Changeset - 77bdf7d1ef92
[Not reviewed]
src/protocol/ast.rs
Show inline comments
 
@@ -1731,6 +1731,7 @@ pub enum Literal {
 
    Enum(LiteralEnum),
 
    Union(LiteralUnion),
 
    Array(Vec<ExpressionId>),
 
    Tuple(Vec<ExpressionId>),
 
}
 

	
 
impl Literal {
src/protocol/ast_printer.rs
Show inline comments
 
@@ -706,11 +706,19 @@ impl ASTWriter {
 
                            self.kv(indent3).with_s_key("Value");
 
                            self.write_expr(heap, *value, indent4);
 
                        }
 
                    }
 
                    },
 
                    Literal::Array(data) => {
 
                        val.with_s_val("Array");
 
                        let indent4 = indent3 + 1;
 

	
 
                        self.kv(indent3).with_s_key("Elements");
 
                        for expr_id in data {
 
                            self.write_expr(heap, *expr_id, indent4);
 
                        }
 
                    },
 
                    Literal::Tuple(data) => {
 
                        val.with_s_val("Tuple");
 
                        let indent4 = indent3 + 1;
 
                        self.kv(indent3).with_s_key("Elements");
 
                        for expr_id in data {
 
                            self.write_expr(heap, *expr_id, indent4);
src/protocol/eval/executor.rs
Show inline comments
 
@@ -171,6 +171,12 @@ impl Frame {
 
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                            self.serialize_expression(heap, *value_expr_id);
 
                        }
 
                    },
 
                    Literal::Tuple(value_expr_ids) => {
 
                        for value_expr_id in value_expr_ids {
 
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                            self.serialize_expression(heap, *value_expr_id);
 
                        }
 
                    }
 
                }
 
            },
 
@@ -553,6 +559,12 @@ impl Prompt {
 
                                    );
 
                                    Value::Array(heap_pos)
 
                                }
 
                                Literal::Tuple(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.len()
 
                                    );
 
                                    Value::Tuple(heap_pos)
 
                                }
 
                            };
 

	
 
                            cur_frame.expr_values.push_back(value);
src/protocol/eval/value.rs
Show inline comments
 
@@ -58,6 +58,7 @@ pub enum Value {
 
    SInt32(i32),
 
    SInt64(i64),
 
    Array(HeapPos),
 
    Tuple(HeapPos),
 
    // Instances of user-defined types
 
    Enum(i64),
 
    Union(i64, HeapPos),
 
@@ -94,6 +95,7 @@ impl_union_unpack_as_value!(as_sint16,  Value::SInt16,  i16);
 
impl_union_unpack_as_value!(as_sint32,  Value::SInt32,  i32);
 
impl_union_unpack_as_value!(as_sint64,  Value::SInt64,  i64);
 
impl_union_unpack_as_value!(as_array,   Value::Array,   HeapPos);
 
impl_union_unpack_as_value!(as_tuple,   Value::Tuple,   HeapPos);
 
impl_union_unpack_as_value!(as_enum,    Value::Enum,    i64);
 
impl_union_unpack_as_value!(as_struct,  Value::Struct,  HeapPos);
 

	
 
@@ -154,6 +156,7 @@ impl Value {
 
            Value::Message(v) => Some(*v),
 
            Value::String(v) => Some(*v),
 
            Value::Array(v) => Some(*v),
 
            Value::Tuple(v) => Some(*v),
 
            Value::Union(_, v) => Some(*v),
 
            Value::Struct(v) => Some(*v),
 
            _ => None
 
@@ -222,6 +225,7 @@ impl ValueGroup {
 
                Value::Message(_)    => Value::Message(new_region_idx),
 
                Value::String(_)     => Value::String(new_region_idx),
 
                Value::Array(_)      => Value::Array(new_region_idx),
 
                Value::Tuple(_)      => Value::Tuple(new_region_idx),
 
                Value::Union(tag, _) => Value::Union(*tag, new_region_idx),
 
                Value::Struct(_)     => Value::Struct(new_region_idx),
 
                _ => unreachable!(),
 
@@ -268,6 +272,7 @@ impl ValueGroup {
 
                Value::Message(_)    => Value::Message(to_heap_pos),
 
                Value::String(_)     => Value::String(to_heap_pos),
 
                Value::Array(_)      => Value::Array(to_heap_pos),
 
                Value::Tuple(_)      => Value::Tuple(to_heap_pos),
 
                Value::Union(tag, _) => Value::Union(*tag, to_heap_pos),
 
                Value::Struct(_)     => Value::Struct(to_heap_pos),
 
                _ => unreachable!(),
 
@@ -328,6 +333,7 @@ pub(crate) fn apply_assignment_operator(store: &mut Store, lhs: ValueId, op: Ass
 
                Value::SInt32(v) => { *v = rhs.as_sint32(); },
 
                Value::SInt64(v) => { *v = rhs.as_sint64(); },
 
                Value::Array(v) => { to_dealloc = Some(*v); *v = rhs.as_array(); },
 
                Value::Tuple(v) => { to_dealloc = Some(*v); *v = rhs.as_tuple(); },
 
                Value::Enum(v) => { *v = rhs.as_enum(); },
 
                Value::Union(lhs_tag, lhs_heap_pos) => {
 
                    to_dealloc = Some(*lhs_heap_pos);
 
@@ -790,6 +796,7 @@ pub(crate) fn apply_equality_operator(store: &Store, lhs: &Value, rhs: &Value) -
 
        Value::SInt32(v) => *v == rhs.as_sint32(),
 
        Value::SInt64(v) => *v == rhs.as_sint64(),
 
        Value::Array(lhs_pos) => eval_equality_heap(store, *lhs_pos, rhs.as_array()),
 
        Value::Tuple(lhs_pos) => eval_equality_heap(store, *lhs_pos, rhs.as_tuple()),
 
        Value::Enum(v) => *v == rhs.as_enum(),
 
        Value::Union(lhs_tag, lhs_pos) => {
 
            let (rhs_tag, rhs_pos) = rhs.as_union();
 
@@ -844,6 +851,7 @@ pub(crate) fn apply_inequality_operator(store: &Store, lhs: &Value, rhs: &Value)
 
        Value::SInt32(v) => *v != rhs.as_sint32(),
 
        Value::SInt64(v) => *v != rhs.as_sint64(),
 
        Value::Array(lhs_pos) => eval_inequality_heap(store, *lhs_pos, rhs.as_array()),
 
        Value::Tuple(lhs_pos) => eval_inequality_heap(store, *lhs_pos, rhs.as_tuple()),
 
        Value::Enum(v) => *v != rhs.as_enum(),
 
        Value::Union(lhs_tag, lhs_pos) => {
 
            let (rhs_tag, rhs_pos) = rhs.as_union();
 
@@ -909,6 +917,7 @@ pub(crate) fn apply_binding_operator(store: &mut Store, lhs: Value, rhs: Value)
 
        Value::SInt32(v) => v == rhs.as_sint32(),
 
        Value::SInt64(v) => v == rhs.as_sint64(),
 
        Value::Array(lhs_pos) => eval_binding_heap(store, lhs_pos, rhs.as_array()),
 
        Value::Tuple(lhs_pos) => eval_binding_heap(store, lhs_pos, rhs.as_tuple()),
 
        Value::Enum(v) => v == rhs.as_enum(),
 
        Value::Union(lhs_tag, lhs_pos) => {
 
            let (rhs_tag, rhs_pos) = rhs.as_union();
src/protocol/input_source.rs
Show inline comments
 
@@ -61,12 +61,6 @@ impl InputSource {
 
        }
 
    }
 

	
 
    #[cfg(test)]
 
    pub fn new_test(input: &str) -> Self {
 
        let bytes = Vec::from(input.as_bytes());
 
        return Self::new(String::from("test"), bytes)
 
    }
 

	
 
    #[inline]
 
    pub fn pos(&self) -> InputPosition {
 
        InputPosition { line: self.line, offset: self.offset as u32 }
src/protocol/parser/pass_definitions.rs
Show inline comments
 
@@ -402,8 +402,10 @@ impl PassDefinitions {
 
                let id = self.consume_if_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 

	
 
                let end_if = ctx.heap.alloc_end_if_statement(|this| EndIfStatement{
 
                    this, start_if: id, next: StatementId::new_invalid()
 
                let end_if = ctx.heap.alloc_end_if_statement(|this| EndIfStatement {
 
                    this,
 
                    start_if: id,
 
                    next: StatementId::new_invalid()
 
                });
 
                section.push(end_if.upcast());
 

	
 
@@ -413,8 +415,10 @@ impl PassDefinitions {
 
                let id = self.consume_while_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 

	
 
                let end_while = ctx.heap.alloc_end_while_statement(|this| EndWhileStatement{
 
                    this, start_while: id, next: StatementId::new_invalid()
 
                let end_while = ctx.heap.alloc_end_while_statement(|this| EndWhileStatement {
 
                    this,
 
                    start_while: id,
 
                    next: StatementId::new_invalid()
 
                });
 
                section.push(end_while.upcast());
 

	
 
@@ -443,7 +447,7 @@ impl PassDefinitions {
 
                let id = self.consume_fork_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 

	
 
                let end_fork = ctx.heap.alloc_end_fork_statement(|this| EndForkStatement{
 
                let end_fork = ctx.heap.alloc_end_fork_statement(|this| EndForkStatement {
 
                    this,
 
                    start_fork: id,
 
                    next: StatementId::new_invalid(),
 
@@ -478,6 +482,15 @@ impl PassDefinitions {
 
                    section.push(id.upcast());
 
                }
 
            }
 
        } else if next == TokenKind::OpenParen {
 
            // Same as above: memory statement or normal expression
 
            if let Some((memory_stmt_id, assignment_stmt_id)) = self.maybe_consume_memory_statement(module, iter, ctx)? {
 
                section.push(memory_stmt_id.upcast().upcast());
 
                section.push(assignment_stmt_id.upcast());
 
            } else {
 
                let id = self.consume_expression_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 
            }
 
        } else {
 
            let id = self.consume_expression_statement(module, iter, ctx)?;
 
            section.push(id.upcast());
 
@@ -1330,10 +1343,63 @@ impl PassDefinitions {
 
        let next = iter.next();
 

	
 
        let result = if next == Some(TokenKind::OpenParen) {
 
            // Expression between parentheses
 
            // Something parenthesized. This can mean several things: we have
 
            // a parenthesized expression or we have a tuple literal. They are
 
            // ambiguous when the tuple has one member. But like the tuple type
 
            // parsing we interpret all one-tuples as parenthesized expressions.
 
            //
 
            // Practically (to prevent unnecessary `consume_expression` calls)
 
            // we distinguish the zero-tuple, the parenthesized expression, and
 
            // the N-tuple (for N > 1).
 
            let open_paren_pos = iter.next_start_position();
 
            iter.consume();
 
            let result = self.consume_expression(module, iter, ctx)?;
 
            consume_token(&module.source, iter, TokenKind::CloseParen)?;
 
            let result = if Some(TokenKind::CloseParen) == iter.next() {
 
                // Zero-tuple
 
                let (_, close_paren_pos) = iter.next_positions();
 
                iter.consume();
 

	
 
                let literal_id = ctx.heap.alloc_literal_expression(|this| LiteralExpression{
 
                    this,
 
                    span: InputSpan::from_positions(open_paren_pos, close_paren_pos),
 
                    value: Literal::Tuple(Vec::new()),
 
                    parent: ExpressionParent::None,
 
                    unique_id_in_definition: -1,
 
                });
 

	
 
                literal_id.upcast()
 
            } else {
 
                // Start by consuming one expression, then check for a comma
 
                let expr_id = self.consume_expression(module, iter, ctx)?;
 
                if Some(TokenKind::Comma) == iter.next() && Some(TokenKind::CloseParen) != iter.peek() {
 
                    // Must be an N-tuple
 
                    iter.consume(); // the comma
 
                    let mut scoped_section = self.expressions.start_section();
 
                    scoped_section.push(expr_id);
 

	
 
                    let mut close_paren_pos = open_paren_pos;
 
                    consume_comma_separated_until(
 
                        TokenKind::CloseParen, &module.source, iter, ctx,
 
                        |_source, iter, ctx| self.consume_expression(module, iter, ctx),
 
                        &mut scoped_section, "an expression", Some(&mut close_paren_pos)
 
                    )?;
 
                    debug_assert!(scoped_section.len() > 1); // peeked token wasn't CloseParen, must be expression
 

	
 
                    let literal_id = ctx.heap.alloc_literal_expression(|this| LiteralExpression{
 
                        this,
 
                        span: InputSpan::from_positions(open_paren_pos, close_paren_pos),
 
                        value: Literal::Tuple(scoped_section.into_vec()),
 
                        parent: ExpressionParent::None,
 
                        unique_id_in_definition: -1,
 
                    });
 

	
 
                    literal_id.upcast()
 
                } else {
 
                    // Assume we're dealing with a normal expression
 
                    consume_token(&module.source, iter, TokenKind::CloseParen)?;
 

	
 
                    expr_id
 
                }
 
            };
 

	
 
            result
 
        } else if next == Some(TokenKind::OpenCurly) {
 
@@ -1385,6 +1451,7 @@ impl PassDefinitions {
 
            // May be a variable, a type instantiation or a function call. If we
 
            // have a single identifier that we cannot find in the type table
 
            // then we're going to assume that we're dealing with a variable.
 

	
 
            let ident_span = iter.next_span();
 
            let ident_text = module.source.section_at_span(ident_span);
 
            let symbol = ctx.symbols.get_symbol_by_name(SymbolScope::Module(module.root_id), ident_text);
src/protocol/parser/pass_definitions_types.rs
Show inline comments
 
@@ -164,11 +164,13 @@ impl ParserTypeParser {
 
                    }
 
                },
 
                ParseState::TupleStart => {
 
                    // Allowed tokens: ident )
 
                    // Allowed tokens: ident ( )
 
                    // We'll strip the nested tuple later in this function
 
                    match next {
 
                        Some(TokenKind::Ident) => self.consume_type_idents(
 
                            source, heap, symbols, wrapping_definition, poly_vars, cur_scope, allow_inference, iter
 
                        )?,
 
                        Some(TokenKind::OpenParen) => self.consume_open_paren(iter),
 
                        Some(TokenKind::CloseParen) => self.consume_close_paren(source, iter)?,
 
                        _ => return Err(ParseError::new_error_str_at_pos(
 
                            source, iter.last_valid_pos(),
src/protocol/parser/pass_typing.rs
Show inline comments
 
@@ -1341,7 +1341,7 @@ impl Visitor for PassTyping {
 
                    self.visit_expr(ctx, expr_id)?;
 
                }
 
            },
 
            Literal::Array(expressions) => {
 
            Literal::Array(expressions) | Literal::Tuple(expressions) => {
 
                // TODO: @performance
 
                let expr_ids = expressions.clone();
 
                for expr_id in expr_ids {
 
@@ -1424,8 +1424,33 @@ impl PassTyping {
 
    fn resolve_types(&mut self, ctx: &mut Ctx, queue: &mut ResolveQueue) -> Result<(), ParseError> {
 
        // Keep inferring until we can no longer make any progress
 
        while !self.expr_queued.is_empty() {
 
            let next_expr_idx = self.expr_queued.pop_front().unwrap();
 
            self.progress_expr(ctx, next_expr_idx)?;
 
            // Make as much progress as possible without forced integer
 
            // inference.
 
            while !self.expr_queued.is_empty() {
 
                let next_expr_idx = self.expr_queued.pop_front().unwrap();
 
                self.progress_expr(ctx, next_expr_idx)?;
 
            }
 

	
 
            // Nothing is queued anymore. However we might have integer literals
 
            // whose type cannot be inferred. For convenience's sake we'll
 
            // infer these to be s32.
 
            for (infer_expr_idx, infer_expr) in self.expr_types.iter_mut().enumerate() {
 
                let expr_type = &mut infer_expr.expr_type;
 
                if !expr_type.is_done && expr_type.parts.len() == 1 && expr_type.parts[0] == InferenceTypePart::IntegerLike {
 
                    // Force integer type to s32
 
                    println!("DEBUG: Autoinferring (idx {}) {}", infer_expr.expr_id.index, String::from_utf8_lossy(ctx.module().source.section_at_span(ctx.heap[infer_expr.expr_id].full_span())));
 
                    expr_type.parts[0] = InferenceTypePart::SInt32;
 
                    expr_type.is_done = true;
 

	
 
                    // Requeue expression (and its parent, if it exists)
 
                    self.expr_queued.push_back(infer_expr_idx as i32);
 

	
 
                    if let Some(parent_expr) = ctx.heap[infer_expr.expr_id].parent_expr_id() {
 
                        let parent_idx = ctx.heap[parent_expr].get_unique_id_in_definition();
 
                        self.expr_queued.push_back(parent_idx);
 
                    }
 
                }
 
            }
 
        }
 

	
 
        // Helper for transferring polymorphic variables to concrete types and
 
@@ -1477,22 +1502,15 @@ impl PassTyping {
 

	
 
        // Inference is now done. But we may still have uninferred types. So we
 
        // check for these.
 
        for (infer_expr_idx, infer_expr) in self.expr_types.iter_mut().enumerate() {
 
            let expr_type = &mut infer_expr.expr_type;
 
            if !expr_type.is_done {
 
                // Auto-infer numberlike/integerlike types to a regular int
 
                if expr_type.parts.len() == 1 && expr_type.parts[0] == InferenceTypePart::IntegerLike {
 
                    expr_type.parts[0] = InferenceTypePart::SInt32;
 
                    self.expr_queued.push_back(infer_expr_idx as i32);
 
                } else {
 
                    let expr = &ctx.heap[infer_expr.expr_id];
 
                    return Err(ParseError::new_error_at_span(
 
                        &ctx.module().source, expr.full_span(), format!(
 
                            "could not fully infer the type of this expression (got '{}')",
 
                            expr_type.display_name(&ctx.heap)
 
                        )
 
                    ));
 
                }
 
        for infer_expr in self.expr_types.iter_mut() {
 
            if !infer_expr.expr_type.is_done {
 
                let expr = &ctx.heap[infer_expr.expr_id];
 
                return Err(ParseError::new_error_at_span(
 
                    &ctx.module().source, expr.full_span(), format!(
 
                        "could not fully infer the type of this expression (got '{}')",
 
                        infer_expr.expr_type.display_name(&ctx.heap)
 
                    )
 
                ));
 
            }
 

	
 
            // Expression is fine, check if any extra data is attached
 
@@ -1532,7 +1550,7 @@ impl PassTyping {
 
                            // Not typechecked yet, so add an entry in the queue
 
                            let reserved_idx = ctx.types.reserve_procedure_monomorph_index(&definition_id, concrete_type);
 
                            infer_expr.field_or_monomorph_idx = reserved_idx;
 
                            queue.push(ResolveQueueElement{
 
                            queue.push(ResolveQueueElement {
 
                                root_id: ctx.heap[definition_id].defined_in(),
 
                                definition_id,
 
                                reserved_monomorph_idx: reserved_idx,
 
@@ -1563,13 +1581,6 @@ impl PassTyping {
 
            }
 
        }
 

	
 
        // If we did any implicit type forcing, then our queue isn't empty
 
        // anymore
 
        while !self.expr_queued.is_empty() {
 
            let expr_idx = self.expr_queued.pop_back().unwrap();
 
            self.progress_expr(ctx, expr_idx)?;
 
        }
 

	
 
        // Every expression checked, and new monomorphs are queued. Transfer the
 
        // expression information to the type table.
 
        let procedure_arguments = match &self.definition_type {
 
@@ -2461,10 +2472,53 @@ impl PassTyping {
 

	
 
                progress_expr
 
            },
 
            Literal::Tuple(data) => {
 
                let expr_elements = data.clone(); // TODO: @performance
 
                debug_log!("Tuple expr ({} elements): {}", expr_elements.len(), upcast_id.index);
 
                debug_log!(" * Before:");
 
                debug_log!("   - Expr type: {}", self.debug_get_display_name(ctx, upcast_id));
 

	
 
                // Initial tuple constraint
 
                let num_members = expr_elements.len();
 
                let mut initial_type = Vec::with_capacity(num_members + 1); // TODO: @performance
 
                initial_type.push(InferenceTypePart::Tuple(num_members as u32));
 
                for _ in 0..num_members {
 
                    initial_type.push(InferenceTypePart::Unknown);
 
                }
 
                let mut progress_expr = self.apply_template_constraint(ctx, upcast_id, &initial_type)?;
 

	
 
                // The elements of the tuple can have any type, but they must
 
                // end up as arguments to the output tuple type.
 
                debug_log!(" * During (checking expressions constituting tuple):");
 
                for (member_expr_index, member_expr_id) in expr_elements.iter().enumerate() {
 
                    // For the current expression index, (re)compute the
 
                    // position in the tuple type where the types should match.
 
                    let mut start_index = 1; // first element is Tuple type, second is the first child
 
                    for _ in 0..member_expr_index {
 
                        let tuple_expr_index = ctx.heap[id].unique_id_in_definition;
 
                        let tuple_type = &self.expr_types[tuple_expr_index as usize].expr_type;
 
                        start_index = InferenceType::find_subtree_end_idx(&tuple_type.parts, start_index);
 
                        debug_assert_ne!(start_index, tuple_type.parts.len()); // would imply less tuple type children than member expressions
 
                    }
 

	
 
                    // Apply the constraint
 
                    let (member_progress_expr, member_progress) = self.apply_equal2_constraint(
 
                        ctx, upcast_id, upcast_id, start_index, *member_expr_id, 0
 
                    )?;
 
                    debug_log!("   - Member {} type | {}", member_expr_index, self.debug_get_display_name(ctx, *member_expr_id));
 
                    progress_expr = progress_expr || member_progress_expr;
 

	
 
                    if member_progress {
 
                        self.queue_expr(ctx, *member_expr_id);
 
                    }
 
                }
 

	
 
                progress_expr
 
            }
 
        };
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Expr type: {}", self.debug_get_display_name(ctx, upcast_id));
 
        debug_log!("   - Expr type [{}]: {}", progress_expr, self.debug_get_display_name(ctx, upcast_id));
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 

	
 
@@ -3055,7 +3109,7 @@ impl PassTyping {
 
            _ => {}
 
        }
 

	
 
        let mut progress = Vec::new();
 
        let mut progress = Vec::new(); // TODO: @Performance
 
        progress.resize(args.len(), false);
 

	
 
        // Do pairwise inference, keep track of the last entry we made progress
src/protocol/parser/pass_validation_linking.rs
Show inline comments
 
@@ -1002,7 +1002,7 @@ impl Visitor for PassValidationLinking {
 

	
 
                expr_section.forget();
 
            },
 
            Literal::Array(literal) => {
 
            Literal::Array(literal) | Literal::Tuple(literal) => {
 
                // Visit all expressions in the array
 
                let upcast_id = id.upcast();
 
                let expr_section = self.expression_buffer.start_section_initialized(literal);
 
@@ -1225,7 +1225,7 @@ impl Visitor for PassValidationLinking {
 
                                // subexpressions, so we're always fine
 
                                if cfg!(debug_assertions) {
 
                                    match lit_expr.value {
 
                                        Literal::Struct(_) | Literal::Union(_) | Literal::Array(_) => {},
 
                                        Literal::Struct(_) | Literal::Union(_) | Literal::Array(_) | Literal::Tuple(_) => {},
 
                                        _ => unreachable!(),
 
                                    }
 
                                }
src/protocol/parser/token_parsing.rs
Show inline comments
 
@@ -156,7 +156,8 @@ pub(crate) fn consume_token(source: &InputSource, iter: &mut TokenIter, expected
 
    Ok(span)
 
}
 

	
 
/// Consumes a comma separated list until the closing delimiter is encountered
 
/// Consumes a comma separated list until the closing delimiter is encountered.
 
/// The closing delimiter is consumed as well.
 
pub(crate) fn consume_comma_separated_until<T, F, E>(
 
    close_delim: TokenKind, source: &InputSource, iter: &mut TokenIter, ctx: &mut PassCtx,
 
    mut consumer_fn: F, target: &mut E, item_name_and_article: &'static str,
 
@@ -356,19 +357,20 @@ pub(crate) fn consume_character_literal(
 
        ));
 
    }
 

	
 
    debug_assert!(char_text.len() >= 2); // always includes the bounding "'"
 
    match char_text.len() {
 
        0 => return Err(ParseError::new_error_str_at_span(source, span, "too little characters in character literal")),
 
        1 => {
 
        2 => return Err(ParseError::new_error_str_at_span(source, span, "too little characters in character literal")),
 
        3 => {
 
            // We already know the text is ascii, so just throw an error if we have the escape
 
            // character.
 
            if char_text[0] == b'\\' {
 
            if char_text[1] == b'\\' {
 
                return Err(ParseError::new_error_str_at_span(source, span, "escape character without subsequent character"));
 
            }
 
            return Ok((char_text[0] as char, span));
 
            return Ok((char_text[1] as char, span));
 
        },
 
        2 => {
 
            if char_text[0] == b'\\' {
 
                let result = parse_escaped_character(source, span, char_text[1])?;
 
        4 => {
 
            if char_text[1] == b'\\' {
 
                let result = parse_escaped_character(source, span, char_text[2])?;
 
                return Ok((result, span))
 
            }
 
        },
src/protocol/parser/type_table.rs
Show inline comments
 
@@ -123,13 +123,6 @@ impl DefinedTypeVariant {
 
        }
 
    }
 

	
 
    pub(crate) fn as_struct_mut(&mut self) -> &mut StructType {
 
        match self {
 
            DefinedTypeVariant::Struct(v) => v,
 
            _ => unreachable!("Cannot convert {} to struct variant", self.type_class())
 
        }
 
    }
 

	
 
    pub(crate) fn as_enum(&self) -> &EnumType {
 
        match self {
 
            DefinedTypeVariant::Enum(v) => v,
 
@@ -137,26 +130,12 @@ impl DefinedTypeVariant {
 
        }
 
    }
 

	
 
    pub(crate) fn as_enum_mut(&mut self) -> &mut EnumType {
 
        match self {
 
            DefinedTypeVariant::Enum(v) => v,
 
            _ => unreachable!("Cannot convert {} to enum variant", self.type_class())
 
        }
 
    }
 

	
 
    pub(crate) fn as_union(&self) -> &UnionType {
 
        match self {
 
            DefinedTypeVariant::Union(v) => v,
 
            _ => unreachable!("Cannot convert {} to union variant", self.type_class())
 
        }
 
    }
 

	
 
    pub(crate) fn as_union_mut(&mut self) -> &mut UnionType {
 
        match self {
 
            DefinedTypeVariant::Union(v) => v,
 
            _ => unreachable!("Cannot convert {} to union variant", self.type_class())
 
        }
 
    }
 
}
 

	
 
pub struct PolymorphicVariable {
 
@@ -269,13 +248,6 @@ pub(crate) enum MonomorphVariant {
 
}
 

	
 
impl MonomorphVariant {
 
    fn as_struct(&self) -> &StructMonomorph {
 
        match self {
 
            MonomorphVariant::Struct(v) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    fn as_struct_mut(&mut self) -> &mut StructMonomorph {
 
        match self {
 
            MonomorphVariant::Struct(v) => v,
 
@@ -297,13 +269,6 @@ impl MonomorphVariant {
 
        }
 
    }
 

	
 
    fn as_tuple(&self) -> &TupleMonomorph {
 
        match self {
 
            MonomorphVariant::Tuple(v) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    fn as_tuple_mut(&mut self) -> &mut TupleMonomorph {
 
        match self {
 
            MonomorphVariant::Tuple(v) => v,
src/protocol/tests/eval_binding.rs
Show inline comments
 
@@ -129,6 +129,40 @@ fn test_binding_from_union() {
 
    });
 
}
 

	
 
#[test]
 
fn test_binding_from_tuple() {
 
    Tester::new_single_source_expect_ok("tuple binding", "
 
        func foo() -> u32 {
 
            u64 value = 2000;
 
            auto tuple = (\"hello\", value, 21);
 

	
 
            bool success1 = false;
 
            if (let (\"hello\", value, 21) = tuple && let (a, b, c) = tuple) {
 
                success1 = a == \"hello\" && b == value && c == 21;
 
            }
 

	
 
            bool success2 = true;
 
            if (let (\"nope\", a, b) = tuple) success2 = false;
 
            if (let (\"hello\", 2001, 21) = tuple) success2 = false;
 
            if (let (a, 2001, b) = tuple) success2 = false;
 
            if (let (a, b, 22) = tuple) success2 = false;
 

	
 
            bool success3 = false;
 
            if (let (\"hello\", v2a, v3a) = tuple && let (v1a, 2000, v3b) = tuple && let (v1b, v2b, 21) = tuple) {
 
                success3 = v1a == v1b && v2a == v2b && v3a == v3b;
 
            }
 

	
 
            if (success1 && success2 && success3 && let (\"hello\", a, b) = tuple) {
 
                return cast(a) + b;
 
            }
 

	
 
            return 0;
 
        }
 
    ").for_function("foo", |f| { f
 
        .call_ok(Some(Value::UInt32(2021)));
 
    });
 
}
 

	
 
#[test]
 
fn test_binding_fizz_buzz() {
 
    Tester::new_single_source_expect_ok("am I employable?", "
src/protocol/tests/eval_operators.rs
Show inline comments
 
@@ -146,6 +146,38 @@ fn test_binary_integer_operators() {
 
    );
 
}
 

	
 
#[test]
 
fn test_tuple_operators() {
 
    Tester::new_single_source_expect_ok("tuple equality", "
 
    func test_func() -> bool {
 
        auto a1 = (8, 16, 32);
 
        (u8, u16, u32) a2 = (8, 16, 32);
 
        auto b1 = ();
 
        () b2 = ();
 

	
 
        return a1 == a2 && a2 == (8, 16, 32) && b1 == b2 && b2 == ();
 
    }
 
    ").for_function("test_func", |f| { f
 
        .call_ok(Some(Value::Bool(true)));
 
    });
 

	
 
    Tester::new_single_source_expect_ok("tuple inequality", "
 
    func test_func() -> bool {
 
        auto a = (8, 16, 32);
 
        (u8, u16, u32) a_same = (8, 16, 32);
 
        auto a_diff = (0b111, 0b1111, 0b11111);
 
        auto b = ();
 
        return
 
            !(a != a_same) &&
 
            a != a_diff &&
 
            a != (8, 16, 320) &&
 
            !(b != ());
 
    }
 
    ").for_function("test_func", |f| { f
 
        .call_ok(Some(Value::Bool(true)));
 
    });
 
}
 

	
 
#[test]
 
fn test_string_operators() {
 
    Tester::new_single_source_expect_ok("string concatenation", "
src/protocol/tests/parser_literals.rs
Show inline comments
 
@@ -67,4 +67,58 @@ fn test_string_literals() {
 
    Tester::new_single_source_expect_err("non-ASCII string", "
 
        func test() -> string { return \"💧\"; }
 
    ").error(|e| { e.assert_msg_has(0, "non-ASCII character in string literal"); });
 
}
 

	
 
#[test]
 
fn test_tuple_literals() {
 
    Tester::new_single_source_expect_ok("zero tuples", "
 
        func test() -> () {
 
            // Looks like lisp :)
 
            auto t1 = ();
 
            () t2 = ();
 
            auto t3 = (());
 
            () t4 = (());
 
            auto t5 = ((((()))));
 
            ((())) t6 = ((((()))));
 

	
 
            return ();
 
        }
 
    ").for_function("test", |f| { f
 
        .for_variable("t1", |v| { v.assert_concrete_type("()"); })
 
        .for_variable("t2", |v| { v.assert_concrete_type("()"); })
 
        .for_variable("t3", |v| { v.assert_concrete_type("()"); })
 
        .for_variable("t4", |v| { v.assert_concrete_type("()"); })
 
        .for_variable("t5", |v| { v.assert_concrete_type("()"); })
 
        .for_variable("t6", |v| { v.assert_concrete_type("()"); });
 
    });
 

	
 
    // All one-tuples (T) are transformed into T to prevent ambiguity
 
    Tester::new_single_source_expect_ok("one tuples", "
 
        func test() -> (u32) {
 
            auto a = (0);
 
            (s32) b = (1);
 
            ((((s32)))) c = ((2));
 
        }
 
    ").for_function("test", |f| { f
 
        .for_variable("a", |v| { v.assert_concrete_type("s32"); })
 
        .for_variable("b", |v| { v.assert_concrete_type("s32"); })
 
        .for_variable("c", |v| { v.assert_concrete_type("s32"); });
 
    });
 

	
 
    Tester::new_single_source_expect_ok("actual tuples", "
 
        func test() -> (u32, u32) {
 
            (u8,u16,u32) a = (0, 1, 2);
 
            auto b = a;
 
            auto c = (3, 4, 5);
 
            ((auto, auto)) d = (a, c);
 
            auto e = (\"hello\", 'c', 5 + 2);
 
            return ((0), (1));
 
        }
 
    ").for_function("test", |f| { f
 
        .for_variable("a", |v| { v.assert_concrete_type("(u8,u16,u32)"); })
 
        .for_variable("b", |v| { v.assert_concrete_type("(u8,u16,u32)"); })
 
        .for_variable("c", |v| { v.assert_concrete_type("(s32,s32,s32)"); })
 
        .for_variable("d", |v| { v.assert_concrete_type("((u8,u16,u32),(s32,s32,s32))"); })
 
        .for_variable("e", |v| { v.assert_concrete_type("(string,char,s32)"); });
 
    });
 
}
 
\ No newline at end of file
src/protocol/tests/utils.rs
Show inline comments
 
@@ -405,7 +405,7 @@ impl<'a> EnumTester<'a> {
 

	
 
    pub(crate) fn assert_size_alignment(mut self, serialized_monomorph: &str, size: usize, alignment: usize) -> Self {
 
        self = self.assert_has_monomorph(serialized_monomorph);
 
        let (has_monomorph, serialized) = has_monomorph(self.ctx, self.def.this.upcast(), serialized_monomorph);
 
        let (has_monomorph, _) = has_monomorph(self.ctx, self.def.this.upcast(), serialized_monomorph);
 
        let mono_index = has_monomorph.unwrap();
 
        let mono = self.ctx.types.get_monomorph(mono_index);
 

	
 
@@ -753,7 +753,7 @@ impl<'a> VariableTester<'a> {
 
        let concrete_type = &mono_data.expr_data[self.var_expr.unique_id_in_definition as usize].expr_type;
 

	
 
        // Serialize and check
 
        let mut serialized = concrete_type.display_name(self.ctx.heap);
 
        let serialized = concrete_type.display_name(self.ctx.heap);
 

	
 
        assert_eq!(
 
            expected, &serialized,
 
@@ -788,7 +788,7 @@ impl<'a> ExpressionTester<'a> {
 
        let concrete_type = &mono_data.expr_data[expr_index as usize].expr_type;
 

	
 
        // Serialize and check type
 
        let mut serialized = concrete_type.display_name(self.ctx.heap);
 
        let serialized = concrete_type.display_name(self.ctx.heap);
 

	
 
        assert_eq!(
 
            expected, &serialized,
 
@@ -925,7 +925,6 @@ impl<'a> ErrorTester<'a> {
 

	
 
fn has_equal_num_monomorphs(ctx: TestCtx, num: usize, definition_id: DefinitionId) -> (bool, usize) {
 
    // Again: inefficient, but its testing code
 
    let type_def = ctx.types.get_base_definition(&definition_id).unwrap();
 
    let mut num_on_type = 0;
 

	
 
    for mono in &ctx.types.mono_lookup.monomorphs {
0 comments (0 inline, 0 general)