }
 
    }
 
    fn new_channel(&mut self) -> [Value; 2] {
 
        match self {
 
            // EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(context) => {
 
                let [from, to] = context.new_port_pair();
 
                let from = Value::Output(OutputValue(from));
 
                let to = Value::Input(InputValue(to));
 
                return [from, to];
 
            }
 
            EvalContext::Sync(_) => unreachable!(),
 
        }
 
    }
 
    fn fires(&mut self, port: Value) -> Option<Value> {
 
        match self {
 
            // EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(_) => unreachable!(),
 
            EvalContext::Sync(context) => match port {
 
                Value::Output(OutputValue(port)) => context.is_firing(port).map(Value::from),
 
                Value::Input(InputValue(port)) => context.is_firing(port).map(Value::from),
 
                _ => unreachable!(),
 
            },
 
        }
 
    }
 
    fn get(&mut self, port: Value) -> Option<Value> {
 
        match self {
 
            // EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(_) => unreachable!(),
 
            EvalContext::Sync(context) => match port {
 
                Value::Output(OutputValue(port)) => {
 
                    context.read_msg(port).map(Value::receive_message)
 
                }
 
                Value::Input(InputValue(port)) => {
 
                    context.read_msg(port).map(Value::receive_message)
 
                }
 
                _ => unreachable!(),
 
            },
 
        }
 
    }
 
}
src/runtime/communication.rs
Show inline comments
 
use super::*;
 
use crate::common::*;
 

	
 
////////////////
 
#[derive(Default)]
 
struct GetterBuffer {
 
    getters_and_sends: Vec<(PortId, SendPayloadMsg)>,
 
}
 
struct RoundCtx {
 
    solution_storage: SolutionStorage,
 
    spec_var_stream: SpecVarStream,
 
    getter_buffer: GetterBuffer,
 
    deadline: Option<Instant>,
 
}
 
struct BranchingNative {
 
    branches: HashMap<Predicate, NativeBranch>,
 
}
 
#[derive(Clone, Debug)]
 
struct NativeBranch {
 
    index: usize,
 
    gotten: HashMap<PortId, Payload>,
 
    to_get: HashSet<PortId>,
 
}
 
#[derive(Debug)]
 
struct SolutionStorage {
 
    old_local: HashSet<Predicate>,
 
    new_local: HashSet<Predicate>,
 
    // this pair acts as SubtreeId -> HashSet<Predicate> which is friendlier to iteration
 
    subtree_solutions: Vec<HashSet<Predicate>>,
 
    subtree_id_to_index: HashMap<SubtreeId, usize>,
 
}
 
#[derive(Debug)]
 
struct BranchingProtoComponent {
 
    ports: HashSet<PortId>,
 
    branches: HashMap<Predicate, ProtoComponentBranch>,
 
}
 
#[derive(Debug, Clone)]
 
struct ProtoComponentBranch {
 
    did_put: HashSet<PortId>,
 
    did_put_or_get: HashSet<PortId>,
 
    inbox: HashMap<PortId, Payload>,
 
    state: ComponentState,
 
    untaken_choice: Option<u16>,
 
    ended: bool,
 
}
 
struct CyclicDrainer<'a, K: Eq + Hash, V> {
 
    input: &'a mut HashMap<K, V>,
 
    inner: CyclicDrainInner<'a, K, V>,
 
}
 
struct CyclicDrainInner<'a, K: Eq + Hash, V> {
 
    swap: &'a mut HashMap<K, V>,
 
    output: &'a mut HashMap<K, V>,
 
}
 
trait ReplaceBoolTrue {
 
    fn replace_with_true(&mut self) -> bool;
 
}
 
impl ReplaceBoolTrue for bool {
 
    fn replace_with_true(&mut self) -> bool {
 
        let was = *self;
 
        *self = true;
 
        !was
 
    }
 
}
 

	
 
////////////////
 
impl RoundCtxTrait for RoundCtx {
 
    fn get_deadline(&self) -> &Option<Instant> {
 
        &self.deadline
 
    }
 
    fn getter_add(&mut self, getter: PortId, msg: SendPayloadMsg) {
 
        self.getter_buffer.getter_add(getter, msg)
 
    }
 
}
 
impl Connector {
 
    fn get_comm_mut(&mut self) -> Option<&mut ConnectorCommunication> {
 
        if let ConnectorPhased::Communication(comm) = &mut self.phased {
 
            Some(comm)
 
        } else {
 
            None
 
        }
 
    }
 
    // pub(crate) fn get_mut_udp_sock(&mut self, index: usize) -> Option<&mut UdpSocket> {
 
    //     let sock = &mut self
 
    //         .get_comm_mut()?
 
    //         .endpoint_manager
 
    //         .udp_endpoint_store
 
    //         .endpoint_exts
 
    //         .get_mut(index)?
 
    //         .sock;
 
    //     Some(sock)
 
    // }
 
    pub fn gotten(&mut self, port: PortId) -> Result<&Payload, GottenError> {
 
        use GottenError as Ge;
 
        let comm = self.get_comm_mut().ok_or(Ge::NoPreviousRound)?;
 
        match &comm.round_result {
 
            Err(_) => Err(Ge::PreviousSyncFailed),
 
            Ok(None) => Err(Ge::NoPreviousRound),
 
            Ok(Some(round_ok)) => round_ok.gotten.get(&port).ok_or(Ge::PortDidntGet),
 
        }
 
    }
 
    pub fn next_batch(&mut self) -> Result<usize, WrongStateError> {
 
        // returns index of new batch
 
        let comm = self.get_comm_mut().ok_or(WrongStateError)?;
 
        comm.native_batches.push(Default::default());
 
        Ok(comm.native_batches.len() - 1)
 
    }
 
    fn port_op_access(
 
        &mut self,
 
        port: PortId,
 
        expect_polarity: Polarity,
 
    ) -> Result<&mut NativeBatch, PortOpError> {
 
        use PortOpError as Poe;
 
        let Self { unphased, phased } = self;
 
        if !unphased.native_ports.contains(&port) {
 
            return Err(Poe::PortUnavailable);
 
        }
 
        match unphased.port_info.polarities.get(&port) {
 
            Some(p) if *p == expect_polarity => {}
 
            Some(_) => return Err(Poe::WrongPolarity),
 
            None => return Err(Poe::UnknownPolarity),
 
        }
 
        match phased {
 
            ConnectorPhased::Setup { .. } => Err(Poe::NotConnected),
 
            ConnectorPhased::Communication(comm) => {
 
                let batch = comm.native_batches.last_mut().unwrap(); // length >= 1 is invariant
 
                Ok(batch)
 
            }
 
        }
 
    }
 
    pub fn put(&mut self, port: PortId, payload: Payload) -> Result<(), PortOpError> {
 
        use PortOpError as Poe;
 
        let batch = self.port_op_access(port, Putter)?;
 
        if batch.to_put.contains_key(&port) {
 
            Err(Poe::MultipleOpsOnPort)
 
        } else {
 
            batch.to_put.insert(port, payload);
 
            Ok(())
 
        }
 
    }
 
    pub fn get(&mut self, port: PortId) -> Result<(), PortOpError> {
 
        use PortOpError as Poe;
 
        let batch = self.port_op_access(port, Getter)?;
 
        if batch.to_get.insert(port) {
 
            Ok(())
 
        } else {
 
            Err(Poe::MultipleOpsOnPort)
 
        }
 
    }
 
    // entrypoint for caller. overwrites round result enum, and returns what happened
 
    pub fn sync(&mut self, timeout: Option<Duration>) -> Result<usize, SyncError> {
 
        let Self { unphased: cu, phased } = self;
 
        match phased {
 
            ConnectorPhased::Setup { .. } => Err(SyncError::NotConnected),
 
            ConnectorPhased::Communication(comm) => {
 
                match &comm.round_result {
 
                    Err(SyncError::Unrecoverable(e)) => {
 
                        log!(cu.logger, "Attempted to start sync round, but previous error {:?} was unrecoverable!", e);
 
                        return Err(SyncError::Unrecoverable(e.clone()));
 
                    }
 
                    _ => {}
 
                }
 
                comm.round_result = Self::connected_sync(cu, comm, timeout);
 
                comm.round_index += 1;
 
                match &comm.round_result {
 
                    Ok(None) => unreachable!(),
 
                    Ok(Some(ok_result)) => Ok(ok_result.batch_index),
 
                    Err(sync_error) => Err(sync_error.clone()),
 
                }
 
            }
 
        }
 
    }
 
    // private function. mutates state but returns with round
 
    // result ASAP (allows for convenient error return with ?)
 
    fn connected_sync(
 
        cu: &mut ConnectorUnphased,
 
        comm: &mut ConnectorCommunication,
 
        timeout: Option<Duration>,
 
    ) -> Result<Option<RoundOk>, SyncError> {
 
        //////////////////////////////////
 
        use SyncError as Se;
 
        //////////////////////////////////
 
        log!(
 
            cu.logger,
 
            "~~~ SYNC called with timeout {:?}; starting round {}",
 
            &timeout,
 
            comm.round_index
 
        );
 

	
 
        // 1. run all proto components to Nonsync blockers
 
        // NOTE: original components are immutable until Decision::Success
 
        let mut branching_proto_components =
 
            HashMap::<ProtoComponentId, BranchingProtoComponent>::default();
 
        let mut unrun_components: Vec<(ProtoComponentId, ProtoComponent)> =
 
            cu.proto_components.iter().map(|(&k, v)| (k, v.clone())).collect();
 
        log!(cu.logger, "Nonsync running {} proto components...", unrun_components.len());
 
        // drains unrun_components, and populates branching_proto_components.
 
        while let Some((proto_component_id, mut component)) = unrun_components.pop() {
 
            // TODO coalesce fields
 
            log!(
 
                cu.logger,
 
                "Nonsync running proto component with ID {:?}. {} to go after this",
 
                proto_component_id,
 
                unrun_components.len()
 
            );
 
            let mut ctx = NonsyncProtoContext {
 
                logger: &mut *cu.logger,
 
                port_info: &mut cu.port_info,
 
                id_manager: &mut cu.id_manager,
 
                proto_component_id,
 
                unrun_components: &mut unrun_components,
 
                proto_component_ports: &mut cu
 
                    .proto_components
 
                    .get_mut(&proto_component_id)
 
                    .unwrap() // unrun_components' keys originate from proto_components
 
                    .ports,
 
            };
 
            let blocker = component.state.nonsync_run(&mut ctx, &cu.proto_description);
 
            log!(
 
                cu.logger,
 
                "proto component {:?} ran to nonsync blocker {:?}",
 
                proto_component_id,
 
                &blocker
 
            );
 
            use NonsyncBlocker as B;
 
            match blocker {
 
                B::ComponentExit => drop(component),
 
                B::Inconsistent => return Err(Se::InconsistentProtoComponent(proto_component_id)),
 
                B::SyncBlockStart => {
 
                    branching_proto_components
 
                        .insert(proto_component_id, BranchingProtoComponent::initial(component));
 
                }
 
            }
 
        }
 
        log!(
 
            cu.logger,
 
            "All {} proto components are now done with Nonsync phase",
 
            branching_proto_components.len(),
 
        );
 

	
 
        // Create temp structures needed for the synchronous phase of the round
 
        let mut rctx = RoundCtx {
 
            solution_storage: {
 
                let n = std::iter::once(SubtreeId::LocalComponent(ComponentId::Native));
 
                let c = cu
 
                    .proto_components
 
                    .keys()
 
                    .map(|&id| SubtreeId::LocalComponent(ComponentId::Proto(id)));
 
                let e = comm
 
                    .neighborhood
 
                    .children
 
                    .iter()
 
                    .map(|&index| SubtreeId::NetEndpoint { index });
 
                let subtree_id_iter = n.chain(c).chain(e);
 
                log!(
 
                    cu.logger,
 
                    "Children in subtree are: {:?}",
 
                    subtree_id_iter.clone().collect::<Vec<_>>()
 
                );
 
                SolutionStorage::new(subtree_id_iter)
 
            },
 
            spec_var_stream: cu.id_manager.new_spec_var_stream(),
 
            getter_buffer: Default::default(),
 
            deadline: timeout.map(|to| Instant::now() + to),
 
        };
 
        log!(cu.logger, "Round context structure initialized");
 

	
 
        // Explore all native branches eagerly. Find solutions, buffer messages, etc.
 
        log!(
 
            cu.logger,
 
            "Translating {} native batches into branches...",
 
            comm.native_batches.len()
 
        );
 
        let native_branch_spec_var = rctx.spec_var_stream.next();
 
        log!(cu.logger, "Native branch spec var is {:?}", native_branch_spec_var);
 
        let mut branching_native = BranchingNative { branches: Default::default() };
 
        'native_branches: for ((native_branch, index), branch_spec_val) in
 
            comm.native_batches.drain(..).zip(0..).zip(SpecVal::iter_domain())
 
        {
 
            let NativeBatch { to_get, to_put } = native_branch;
 
            let predicate = {
 
                let mut predicate = Predicate::default();
 
                // assign trues for ports that fire
 
                let firing_ports: HashSet<PortId> =
 
                    to_get.iter().chain(to_put.keys()).copied().collect();
 
                for &port in to_get.iter().chain(to_put.keys()) {
 
                    let var = cu.port_info.spec_var_for(port);
 
                    predicate.assigned.insert(var, SpecVal::FIRING);
 
                }
 
                // assign falses for all silent (not firing) ports
 
                for &port in cu.native_ports.difference(&firing_ports) {
 
                    let var = cu.port_info.spec_var_for(port);
 
                    if let Some(SpecVal::FIRING) = predicate.assigned.insert(var, SpecVal::SILENT) {
 
                        log!(cu.logger, "Native branch index={} contains internal inconsistency wrt. {:?}. Skipping", index, var);
 
                        continue 'native_branches;
 
                    }
 
                }
 
                // this branch is consistent. distinguish it with a unique var:val mapping and proceed
 
                predicate.inserted(native_branch_spec_var, branch_spec_val)
 
            };
 
            log!(cu.logger, "Native branch index={:?} has consistent {:?}", index, &predicate);
 
            // send all outgoing messages (by buffering them)
 
            for (putter, payload) in to_put {
 
                let msg = SendPayloadMsg { predicate: predicate.clone(), payload };
 
                log!(cu.logger, "Native branch {} sending msg {:?}", index, &msg);
 
                rctx.getter_buffer.putter_add(cu, putter, msg);
 
            }
 
            let branch = NativeBranch { index, gotten: Default::default(), to_get };
 
            if branch.is_ended() {
 
                log!(
 
                    cu.logger,
 
                    "Native submitting solution for batch {} with {:?}",
 
                    index,
 
                    &predicate
 
                );
 
                rctx.solution_storage.submit_and_digest_subtree_solution(
 
                    &mut *cu.logger,
 
                    SubtreeId::LocalComponent(ComponentId::Native),
 
                    predicate.clone(),
 
                );
 
            }
 
            if let Some(_) = branching_native.branches.insert(predicate, branch) {
 
                // thanks to the native_branch_spec_var, each batch has a distinct predicate
 
                unreachable!()
 
            }
 
        }
 
        // restore the invariant: !native_batches.is_empty()
 
        comm.native_batches.push(Default::default());
 

	
 
        comm.endpoint_manager.udp_endpoints_round_start(&mut *cu.logger, &mut rctx.spec_var_stream);
 
        // Call to another big method; keep running this round until a distributed decision is reached
 
        let decision = Self::sync_reach_decision(
 
            cu,
 
            comm,
 
            &mut branching_native,
 
            &mut branching_proto_components,
 
            &mut rctx,
 
        )?;
 
        log!(cu.logger, "Committing to decision {:?}!", &decision);
 
        comm.endpoint_manager.udp_endpoints_round_end(&mut *cu.logger, &decision)?;
 

	
 
        // propagate the decision to children
 
        let msg = Msg::CommMsg(CommMsg {
 
            round_index: comm.round_index,
 
            contents: CommMsgContents::CommCtrl(CommCtrlMsg::Announce {
 
                decision: decision.clone(),
 
            }),
 
        });
 
        log!(
 
            cu.logger,
 
            "Announcing decision {:?} through child endpoints {:?}",
 
            &msg,
 
            &comm.neighborhood.children
 
        );
 
        for &child in comm.neighborhood.children.iter() {
 
            comm.endpoint_manager.send_to_comms(child, &msg)?;
 
        }
 
        let ret = match decision {
 
            Decision::Failure => {
 
                // dropping {branching_proto_components, branching_native}
 
                Err(Se::RoundFailure)
 
            }
 
            Decision::Success(predicate) => {
 
                // commit changes to component states
 
                cu.proto_components.clear();
 
                cu.proto_components.extend(
 
                    // consume branching proto components
 
                    branching_proto_components
 
                        .into_iter()
 
                        .map(|(id, bpc)| (id, bpc.collapse_with(&predicate))),
 
                );
 
                log!(
 
                    cu.logger,
 
                    "End round with (updated) component states {:?}",
 
                    cu.proto_components.keys()
 
                );
 
                // consume native
 
                Ok(Some(branching_native.collapse_with(&mut *cu.logger, &predicate)))
 
            }
 
        };
 
        log!(cu.logger, "Sync round ending! Cleaning up");
 
        // dropping {solution_storage, payloads_to_get}
 
        ret
 
    }
 

	
 
    fn sync_reach_decision(
 
        cu: &mut ConnectorUnphased,
 
        comm: &mut ConnectorCommunication,
 
        branching_native: &mut BranchingNative,
 
        branching_proto_components: &mut HashMap<ProtoComponentId, BranchingProtoComponent>,
 
        rctx: &mut RoundCtx,
 
    ) -> Result<Decision, UnrecoverableSyncError> {
 
        let mut already_requested_failure = false;
 
        if branching_native.branches.is_empty() {
 
            log!(cu.logger, "Native starts with no branches! Failure!");
 
            match comm.neighborhood.parent {
 
                Some(parent) => {
 
                    if already_requested_failure.replace_with_true() {
 
                        Self::request_failure(cu, comm, parent)?
 
                    } else {
 
                        log!(cu.logger, "Already requested failure");
 
                    }
 
                }
 
                None => {
 
                    log!(cu.logger, "No parent. Deciding on failure");
 
                    return Ok(Decision::Failure);
 
                }
 
            }
 
        }
 
        log!(cu.logger, "Done translating native batches into branches");
 

	
 
        // run all proto components to their sync blocker
 
        log!(
 
            cu.logger,
 
            "Running all {} proto components to their sync blocker...",
 
            branching_proto_components.len()
 
        );
 
        for (&proto_component_id, proto_component) in branching_proto_components.iter_mut() {
 
            let BranchingProtoComponent { ports, branches } = proto_component;
 
            let mut swap = HashMap::default();
 
            // initially, no components have .ended==true
 
            let mut blocked = HashMap::default();
 
            // drain from branches --> blocked
 
            let cd = CyclicDrainer::new(branches, &mut swap, &mut blocked);
 
            BranchingProtoComponent::drain_branches_to_blocked(
 
@@ -443,802 +443,801 @@ impl Connector {
 
                }
 
            }
 
        }
 
        log!(cu.logger, "All proto components are blocked");
 

	
 
        log!(cu.logger, "Entering decision loop...");
 
        comm.endpoint_manager.undelay_all();
 
        'undecided: loop {
 
            // drain payloads_to_get, sending them through endpoints / feeding them to components
 
            log!(cu.logger, "Decision loop! have {} messages to recv", rctx.getter_buffer.len());
 
            while let Some((getter, send_payload_msg)) = rctx.getter_buffer.pop() {
 
                assert!(cu.port_info.polarities.get(&getter).copied() == Some(Getter));
 
                let route = cu.port_info.routes.get(&getter);
 
                log!(
 
                    cu.logger,
 
                    "Routing msg {:?} to {:?} via {:?}",
 
                    &send_payload_msg,
 
                    getter,
 
                    &route
 
                );
 
                match route {
 
                    None => log!(cu.logger, "Delivery failed. Physical route unmapped!"),
 
                    Some(Route::UdpEndpoint { index }) => {
 
                        let udp_endpoint_ext =
 
                            &mut comm.endpoint_manager.udp_endpoint_store.endpoint_exts[*index];
 
                        let SendPayloadMsg { predicate, payload } = send_payload_msg;
 
                        log!(cu.logger, "Delivering to udp endpoint index={}", index);
 
                        udp_endpoint_ext.outgoing_payloads.insert(predicate, payload);
 
                    }
 
                    Some(Route::NetEndpoint { index }) => {
 
                        let msg = Msg::CommMsg(CommMsg {
 
                            round_index: comm.round_index,
 
                            contents: CommMsgContents::SendPayload(send_payload_msg),
 
                        });
 
                        comm.endpoint_manager.send_to_comms(*index, &msg)?;
 
                    }
 
                    Some(Route::LocalComponent(ComponentId::Native)) => branching_native.feed_msg(
 
                        cu,
 
                        &mut rctx.solution_storage,
 
                        getter,
 
                        &send_payload_msg,
 
                    ),
 
                    Some(Route::LocalComponent(ComponentId::Proto(proto_component_id))) => {
 
                        if let Some(branching_component) =
 
                            branching_proto_components.get_mut(proto_component_id)
 
                        {
 
                            let proto_component_id = *proto_component_id;
 
                            branching_component.feed_msg(
 
                                cu,
 
                                rctx,
 
                                proto_component_id,
 
                                getter,
 
                                &send_payload_msg,
 
                            )?;
 
                            if branching_component.branches.is_empty() {
 
                                log!(
 
                                    cu.logger,
 
                                    "{:?} has become inconsistent!",
 
                                    proto_component_id
 
                                );
 
                                if let Some(parent) = comm.neighborhood.parent {
 
                                    if already_requested_failure.replace_with_true() {
 
                                        Self::request_failure(cu, comm, parent)?
 
                                    } else {
 
                                        log!(cu.logger, "Already requested failure");
 
                                    }
 
                                } else {
 
                                    log!(cu.logger, "As the leader, deciding on timeout");
 
                                    return Ok(Decision::Failure);
 
                                }
 
                            }
 
                        } else {
 
                            log!(
 
                                cu.logger,
 
                                "Delivery to getter {:?} msg {:?} failed because {:?} isn't here",
 
                                getter,
 
                                &send_payload_msg,
 
                                proto_component_id
 
                            );
 
                        }
 
                    }
 
                }
 
            }
 

	
 
            // check if we have a solution yet
 
            log!(cu.logger, "Check if we have any local decisions...");
 
            for solution in rctx.solution_storage.iter_new_local_make_old() {
 
                log!(cu.logger, "New local decision with solution {:?}...", &solution);
 
                match comm.neighborhood.parent {
 
                    Some(parent) => {
 
                        log!(cu.logger, "Forwarding to my parent {:?}", parent);
 
                        let suggestion = Decision::Success(solution);
 
                        let msg = Msg::CommMsg(CommMsg {
 
                            round_index: comm.round_index,
 
                            contents: CommMsgContents::CommCtrl(CommCtrlMsg::Suggest {
 
                                suggestion,
 
                            }),
 
                        });
 
                        comm.endpoint_manager.send_to_comms(parent, &msg)?;
 
                    }
 
                    None => {
 
                        log!(cu.logger, "No parent. Deciding on solution {:?}", &solution);
 
                        return Ok(Decision::Success(solution));
 
                    }
 
                }
 
            }
 

	
 
            // stuck! make progress by receiving a msg
 
            // try recv messages arriving through endpoints
 
            log!(cu.logger, "No decision yet. Let's recv an endpoint msg...");
 
            {
 
                let (net_index, comm_ctrl_msg): (usize, CommCtrlMsg) =
 
                    match comm.endpoint_manager.try_recv_any_comms(
 
                        &mut *cu.logger,
 
                        &cu.port_info,
 
                        rctx,
 
                        comm.round_index,
 
                    )? {
 
                        CommRecvOk::NewControlMsg { net_index, msg } => (net_index, msg),
 
                        CommRecvOk::NewPayloadMsgs => continue 'undecided,
 
                        CommRecvOk::TimeoutWithoutNew => {
 
                            log!(cu.logger, "Reached user-defined deadling without decision...");
 
                            if let Some(parent) = comm.neighborhood.parent {
 
                                if already_requested_failure.replace_with_true() {
 
                                    Self::request_failure(cu, comm, parent)?
 
                                } else {
 
                                    log!(cu.logger, "Already requested failure");
 
                                }
 
                            } else {
 
                                log!(cu.logger, "As the leader, deciding on timeout");
 
                                return Ok(Decision::Failure);
 
                            }
 
                            rctx.deadline = None;
 
                            continue 'undecided;
 
                        }
 
                    };
 
                log!(
 
                    cu.logger,
 
                    "Received from endpoint {} ctrl msg  {:?}",
 
                    net_index,
 
                    &comm_ctrl_msg
 
                );
 
                match comm_ctrl_msg {
 
                    CommCtrlMsg::Suggest { suggestion } => {
 
                        // only accept this control msg through a child endpoint
 
                        if comm.neighborhood.children.contains(&net_index) {
 
                            match suggestion {
 
                                Decision::Success(predicate) => {
 
                                    // child solution contributes to local solution
 
                                    log!(cu.logger, "Child provided solution {:?}", &predicate);
 
                                    let subtree_id = SubtreeId::NetEndpoint { index: net_index };
 
                                    rctx.solution_storage.submit_and_digest_subtree_solution(
 
                                        &mut *cu.logger,
 
                                        subtree_id,
 
                                        predicate,
 
                                    );
 
                                }
 
                                Decision::Failure => {
 
                                    match comm.neighborhood.parent {
 
                                        None => {
 
                                            log!(cu.logger, "I decide on my child's failure");
 
                                            break 'undecided Ok(Decision::Failure);
 
                                        }
 
                                        Some(parent) => {
 
                                            log!(cu.logger, "Forwarding failure through my parent endpoint {:?}", parent);
 
                                            if already_requested_failure.replace_with_true() {
 
                                                Self::request_failure(cu, comm, parent)?
 
                                            } else {
 
                                                log!(cu.logger, "Already requested failure");
 
                                            }
 
                                        }
 
                                    }
 
                                }
 
                            }
 
                        } else {
 
                            log!(
 
                                cu.logger,
 
                                "Discarding suggestion {:?} from non-child endpoint idx {:?}",
 
                                &suggestion,
 
                                net_index
 
                            );
 
                        }
 
                    }
 
                    CommCtrlMsg::Announce { decision } => {
 
                        if Some(net_index) == comm.neighborhood.parent {
 
                            // adopt this decision
 
                            return Ok(decision);
 
                        } else {
 
                            log!(
 
                                cu.logger,
 
                                "Discarding announcement {:?} from non-parent endpoint idx {:?}",
 
                                &decision,
 
                                net_index
 
                            );
 
                        }
 
                    }
 
                }
 
            }
 
            log!(cu.logger, "Endpoint msg recv done");
 
        }
 
    }
 
    fn request_failure(
 
        cu: &mut ConnectorUnphased,
 
        comm: &mut ConnectorCommunication,
 
        parent: usize,
 
    ) -> Result<(), UnrecoverableSyncError> {
 
        log!(cu.logger, "Forwarding to my parent {:?}", parent);
 
        let suggestion = Decision::Failure;
 
        let msg = Msg::CommMsg(CommMsg {
 
            round_index: comm.round_index,
 
            contents: CommMsgContents::CommCtrl(CommCtrlMsg::Suggest { suggestion }),
 
        });
 
        comm.endpoint_manager.send_to_comms(parent, &msg)
 
    }
 
}
 
impl NativeBranch {
 
    fn is_ended(&self) -> bool {
 
        self.to_get.is_empty()
 
    }
 
}
 
impl BranchingNative {
 
    fn feed_msg(
 
        &mut self,
 
        cu: &mut ConnectorUnphased,
 
        solution_storage: &mut SolutionStorage,
 
        getter: PortId,
 
        send_payload_msg: &SendPayloadMsg,
 
    ) {
 
        log!(cu.logger, "feeding native getter {:?} {:?}", getter, &send_payload_msg);
 
        assert!(cu.port_info.polarities.get(&getter).copied() == Some(Getter));
 
        let mut draining = HashMap::default();
 
        let finished = &mut self.branches;
 
        std::mem::swap(&mut draining, finished);
 
        for (predicate, mut branch) in draining.drain() {
 
            log!(cu.logger, "visiting native branch {:?} with {:?}", &branch, &predicate);
 
            // check if this branch expects to receive it
 
            let var = cu.port_info.spec_var_for(getter);
 
            let mut feed_branch = |branch: &mut NativeBranch, predicate: &Predicate| {
 
                branch.to_get.remove(&getter);
 
                let was = branch.gotten.insert(getter, send_payload_msg.payload.clone());
 
                assert!(was.is_none());
 
                if branch.is_ended() {
 
                    log!(
 
                        cu.logger,
 
                        "new native solution with {:?} is_ended() with gotten {:?}",
 
                        &predicate,
 
                        &branch.gotten
 
                    );
 
                    let subtree_id = SubtreeId::LocalComponent(ComponentId::Native);
 
                    solution_storage.submit_and_digest_subtree_solution(
 
                        &mut *cu.logger,
 
                        subtree_id,
 
                        predicate.clone(),
 
                    );
 
                } else {
 
                    log!(
 
                        cu.logger,
 
                        "Fed native {:?} still has to_get {:?}",
 
                        &predicate,
 
                        &branch.to_get
 
                    );
 
                }
 
            };
 
            if predicate.query(var) != Some(SpecVal::FIRING) {
 
                // optimization. Don't bother trying this branch
 
                log!(
 
                    cu.logger,
 
                    "skipping branch with {:?} that doesn't want the message (fastpath)",
 
                    &predicate
 
                );
 
                Self::insert_branch_merging(finished, predicate, branch);
 
                continue;
 
            }
 
            use AssignmentUnionResult as Aur;
 
            match predicate.assignment_union(&send_payload_msg.predicate) {
 
                Aur::Nonexistant => {
 
                    // this branch does not receive the message
 
                    log!(
 
                        cu.logger,
 
                        "skipping branch with {:?} that doesn't want the message (slowpath)",
 
                        &predicate
 
                    );
 
                    Self::insert_branch_merging(finished, predicate, branch);
 
                }
 
                Aur::Equivalent | Aur::FormerNotLatter => {
 
                    // retain the existing predicate, but add this payload
 
                    feed_branch(&mut branch, &predicate);
 
                    log!(cu.logger, "branch pred covers it! Accept the msg");
 
                    Self::insert_branch_merging(finished, predicate, branch);
 
                }
 
                Aur::LatterNotFormer => {
 
                    // fork branch, give fork the message and payload predicate. original branch untouched
 
                    let mut branch2 = branch.clone();
 
                    let predicate2 = send_payload_msg.predicate.clone();
 
                    feed_branch(&mut branch2, &predicate2);
 
                    log!(
 
                        cu.logger,
 
                        "payload pred {:?} covers branch pred {:?}",
 
                        &predicate2,
 
                        &predicate
 
                    );
 
                    Self::insert_branch_merging(finished, predicate, branch);
 
                    Self::insert_branch_merging(finished, predicate2, branch2);
 
                }
 
                Aur::New(predicate2) => {
 
                    // fork branch, give fork the message and the new predicate. original branch untouched
 
                    let mut branch2 = branch.clone();
 
                    feed_branch(&mut branch2, &predicate2);
 
                    log!(
 
                        cu.logger,
 
                        "new subsuming pred created {:?}. forking and feeding",
 
                        &predicate2
 
                    );
 
                    Self::insert_branch_merging(finished, predicate, branch);
 
                    Self::insert_branch_merging(finished, predicate2, branch2);
 
                }
 
            }
 
        }
 
    }
 
    fn insert_branch_merging(
 
        branches: &mut HashMap<Predicate, NativeBranch>,
 
        predicate: Predicate,
 
        mut branch: NativeBranch,
 
    ) {
 
        let e = branches.entry(predicate);
 
        use std::collections::hash_map::Entry;
 
        match e {
 
            Entry::Vacant(ev) => {
 
                // no existing branch present. We insert it no problem. (The most common case)
 
                ev.insert(branch);
 
            }
 
            Entry::Occupied(mut eo) => {
 
                // Oh dear, there is already a branch with this predicate.
 
                // Rather than choosing either branch, we MERGE them.
 
                // This means taking the UNION of their .gotten and the INTERSECTION of their .to_get
 
                let old = eo.get_mut();
 
                for (k, v) in branch.gotten.drain() {
 
                    if old.gotten.insert(k, v).is_none() {
 
                        // added a gotten element in `branch` not already in `old`
 
                        old.to_get.remove(&k);
 
                    }
 
                }
 
            }
 
        }
 
    }
 
    fn collapse_with(self, logger: &mut dyn Logger, solution_predicate: &Predicate) -> RoundOk {
 
        log!(
 
            logger,
 
            "Collapsing native with {} branch preds {:?}",
 
            self.branches.len(),
 
            self.branches.keys()
 
        );
 
        for (branch_predicate, branch) in self.branches {
 
            log!(
 
                logger,
 
                "Considering native branch {:?} with to_get {:?} gotten {:?}",
 
                &branch_predicate,
 
                &branch.to_get,
 
                &branch.gotten
 
            );
 
            if branch.is_ended() && branch_predicate.assigns_subset(solution_predicate) {
 
                let NativeBranch { index, gotten, .. } = branch;
 
                log!(logger, "Collapsed native has gotten {:?}", &gotten);
 
                return RoundOk { batch_index: index, gotten };
 
            }
 
        }
 
        panic!("Native had no branches matching pred {:?}", solution_predicate);
 
    }
 
}
 
impl BranchingProtoComponent {
 
    fn drain_branches_to_blocked(
 
        cd: CyclicDrainer<Predicate, ProtoComponentBranch>,
 
        cu: &mut ConnectorUnphased,
 
        rctx: &mut RoundCtx,
 
        proto_component_id: ProtoComponentId,
 
        ports: &HashSet<PortId>,
 
    ) -> Result<(), UnrecoverableSyncError> {
 
        cd.cyclic_drain(|mut predicate, mut branch, mut drainer| {
 
            let mut ctx = SyncProtoContext {
 
                untaken_choice: &mut branch.untaken_choice,
 
                logger: &mut *cu.logger,
 
                predicate: &predicate,
 
                port_info: &cu.port_info,
 
                inbox: &branch.inbox,
 
                did_put_or_get: &mut branch.did_put_or_get,
 
            };
 
            let blocker = branch.state.sync_run(&mut ctx, &cu.proto_description);
 
            log!(
 
                cu.logger,
 
                "Proto component with id {:?} branch with pred {:?} hit blocker {:?}",
 
                proto_component_id,
 
                &predicate,
 
                &blocker,
 
            );
 
            use SyncBlocker as B;
 
            match blocker {
 
                B::NondetChoice { n } => {
 
                    let var = rctx.spec_var_stream.next();
 
                    for val in SpecVal::iter_domain().take(n as usize) {
 
                        let pred = predicate.clone().inserted(var, val);
 
                        let mut branch_n = branch.clone();
 
                        branch_n.untaken_choice = Some(val.0);
 
                        drainer.add_input(pred, branch_n);
 
                    }
 
                }
 
                B::Inconsistent => {
 
                    // EXPLICIT inconsistency
 
                    drop((predicate, branch));
 
                }
 
                B::SyncBlockEnd => {
 
                    // make concrete all variables
 
                    for port in ports.iter() {
 
                        let var = cu.port_info.spec_var_for(*port);
 
                        let should_have_fired = match cu.port_info.polarities.get(port).unwrap() {
 
                            Polarity::Getter => branch.inbox.contains_key(port),
 
                            Polarity::Putter => branch.did_put.contains(port),
 
                        };
 
                        let should_have_fired = branch.did_put_or_get.contains(port);
 
                        let val = *predicate.assigned.entry(var).or_insert(SpecVal::SILENT);
 
                        let did_fire = val == SpecVal::FIRING;
 
                        if did_fire != should_have_fired {
 
                            log!(cu.logger, "Inconsistent wrt. port {:?} var {:?} val {:?} did_fire={}, should_have_fired={}", port, var, val, did_fire, should_have_fired);
 
                            // IMPLICIT inconsistency
 
                            drop((predicate, branch));
 
                            return Ok(());
 
                        }
 
                    }
 
                    // submit solution for this component
 
                    let subtree_id = SubtreeId::LocalComponent(ComponentId::Proto(proto_component_id));
 
                    rctx.solution_storage.submit_and_digest_subtree_solution(
 
                        &mut *cu.logger,
 
                        subtree_id,
 
                        predicate.clone(),
 
                    );
 
                    branch.ended = true;
 
                    // move to "blocked"
 
                    drainer.add_output(predicate, branch);
 
                }
 
                B::CouldntReadMsg(port) => {
 
                    // move to "blocked"
 
                    assert!(!branch.inbox.contains_key(&port));
 
                    drainer.add_output(predicate, branch);
 
                }
 
                B::CouldntCheckFiring(port) => {
 
                    // sanity check
 
                    let var = cu.port_info.spec_var_for(port);
 
                    assert!(predicate.query(var).is_none());
 
                    // keep forks in "unblocked"
 
                    drainer.add_input(predicate.clone().inserted(var, SpecVal::SILENT), branch.clone());
 
                    drainer.add_input(predicate.inserted(var, SpecVal::FIRING), branch);
 
                }
 
                B::PutMsg(putter, payload) => {
 
                    // sanity check
 
                    assert_eq!(Some(&Putter), cu.port_info.polarities.get(&putter));
 
                    // overwrite assignment
 
                    let var = cu.port_info.spec_var_for(putter);
 
                    let was = predicate.assigned.insert(var, SpecVal::FIRING);
 
                    if was == Some(SpecVal::SILENT) {
 
                        log!(cu.logger, "Proto component {:?} tried to PUT on port {:?} when pred said var {:?}==Some(false). inconsistent!", proto_component_id, putter, var);
 
                        // discard forever
 
                        drop((predicate, branch));
 
                    } else {
 
                        // keep in "unblocked"
 
                        branch.did_put.insert(putter);
 
                        branch.did_put_or_get.insert(putter);
 
                        log!(cu.logger, "Proto component {:?} putting payload {:?} on port {:?} (using var {:?})", proto_component_id, &payload, putter, var);
 
                        let msg = SendPayloadMsg { predicate: predicate.clone(), payload };
 
                        rctx.getter_buffer.putter_add(cu, putter, msg);
 
                        drainer.add_input(predicate, branch);
 
                    }
 
                }
 
            }
 
            Ok(())
 
        })
 
    }
 
    fn branch_merge_func(
 
        mut a: ProtoComponentBranch,
 
        b: &mut ProtoComponentBranch,
 
    ) -> ProtoComponentBranch {
 
        if b.ended && !a.ended {
 
            a.ended = true;
 
            std::mem::swap(&mut a, b);
 
        }
 
        a
 
    }
 
    fn feed_msg(
 
        &mut self,
 
        cu: &mut ConnectorUnphased,
 
        rctx: &mut RoundCtx,
 
        proto_component_id: ProtoComponentId,
 
        getter: PortId,
 
        send_payload_msg: &SendPayloadMsg,
 
    ) -> Result<(), UnrecoverableSyncError> {
 
        let logger = &mut *cu.logger;
 
        log!(
 
            logger,
 
            "feeding proto component {:?} getter {:?} {:?}",
 
            proto_component_id,
 
            getter,
 
            &send_payload_msg
 
        );
 
        let BranchingProtoComponent { branches, ports } = self;
 
        let mut unblocked = HashMap::default();
 
        let mut blocked = HashMap::default();
 
        // partition drain from branches -> {unblocked, blocked}
 
        log!(logger, "visiting {} blocked branches...", branches.len());
 
        for (predicate, mut branch) in branches.drain() {
 
            if branch.ended {
 
                log!(logger, "Skipping ended branch with {:?}", &predicate);
 
                blocked.insert(predicate, branch);
 
                continue;
 
            }
 
            use AssignmentUnionResult as Aur;
 
            log!(logger, "visiting branch with pred {:?}", &predicate);
 
            match predicate.assignment_union(&send_payload_msg.predicate) {
 
                Aur::Nonexistant => {
 
                    // this branch does not receive the message
 
                    log!(logger, "skipping branch");
 
                    blocked.insert(predicate, branch);
 
                }
 
                Aur::Equivalent | Aur::FormerNotLatter => {
 
                    // retain the existing predicate, but add this payload
 
                    log!(logger, "feeding this branch without altering its predicate");
 
                    branch.feed_msg(getter, send_payload_msg.payload.clone());
 
                    unblocked.insert(predicate, branch);
 
                }
 
                Aur::LatterNotFormer => {
 
                    // fork branch, give fork the message and payload predicate. original branch untouched
 
                    log!(logger, "Forking this branch, giving it the predicate of the msg");
 
                    let mut branch2 = branch.clone();
 
                    let predicate2 = send_payload_msg.predicate.clone();
 
                    branch2.feed_msg(getter, send_payload_msg.payload.clone());
 
                    blocked.insert(predicate, branch);
 
                    unblocked.insert(predicate2, branch2);
 
                }
 
                Aur::New(predicate2) => {
 
                    // fork branch, give fork the message and the new predicate. original branch untouched
 
                    log!(logger, "Forking this branch with new predicate {:?}", &predicate2);
 
                    let mut branch2 = branch.clone();
 
                    branch2.feed_msg(getter, send_payload_msg.payload.clone());
 
                    blocked.insert(predicate, branch);
 
                    unblocked.insert(predicate2, branch2);
 
                }
 
            }
 
        }
 
        log!(logger, "blocked {:?} unblocked {:?}", blocked.len(), unblocked.len());
 
        // drain from unblocked --> blocked
 
        let mut swap = HashMap::default();
 
        let cd = CyclicDrainer::new(&mut unblocked, &mut swap, &mut blocked);
 
        BranchingProtoComponent::drain_branches_to_blocked(
 
            cd,
 
            cu,
 
            rctx,
 
            proto_component_id,
 
            ports,
 
        )?;
 
        // swap the blocked branches back
 
        std::mem::swap(&mut blocked, branches);
 
        log!(cu.logger, "component settles down with branches: {:?}", branches.keys());
 
        Ok(())
 
    }
 
    fn collapse_with(self, solution_predicate: &Predicate) -> ProtoComponent {
 
        let BranchingProtoComponent { ports, branches } = self;
 
        for (branch_predicate, branch) in branches {
 
            if branch.ended && branch_predicate.assigns_subset(solution_predicate) {
 
                let ProtoComponentBranch { state, .. } = branch;
 
                return ProtoComponent { state, ports };
 
            }
 
        }
 
        panic!("ProtoComponent had no branches matching pred {:?}", solution_predicate);
 
    }
 
    fn initial(ProtoComponent { state, ports }: ProtoComponent) -> Self {
 
        let branch = ProtoComponentBranch {
 
            inbox: Default::default(),
 
            did_put: Default::default(),
 
            did_put_or_get: Default::default(),
 
            state,
 
            ended: false,
 
            untaken_choice: None,
 
        };
 
        Self { ports, branches: hashmap! { Predicate::default() => branch  } }
 
    }
 
}
 
impl SolutionStorage {
 
    fn new(subtree_ids: impl Iterator<Item = SubtreeId>) -> Self {
 
        let mut subtree_id_to_index: HashMap<SubtreeId, usize> = Default::default();
 
        let mut subtree_solutions = vec![];
 
        for id in subtree_ids {
 
            subtree_id_to_index.insert(id, subtree_solutions.len());
 
            subtree_solutions.push(Default::default())
 
        }
 
        Self {
 
            subtree_solutions,
 
            subtree_id_to_index,
 
            old_local: Default::default(),
 
            new_local: Default::default(),
 
        }
 
    }
 
    fn is_clear(&self) -> bool {
 
        self.subtree_id_to_index.is_empty()
 
            && self.subtree_solutions.is_empty()
 
            && self.old_local.is_empty()
 
            && self.new_local.is_empty()
 
    }
 
    fn clear(&mut self) {
 
        self.subtree_id_to_index.clear();
 
        self.subtree_solutions.clear();
 
        self.old_local.clear();
 
        self.new_local.clear();
 
    }
 
    fn reset(&mut self, subtree_ids: impl Iterator<Item = SubtreeId>) {
 
        self.subtree_id_to_index.clear();
 
        self.subtree_solutions.clear();
 
        self.old_local.clear();
 
        self.new_local.clear();
 
        for key in subtree_ids {
 
            self.subtree_id_to_index.insert(key, self.subtree_solutions.len());
 
            self.subtree_solutions.push(Default::default())
 
        }
 
    }
 
    pub(crate) fn iter_new_local_make_old(&mut self) -> impl Iterator<Item = Predicate> + '_ {
 
        let Self { old_local, new_local, .. } = self;
 
        new_local.drain().map(move |local| {
 
            old_local.insert(local.clone());
 
            local
 
        })
 
    }
 
    pub(crate) fn submit_and_digest_subtree_solution(
 
        &mut self,
 
        logger: &mut dyn Logger,
 
        subtree_id: SubtreeId,
 
        predicate: Predicate,
 
    ) {
 
        log!(logger, "NEW COMPONENT SOLUTION {:?} {:?}", subtree_id, &predicate);
 
        let index = self.subtree_id_to_index[&subtree_id];
 
        let left = 0..index;
 
        let right = (index + 1)..self.subtree_solutions.len();
 

	
 
        let Self { subtree_solutions, new_local, old_local, .. } = self;
 
        let was_new = subtree_solutions[index].insert(predicate.clone());
 
        if was_new {
 
            let set_visitor = left.chain(right).map(|index| &subtree_solutions[index]);
 
            Self::elaborate_into_new_local_rec(
 
                logger,
 
                predicate,
 
                set_visitor,
 
                old_local,
 
                new_local,
 
            );
 
        }
 
    }
 
    fn elaborate_into_new_local_rec<'a, 'b>(
 
        logger: &mut dyn Logger,
 
        partial: Predicate,
 
        mut set_visitor: impl Iterator<Item = &'b HashSet<Predicate>> + Clone,
 
        old_local: &'b HashSet<Predicate>,
 
        new_local: &'a mut HashSet<Predicate>,
 
    ) {
 
        if let Some(set) = set_visitor.next() {
 
            // incomplete solution. keep traversing
 
            for pred in set.iter() {
 
                if let Some(elaborated) = pred.union_with(&partial) {
 
                    Self::elaborate_into_new_local_rec(
 
                        logger,
 
                        elaborated,
 
                        set_visitor.clone(),
 
                        old_local,
 
                        new_local,
 
                    )
 
                }
 
            }
 
        } else {
 
            // recursive stop condition. `partial` is a local subtree solution
 
            if !old_local.contains(&partial) {
 
                // ... and it hasn't been found before
 
                log!(logger, "storing NEW LOCAL SOLUTION {:?}", &partial);
 
                new_local.insert(partial);
 
            }
 
        }
 
    }
 
}
 
impl GetterBuffer {
 
    fn len(&self) -> usize {
 
        self.getters_and_sends.len()
 
    }
 
    fn pop(&mut self) -> Option<(PortId, SendPayloadMsg)> {
 
        self.getters_and_sends.pop()
 
    }
 
    fn getter_add(&mut self, getter: PortId, msg: SendPayloadMsg) {
 
        self.getters_and_sends.push((getter, msg));
 
    }
 
    fn putter_add(&mut self, cu: &mut ConnectorUnphased, putter: PortId, msg: SendPayloadMsg) {
 
        if let Some(&getter) = cu.port_info.peers.get(&putter) {
 
            self.getter_add(getter, msg);
 
        } else {
 
            log!(cu.logger, "Putter {:?} has no known peer!", putter);
 
            panic!("Putter {:?} has no known peer!");
 
        }
 
    }
 
}
 
impl SyncProtoContext<'_> {
 
    pub(crate) fn is_firing(&mut self, port: PortId) -> Option<bool> {
 
        let var = self.port_info.spec_var_for(port);
 
        self.predicate.query(var).map(SpecVal::is_firing)
 
    }
 
    pub(crate) fn read_msg(&mut self, port: PortId) -> Option<&Payload> {
 
        self.did_put_or_get.insert(port);
 
        self.inbox.get(&port)
 
    }
 
    pub(crate) fn take_choice(&mut self) -> Option<u16> {
 
        self.untaken_choice.take()
 
    }
 
}
 
impl<'a, K: Eq + Hash, V> CyclicDrainInner<'a, K, V> {
 
    fn add_input(&mut self, k: K, v: V) {
 
        self.swap.insert(k, v);
 
    }
 
    fn merge_input_with<F: FnMut(V, &mut V) -> V>(&mut self, k: K, v: V, mut func: F) {
 
        use std::collections::hash_map::Entry;
 
        let e = self.swap.entry(k);
 
        match e {
 
            Entry::Vacant(ev) => {
 
                ev.insert(v);
 
            }
 
            Entry::Occupied(mut eo) => {
 
                let old = eo.get_mut();
 
                *old = func(v, old);
 
            }
 
        }
 
    }
 
    fn add_output(&mut self, k: K, v: V) {
 
        self.output.insert(k, v);
 
    }
 
}
 
impl NonsyncProtoContext<'_> {
 
    pub fn new_component(&mut self, moved_ports: HashSet<PortId>, state: ComponentState) {
 
        // called by a PROTO COMPONENT. moves its own ports.
 
        // 1. sanity check: this component owns these ports
 
        log!(
 
            self.logger,
 
            "Component {:?} added new component with state {:?}, moving ports {:?}",
 
            self.proto_component_id,
 
            &state,
 
            &moved_ports
 
        );
 
        assert!(self.proto_component_ports.is_subset(&moved_ports));
 
        // 2. remove ports from old component & update port->route
 
        let new_id = self.id_manager.new_proto_component_id();
 
        for port in moved_ports.iter() {
 
            self.proto_component_ports.remove(port);
 
            self.port_info.routes.insert(*port, Route::LocalComponent(ComponentId::Proto(new_id)));
 
        }
 
        // 3. create a new component
 
        self.unrun_components.push((new_id, ProtoComponent { state, ports: moved_ports }));
 
    }
 
    pub fn new_port_pair(&mut self) -> [PortId; 2] {
 
        // adds two new associated ports, related to each other, and exposed to the proto component
 
        let [o, i] = [self.id_manager.new_port_id(), self.id_manager.new_port_id()];
 
        self.proto_component_ports.insert(o);
 
        self.proto_component_ports.insert(i);
 
        // {polarity, peer, route} known. {} unknown.
 
        self.port_info.polarities.insert(o, Putter);
 
        self.port_info.polarities.insert(i, Getter);
 
        self.port_info.peers.insert(o, i);
 
        self.port_info.peers.insert(i, o);
 
        let route = Route::LocalComponent(ComponentId::Proto(self.proto_component_id));
 
        self.port_info.routes.insert(o, route);
 
        self.port_info.routes.insert(i, route);
 
        log!(
 
            self.logger,
 
            "Component {:?} port pair (out->in) {:?} -> {:?}",
 
            self.proto_component_id,
 
            o,
 
            i
 
        );
 
        [o, i]
 
    }
 
}
 
impl ProtoComponentBranch {
 
    fn feed_msg(&mut self, getter: PortId, payload: Payload) {
 
        let was = self.inbox.insert(getter, payload);
 
        assert!(was.is_none())
 
    }
 
}
 
impl<'a, K: Eq + Hash + 'static, V: 'static> CyclicDrainer<'a, K, V> {
 
    fn new(
 
        input: &'a mut HashMap<K, V>,
 
        swap: &'a mut HashMap<K, V>,
 
        output: &'a mut HashMap<K, V>,
 
    ) -> Self {
 
        Self { input, inner: CyclicDrainInner { swap, output } }
 
    }
 
    fn cyclic_drain<E>(
 
        self,
 
        mut func: impl FnMut(K, V, CyclicDrainInner<'_, K, V>) -> Result<(), E>,
 
    ) -> Result<(), E> {
 
        let Self { input, inner: CyclicDrainInner { swap, output } } = self;
 
        // assert!(swap.is_empty());
 
        while !input.is_empty() {
 
            for (k, v) in input.drain() {
 
                func(k, v, CyclicDrainInner { swap, output })?
 
            }
 
            std::mem::swap(input, swap);
 
        }
 
        Ok(())
 
    }
 
}
src/runtime/mod.rs
Show inline comments
 
/// cbindgen:ignore
 
mod communication;
 
/// cbindgen:ignore
 
mod endpoints;
 
pub mod error;
 
/// cbindgen:ignore
 
mod logging;
 
/// cbindgen:ignore
 
mod setup;
 

	
 
#[cfg(test)]
 
mod tests;
 

	
 
use crate::common::*;
 
use error::*;
 
use mio::net::UdpSocket;
 

	
 
#[derive(Debug)]
 
pub struct Connector {
 
    unphased: ConnectorUnphased,
 
    phased: ConnectorPhased,
 
}
 
pub trait Logger: Debug {
 
pub trait Logger: Debug + Send + Sync {
 
    fn line_writer(&mut self) -> Option<&mut dyn std::io::Write>;
 
}
 
#[derive(Debug)]
 
pub struct VecLogger(ConnectorId, Vec<u8>);
 
#[derive(Debug)]
 
pub struct DummyLogger;
 
#[derive(Debug)]
 
pub struct FileLogger(ConnectorId, std::fs::File);
 
pub(crate) struct NonsyncProtoContext<'a> {
 
    logger: &'a mut dyn Logger,
 
    proto_component_id: ProtoComponentId,
 
    port_info: &'a mut PortInfo,
 
    id_manager: &'a mut IdManager,
 
    proto_component_ports: &'a mut HashSet<PortId>,
 
    unrun_components: &'a mut Vec<(ProtoComponentId, ProtoComponent)>,
 
}
 
pub(crate) struct SyncProtoContext<'a> {
 
    logger: &'a mut dyn Logger,
 
    did_put_or_get: &'a mut HashSet<PortId>,
 
    untaken_choice: &'a mut Option<u16>,
 
    predicate: &'a Predicate,
 
    port_info: &'a PortInfo,
 
    inbox: &'a HashMap<PortId, Payload>,
 
}
 

	
 
#[derive(
 
    Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
struct SpecVar(PortId);
 
#[derive(
 
    Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
struct SpecVal(u16);
 
#[derive(Debug)]
 
struct RoundOk {
 
    batch_index: usize,
 
    gotten: HashMap<PortId, Payload>,
 
}
 
#[derive(Default)]
 
struct VecSet<T: std::cmp::Ord> {
 
    // invariant: ordered, deduplicated
 
    vec: Vec<T>,
 
}
 
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
 
enum ComponentId {
 
    Native,
 
    Proto(ProtoComponentId),
 
}
 
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
 
enum Route {
 
    LocalComponent(ComponentId),
 
    NetEndpoint { index: usize },
 
    UdpEndpoint { index: usize },
 
}
 
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
 
enum SubtreeId {
 
    LocalComponent(ComponentId),
 
    NetEndpoint { index: usize },
 
}
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct MyPortInfo {
 
    polarity: Polarity,
 
    port: PortId,
 
}
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
enum Decision {
 
    Failure,
 
    Success(Predicate),
 
}
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
enum Msg {
 
    SetupMsg(SetupMsg),
 
    CommMsg(CommMsg),
 
}
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
enum SetupMsg {
 
    MyPortInfo(MyPortInfo),
 
    LeaderWave { wave_leader: ConnectorId },
 
    LeaderAnnounce { tree_leader: ConnectorId },
 
    YouAreMyParent,
 
    SessionGather { unoptimized_map: HashMap<ConnectorId, SessionInfo> },
 
    SessionScatter { optimized_map: HashMap<ConnectorId, SessionInfo> },
 
}
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct SessionInfo {
 
    serde_proto_description: SerdeProtocolDescription,
 
    port_info: PortInfo,
 
    endpoint_incoming_to_getter: Vec<PortId>,
 
    proto_components: HashMap<ProtoComponentId, ProtoComponent>,
 
}
 
#[derive(Debug, Clone)]
 
struct SerdeProtocolDescription(Arc<ProtocolDescription>);
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct CommMsg {
 
    round_index: usize,
 
    contents: CommMsgContents,
 
}
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
enum CommMsgContents {
 
    SendPayload(SendPayloadMsg),
 
    CommCtrl(CommCtrlMsg),
 
}
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
enum CommCtrlMsg {
 
    Suggest { suggestion: Decision }, // SINKWARD
 
    Announce { decision: Decision },  // SINKAWAYS
 
}
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct SendPayloadMsg {
 
    predicate: Predicate,
 
    payload: Payload,
 
}
 
#[derive(Debug, PartialEq)]
 
enum AssignmentUnionResult {
 
    FormerNotLatter,
 
    LatterNotFormer,
 
    Equivalent,
 
    New(Predicate),
 
    Nonexistant,
 
}
 
struct NetEndpoint {
 
    inbox: Vec<u8>,
 
    stream: TcpStream,
 
}
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
struct ProtoComponent {
 
    state: ComponentState,
 
    ports: HashSet<PortId>,
 
}
 
#[derive(Debug, Clone)]
 
struct NetEndpointSetup {
 
    getter_for_incoming: PortId,
 
    sock_addr: SocketAddr,
 
    endpoint_polarity: EndpointPolarity,
 
}
 

	
 
#[derive(Debug, Clone)]
 
struct UdpEndpointSetup {
 
    getter_for_incoming: PortId,
 
    local_addr: SocketAddr,
 
    peer_addr: SocketAddr,
 
}
 
#[derive(Debug)]
 
struct NetEndpointExt {
 
    net_endpoint: NetEndpoint,
 
    getter_for_incoming: PortId,
 
}
 
#[derive(Debug)]
 
struct Neighborhood {
 
    parent: Option<usize>,
 
    children: VecSet<usize>,
 
}
 
#[derive(Debug)]
 
struct IdManager {
 
    connector_id: ConnectorId,
 
    port_suffix_stream: U32Stream,
 
    proto_component_suffix_stream: U32Stream,
 
}
 
#[derive(Debug)]
 
struct UdpInBuffer {
 
    byte_vec: Vec<u8>,
 
}
 
#[derive(Debug)]
 
struct SpecVarStream {
 
    connector_id: ConnectorId,
 
    port_suffix_stream: U32Stream,
 
}
 
#[derive(Debug)]
 
struct EndpointManager {
 
    // invariants:
 
    // 1. net and udp endpoints are registered with poll. Poll token computed with TargetToken::into
 
    // 2. Events is empty
 
    poll: Poll,
 
    events: Events,
 
    delayed_messages: Vec<(usize, Msg)>,
 
    undelayed_messages: Vec<(usize, Msg)>,
 
    net_endpoint_store: EndpointStore<NetEndpointExt>,
 
    udp_endpoint_store: EndpointStore<UdpEndpointExt>,
 
    udp_in_buffer: UdpInBuffer,
 
}
 
#[derive(Debug)]
 
struct EndpointStore<T> {
 
    endpoint_exts: Vec<T>,
 
    polled_undrained: VecSet<usize>,
 
}
 
#[derive(Debug)]
 
struct UdpEndpointExt {
 
    sock: UdpSocket, // already bound and connected
 
    outgoing_payloads: HashMap<Predicate, Payload>,
 
    incoming_round_spec_var: Option<SpecVar>,
 
    getter_for_incoming: PortId,
 
    incoming_payloads: Vec<Payload>,
 
}
 
#[derive(Clone, Debug, Default, serde::Serialize, serde::Deserialize)]
 
struct PortInfo {
 
    polarities: HashMap<PortId, Polarity>,
 
    peers: HashMap<PortId, PortId>,
 
    routes: HashMap<PortId, Route>,
 
}
 
#[derive(Debug)]
 
struct ConnectorCommunication {
 
    round_index: usize,
 
    endpoint_manager: EndpointManager,
 
    neighborhood: Neighborhood,
 
    native_batches: Vec<NativeBatch>,
 
    round_result: Result<Option<RoundOk>, SyncError>,
 
}
 
#[derive(Debug)]
 
struct ConnectorUnphased {
 
    proto_description: Arc<ProtocolDescription>,
 
    proto_components: HashMap<ProtoComponentId, ProtoComponent>,
 
    logger: Box<dyn Logger>,
 
    id_manager: IdManager,
 
    native_ports: HashSet<PortId>,
 
    port_info: PortInfo,
 
}
 
#[derive(Debug)]
 
struct ConnectorSetup {
 
    net_endpoint_setups: Vec<NetEndpointSetup>,
 
    udp_endpoint_setups: Vec<UdpEndpointSetup>,
 
    surplus_sockets: u16,
 
}
 
#[derive(Debug)]
 
enum ConnectorPhased {
 
    Setup(Box<ConnectorSetup>),
 
    Communication(Box<ConnectorCommunication>),
 
}
 
#[derive(Default, Clone, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
 
struct Predicate {
 
    assigned: BTreeMap<SpecVar, SpecVal>,
 
}
 
#[derive(Debug, Default)]
 
struct NativeBatch {
 
    // invariant: putters' and getters' polarities respected
 
    to_put: HashMap<PortId, Payload>,
 
    to_get: HashSet<PortId>,
 
}
 
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
 
enum TokenTarget {
 
    NetEndpoint { index: usize },
 
    UdpEndpoint { index: usize },
 
    Waker,
 
}
 
trait RoundCtxTrait {
 
    fn get_deadline(&self) -> &Option<Instant>;
 
    fn getter_add(&mut self, getter: PortId, msg: SendPayloadMsg);
 
}
 
enum CommRecvOk {
 
    TimeoutWithoutNew,
 
    NewPayloadMsgs,
 
    NewControlMsg { net_index: usize, msg: CommCtrlMsg },
 
}
 
////////////////
 
fn would_block(err: &std::io::Error) -> bool {
 
    err.kind() == std::io::ErrorKind::WouldBlock
 
}
 
impl TokenTarget {
 
    const HALFWAY_INDEX: usize = usize::MAX / 2;
 
    const MAX_INDEX: usize = usize::MAX;
 
    const WAKER_TOKEN: usize = Self::MAX_INDEX;
 
}
 
impl From<Token> for TokenTarget {
 
    fn from(Token(index): Token) -> Self {
 
        if index == Self::WAKER_TOKEN {
 
            TokenTarget::Waker
 
        } else if let Some(shifted) = index.checked_sub(Self::HALFWAY_INDEX) {
 
            TokenTarget::UdpEndpoint { index: shifted }
 
        } else {
 
            TokenTarget::NetEndpoint { index }
 
        }
 
    }
 
}
 
impl Into<Token> for TokenTarget {
 
    fn into(self) -> Token {
 
        match self {
 
            TokenTarget::Waker => Token(Self::WAKER_TOKEN),
 
            TokenTarget::UdpEndpoint { index } => Token(index + Self::HALFWAY_INDEX),
 
            TokenTarget::NetEndpoint { index } => Token(index),
 
        }
 
    }
 
}
 
impl<T: std::cmp::Ord> VecSet<T> {
 
    fn new(mut vec: Vec<T>) -> Self {
 
        vec.sort();
 
        vec.dedup();
 
        Self { vec }
 
    }
 
    fn contains(&self, element: &T) -> bool {
 
        self.vec.binary_search(element).is_ok()
 
    }
 
    fn insert(&mut self, element: T) -> bool {
 
        match self.vec.binary_search(&element) {
 
            Ok(_) => false,
 
            Err(index) => {
 
                self.vec.insert(index, element);
 
                true
 
            }
 
        }
 
    }
 
    fn iter(&self) -> std::slice::Iter<T> {
 
        self.vec.iter()
 
    }
 
    fn pop(&mut self) -> Option<T> {
 
        self.vec.pop()
 
    }
 
}
 
impl PortInfo {
 
    fn spec_var_for(&self, port: PortId) -> SpecVar {
 
        SpecVar(match self.polarities.get(&port).unwrap() {
 
            Getter => port,
 
            Putter => *self.peers.get(&port).unwrap(),
 
        })
 
    }
 
}
 
impl SpecVarStream {
 
    fn next(&mut self) -> SpecVar {
 
        let phantom_port: PortId =
 
            Id { connector_id: self.connector_id, u32_suffix: self.port_suffix_stream.next() }
 
                .into();
 
        SpecVar(phantom_port)
 
    }
 
}
 
impl IdManager {
 
    fn new(connector_id: ConnectorId) -> Self {
 
        Self {
 
            connector_id,
 
            port_suffix_stream: Default::default(),
 
            proto_component_suffix_stream: Default::default(),
 
        }
 
    }
 
    fn new_spec_var_stream(&self) -> SpecVarStream {
 
        let mut port_suffix_stream = self.port_suffix_stream.clone();
 
        const JUMP_OVER: usize = 100; // Jumping is entirely unnecessary. It's only used to make spec vars easier to spot in logs
 
        for _ in 0..JUMP_OVER {
 
            port_suffix_stream.next(); // throw away an ID
 
        }
 
        SpecVarStream { connector_id: self.connector_id, port_suffix_stream }
 
    }
 
    fn new_port_id(&mut self) -> PortId {
 
        Id { connector_id: self.connector_id, u32_suffix: self.port_suffix_stream.next() }.into()
 
    }
 
    fn new_proto_component_id(&mut self) -> ProtoComponentId {
 
        Id {
 
            connector_id: self.connector_id,
 
            u32_suffix: self.proto_component_suffix_stream.next(),
 
        }
 
        .into()
 
    }
 
}
 
impl Drop for Connector {
 
    fn drop(&mut self) {
 
        log!(&mut *self.unphased.logger, "Connector dropping. Goodbye!");
 
    }
 
}
 
impl Connector {
 
    pub(crate) fn random_id() -> ConnectorId {
 
        type Bytes8 = [u8; std::mem::size_of::<ConnectorId>()];
 
        unsafe {
 
            let mut bytes = std::mem::MaybeUninit::<Bytes8>::uninit();
 
            // getrandom is the canonical crate for a small, secure rng
 
            getrandom::getrandom(&mut *bytes.as_mut_ptr()).unwrap();
 
            // safe! representations of all valid Byte8 values are valid ConnectorId values
 
            std::mem::transmute::<_, _>(bytes.assume_init())
 
        }
 
    }
 
    pub fn swap_logger(&mut self, mut new_logger: Box<dyn Logger>) -> Box<dyn Logger> {
 
        std::mem::swap(&mut self.unphased.logger, &mut new_logger);
 
        new_logger
 
    }
 
    pub fn get_logger(&mut self) -> &mut dyn Logger {
 
        &mut *self.unphased.logger
 
    }
 
    pub fn new_port_pair(&mut self) -> [PortId; 2] {
 
        let cu = &mut self.unphased;
 
        // adds two new associated ports, related to each other, and exposed to the native
 
        let [o, i] = [cu.id_manager.new_port_id(), cu.id_manager.new_port_id()];
 
        cu.native_ports.insert(o);
 
        cu.native_ports.insert(i);
 
        // {polarity, peer, route} known. {} unknown.
 
        cu.port_info.polarities.insert(o, Putter);
 
        cu.port_info.polarities.insert(i, Getter);
 
        cu.port_info.peers.insert(o, i);
 
        cu.port_info.peers.insert(i, o);
 
        let route = Route::LocalComponent(ComponentId::Native);
 
        cu.port_info.routes.insert(o, route);
 
        cu.port_info.routes.insert(i, route);
 
        log!(cu.logger, "Added port pair (out->in) {:?} -> {:?}", o, i);
 
        [o, i]
 
    }
 
    pub fn add_component(
 
        &mut self,
 
        identifier: &[u8],
 
        ports: &[PortId],
 
    ) -> Result<(), AddComponentError> {
 
        // called by the USER. moves ports owned by the NATIVE
 
        use AddComponentError as Ace;
 
        // 1. check if this is OK
 
        let cu = &mut self.unphased;
 
        let polarities = cu.proto_description.component_polarities(identifier)?;
 
        if polarities.len() != ports.len() {
 
            return Err(Ace::WrongNumberOfParamaters { expected: polarities.len() });
 
        }
 
        for (&expected_polarity, port) in polarities.iter().zip(ports.iter()) {
src/runtime/tests.rs
Show inline comments
 
@@ -409,474 +409,477 @@ fn distributed_msg_bounce() {
 
                c.new_net_port(Getter, sock_addrs[1], Active).unwrap(),
 
            ];
 
            c.add_component(b"sync", &[g, p]).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.sync(SEC1).unwrap();
 
        });
 
        s.spawn(|_| {
 
            /*
 
            native p|-->
 
                   g|<--
 
            */
 
            let mut c = file_logged_connector(1, test_log_path);
 
            let [g, p] = [
 
                c.new_net_port(Getter, sock_addrs[0], Passive).unwrap(),
 
                c.new_net_port(Putter, sock_addrs[1], Passive).unwrap(),
 
            ];
 
            c.connect(SEC1).unwrap();
 
            c.put(p, TEST_MSG.clone()).unwrap();
 
            c.get(g).unwrap();
 
            c.sync(SEC1).unwrap();
 
            c.gotten(g).unwrap();
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn local_timeout() {
 
    let test_log_path = Path::new("./logs/local_timeout");
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let [_, g] = c.new_port_pair();
 
    c.connect(SEC1).unwrap();
 
    c.get(g).unwrap();
 
    match c.sync(MS300) {
 
        Err(SyncError::RoundFailure) => {}
 
        res => panic!("expeted timeout. but got {:?}", res),
 
    }
 
}
 

	
 
#[test]
 
fn parent_timeout() {
 
    let test_log_path = Path::new("./logs/parent_timeout");
 
    let sock_addrs = [next_test_addr()];
 
    scope(|s| {
 
        s.spawn(|_| {
 
            // parent; times out
 
            let mut c = file_logged_connector(999, test_log_path);
 
            let _ = c.new_net_port(Putter, sock_addrs[0], Active).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.sync(MS300).unwrap_err(); // timeout
 
        });
 
        s.spawn(|_| {
 
            // child
 
            let mut c = file_logged_connector(000, test_log_path);
 
            let g = c.new_net_port(Getter, sock_addrs[0], Passive).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.get(g).unwrap(); // not matched by put
 
            c.sync(None).unwrap_err(); // no timeout
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn child_timeout() {
 
    let test_log_path = Path::new("./logs/child_timeout");
 
    let sock_addrs = [next_test_addr()];
 
    scope(|s| {
 
        s.spawn(|_| {
 
            // child; times out
 
            let mut c = file_logged_connector(000, test_log_path);
 
            let _ = c.new_net_port(Putter, sock_addrs[0], Active).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.sync(MS300).unwrap_err(); // timeout
 
        });
 
        s.spawn(|_| {
 
            // parent
 
            let mut c = file_logged_connector(999, test_log_path);
 
            let g = c.new_net_port(Getter, sock_addrs[0], Passive).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.get(g).unwrap(); // not matched by put
 
            c.sync(None).unwrap_err(); // no timeout
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn chain_connect() {
 
    let test_log_path = Path::new("./logs/chain_connect");
 
    let sock_addrs = [next_test_addr(), next_test_addr(), next_test_addr(), next_test_addr()];
 
    scope(|s| {
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(0, test_log_path);
 
            c.new_net_port(Putter, sock_addrs[0], Passive).unwrap();
 
            c.connect(SEC5).unwrap();
 
        });
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(10, test_log_path);
 
            c.new_net_port(Getter, sock_addrs[0], Active).unwrap();
 
            c.new_net_port(Putter, sock_addrs[1], Passive).unwrap();
 
            c.connect(SEC5).unwrap();
 
        });
 
        s.spawn(|_| {
 
            // LEADER
 
            let mut c = file_logged_connector(7, test_log_path);
 
            c.new_net_port(Getter, sock_addrs[1], Active).unwrap();
 
            c.new_net_port(Putter, sock_addrs[2], Passive).unwrap();
 
            c.connect(SEC5).unwrap();
 
        });
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(4, test_log_path);
 
            c.new_net_port(Getter, sock_addrs[2], Active).unwrap();
 
            c.new_net_port(Putter, sock_addrs[3], Passive).unwrap();
 
            c.connect(SEC5).unwrap();
 
        });
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(1, test_log_path);
 
            c.new_net_port(Getter, sock_addrs[3], Active).unwrap();
 
            c.connect(SEC5).unwrap();
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn net_self_loop() {
 
    let test_log_path = Path::new("./logs/net_self_loop");
 
    let sock_addrs = [next_test_addr()];
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let p = c.new_net_port(Putter, sock_addrs[0], Active).unwrap();
 
    let g = c.new_net_port(Getter, sock_addrs[0], Passive).unwrap();
 
    c.connect(SEC1).unwrap();
 
    c.put(p, TEST_MSG.clone()).unwrap();
 
    c.get(g).unwrap();
 
    c.sync(MS300).unwrap();
 
}
 

	
 
#[test]
 
fn nobody_connects_active() {
 
    let test_log_path = Path::new("./logs/nobody_connects_active");
 
    let sock_addrs = [next_test_addr()];
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let _g = c.new_net_port(Getter, sock_addrs[0], Active).unwrap();
 
    c.connect(Some(Duration::from_secs(5))).unwrap_err();
 
}
 
#[test]
 
fn nobody_connects_passive() {
 
    let test_log_path = Path::new("./logs/nobody_connects_passive");
 
    let sock_addrs = [next_test_addr()];
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let _g = c.new_net_port(Getter, sock_addrs[0], Passive).unwrap();
 
    c.connect(Some(Duration::from_secs(5))).unwrap_err();
 
}
 

	
 
#[test]
 
fn together() {
 
    let test_log_path = Path::new("./logs/together");
 
    let sock_addrs = [next_test_addr(), next_test_addr()];
 
    scope(|s| {
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(0, test_log_path);
 
            let [p0, p1] = c.new_port_pair();
 
            let p2 = c.new_net_port(Getter, sock_addrs[0], Passive).unwrap();
 
            let p3 = c.new_net_port(Putter, sock_addrs[1], Active).unwrap();
 
            let [p4, p5] = c.new_port_pair();
 
            c.add_component(b"together", &[p1, p2, p3, p4]).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.put(p0, TEST_MSG.clone()).unwrap();
 
            c.get(p5).unwrap();
 
            c.sync(MS300).unwrap();
 
            c.gotten(p5).unwrap();
 
        });
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(1, test_log_path);
 
            let [p0, p1] = c.new_port_pair();
 
            let p2 = c.new_net_port(Getter, sock_addrs[1], Passive).unwrap();
 
            let p3 = c.new_net_port(Putter, sock_addrs[0], Active).unwrap();
 
            let [p4, p5] = c.new_port_pair();
 
            c.add_component(b"together", &[p1, p2, p3, p4]).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.put(p0, TEST_MSG.clone()).unwrap();
 
            c.get(p5).unwrap();
 
            c.sync(MS300).unwrap();
 
            c.gotten(p5).unwrap();
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn native_batch_distinguish() {
 
    let test_log_path = Path::new("./logs/native_batch_distinguish");
 
    let mut c = file_logged_connector(0, test_log_path);
 
    c.connect(SEC1).unwrap();
 
    c.next_batch().unwrap();
 
    c.sync(SEC1).unwrap();
 
}
 

	
 
#[test]
 
fn multirounds() {
 
    let test_log_path = Path::new("./logs/multirounds");
 
    let sock_addrs = [next_test_addr(), next_test_addr()];
 
    scope(|s| {
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(0, test_log_path);
 
            let p0 = c.new_net_port(Putter, sock_addrs[0], Active).unwrap();
 
            let p1 = c.new_net_port(Getter, sock_addrs[1], Passive).unwrap();
 
            c.connect(SEC1).unwrap();
 
            for _ in 0..10 {
 
                c.put(p0, TEST_MSG.clone()).unwrap();
 
                c.get(p1).unwrap();
 
                c.sync(SEC1).unwrap();
 
            }
 
        });
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(1, test_log_path);
 
            let p0 = c.new_net_port(Getter, sock_addrs[0], Passive).unwrap();
 
            let p1 = c.new_net_port(Putter, sock_addrs[1], Active).unwrap();
 
            c.connect(SEC1).unwrap();
 
            for _ in 0..10 {
 
                c.get(p0).unwrap();
 
                c.put(p1, TEST_MSG.clone()).unwrap();
 
                c.sync(SEC1).unwrap();
 
            }
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn multi_recover() {
 
    let test_log_path = Path::new("./logs/multi_recover");
 
    let sock_addrs = [next_test_addr(), next_test_addr()];
 
    let success_iter = [true, false].iter().copied().cycle().take(10);
 
    scope(|s| {
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(0, test_log_path);
 
            let p0 = c.new_net_port(Putter, sock_addrs[0], Active).unwrap();
 
            let p1 = c.new_net_port(Getter, sock_addrs[1], Passive).unwrap();
 
            c.connect(SEC1).unwrap();
 
            for succeeds in success_iter.clone() {
 
                c.put(p0, TEST_MSG.clone()).unwrap();
 
                if succeeds {
 
                    c.get(p1).unwrap();
 
                }
 
                let res = c.sync(MS300);
 
                assert_eq!(res.is_ok(), succeeds);
 
            }
 
        });
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(1, test_log_path);
 
            let p0 = c.new_net_port(Getter, sock_addrs[0], Passive).unwrap();
 
            let p1 = c.new_net_port(Putter, sock_addrs[1], Active).unwrap();
 
            c.connect(SEC1).unwrap();
 
            for succeeds in success_iter.clone() {
 
                c.get(p0).unwrap();
 
                c.put(p1, TEST_MSG.clone()).unwrap();
 
                let res = c.sync(MS300);
 
                assert_eq!(res.is_ok(), succeeds);
 
            }
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn udp_self_connect() {
 
    let test_log_path = Path::new("./logs/udp_self_connect");
 
    let sock_addrs = [next_test_addr(), next_test_addr()];
 
    let mut c = file_logged_connector(0, test_log_path);
 
    c.new_udp_port(sock_addrs[0], sock_addrs[1]).unwrap();
 
    c.new_udp_port(sock_addrs[1], sock_addrs[0]).unwrap();
 
    c.connect(SEC1).unwrap();
 
}
 

	
 
#[test]
 
fn solo_udp_put_success() {
 
    let test_log_path = Path::new("./logs/solo_udp_put_success");
 
    let sock_addrs = [next_test_addr(), next_test_addr()];
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let [p0, _] = c.new_udp_port(sock_addrs[0], sock_addrs[1]).unwrap();
 
    c.connect(SEC1).unwrap();
 
    c.put(p0, TEST_MSG.clone()).unwrap();
 
    c.sync(MS300).unwrap();
 
}
 

	
 
#[test]
 
fn solo_udp_get_fail() {
 
    let test_log_path = Path::new("./logs/solo_udp_get_fail");
 
    let sock_addrs = [next_test_addr(), next_test_addr()];
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let [_, p0] = c.new_udp_port(sock_addrs[0], sock_addrs[1]).unwrap();
 
    c.connect(SEC1).unwrap();
 
    c.get(p0).unwrap();
 
    c.sync(MS300).unwrap_err();
 
}
 

	
 
#[test]
 
fn reowolf_to_udp() {
 
    let test_log_path = Path::new("./logs/reowolf_to_udp");
 
    let sock_addrs = [next_test_addr(), next_test_addr()];
 
    let barrier = std::sync::Barrier::new(2);
 
    scope(|s| {
 
        s.spawn(|_| {
 
            barrier.wait();
 
            // reowolf thread
 
            let mut c = file_logged_connector(0, test_log_path);
 
            let [p0, _] = c.new_udp_port(sock_addrs[0], sock_addrs[1]).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.put(p0, TEST_MSG.clone()).unwrap();
 
            c.sync(MS300).unwrap();
 
            barrier.wait();
 
        });
 
        s.spawn(|_| {
 
            barrier.wait();
 
            // udp thread
 
            let udp = std::net::UdpSocket::bind(sock_addrs[1]).unwrap();
 
            udp.connect(sock_addrs[0]).unwrap();
 
            let mut buf = new_u8_buffer(256);
 
            let len = udp.recv(&mut buf).unwrap();
 
            assert_eq!(TEST_MSG_BYTES, &buf[0..len]);
 
            barrier.wait();
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn udp_to_reowolf() {
 
    let test_log_path = Path::new("./logs/udp_to_reowolf");
 
    let sock_addrs = [next_test_addr(), next_test_addr()];
 
    let barrier = std::sync::Barrier::new(2);
 
    scope(|s| {
 
        s.spawn(|_| {
 
            barrier.wait();
 
            // reowolf thread
 
            let mut c = file_logged_connector(0, test_log_path);
 
            let [_, p0] = c.new_udp_port(sock_addrs[0], sock_addrs[1]).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.get(p0).unwrap();
 
            c.sync(SEC5).unwrap();
 
            assert_eq!(c.gotten(p0).unwrap().as_slice(), TEST_MSG_BYTES);
 
            barrier.wait();
 
        });
 
        s.spawn(|_| {
 
            barrier.wait();
 
            // udp thread
 
            let udp = std::net::UdpSocket::bind(sock_addrs[1]).unwrap();
 
            udp.connect(sock_addrs[0]).unwrap();
 
            for _ in 0..15 {
 
                udp.send(TEST_MSG_BYTES).unwrap();
 
                std::thread::sleep(MS100.unwrap());
 
            }
 
            barrier.wait();
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn udp_reowolf_swap() {
 
    let test_log_path = Path::new("./logs/udp_reowolf_swap");
 
    let sock_addrs = [next_test_addr(), next_test_addr()];
 
    let barrier = std::sync::Barrier::new(2);
 
    scope(|s| {
 
        s.spawn(|_| {
 
            barrier.wait();
 
            // reowolf thread
 
            let mut c = file_logged_connector(0, test_log_path);
 
            let [p0, p1] = c.new_udp_port(sock_addrs[0], sock_addrs[1]).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.put(p0, TEST_MSG.clone()).unwrap();
 
            c.get(p1).unwrap();
 
            c.sync(SEC5).unwrap();
 
            assert_eq!(c.gotten(p1).unwrap().as_slice(), TEST_MSG_BYTES);
 
            barrier.wait();
 
        });
 
        s.spawn(|_| {
 
            barrier.wait();
 
            // udp thread
 
            let udp = std::net::UdpSocket::bind(sock_addrs[1]).unwrap();
 
            udp.connect(sock_addrs[0]).unwrap();
 
            let mut buf = new_u8_buffer(256);
 
            for _ in 0..5 {
 
                std::thread::sleep(Duration::from_millis(60));
 
                udp.send(TEST_MSG_BYTES).unwrap();
 
            }
 
            let len = udp.recv(&mut buf).unwrap();
 
            assert_eq!(TEST_MSG_BYTES, &buf[0..len]);
 
            barrier.wait();
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn example_pres_3() {
 
    let test_log_path = Path::new("./logs/example_pres_3");
 
    let sock_addrs = [next_test_addr(), next_test_addr()];
 
    scope(|s| {
 
        s.spawn(|_| {
 
            // "amy"
 
            let mut c = file_logged_connector(0, test_log_path);
 
            let p0 = c.new_net_port(Putter, sock_addrs[0], Active).unwrap();
 
            let p1 = c.new_net_port(Putter, sock_addrs[1], Active).unwrap();
 
            c.connect(SEC1).unwrap();
 
            // put {A} and FAIL
 
            c.put(p0, TEST_MSG.clone()).unwrap();
 
            c.sync(SEC1).unwrap_err();
 
            // put {B} and FAIL
 
            c.put(p1, TEST_MSG.clone()).unwrap();
 
            c.sync(SEC1).unwrap_err();
 
            // put {A, B} and SUCCEED
 
            c.put(p0, TEST_MSG.clone()).unwrap();
 
            c.put(p1, TEST_MSG.clone()).unwrap();
 
            c.sync(SEC1).unwrap();
 
        });
 
        s.spawn(|_| {
 
            // "bob"
 
            let mut c = file_logged_connector(1, test_log_path);
 
            let p0 = c.new_net_port(Getter, sock_addrs[0], Passive).unwrap();
 
            let p1 = c.new_net_port(Getter, sock_addrs[1], Passive).unwrap();
 
            c.connect(SEC1).unwrap();
 
            for _ in 0..2 {
 
                // get {A, B} and FAIL
 
                c.get(p0).unwrap();
 
                c.get(p1).unwrap();
 
                c.sync(SEC1).unwrap_err();
 
            }
 
            // get {A, B} and SUCCEED
 
            c.get(p0).unwrap();
 
            c.get(p1).unwrap();
 
            c.sync(SEC1).unwrap();
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn ac_not_b() {
 
    let test_log_path = Path::new("./logs/ac_not_b");
 
    let sock_addrs = [next_test_addr(), next_test_addr()];
 
    scope(|s| {
 
        s.spawn(|_| {
 
            // "amy"
 
            let mut c = file_logged_connector(0, test_log_path);
 
            let p0 = c.new_net_port(Putter, sock_addrs[0], Active).unwrap();
 
            let p1 = c.new_net_port(Putter, sock_addrs[1], Active).unwrap();
 
            c.connect(SEC1).unwrap();
 

	
 
            // put both A and B
 
            c.put(p0, TEST_MSG.clone()).unwrap();
 
            c.put(p1, TEST_MSG.clone()).unwrap();
 
            c.sync(SEC1).unwrap_err();
 
        });
 
        s.spawn(|_| {
 
            // "bob"
 
            let pdl = b"
 
            primitive ac_not_b(in a, in b, out c){
 
                // forward A to C but keep B silent
 
                synchronous{ put(c, get(a)); }
 
            }";
 
            let pd = Arc::new(reowolf::ProtocolDescription::parse(pdl).unwrap());
 
            let mut c = file_logged_configured_connector(1, test_log_path, pd);
 
            let p0 = c.new_net_port(Getter, sock_addrs[0], Passive).unwrap();
 
            let p1 = c.new_net_port(Getter, sock_addrs[1], Passive).unwrap();
 
            let [a, b] = c.new_port_pair();
 
            c.add_component(b"ac_not_b", &[p0, p1, a]).unwrap();
 
            c.connect(SEC1).unwrap();
 

	
 
            c.get(b).unwrap();
 
            c.sync(SEC1).unwrap_err();
 
        });
 
    })
 
    .unwrap();
 
}
0 comments (0 inline, 0 general)