Changeset - 7c5078fc4f81
[Not reviewed]
0 4 0
MH - 3 years ago 2022-05-14 19:21:46
contact@maxhenger.nl
Rename Cmd in std.internet to ClientCmd, fix port transfer bug
4 files changed with 19 insertions and 19 deletions:
0 comments (0 inline, 0 general)
src/runtime2/component/component.rs
Show inline comments
 
@@ -143,1450 +143,1450 @@ impl ExitReason {
 
        match self {
 
            Termination => false,
 
            ErrorInSync | ErrorNonSync => true,
 
        }
 
    }
 
}
 

	
 
/// Component execution state: the execution mode along with some descriptive
 
/// fields. Fields are public for ergonomic reasons, use member functions when
 
/// appropriate.
 
pub(crate) struct CompExecState {
 
    pub mode: CompMode,
 
    pub mode_port: PortId, // valid if blocked on a port (put/get)
 
    pub mode_value: ValueGroup, // valid if blocked on a put
 
    pub mode_component: (ProcedureDefinitionId, TypeId),
 
    pub exit_reason: ExitReason, // valid if in StartExit/BusyExit/Exit mode
 
}
 

	
 
impl CompExecState {
 
    pub(crate) fn new() -> Self {
 
        return Self{
 
            mode: CompMode::NonSync,
 
            mode_port: PortId::new_invalid(),
 
            mode_value: ValueGroup::default(),
 
            mode_component: (ProcedureDefinitionId::new_invalid(), TypeId::new_invalid()),
 
            exit_reason: ExitReason::Termination,
 
        }
 
    }
 

	
 
    pub(crate) fn set_as_start_exit(&mut self, reason: ExitReason) {
 
        self.mode = CompMode::StartExit;
 
        self.exit_reason = reason;
 
    }
 

	
 
    pub(crate) fn set_as_blocked_get(&mut self, port: PortId) {
 
        self.mode = CompMode::BlockedGet;
 
        self.mode_port = port;
 
        debug_assert!(self.mode_value.values.is_empty());
 
    }
 

	
 
    pub(crate) fn set_as_create_component_blocked(
 
        &mut self, proc_id: ProcedureDefinitionId, type_id: TypeId,
 
        arguments: ValueGroup
 
    ) {
 
        self.mode = CompMode::NewComponentBlocked;
 
        self.mode_value = arguments;
 
        self.mode_component = (proc_id, type_id);
 
    }
 

	
 
    pub(crate) fn is_blocked_on_get(&self, port: PortId) -> bool {
 
        return
 
            self.mode == CompMode::BlockedGet &&
 
            self.mode_port == port;
 
    }
 

	
 
    pub(crate) fn set_as_blocked_put_without_ports(&mut self, port: PortId, value: ValueGroup) {
 
        self.mode = CompMode::BlockedPut;
 
        self.mode_port = port;
 
        self.mode_value = value;
 
    }
 

	
 
    pub(crate) fn set_as_blocked_put_with_ports(&mut self, port: PortId, value: ValueGroup) {
 
        self.mode = CompMode::PutPortsBlockedTransferredPorts;
 
        self.mode_port = port;
 
        self.mode_value = value;
 
    }
 

	
 
    pub(crate) fn is_blocked_on_put_without_ports(&self, port: PortId) -> bool {
 
        return
 
            self.mode == CompMode::BlockedPut &&
 
            self.mode_port == port;
 
    }
 

	
 
    pub(crate) fn is_blocked_on_create_component(&self) -> bool {
 
        return self.mode == CompMode::NewComponentBlocked;
 
    }
 
}
 

	
 
// TODO: Replace when implementing port sending. Should probably be incorporated
 
//  into CompCtx (and rename CompCtx into CompComms)
 
pub(crate) type InboxMain = Vec<Option<DataMessage>>;
 
pub(crate) type InboxMainRef = [Option<DataMessage>];
 
pub(crate) type InboxBackup = Vec<DataMessage>;
 

	
 
/// Creates a new component based on its definition. Meaning that if it is a
 
/// user-defined component then we set up the PDL code state. Otherwise we
 
/// construct a custom component. This does NOT take care of port and message
 
/// management.
 
pub(crate) fn create_component(
 
    protocol: &ProtocolDescription,
 
    definition_id: ProcedureDefinitionId, type_id: TypeId,
 
    arguments: ValueGroup, num_ports: usize
 
) -> Box<dyn Component> {
 
    let definition = &protocol.heap[definition_id];
 
    debug_assert_eq!(definition.kind, ProcedureKind::Component);
 

	
 
    if definition.source.is_builtin() {
 
        // Builtin component
 
        let component: Box<dyn Component> = match definition.source {
 
            ProcedureSource::CompRandomU32 => Box::new(ComponentRandomU32::new(arguments)),
 
            ProcedureSource::CompTcpClient => Box::new(ComponentTcpClient::new(arguments)),
 
            _ => unreachable!(),
 
        };
 

	
 
        return component;
 
    } else {
 
        // User-defined component
 
        let prompt = Prompt::new(
 
            &protocol.types, &protocol.heap,
 
            definition_id, type_id, arguments
 
        );
 
        let component = CompPDL::new(prompt, num_ports);
 
        return Box::new(component);
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// Generic component messaging utilities (for sending and receiving)
 
// -----------------------------------------------------------------------------
 

	
 
/// Default handling of sending a data message. In case the port is blocked then
 
/// the `ExecState` will become blocked as well. Note that
 
/// `default_handle_control_message` will ensure that the port becomes
 
/// unblocked if so instructed by the receiving component. The returned
 
/// scheduling value must be used.
 
#[must_use]
 
pub(crate) fn default_send_data_message(
 
    exec_state: &mut CompExecState, transmitting_port_id: PortId,
 
    port_instruction: PortInstruction, value: ValueGroup,
 
    sched_ctx: &SchedulerCtx, consensus: &mut Consensus,
 
    control: &mut ControlLayer, comp_ctx: &mut CompCtx
 
) -> Result<CompScheduling, (PortInstruction, String)> {
 
    debug_assert_eq!(exec_state.mode, CompMode::Sync);
 

	
 
    let port_handle = comp_ctx.get_port_handle(transmitting_port_id);
 
    let port_info = comp_ctx.get_port_mut(port_handle);
 
    port_info.last_instruction = port_instruction;
 

	
 
    let port_info = comp_ctx.get_port(port_handle);
 
    debug_assert_eq!(port_info.kind, PortKind::Putter);
 

	
 
    let mut ports = Vec::new();
 
    find_ports_in_value_group(&value, &mut ports);
 

	
 
    if port_info.state.is_closed() {
 
        // Note: normally peer is eventually consistent, but if it has shut down
 
        // then we can be sure it is consistent (I think?)
 
        return Err((
 
            port_info.last_instruction,
 
            format!("Cannot send on this port, as the peer (id:{}) has shut down", port_info.peer_comp_id.0)
 
        ))
 
    } else if !ports.is_empty() {
 
        start_send_message_with_ports(
 
            transmitting_port_id, port_instruction, value, exec_state,
 
            comp_ctx, sched_ctx, control
 
        )?;
 

	
 
        return Ok(CompScheduling::Sleep);
 
    } else if port_info.state.is_blocked() {
 
        // Port is blocked, so we cannot send
 
        exec_state.set_as_blocked_put_without_ports(transmitting_port_id, value);
 

	
 
        return Ok(CompScheduling::Sleep);
 
    } else {
 
        // Port is not blocked and no ports to transfer: send to the peer
 
        let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
 
        let peer_info = comp_ctx.get_peer(peer_handle);
 
        let annotated_message = consensus.annotate_data_message(comp_ctx, port_info, value);
 
        peer_info.handle.send_message_logged(sched_ctx, Message::Data(annotated_message), true);
 

	
 
        return Ok(CompScheduling::Immediate);
 
    }
 
}
 

	
 
pub(crate) enum IncomingData {
 
    PlacedInSlot,
 
    SlotFull(DataMessage),
 
}
 

	
 
/// Default handling of receiving a data message. In case there is no room for
 
/// the message it is returned from this function. Note that this function is
 
/// different from PDL code performing a `get` on a port; this is the case where
 
/// the message first arrives at the component.
 
// NOTE: This is supposed to be a somewhat temporary implementation. It would be
 
//  nicest if the sending component can figure out it cannot send any more data.
 
#[must_use]
 
pub(crate) fn default_handle_incoming_data_message(
 
    exec_state: &mut CompExecState, inbox_main: &mut InboxMain,
 
    comp_ctx: &mut CompCtx, incoming_message: DataMessage,
 
    sched_ctx: &SchedulerCtx, control: &mut ControlLayer
 
) -> IncomingData {
 
    let port_handle = comp_ctx.get_port_handle(incoming_message.data_header.target_port);
 
    let port_index = comp_ctx.get_port_index(port_handle);
 
    comp_ctx.get_port_mut(port_handle).received_message_for_sync = true;
 
    let port_value_slot = &mut inbox_main[port_index];
 
    let target_port_id = incoming_message.data_header.target_port;
 

	
 
    if port_value_slot.is_none() {
 
        // We can put the value in the slot
 
        *port_value_slot = Some(incoming_message);
 

	
 
        // Check if we're blocked on receiving this message.
 
        dbg_code!({
 
            // Our port cannot have been blocked itself, because we're able to
 
            // directly insert the message into its slot.
 
            assert!(!comp_ctx.get_port(port_handle).state.is_blocked());
 
        });
 

	
 
        if exec_state.is_blocked_on_get(target_port_id) {
 
            // Return to normal operation
 
            exec_state.mode = CompMode::Sync;
 
            exec_state.mode_port = PortId::new_invalid();
 
            debug_assert!(exec_state.mode_value.values.is_empty());
 
        }
 

	
 
        return IncomingData::PlacedInSlot
 
    } else {
 
        // Slot is already full, so if the port was previously opened, it will
 
        // now become closed
 
        let port_info = comp_ctx.get_port_mut(port_handle);
 
        if port_info.state.is_open() {
 
            port_info.state.set(PortStateFlag::BlockedDueToFullBuffers);
 

	
 
            let (peer_handle, message) =
 
                control.initiate_port_blocking(comp_ctx, port_handle);
 
            let peer = comp_ctx.get_peer(peer_handle);
 
            peer.handle.send_message_logged(sched_ctx, Message::Control(message), true);
 
        }
 

	
 
        return IncomingData::SlotFull(incoming_message)
 
    }
 
}
 

	
 
pub(crate) enum GetResult {
 
    Received(DataMessage),
 
    NoMessage,
 
    Error((PortInstruction, String)),
 
}
 

	
 
/// Default attempt at trying to receive from a port (i.e. through a `get`, or
 
/// the equivalent operation for a builtin component). `target_port` is the port
 
/// we're trying to receive from, and the `target_port_instruction` is the
 
/// instruction we're attempting on this port.
 
pub(crate) fn default_attempt_get(
 
    exec_state: &mut CompExecState, target_port: PortId, target_port_instruction: PortInstruction,
 
    inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup, sched_ctx: &SchedulerCtx,
 
    comp_ctx: &mut CompCtx, control: &mut ControlLayer, consensus: &mut Consensus
 
) -> GetResult {
 
    let port_handle = comp_ctx.get_port_handle(target_port);
 
    let port_index = comp_ctx.get_port_index(port_handle);
 

	
 
    let port_info = comp_ctx.get_port_mut(port_handle);
 
    port_info.last_instruction = target_port_instruction;
 
    if port_info.state.is_closed() {
 
        let peer_id = port_info.peer_comp_id;
 
        return GetResult::Error((
 
            target_port_instruction,
 
            format!("Cannot get from this port, as the peer component (id:{}) closed the port", peer_id.0)
 
        ));
 
    }
 

	
 
    if let Some(message) = &inbox_main[port_index] {
 
        if consensus.try_receive_data_message(sched_ctx, comp_ctx, message) {
 
            // We're allowed to receive this message
 
            let mut message = inbox_main[port_index].take().unwrap();
 
            debug_assert_eq!(target_port, message.data_header.target_port);
 

	
 
            // Note: we can still run into an unrecoverable error when actually
 
            // receiving this message
 
            match default_handle_received_data_message(
 
                target_port, target_port_instruction,
 
                &mut message, inbox_main, inbox_backup,
 
                comp_ctx, sched_ctx, control, consensus
 
            ) {
 
                Ok(()) => return GetResult::Received(message),
 
                Err(location_and_message) => return GetResult::Error(location_and_message)
 
            }
 
        } else {
 
            // We're not allowed to receive this message. This means that the
 
            // receiver is attempting to receive something out of order with
 
            // respect to the sender.
 
            return GetResult::Error((target_port_instruction, String::from(
 
                "Cannot get from this port, as this causes a deadlock. This happens if you `get` in a different order as another component `put`s"
 
            )));
 
        }
 
    } else {
 
        // We don't have a message waiting for us and the port is not blocked.
 
        // So enter the BlockedGet state
 
        exec_state.set_as_blocked_get(target_port);
 
        return GetResult::NoMessage;
 
    }
 
}
 

	
 
/// Default handling that has been received through a `get`. Will check if any
 
/// more messages are waiting, and if the corresponding port was blocked because
 
/// of full buffers (hence, will use the control layer to make sure the peer
 
/// will become unblocked).
 
pub(crate) fn default_handle_received_data_message(
 
    targeted_port: PortId, _port_instruction: PortInstruction, message: &mut DataMessage,
 
    inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup,
 
    comp_ctx: &mut CompCtx, sched_ctx: &SchedulerCtx, control: &mut ControlLayer,
 
    consensus: &mut Consensus
 
) -> Result<(), (PortInstruction, String)> {
 
    let port_handle = comp_ctx.get_port_handle(targeted_port);
 
    let port_index = comp_ctx.get_port_index(port_handle);
 
    debug_assert!(inbox_main[port_index].is_none()); // because we've just received from it
 

	
 
    // If we received any ports, add them to the port tracking and inbox struct.
 
    // Then notify the peers that they can continue sending to this port, but
 
    // now at a new address.
 
    for received_port in &mut message.ports {
 
        // Transfer messages to main/backup inbox
 
        let _new_inbox_index = inbox_main.len();
 
        if !received_port.messages.is_empty() {
 
            inbox_main.push(Some(received_port.messages.remove(0)));
 
            inbox_backup.extend(received_port.messages.drain(..));
 
        } else {
 
            inbox_main.push(None);
 
        }
 

	
 
        // Create a new port locally
 
        let mut new_port_state = received_port.state;
 
        new_port_state.set(PortStateFlag::Received);
 
        let new_port_handle = comp_ctx.add_port(
 
            received_port.peer_comp, received_port.peer_port,
 
            received_port.kind, new_port_state
 
        );
 
        debug_assert_eq!(_new_inbox_index, comp_ctx.get_port_index(new_port_handle));
 
        comp_ctx.change_port_peer(sched_ctx, new_port_handle, Some(received_port.peer_comp));
 
        let new_port = comp_ctx.get_port(new_port_handle);
 

	
 
        // Add the port tho the consensus
 
        consensus.notify_of_new_port(_new_inbox_index, new_port_handle, comp_ctx);
 

	
 
        // Replace all references to the port in the received message
 
        for message_location in received_port.locations.iter().copied() {
 
            let value = message.content.get_value_mut(message_location);
 

	
 
            match value {
 
                Value::Input(_) => {
 
                    debug_assert_eq!(new_port.kind, PortKind::Getter);
 
                    *value = Value::Input(port_id_to_eval(new_port.self_id));
 
                },
 
                Value::Output(_) => {
 
                    debug_assert_eq!(new_port.kind, PortKind::Putter);
 
                    *value = Value::Output(port_id_to_eval(new_port.self_id));
 
                },
 
                _ => unreachable!(),
 
            }
 
        }
 

	
 
        // Let the peer know that the port can now be used
 
        let peer_handle = comp_ctx.get_peer_handle(new_port.peer_comp_id);
 
        let peer_info = comp_ctx.get_peer(peer_handle);
 

	
 
        peer_info.handle.send_message_logged(sched_ctx, Message::Control(ControlMessage{
 
            id: ControlId::new_invalid(),
 
            sender_comp_id: comp_ctx.id,
 
            target_port_id: Some(new_port.peer_port_id),
 
            content: ControlMessageContent::PortPeerChangedUnblock(new_port.self_id, comp_ctx.id)
 
        }), true);
 
    }
 

	
 
    // Modify last-known location where port instruction was retrieved
 
    let port_info = comp_ctx.get_port(port_handle);
 
    debug_assert_ne!(port_info.last_instruction, PortInstruction::None); // set by caller
 
    debug_assert!(port_info.state.is_open()); // checked by caller
 

	
 
    // Check if there are any more messages in the backup buffer
 
    for message_index in 0..inbox_backup.len() {
 
        let message = &inbox_backup[message_index];
 
        if message.data_header.target_port == targeted_port {
 
            // One more message, place it in the slot
 
            let message = inbox_backup.remove(message_index);
 
            debug_assert!(comp_ctx.get_port(port_handle).state.is_blocked()); // since we're removing another message from the backup
 
            inbox_main[port_index] = Some(message);
 

	
 
            return Ok(());
 
        }
 
    }
 

	
 
    // Did not have any more messages, so if we were blocked, then we need to
 
    // unblock the port now (and inform the peer of this unblocking)
 
    if port_info.state.is_set(PortStateFlag::BlockedDueToFullBuffers) {
 
        let port_info = comp_ctx.get_port_mut(port_handle);
 
        port_info.state.clear(PortStateFlag::BlockedDueToFullBuffers);
 

	
 
        let (peer_handle, message) = control.cancel_port_blocking(comp_ctx, port_handle);
 
        let peer_info = comp_ctx.get_peer(peer_handle);
 
        peer_info.handle.send_message_logged(sched_ctx, Message::Control(message), true);
 
    }
 

	
 
    return Ok(());
 
}
 

	
 
/// Handles control messages in the default way. Note that this function may
 
/// take a lot of actions in the name of the caller: pending messages may be
 
/// sent, ports may become blocked/unblocked, etc. So the execution
 
/// (`CompExecState`), control (`ControlLayer`) and consensus (`Consensus`)
 
/// state may all change.
 
pub(crate) fn default_handle_control_message(
 
    exec_state: &mut CompExecState, control: &mut ControlLayer, consensus: &mut Consensus,
 
    message: ControlMessage, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx,
 
    inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup
 
) -> Result<(), (PortInstruction, String)> {
 
    match message.content {
 
        ControlMessageContent::Ack => {
 
            default_handle_ack(exec_state, control, message.id, sched_ctx, comp_ctx, consensus, inbox_main, inbox_backup)?;
 
        },
 
        ControlMessageContent::BlockPort => {
 
            // One of our messages was accepted, but the port should be
 
            // blocked.
 
            let port_to_block = message.target_port_id.unwrap();
 
            let port_handle = comp_ctx.get_port_handle(port_to_block);
 
            let port_info = comp_ctx.get_port_mut(port_handle);
 
            debug_assert_eq!(port_info.kind, PortKind::Putter);
 
            port_info.state.set(PortStateFlag::BlockedDueToFullBuffers);
 
        },
 
        ControlMessageContent::ClosePort(content) => {
 
            // Request to close the port. We immediately comply and remove
 
            // the component handle as well
 
            let port_to_close = message.target_port_id.unwrap();
 
            let port_handle = comp_ctx.get_port_handle(port_to_close);
 

	
 
            // We're closing the port, so we will always update the peer of the
 
            // port (in case of error messages)
 
            let port_info = comp_ctx.get_port_mut(port_handle);
 
            port_info.peer_comp_id = message.sender_comp_id;
 
            port_info.close_at_sync_end = true; // might be redundant (we might set it closed now)
 

	
 
            let peer_comp_id = port_info.peer_comp_id;
 
            let peer_handle = comp_ctx.get_peer_handle(peer_comp_id);
 

	
 
            // One exception to sending an `Ack` is if we just closed the
 
            // port ourselves, meaning that the `ClosePort` messages got
 
            // sent to one another.
 
            if let Some(control_id) = control.has_close_port_entry(port_handle, comp_ctx) {
 
                // The two components (sender and this component) are closing
 
                // the channel at the same time. So we don't care about the
 
                // content of the `ClosePort` message.
 
                default_handle_ack(exec_state, control, control_id, sched_ctx, comp_ctx, consensus, inbox_main, inbox_backup)?;
 
            } else {
 
                // Respond to the message
 
                let port_info = comp_ctx.get_port(port_handle);
 
                let last_instruction = port_info.last_instruction;
 
                let port_has_had_message = port_info.received_message_for_sync;
 
                default_send_ack(message.id, peer_handle, sched_ctx, comp_ctx);
 
                comp_ctx.change_port_peer(sched_ctx, port_handle, None);
 

	
 
                // Handle any possible error conditions (which boil down to: the
 
                // port has been used, but the peer has died). If not in sync
 
                // mode then we close the port immediately.
 

	
 
                // Note that `port_was_used` does not mean that any messages
 
                // were actually received. It might also mean that e.g. the
 
                // component attempted a `get`, but there were no messages, so
 
                // now it is in the `BlockedGet` state.
 
                let port_was_used = last_instruction != PortInstruction::None;
 

	
 
                if exec_state.mode.is_in_sync_block() {
 
                    let closed_during_sync_round = content.closed_in_sync_round && port_was_used;
 
                    let closed_before_sync_round = !content.closed_in_sync_round && !port_has_had_message && port_was_used;
 

	
 
                    if closed_during_sync_round || closed_before_sync_round {
 
                        return Err((
 
                            last_instruction,
 
                            format!("Peer component (id:{}) shut down, so communication cannot (have) succeed(ed)", peer_comp_id.0)
 
                        ));
 
                    }
 
                } else {
 
                    let port_info = comp_ctx.get_port_mut(port_handle);
 
                    port_info.state.set(PortStateFlag::Closed);
 
                }
 
            }
 
        },
 
        ControlMessageContent::UnblockPort => {
 
            // We were previously blocked (or already closed)
 
            let port_to_unblock = message.target_port_id.unwrap();
 
            let port_handle = comp_ctx.get_port_handle(port_to_unblock);
 
            let port_info = comp_ctx.get_port_mut(port_handle);
 

	
 
            debug_assert_eq!(port_info.kind, PortKind::Putter);
 
            debug_assert!(port_info.state.is_set(PortStateFlag::BlockedDueToFullBuffers));
 

	
 
            port_info.state.clear(PortStateFlag::BlockedDueToFullBuffers);
 
            default_handle_recently_unblocked_port(
 
                exec_state, control, consensus, port_handle, sched_ctx,
 
                comp_ctx, inbox_main, inbox_backup
 
            )?;
 
        },
 
        ControlMessageContent::PortPeerChangedBlock => {
 
            // The peer of our port has just changed. So we are asked to
 
            // temporarily block the port (while our original recipient is
 
            // potentially rerouting some of the in-flight messages) and
 
            // Ack. Then we wait for the `unblock` call.
 
            let port_to_change = message.target_port_id.unwrap();
 
            let port_handle = comp_ctx.get_port_handle(port_to_change);
 

	
 
            let port_info = comp_ctx.get_port_mut(port_handle);
 
            let peer_comp_id = port_info.peer_comp_id;
 
            port_info.state.set(PortStateFlag::BlockedDueToPeerChange);
 
            let peer_handle = comp_ctx.get_peer_handle(peer_comp_id);
 

	
 
            default_send_ack(message.id, peer_handle, sched_ctx, comp_ctx);
 
        },
 
        ControlMessageContent::PortPeerChangedUnblock(new_port_id, new_comp_id) => {
 
            let port_to_change = message.target_port_id.unwrap();
 
            let port_handle = comp_ctx.get_port_handle(port_to_change);
 
            let port_info = comp_ctx.get_port(port_handle);
 
            debug_assert!(port_info.state.is_set(PortStateFlag::BlockedDueToPeerChange));
 

	
 
            let port_info = comp_ctx.get_port_mut(port_handle);
 
            port_info.peer_port_id = new_port_id;
 

	
 
            port_info.state.clear(PortStateFlag::BlockedDueToPeerChange);
 
            comp_ctx.change_port_peer(sched_ctx, port_handle, Some(new_comp_id));
 
            default_handle_recently_unblocked_port(
 
                exec_state, control, consensus, port_handle, sched_ctx,
 
                comp_ctx, inbox_main, inbox_backup
 
            )?;
 
        }
 
    }
 

	
 
    return Ok(());
 
}
 

	
 
/// Handles a component entering the synchronous block. Will ensure that the
 
/// `Consensus` and the `ComponentCtx` are initialized properly.
 
pub(crate) fn default_handle_sync_start(
 
    exec_state: &mut CompExecState, inbox_main: &mut InboxMainRef,
 
    sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, consensus: &mut Consensus
 
) {
 
    sched_ctx.info("Component starting sync mode");
 

	
 
    // If any messages are present for this sync round, set the appropriate flag
 
    // and notify the consensus handler of the present messages
 
    consensus.notify_sync_start(comp_ctx);
 
    for (port_index, message) in inbox_main.iter().enumerate() {
 
        if let Some(message) = message {
 
            consensus.handle_incoming_data_message(comp_ctx, message);
 
            let port_info = comp_ctx.get_port_by_index_mut(port_index);
 
            port_info.received_message_for_sync = true;
 
        }
 
    }
 

	
 
    // Modify execution state
 
    debug_assert_eq!(exec_state.mode, CompMode::NonSync);
 
    exec_state.mode = CompMode::Sync;
 
}
 

	
 
/// Handles a component that has reached the end of the sync block. This does
 
/// not necessarily mean that the component will go into the `NonSync` mode, as
 
/// it might have to wait for the leader to finish the round for everyone (see
 
/// `default_handle_sync_decision`)
 
pub(crate) fn default_handle_sync_end(
 
    exec_state: &mut CompExecState, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx,
 
    consensus: &mut Consensus
 
) {
 
    sched_ctx.info("Component ending sync mode (but possibly waiting for a solution)");
 
    debug_assert_eq!(exec_state.mode, CompMode::Sync);
 
    let decision = consensus.notify_sync_end_success(sched_ctx, comp_ctx);
 
    exec_state.mode = CompMode::SyncEnd;
 
    default_handle_sync_decision(sched_ctx, exec_state, comp_ctx, decision, consensus);
 
}
 

	
 
/// Handles a component initiating the exiting procedure, and closing all of its
 
/// ports. Should only be called once per component (which is ensured by
 
/// checking and modifying the mode in the execution state).
 
#[must_use]
 
pub(crate) fn default_handle_start_exit(
 
    exec_state: &mut CompExecState, control: &mut ControlLayer,
 
    sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, consensus: &mut Consensus
 
) -> CompScheduling {
 
    debug_assert_eq!(exec_state.mode, CompMode::StartExit);
 
    for port_index in 0..comp_ctx.num_ports() {
 
        let port_info = comp_ctx.get_port_by_index_mut(port_index);
 
        if port_info.state.is_blocked() {
 
            return CompScheduling::Sleep;
 
        }
 
    }
 

	
 
    sched_ctx.info(&format!("Component starting exit (reason: {:?})", exec_state.exit_reason));
 
    exec_state.mode = CompMode::BusyExit;
 
    let exit_inside_sync = exec_state.exit_reason.is_in_sync();
 

	
 
    // If exiting while inside sync mode, report to the leader of the current
 
    // round that we've failed.
 
    if exit_inside_sync {
 
        let decision = consensus.notify_sync_end_failure(sched_ctx, comp_ctx);
 
        default_handle_sync_decision(sched_ctx, exec_state, comp_ctx, decision, consensus);
 
    }
 

	
 
    // Iterating over ports by index to work around borrowing rules
 
    for port_index in 0..comp_ctx.num_ports() {
 
        let port = comp_ctx.get_port_by_index_mut(port_index);
 
        if port.state.is_closed() || port.state.is_set(PortStateFlag::Transmitted) || port.close_at_sync_end {
 
            // Already closed, or in the process of being closed
 
            continue;
 
        }
 

	
 
        // Mark as closed
 
        let port_id = port.self_id;
 
        port.state.set(PortStateFlag::Closed);
 

	
 
        // Notify peer of closing
 
        let port_handle = comp_ctx.get_port_handle(port_id);
 
        let (peer, message) = control.initiate_port_closing(port_handle, exit_inside_sync, comp_ctx);
 
        let peer_info = comp_ctx.get_peer(peer);
 
        peer_info.handle.send_message_logged(sched_ctx, Message::Control(message), true);
 
    }
 

	
 
    return CompScheduling::Immediate; // to check if we can shut down immediately
 
}
 

	
 
/// Handles a component waiting until all peers are notified that it is quitting
 
/// (i.e. after calling `default_handle_start_exit`).
 
#[must_use]
 
pub(crate) fn default_handle_busy_exit(
 
    exec_state: &mut CompExecState, control: &ControlLayer,
 
    sched_ctx: &SchedulerCtx
 
) -> CompScheduling {
 
    debug_assert_eq!(exec_state.mode, CompMode::BusyExit);
 
    if control.has_acks_remaining() {
 
        sched_ctx.info("Component busy exiting, still has `Ack`s remaining");
 
        return CompScheduling::Sleep;
 
    } else {
 
        sched_ctx.info("Component busy exiting, now shutting down");
 
        exec_state.mode = CompMode::Exit;
 
        return CompScheduling::Exit;
 
    }
 
}
 

	
 
/// Handles a potential synchronous round decision. If there was a decision then
 
/// the `Some(success)` value indicates whether the round succeeded or not.
 
/// Might also end up changing the `ExecState`.
 
///
 
/// Might be called in two cases:
 
/// 1. The component is in regular execution mode, at the end of a sync round,
 
///     and is waiting for a solution to the round.
 
/// 2. The component has encountered an error during a sync round and is
 
///     exiting, hence is waiting for a "Failure" message from the leader.
 
pub(crate) fn default_handle_sync_decision(
 
    sched_ctx: &SchedulerCtx, exec_state: &mut CompExecState, comp_ctx: &mut CompCtx,
 
    decision: SyncRoundDecision, consensus: &mut Consensus
 
) -> Option<bool> {
 
    let success = match decision {
 
        SyncRoundDecision::None => return None,
 
        SyncRoundDecision::Solution => true,
 
        SyncRoundDecision::Failure => false,
 
    };
 

	
 
    debug_assert!(
 
        exec_state.mode == CompMode::SyncEnd || (
 
            exec_state.mode.is_busy_exiting() && exec_state.exit_reason.is_error()
 
        ) || (
 
            exec_state.mode.is_in_sync_block() && decision == SyncRoundDecision::Failure
 
        )
 
    );
 

	
 
    sched_ctx.info(&format!("Handling decision {:?} (in mode: {:?})", decision, exec_state.mode));
 
    consensus.notify_sync_decision(decision);
 
    if success {
 
        // We cannot get a success message if the component has encountered an
 
        // error.
 
        for port_index in 0..comp_ctx.num_ports() {
 
            let port_info = comp_ctx.get_port_by_index_mut(port_index);
 
            if port_info.close_at_sync_end {
 
                port_info.state.set(PortStateFlag::Closed);
 
            }
 
            port_info.state.clear(PortStateFlag::Received);
 
        }
 
        debug_assert_eq!(exec_state.mode, CompMode::SyncEnd);
 
        exec_state.mode = CompMode::NonSync;
 
        return Some(true);
 
    } else {
 
        // We may get failure both in all possible cases. But we should only
 
        // modify the execution state if we're not already in exit mode
 
        if !exec_state.mode.is_busy_exiting() {
 
            sched_ctx.error("failed synchronous round, initiating exit");
 
            exec_state.set_as_start_exit(ExitReason::ErrorNonSync);
 
        }
 
        return Some(false);
 
    }
 
}
 

	
 
/// Special component creation function. This function assumes that the
 
/// transferred ports are NOT blocked, and that the channels to whom the ports
 
/// belong are fully owned by the creating component. This will be checked in
 
/// debug mode.
 
pub(crate) fn special_create_component(
 
    exec_state: &mut CompExecState, sched_ctx: &SchedulerCtx, instantiator_ctx: &mut CompCtx,
 
    control: &mut ControlLayer, inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup,
 
    component_instance: Box<dyn Component>, component_ports: Vec<PortId>,
 
) {
 
    debug_assert_eq!(exec_state.mode, CompMode::NonSync);
 
    let reservation = sched_ctx.runtime.start_create_component();
 
    let mut created_ctx = CompCtx::new(&reservation);
 
    let mut port_pairs = Vec::new();
 

	
 
    // Retrieve ports
 
    for instantiator_port_id in component_ports.iter() {
 
        let instantiator_port_id = *instantiator_port_id;
 
        let instantiator_port_handle = instantiator_ctx.get_port_handle(instantiator_port_id);
 
        let instantiator_port = instantiator_ctx.get_port(instantiator_port_handle);
 

	
 
        // Check if conditions for calling this function are valid
 
        debug_assert!(!instantiator_port.state.is_blocked_due_to_port_change());
 
        debug_assert_eq!(instantiator_port.peer_comp_id, instantiator_ctx.id);
 

	
 
        // Create port at new component
 
        let created_port_handle = created_ctx.add_port(
 
            instantiator_port.peer_comp_id, instantiator_port.peer_port_id,
 
            instantiator_port.kind, instantiator_port.state
 
        );
 
        let created_port = created_ctx.get_port(created_port_handle);
 
        let created_port_id = created_port.self_id;
 

	
 
        // Store in port pairs
 
        let is_open = instantiator_port.state.is_open();
 
        port_pairs.push(PortPair{
 
            instantiator_id: instantiator_port_id,
 
            instantiator_handle: instantiator_port_handle,
 
            created_id: created_port_id,
 
            created_handle: created_port_handle,
 
            is_open,
 
        });
 
    }
 

	
 
    // Set peer of the port for the new component
 
    for pair in port_pairs.iter() {
 
        let instantiator_port_info = instantiator_ctx.get_port(pair.instantiator_handle);
 
        let created_port_info = created_ctx.get_port_mut(pair.created_handle);
 

	
 
        // Note: we checked above (in debug mode) that the peer of the port is
 
        // owned by the creator as well, now check if the peer is transferred
 
        // as well.
 
        let created_port_peer_index = port_pairs.iter()
 
            .position(|v| v.instantiator_id == instantiator_port_info.peer_port_id);
 

	
 
        match created_port_peer_index {
 
            Some(created_port_peer_index) => {
 
                // Both ends of the channel are moving to the new component
 
                let peer_pair = &port_pairs[created_port_peer_index];
 
                created_port_info.peer_port_id = peer_pair.created_id;
 
                created_port_info.peer_comp_id = reservation.id();
 
            },
 
            None => {
 
                created_port_info.peer_comp_id = instantiator_ctx.id;
 
                if pair.is_open {
 
                    created_ctx.change_port_peer(sched_ctx, pair.created_handle, Some(instantiator_ctx.id));
 
                }
 
            }
 
        }
 
    }
 

	
 
    // Store component in runtime storage and retrieve component fields in their
 
    // name memory location
 
    let (created_key, created_runtime_component) = sched_ctx.runtime.finish_create_component(
 
        reservation, component_instance, created_ctx, false
 
    );
 

	
 
    let created_ctx = &mut created_runtime_component.ctx;
 
    let created_component = &mut created_runtime_component.component;
 
    created_component.on_creation(created_key.downgrade(), sched_ctx);
 

	
 
    // Transfer messages and link instantiator to created component
 
    for pair in port_pairs.iter() {
 
        instantiator_ctx.change_port_peer(sched_ctx, pair.instantiator_handle, None);
 
        instantiator_ctx.remove_port(pair.instantiator_handle);
 
        transfer_messages(inbox_main, inbox_backup, pair, instantiator_ctx, created_ctx, created_component.as_mut());
 
        instantiator_ctx.remove_port(pair.instantiator_handle);
 

	
 
        let created_port_info = created_ctx.get_port(pair.created_handle);
 
        if pair.is_open && created_port_info.peer_comp_id == instantiator_ctx.id {
 
            // Set up channel between instantiator component port, and its peer,
 
            // which is owned by the new component
 
            let instantiator_port_handle = instantiator_ctx.get_port_handle(created_port_info.peer_port_id);
 
            let instantiator_port_info = instantiator_ctx.get_port_mut(instantiator_port_handle);
 
            instantiator_port_info.peer_port_id = created_port_info.self_id;
 
            instantiator_ctx.change_port_peer(sched_ctx, instantiator_port_handle, Some(created_ctx.id));
 
        }
 
    }
 

	
 
    // By definition we did not have any remote peers for the transferred ports,
 
    // so we can schedule the new component immediately
 
    sched_ctx.runtime.enqueue_work(created_key);
 
}
 

	
 
/// Puts the component in an execution state where the specified component will
 
/// end up being created. The component goes through state changes (driven by
 
/// incoming control messages) to make sure that all of the ports that are going
 
/// to be transferred are not in a blocked state. Once finished the component
 
/// returns to the `NonSync` mode.
 
pub(crate) fn default_start_create_component(
 
    exec_state: &mut CompExecState, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx,
 
    control: &mut ControlLayer, inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup,
 
    definition_id: ProcedureDefinitionId, type_id: TypeId, arguments: ValueGroup
 
) {
 
    debug_assert_eq!(exec_state.mode, CompMode::NonSync);
 

	
 
    let mut transferred_ports = Vec::new();
 
    find_ports_in_value_group(&arguments, &mut transferred_ports);
 

	
 
    // Set execution state as waiting until we can create the component. If we
 
    // can do so right away, then we will.
 
    exec_state.set_as_create_component_blocked(definition_id, type_id, arguments);
 
    if ports_not_blocked(comp_ctx, &transferred_ports) {
 
        perform_create_component(exec_state, sched_ctx, comp_ctx, control, inbox_main, inbox_backup);
 
    }
 
}
 

	
 
/// Actually creates a component (and assumes that the caller made sure that
 
/// none of the ports are involved in a blocking operation).
 
pub(crate) fn perform_create_component(
 
    exec_state: &mut CompExecState, sched_ctx: &SchedulerCtx, instantiator_ctx: &mut CompCtx,
 
    control: &mut ControlLayer, inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup
 
) {
 
    // Retrieve ports from the arguments
 
    debug_assert_eq!(exec_state.mode, CompMode::NewComponentBlocked);
 

	
 
    let (procedure_id, procedure_type_id) = exec_state.mode_component;
 
    let mut arguments = exec_state.mode_value.take();
 
    let mut ports = Vec::new();
 
    find_ports_in_value_group(&arguments, &mut ports);
 
    debug_assert!(ports_not_blocked(instantiator_ctx, &ports));
 

	
 
    // Reserve a location for the new component
 
    let reservation = sched_ctx.runtime.start_create_component();
 
    let mut created_ctx = CompCtx::new(&reservation);
 

	
 
    let mut port_pairs = Vec::with_capacity(ports.len());
 

	
 
    // Go over all the ports that will be transferred. Since the ports will get
 
    // a new ID in the new component, we will take care of that here.
 
    for (port_location, instantiator_port_id) in &ports {
 
        // Retrieve port information from instantiator
 
        let instantiator_port_id = *instantiator_port_id;
 
        let instantiator_port_handle = instantiator_ctx.get_port_handle(instantiator_port_id);
 
        let instantiator_port = instantiator_ctx.get_port(instantiator_port_handle);
 

	
 
        // Create port at created component
 
        let created_port_handle = created_ctx.add_port(
 
            instantiator_port.peer_comp_id, instantiator_port.peer_port_id,
 
            instantiator_port.kind, instantiator_port.state
 
        );
 
        let created_port = created_ctx.get_port(created_port_handle);
 
        let created_port_id = created_port.self_id;
 

	
 
        // Modify port ID in the arguments to the new component and store them
 
        // for later access
 
        let is_open = instantiator_port.state.is_open();
 
        port_pairs.push(PortPair{
 
            instantiator_id: instantiator_port_id,
 
            instantiator_handle: instantiator_port_handle,
 
            created_id: created_port_id,
 
            created_handle: created_port_handle,
 
            is_open,
 
        });
 

	
 
        for location in port_location.iter().copied() {
 
            let value = arguments.get_value_mut(location);
 
            match value {
 
                Value::Input(id) => *id = port_id_to_eval(created_port_id),
 
                Value::Output(id) => *id = port_id_to_eval(created_port_id),
 
                _ => unreachable!(),
 
            }
 
        }
 
    }
 

	
 
    // For each of the ports in the newly created component we set the peer to
 
    // the correct value. We will not yet change the peer on the instantiator's
 
    // ports (as we haven't yet stored the new component in the runtime's
 
    // component storage)
 
    let mut created_component_has_remote_peers = false;
 
    for pair in port_pairs.iter() {
 
        let instantiator_port_info = instantiator_ctx.get_port(pair.instantiator_handle);
 
        let created_port_info = created_ctx.get_port_mut(pair.created_handle);
 

	
 
        if created_port_info.peer_comp_id == instantiator_ctx.id {
 
            // The peer of the created component's port seems to be the
 
            // instantiator.
 
            let created_port_peer_index = port_pairs.iter()
 
                .position(|v| v.instantiator_id == instantiator_port_info.peer_port_id);
 

	
 
            match created_port_peer_index {
 
                Some(created_port_peer_index) => {
 
                    // However, the peer port is also moved to the new
 
                    // component, so the complete channel is owned by the new
 
                    // component.
 
                    let peer_pair = &port_pairs[created_port_peer_index];
 
                    created_port_info.peer_port_id = peer_pair.created_id;
 
                    created_port_info.peer_comp_id = reservation.id();
 
                },
 
                None => {
 
                    // Peer port remains with instantiator. However, we cannot
 
                    // set the peer on the instantiator yet, because the new
 
                    // component has not yet been stored in the runtime's
 
                    // component storage. So we do this later
 
                    created_port_info.peer_comp_id = instantiator_ctx.id;
 
                    if pair.is_open {
 
                        created_ctx.change_port_peer(sched_ctx, pair.created_handle, Some(instantiator_ctx.id));
 
                    }
 
                }
 
            }
 
        } else {
 
            // Peer is a different component
 
            if pair.is_open {
 
                // And the port is still open, so we need to notify the peer
 
                let peer_handle = instantiator_ctx.get_peer_handle(created_port_info.peer_comp_id);
 
                let peer_info = instantiator_ctx.get_peer(peer_handle);
 
                created_ctx.change_port_peer(sched_ctx, pair.created_handle, Some(peer_info.id));
 
                created_component_has_remote_peers = true;
 
            }
 
        }
 
    }
 

	
 
    // Now we store the new component into the runtime's component storage using
 
    // the reservation.
 
    let component = create_component(
 
        &sched_ctx.runtime.protocol, procedure_id, procedure_type_id,
 
        arguments, port_pairs.len()
 
    );
 
    let (created_key, created_runtime_component) = sched_ctx.runtime.finish_create_component(
 
        reservation, component, created_ctx, false
 
    );
 
    let created_ctx = &mut created_runtime_component.ctx;
 
    let created_component = &mut created_runtime_component.component;
 
    created_component.on_creation(created_key.downgrade(), sched_ctx);
 

	
 
    // We now pass along the messages that the instantiator component still has
 
    // that belong to the new component. At the same time we'll take care of
 
    // setting the correct peer of the instantiator component
 
    for pair in port_pairs.iter() {
 
        // Transferring the messages and removing the port from the
 
        // instantiator component
 
        instantiator_ctx.change_port_peer(sched_ctx, pair.instantiator_handle, None);
 
        instantiator_ctx.remove_port(pair.instantiator_handle);
 
        transfer_messages(inbox_main, inbox_backup, pair, instantiator_ctx, created_ctx, created_component.as_mut());
 
        instantiator_ctx.remove_port(pair.instantiator_handle);
 

	
 
        // Here we take care of the case where the instantiator previously owned
 
        // both ends of the channel, but has transferred one port to the new
 
        // component (hence creating a channel between the instantiator
 
        // component and the new component).
 
        let created_port_info = created_ctx.get_port(pair.created_handle);
 
        if pair.is_open && created_port_info.peer_comp_id == instantiator_ctx.id {
 
            // Note: the port we're receiving here belongs to the instantiator
 
            // and is NOT in the "port_pairs" array.
 
            let instantiator_port_handle = instantiator_ctx.get_port_handle(created_port_info.peer_port_id);
 
            let instantiator_port_info = instantiator_ctx.get_port_mut(instantiator_port_handle);
 
            instantiator_port_info.peer_port_id = created_port_info.self_id;
 
            instantiator_ctx.change_port_peer(sched_ctx, instantiator_port_handle, Some(created_ctx.id));
 
        }
 
    }
 

	
 
    // Finally: if we did move ports around whose peers are different
 
    // components, then we'll initiate the appropriate protocol to notify them.
 
    if created_component_has_remote_peers {
 
        let schedule_entry_id = control.add_schedule_entry(created_ctx.id);
 
        for pair in &port_pairs {
 
            let port_info = created_ctx.get_port(pair.created_handle);
 
            if pair.is_open && port_info.peer_comp_id != instantiator_ctx.id && port_info.peer_comp_id != created_ctx.id {
 
                // Peer component is not the instantiator, and it is not the
 
                // new component itself
 
                let message = control.add_reroute_entry(
 
                    instantiator_ctx.id, port_info.peer_port_id, port_info.peer_comp_id,
 
                    pair.instantiator_id, pair.created_id, created_ctx.id,
 
                    schedule_entry_id
 
                );
 
                let peer_handle = created_ctx.get_peer_handle(port_info.peer_comp_id);
 
                let peer_info = created_ctx.get_peer(peer_handle);
 

	
 
                peer_info.handle.send_message_logged(sched_ctx, message, true);
 
            }
 
        }
 
    } else {
 
        // We can schedule the component immediately, we do not have to wait
 
        // for any peers: there are none.
 
        sched_ctx.runtime.enqueue_work(created_key);
 
    }
 

	
 
    exec_state.mode = CompMode::NonSync;
 
    exec_state.mode_component = (ProcedureDefinitionId::new_invalid(), TypeId::new_invalid());
 
}
 

	
 
#[inline]
 
pub(crate) fn default_handle_exit(_exec_state: &CompExecState) -> CompScheduling {
 
    debug_assert_eq!(_exec_state.mode, CompMode::Exit);
 
    return CompScheduling::Exit;
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// Internal messaging/state utilities
 
// -----------------------------------------------------------------------------
 

	
 
struct PortPair {
 
    instantiator_id: PortId,
 
    instantiator_handle: LocalPortHandle,
 
    created_id: PortId,
 
    created_handle: LocalPortHandle,
 
    is_open: bool,
 
}
 

	
 
pub(crate) fn ports_not_blocked(comp_ctx: &CompCtx, ports: &EncounteredPorts) -> bool {
 
    for (_port_locations, port_id) in ports {
 
        let port_handle = comp_ctx.get_port_handle(*port_id);
 
        let port_info = comp_ctx.get_port(port_handle);
 

	
 
        if port_info.state.is_blocked_due_to_port_change() {
 
            return false;
 
        }
 
    }
 

	
 
    return true;
 
}
 

	
 
fn transfer_messages(
 
    inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup, port_pair: &PortPair,
 
    instantiator_ctx: &mut CompCtx, created_ctx: &mut CompCtx, created_component: &mut dyn Component
 
) {
 
    let instantiator_port_index = instantiator_ctx.get_port_index(port_pair.instantiator_handle);
 
    if let Some(mut message) = inbox_main.remove(instantiator_port_index) {
 
        message.data_header.target_port = port_pair.created_id;
 
        created_component.adopt_message(created_ctx, message);
 
    }
 

	
 
    let mut message_index = 0;
 
    while message_index < inbox_backup.len() {
 
        let message = &inbox_backup[message_index];
 
        if message.data_header.target_port == port_pair.instantiator_id {
 
            // Transfer the message
 
            let mut message = inbox_backup.remove(message_index);
 
            message.data_header.target_port = port_pair.created_id;
 
            created_component.adopt_message(created_ctx, message);
 
        } else {
 
            // Message does not belong to the port pair that we're
 
            // transferring to the new component.
 
            message_index += 1;
 
        }
 
    }
 
}
 

	
 
/// Performs the default action of printing the provided error, and then putting
 
/// the component in the state where it will shut down. Only to be used for
 
/// builtin components: their error message construction is simpler (and more
 
/// common) as they don't have any source code.
 
pub(crate) fn default_handle_error_for_builtin(
 
    exec_state: &mut CompExecState, sched_ctx: &SchedulerCtx,
 
    location_and_message: (PortInstruction, String)
 
) {
 
    let (_location, message) = location_and_message;
 
    sched_ctx.error(&message);
 

	
 
    let exit_reason = if exec_state.mode.is_in_sync_block() {
 
        ExitReason::ErrorInSync
 
    } else {
 
        ExitReason::ErrorNonSync
 
    };
 

	
 
    exec_state.set_as_start_exit(exit_reason);
 
}
 

	
 
/// Sends a message without any transmitted ports. Does not check if sending
 
/// is actually valid.
 
fn send_message_without_ports(
 
    sending_port_handle: LocalPortHandle, value: ValueGroup,
 
    comp_ctx: &CompCtx, sched_ctx: &SchedulerCtx, consensus: &mut Consensus,
 
) {
 
    let port_info = comp_ctx.get_port(sending_port_handle);
 
    debug_assert!(port_info.state.can_send());
 
    let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
 
    let peer_info = comp_ctx.get_peer(peer_handle);
 

	
 
    let annotated_message = consensus.annotate_data_message(comp_ctx, port_info, value);
 
    peer_info.handle.send_message_logged(sched_ctx, Message::Data(annotated_message), true);
 
}
 

	
 
/// Prepares sending a message that contains ports. Only once a particular
 
/// protocol has completed (where we notify all the peers that the ports will
 
/// be transferred) will we actually send the message to the recipient.
 
fn start_send_message_with_ports(
 
    sending_port_id: PortId, sending_port_instruction: PortInstruction, value: ValueGroup,
 
    exec_state: &mut CompExecState, comp_ctx: &mut CompCtx, sched_ctx: &SchedulerCtx,
 
    control: &mut ControlLayer
 
) -> Result<(), (PortInstruction, String)> {
 
    debug_assert_eq!(exec_state.mode, CompMode::Sync); // busy in sync, trying to send
 

	
 
    // Retrieve ports we're going to transfer
 
    let sending_port_handle = comp_ctx.get_port_handle(sending_port_id);
 
    let sending_port_info = comp_ctx.get_port_mut(sending_port_handle);
 
    sending_port_info.last_instruction = sending_port_instruction;
 

	
 
    let mut transmit_ports = Vec::new();
 
    find_ports_in_value_group(&value, &mut transmit_ports);
 
    debug_assert!(!transmit_ports.is_empty()); // required from caller
 

	
 
    // Enter the state where we'll wait until all transferred ports are not
 
    // blocked.
 
    exec_state.set_as_blocked_put_with_ports(sending_port_id, value);
 

	
 
    if ports_not_blocked(comp_ctx, &transmit_ports) {
 
        // Ports are not blocked, so we can send them right away.
 
        perform_send_message_with_ports_notify_peers(
 
            exec_state, comp_ctx, sched_ctx, control, transmit_ports
 
        )?;
 
    } // else: wait until they become unblocked
 

	
 
    return Ok(())
 
}
 

	
 
fn perform_send_message_with_ports_notify_peers(
 
    exec_state: &mut CompExecState, comp_ctx: &mut CompCtx, sched_ctx: &SchedulerCtx,
 
    control: &mut ControlLayer, transmit_ports: EncounteredPorts
 
) -> Result<(), (PortInstruction, String)> {
 
    // Check we're in the correct state in debug mode
 
    debug_assert_eq!(exec_state.mode, CompMode::PutPortsBlockedTransferredPorts);
 
    debug_assert!(ports_not_blocked(comp_ctx, &transmit_ports));
 

	
 
    // Set up the final Ack that triggers us to send our final message
 
    let unblock_put_control_id = control.add_unblock_put_with_ports_entry();
 
    for (_, port_id) in &transmit_ports {
 
        let transmit_port_handle = comp_ctx.get_port_handle(*port_id);
 
        let transmit_port_info = comp_ctx.get_port_mut(transmit_port_handle);
 
        let peer_comp_id = transmit_port_info.peer_comp_id;
 
        let peer_port_id = transmit_port_info.peer_port_id;
 

	
 

	
 
        // Note: we checked earlier that we are currently in sync mode. Now we
 
        // will check if we've already used the port we're about to transmit.
 
        if !transmit_port_info.last_instruction.is_none() {
 
            let sending_port_handle = comp_ctx.get_port_handle(exec_state.mode_port);
 
            let sending_port_instruction = comp_ctx.get_port(sending_port_handle).last_instruction;
 
            return Err((
 
                sending_port_instruction,
 
                String::from("Cannot transmit one of the ports in this message, as it is used in this sync round")
 
            ));
 
        }
 

	
 
        if transmit_port_info.state.is_set(PortStateFlag::Transmitted) {
 
            let sending_port_handle = comp_ctx.get_port_handle(exec_state.mode_port);
 
            let sending_port_instruction = comp_ctx.get_port(sending_port_handle).last_instruction;
 
            return Err((
 
                sending_port_instruction,
 
                String::from("Cannot transmit one of the ports in this message, as that port is already transmitted")
 
            ));
 
        }
 

	
 
        // Set the flag for transmission
 
        transmit_port_info.state.set(PortStateFlag::Transmitted);
 

	
 
        // Block the peer of the port
 
        let message = control.create_port_transfer_message(unblock_put_control_id, comp_ctx.id, peer_port_id);
 
        println!("DEBUG: Port transfer message\nControl ID: {:?}\nMessage: {:?}", unblock_put_control_id, message);
 
        let peer_handle = comp_ctx.get_peer_handle(peer_comp_id);
 
        let peer_info = comp_ctx.get_peer(peer_handle);
 

	
 
        peer_info.handle.send_message_logged(sched_ctx, message, true);
 
    }
 

	
 
    // We've set up the protocol, once all the PPC's are blocked we are supposed
 
    // to transfer the message to the recipient. So store it temporarily
 
    exec_state.mode = CompMode::PutPortsBlockedAwaitingAcks;
 

	
 
    return Ok(());
 
}
 

	
 
/// Performs the transmission of a data message that contains ports. These were
 
/// all stored in the component's execution state by the
 
/// `prepare_send_message_with_ports` function. Port must be ready to send!
 
fn perform_send_message_with_ports_to_receiver(
 
    exec_state: &mut CompExecState, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, consensus: &mut Consensus,
 
    inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup
 
) -> Result<(), (PortInstruction, String)> {
 
    debug_assert_eq!(exec_state.mode, CompMode::PutPortsBlockedSendingPort);
 

	
 
    // Find all ports again
 
    let mut transmit_ports = Vec::new();
 
    find_ports_in_value_group(&exec_state.mode_value, &mut transmit_ports);
 

	
 
    // Retrieve the port over which we're going to send the message
 
    let port_handle = comp_ctx.get_port_handle(exec_state.mode_port);
 
    let port_info = comp_ctx.get_port(port_handle);
 

	
 
    if !port_info.state.is_open() {
 
        return Err((
 
            port_info.last_instruction,
 
            String::from("cannot send over this port, as it is closed")
 
        ));
 
    }
 

	
 
    debug_assert!(!port_info.state.is_blocked_due_to_port_change()); // caller should have checked this
 
    let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
 

	
 
    // Change state back to its default
 
    exec_state.mode = CompMode::Sync;
 
    let message_value = exec_state.mode_value.take();
 
    exec_state.mode_port = PortId::new_invalid();
 

	
 
    // Annotate the data message
 
    let mut annotated_message = consensus.annotate_data_message(comp_ctx, port_info, message_value);
 

	
 
    // And further enhance the message by adding data about the ports that are
 
    // being transferred
 
    for (port_locations, transmit_port_id) in transmit_ports {
 
        let transmit_port_handle = comp_ctx.get_port_handle(transmit_port_id);
 
        let transmit_port_info = comp_ctx.get_port(transmit_port_handle);
 

	
 
        let transmit_messages = take_port_messages(comp_ctx, transmit_port_id, inbox_main, inbox_backup);
 

	
 
        let mut transmit_port_state = transmit_port_info.state;
 
        debug_assert!(transmit_port_state.is_set(PortStateFlag::Transmitted));
 
        transmit_port_state.clear(PortStateFlag::Transmitted);
 

	
 
        annotated_message.ports.push(TransmittedPort{
 
            locations: port_locations,
 
            messages: transmit_messages,
 
            peer_comp: transmit_port_info.peer_comp_id,
 
            peer_port: transmit_port_info.peer_port_id,
 
            kind: transmit_port_info.kind,
 
            state: transmit_port_state
 
        });
 

	
 
        comp_ctx.change_port_peer(sched_ctx, transmit_port_handle, None);
 
    }
 

	
 
    // And finally, send the message to the peer
 
    let peer_info = comp_ctx.get_peer(peer_handle);
 
    peer_info.handle.send_message_logged(sched_ctx, Message::Data(annotated_message), true);
 

	
 
    return Ok(());
 
}
 

	
 
/// Handles an `Ack` for the control layer.
 
fn default_handle_ack(
 
    exec_state: &mut CompExecState, control: &mut ControlLayer, control_id: ControlId,
 
    sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, consensus: &mut Consensus,
 
    inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup
 
) -> Result<(), (PortInstruction, String)>{
 
    // Since an `Ack` may cause another one, handle them in a loop
 
    let mut to_ack = control_id;
 

	
 
    loop {
 
        let (action, new_to_ack) = control.handle_ack(to_ack, sched_ctx, comp_ctx);
 
        match action {
 
            AckAction::SendMessage(target_comp, message) => {
 
                // FIX @NoDirectHandle
 
                let mut handle = sched_ctx.runtime.get_component_public(target_comp);
 
                handle.send_message_logged(sched_ctx, Message::Control(message), true);
 
                let _should_remove = handle.decrement_users();
 
                debug_assert!(_should_remove.is_none());
 
            },
 
            AckAction::ScheduleComponent(to_schedule) => {
 
                // FIX @NoDirectHandle
 
                let mut handle = sched_ctx.runtime.get_component_public(to_schedule);
 

	
 
                // Note that the component is intentionally not
 
                // sleeping, so we just wake it up
 
                debug_assert!(!handle.sleeping.load(std::sync::atomic::Ordering::Acquire));
 
                let key = unsafe { to_schedule.upgrade() };
 
                sched_ctx.runtime.enqueue_work(key);
 
                let _should_remove = handle.decrement_users();
 
                debug_assert!(_should_remove.is_none());
 
            },
 
            AckAction::UnblockPutWithPorts => {
 
                // Send the message (containing ports) stored in the component
 
                // execution state to the recipient
 
                println!("DEBUG: Unblocking put with ports");
 
                debug_assert_eq!(exec_state.mode, CompMode::PutPortsBlockedAwaitingAcks);
 
                exec_state.mode = CompMode::PutPortsBlockedSendingPort;
 
                let port_handle = comp_ctx.get_port_handle(exec_state.mode_port);
 

	
 
                // Little bit of a hack, we didn't really unblock the sending
 
                // port, but this will mesh nicely with waiting for the sending
 
                // port to become unblocked.
 
                default_handle_recently_unblocked_port(
 
                    exec_state, control, consensus, port_handle, sched_ctx,
 
                    comp_ctx, inbox_main, inbox_backup
 
                )?;
 
            },
 
            AckAction::None => {}
 
        }
 

	
 
        match new_to_ack {
 
            Some(new_to_ack) => to_ack = new_to_ack,
 
            None => break,
 
        }
 
    }
 

	
 
    return Ok(());
 
}
 

	
 
/// Little helper for sending the most common kind of `Ack`
 
fn default_send_ack(
 
    causer_of_ack_id: ControlId, peer_handle: LocalPeerHandle,
 
    sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx
 
) {
 
    let peer_info = comp_ctx.get_peer(peer_handle);
 
    peer_info.handle.send_message_logged(sched_ctx, Message::Control(ControlMessage{
 
        id: causer_of_ack_id,
 
        sender_comp_id: comp_ctx.id,
 
        target_port_id: None,
 
        content: ControlMessageContent::Ack
 
    }), true);
 
}
 

	
 
/// Handles the unblocking of a putter port. In case there is a pending message
 
/// on that port then it will be sent. There are two reasons for calling this
 
/// function: either a port was blocked (i.e. the Blocked state flag was
 
/// cleared), or the component is ready to send a message containing ports
 
/// (stored in the execution state). In this latter case we might still have
 
/// a blocked port.
 
fn default_handle_recently_unblocked_port(
 
    exec_state: &mut CompExecState, control: &mut ControlLayer, consensus: &mut Consensus,
 
    port_handle: LocalPortHandle, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx,
 
    inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup
 
) -> Result<(), (PortInstruction, String)> {
 
    let port_info = comp_ctx.get_port_mut(port_handle);
 
    let port_id = port_info.self_id;
 

	
 
    if port_info.state.is_blocked() {
 
        // Port is still blocked. We wait until the next control message where
 
        // we unblock the port.
 
        return Ok(());
 
    }
 

	
 
    if exec_state.is_blocked_on_put_without_ports(port_id) {
 
        // Annotate the message that we're going to send
 
        let port_info = comp_ctx.get_port(port_handle); // for immutable access
 
        debug_assert_eq!(port_info.kind, PortKind::Putter);
 
        let to_send = exec_state.mode_value.take();
 
        let to_send = consensus.annotate_data_message(comp_ctx, port_info, to_send);
 

	
 
        // Retrieve peer to send the message
 
        let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
 
        let peer_info = comp_ctx.get_peer(peer_handle);
 
        peer_info.handle.send_message_logged(sched_ctx, Message::Data(to_send), true);
 

	
 
        // Return to the regular execution mode
 
        exec_state.mode = CompMode::Sync;
 
        exec_state.mode_port = PortId::new_invalid();
 
    } else if exec_state.mode == CompMode::PutPortsBlockedTransferredPorts {
 
        // We are waiting until all of the transferred ports become unblocked,
 
        // check so here.
 
        let mut transfer_ports = Vec::new();
 
        find_ports_in_value_group(&exec_state.mode_value, &mut transfer_ports);
 
        if ports_not_blocked(comp_ctx, &transfer_ports) {
 
            perform_send_message_with_ports_notify_peers(
 
                exec_state, comp_ctx, sched_ctx, control, transfer_ports
 
            )?;
 
        }
 
    } else if exec_state.mode == CompMode::PutPortsBlockedSendingPort && exec_state.mode_port == port_id {
 
        // We checked above that the port became unblocked, so we can send the
 
        // message
 
        perform_send_message_with_ports_to_receiver(
 
            exec_state, sched_ctx, comp_ctx, consensus, inbox_main, inbox_backup
 
        )?;
 
    } else if exec_state.is_blocked_on_create_component() {
 
        let mut ports = Vec::new();
 
        find_ports_in_value_group(&exec_state.mode_value, &mut ports);
 
        if ports_not_blocked(comp_ctx, &ports) {
 
            perform_create_component(
 
                exec_state, sched_ctx, comp_ctx, control, inbox_main, inbox_backup
 
            );
 
        }
 
    }
 

	
 
    return Ok(());
 
}
 

	
 
#[inline]
 
pub(crate) fn port_id_from_eval(port_id: EvalPortId) -> PortId {
 
    return PortId(port_id.id);
 
}
 

	
 
#[inline]
 
pub(crate) fn port_id_to_eval(port_id: PortId) -> EvalPortId {
 
    return EvalPortId{ id: port_id.0 };
 
}
 

	
 
// TODO: Optimize double vec
 
type EncounteredPorts = Vec<(Vec<ValueId>, PortId)>;
 

	
 
/// Recursively goes through the value group, attempting to find ports.
 
/// Duplicates will only be added once.
 
pub(crate) fn find_ports_in_value_group(value_group: &ValueGroup, ports: &mut EncounteredPorts) {
 
    // Helper to check a value for a port and recurse if needed.
 
    fn find_port_in_value(group: &ValueGroup, value: &Value, value_location: ValueId, ports: &mut EncounteredPorts) {
 
        match value {
 
            Value::Input(port_id) | Value::Output(port_id) => {
 
                // This is an actual port
 
                let cur_port = PortId(port_id.id);
 
                for prev_port in ports.iter_mut() {
 
                    if prev_port.1 == cur_port {
 
                        // Already added
 
                        prev_port.0.push(value_location);
 
                        return;
 
                    }
 
                }
 

	
 
                ports.push((vec![value_location], cur_port));
 
            },
 
            Value::Array(heap_pos) |
 
            Value::Message(heap_pos) |
 
            Value::String(heap_pos) |
 
            Value::Struct(heap_pos) |
 
            Value::Union(_, heap_pos) => {
 
                // Reference to some dynamic thing which might contain ports,
 
                // so recurse
 
                let heap_region = &group.regions[*heap_pos as usize];
 
                for (value_index, embedded_value) in heap_region.iter().enumerate() {
 
                    let value_location = ValueId::Heap(*heap_pos, value_index as u32);
 
                    find_port_in_value(group, embedded_value, value_location, ports);
 
                }
 
            },
 
            _ => {}, // values we don't care about
 
        }
 
    }
 

	
 
    // Clear the ports, then scan all the available values
 
    ports.clear();
 
    for (value_index, value) in value_group.values.iter().enumerate() {
 
        find_port_in_value(value_group, value, ValueId::Stack(value_index as u32), ports);
 
    }
 
}
 

	
 
/// Goes through the inbox of a component and takes out all the messages that
 
/// are targeted at a specific port
 
pub(crate) fn take_port_messages(
 
    comp_ctx: &CompCtx, port_id: PortId,
 
    inbox_main: &mut InboxMain, inbox_backup: &mut InboxBackup
 
) -> Vec<DataMessage> {
 
    let mut messages = Vec::new();
 
    let port_handle = comp_ctx.get_port_handle(port_id);
 
    let port_index = comp_ctx.get_port_index(port_handle);
 

	
 
    if let Some(message) = inbox_main[port_index].take() {
 
        messages.push(message);
 
    }
 

	
 
    let mut message_index = 0;
 
    while message_index < inbox_backup.len() {
 
        let message = &inbox_backup[message_index];
 
        if message.data_header.target_port == port_id {
 
            let message = inbox_backup.remove(message_index);
 
            messages.push(message);
 
        } else {
 
            message_index += 1;
 
        }
 
    }
 

	
 
    return messages;
 
}
 
\ No newline at end of file
src/runtime2/tests/internet.rs
Show inline comments
 
use super::*;
 

	
 
// silly test to make sure that the PDL will never be an issue when doing TCP
 
// stuff with the actual components
 
#[test]
 
fn test_stdlib_file() {
 
    compile_and_create_component("
 
    import std.internet as inet;
 

	
 
    comp fake_listener_once(out<inet::TcpConnection> tx) {
 
        channel cmd_tx -> cmd_rx;
 
        channel data_tx -> data_rx;
 
        new fake_socket(cmd_rx, data_tx);
 
        sync put(tx, inet::TcpConnection{
 
            tx: cmd_tx,
 
            rx: data_rx,
 
        });
 
    }
 

	
 
    comp fake_socket(in<inet::Cmd> cmds, out<u8[]> tx) {
 
    comp fake_socket(in<inet::ClientCmd> cmds, out<u8[]> tx) {
 
        auto to_send = {};
 

	
 
        auto shutdown = false;
 
        while (!shutdown) {
 
            auto keep_going = true;
 
            sync {
 
                while (keep_going) {
 
                    auto cmd = get(cmds);
 
                    if (let inet::Cmd::Send(data) = cmd) {
 
                    if (let inet::ClientCmd::Send(data) = cmd) {
 
                        to_send = data;
 
                        keep_going = false;
 
                    } else if (let inet::Cmd::Receive = cmd) {
 
                    } else if (let inet::ClientCmd::Receive = cmd) {
 
                        put(tx, to_send);
 
                    } else if (let inet::Cmd::Finish = cmd) {
 
                    } else if (let inet::ClientCmd::Finish = cmd) {
 
                        keep_going = false;
 
                    } else if (let inet::Cmd::Shutdown = cmd) {
 
                    } else if (let inet::ClientCmd::Shutdown = cmd) {
 
                        keep_going = false;
 
                        shutdown = true;
 
                    }
 
                }
 
            }
 
        }
 
    }
 

	
 
    comp fake_client(inet::TcpConnection conn) {
 
        sync put(conn.tx, inet::Cmd::Send({1, 3, 3, 7}));
 
        sync put(conn.tx, inet::ClientCmd::Send({1, 3, 3, 7}));
 
        sync {
 
            put(conn.tx, inet::Cmd::Receive);
 
            put(conn.tx, inet::ClientCmd::Receive);
 
            auto val = get(conn.rx);
 
            while (val[0] != 1 || val[1] != 3 || val[2] != 3 || val[3] != 7) {
 
                print(\"this is going very wrong\");
 
            }
 
            put(conn.tx, inet::Cmd::Finish);
 
            put(conn.tx, inet::ClientCmd::Finish);
 
        }
 
        sync put(conn.tx, inet::Cmd::Shutdown);
 
        sync put(conn.tx, inet::ClientCmd::Shutdown);
 
    }
 

	
 
    comp constructor() {
 
        channel conn_tx -> conn_rx;
 
        new fake_listener_once(conn_tx);
 

	
 
        // Same crap as before:
 
        channel cmd_tx -> unused_cmd_rx;
 
        channel unused_data_tx -> data_rx;
 
        auto connection = inet::TcpConnection{ tx: cmd_tx, rx: data_rx };
 

	
 
        sync {
 
            connection = get(conn_rx);
 
        }
 

	
 
        new fake_client(connection);
 
    }
 
    ", "constructor", no_args());
 
}
 
\ No newline at end of file
src/runtime2/tests/mod.rs
Show inline comments
 
use crate::protocol::*;
 
use crate::protocol::eval::*;
 
use crate::runtime2::runtime::*;
 
use crate::runtime2::component::{CompCtx, CompPDL};
 

	
 
mod messaging;
 
mod error_handling;
 
mod transfer_ports;
 
mod internet;
 

	
 
const LOG_LEVEL: LogLevel = LogLevel::Debug;
 
const NUM_THREADS: u32 = 1;
 

	
 
pub(crate) fn compile_and_create_component(source: &str, routine_name: &str, args: ValueGroup) {
 
    let protocol = ProtocolDescription::parse(source.as_bytes())
 
        .expect("successful compilation");
 
    let runtime = Runtime::new(NUM_THREADS, LOG_LEVEL, protocol)
 
        .expect("successful runtime startup");
 
    create_component(&runtime, "", routine_name, args);
 
}
 

	
 
pub(crate) fn create_component(rt: &Runtime, module_name: &str, routine_name: &str, args: ValueGroup) {
 
    let prompt = rt.inner.protocol.new_component(
 
        module_name.as_bytes(), routine_name.as_bytes(), args
 
    ).expect("create prompt");
 
    let reserved = rt.inner.start_create_component();
 
    let ctx = CompCtx::new(&reserved);
 
    let component = Box::new(CompPDL::new(prompt, 0));
 
    let (key, _) = rt.inner.finish_create_component(reserved, component, ctx, false);
 
    rt.inner.enqueue_work(key);
 
}
 

	
 
pub(crate) fn no_args() -> ValueGroup { ValueGroup::new_stack(Vec::new()) }
 

	
 
#[test]
 
fn test_component_creation() {
 
    let pd = ProtocolDescription::parse(b"
 
    comp nothing_at_all() {
 
        s32 a = 5;
 
        auto b = 5 + a;
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(1, LOG_LEVEL, pd).unwrap();
 

	
 
    for _i in 0..20 {
 
        create_component(&rt, "", "nothing_at_all", no_args());
 
    }
 
}
 

	
 
#[test]
 
fn test_simple_select() {
 
    let pd = ProtocolDescription::parse(b"
 
    func infinite_assert<T>(T val, T expected) -> () {
 
        while (val != expected) { print(\"nope!\"); }
 
        return ();
 
    }
 

	
 
    comp receiver(in<u32> in_a, in<u32> in_b, u32 num_sends) {
 
        auto num_from_a = 0;
 
        auto num_from_b = 0;
 
        while (num_from_a + num_from_b < 2 * num_sends) {
 
            sync select {
 
                auto v = get(in_a) -> {
 
                    print(\"got something from A\");
 
                    auto _ = infinite_assert(v, num_from_a);
 
                    num_from_a += 1;
 
                }
 
                auto v = get(in_b) -> {
 
                    print(\"got something from B\");
 
                    auto _ = infinite_assert(v, num_from_b);
 
                    num_from_b += 1;
 
                }
 
            }
 
        }
 
    }
 

	
 
    comp sender(out<u32> tx, u32 num_sends) {
 
        auto index = 0;
 
        while (index < num_sends) {
 
            sync {
 
                put(tx, index);
 
                index += 1;
 
            }
 
        }
 
    }
 

	
 
    comp constructor() {
 
        auto num_sends = 1;
 
        channel tx_a -> rx_a;
 
        channel tx_b -> rx_b;
 
        new sender(tx_a, num_sends);
 
        new receiver(rx_a, rx_b, num_sends);
 
        new sender(tx_b, num_sends);
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(3, LOG_LEVEL, pd).unwrap();
 
    create_component(&rt, "", "constructor", no_args());
 
}
 

	
 
#[test]
 
fn test_unguarded_select() {
 
    let pd = ProtocolDescription::parse(b"
 
    comp constructor_outside_select() {
 
        u32 index = 0;
 
        while (index < 5) {
 
            sync select { auto v = () -> print(\"hello\"); }
 
            index += 1;
 
        }
 
    }
 

	
 
    comp constructor_inside_select() {
 
        u32 index = 0;
 
        while (index < 5) {
 
            sync select { auto v = () -> index += 1; }
 
        }
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(3, LOG_LEVEL, pd).unwrap();
 
    create_component(&rt, "", "constructor_outside_select", no_args());
 
    create_component(&rt, "", "constructor_inside_select", no_args());
 
}
 

	
 
#[test]
 
fn test_empty_select() {
 
    let pd = ProtocolDescription::parse(b"
 
    comp constructor() {
 
        u32 index = 0;
 
        while (index < 5) {
 
            sync select {}
 
            index += 1;
 
        }
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(3, LOG_LEVEL, pd).unwrap();
 
    create_component(&rt, "", "constructor", no_args());
 
}
 

	
 
#[test]
 
fn test_random_u32_temporary_thingo() {
 
    let pd = ProtocolDescription::parse(b"
 
    import std.random::random_u32;
 

	
 
    comp random_taker(in<u32> generator, u32 num_values) {
 
        auto i = 0;
 
        while (i < num_values) {
 
            sync {
 
                auto a = get(generator);
 
            }
 
            i += 1;
 
        }
 
    }
 

	
 
    comp constructor() {
 
        channel tx -> rx;
 
        auto num_values = 25;
 
        new random_u32(tx, 1, 100, num_values);
 
        new random_taker(rx, num_values);
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(1, LOG_LEVEL, pd).unwrap();
 
    create_component(&rt, "", "constructor", no_args());
 
}
 

	
 
#[test]
 
fn test_tcp_socket_http_request() {
 
    let _pd = ProtocolDescription::parse(b"
 
    import std.internet::*;
 

	
 
    comp requester(out<Cmd> cmd_tx, in<u8[]> data_rx) {
 
    comp requester(out<ClientCmd> cmd_tx, in<u8[]> data_rx) {
 
        print(\"*** TCPSocket: Sending request\");
 
        sync {
 
            put(cmd_tx, Cmd::Send(b\"GET / HTTP/1.1\\r\\n\\r\\n\"));
 
            put(cmd_tx, ClientCmd::Send(b\"GET / HTTP/1.1\\r\\n\\r\\n\"));
 
        }
 

	
 
        print(\"*** TCPSocket: Receiving response\");
 
        auto buffer = {};
 
        auto done_receiving = false;
 
        sync while (!done_receiving) {
 
            put(cmd_tx, Cmd::Receive);
 
            put(cmd_tx, ClientCmd::Receive);
 
            auto data = get(data_rx);
 
            buffer @= data;
 

	
 
            // Completely crap detection of end-of-document. But here we go, we
 
            // try to detect the trailing </html>. Proper way would be to parse
 
            // for 'content-length' or 'content-encoding'
 
            s32 index = 0;
 
            s32 partial_length = cast(length(data) - 7);
 
            while (index < partial_length) {
 
                // No string conversion yet, so check byte buffer one byte at
 
                // a time.
 
                auto c1 = data[index];
 
                if (c1 == cast('<')) {
 
                    auto c2 = data[index + 1];
 
                    auto c3 = data[index + 2];
 
                    auto c4 = data[index + 3];
 
                    auto c5 = data[index + 4];
 
                    auto c6 = data[index + 5];
 
                    auto c7 = data[index + 6];
 
                    if ( // i.e. if (data[index..] == '</html>'
 
                        c2 == cast('/') && c3 == cast('h') && c4 == cast('t') &&
 
                        c5 == cast('m') && c6 == cast('l') && c7 == cast('>')
 
                    ) {
 
                        print(\"*** TCPSocket: Detected </html>\");
 
                        put(cmd_tx, Cmd::Finish);
 
                        put(cmd_tx, ClientCmd::Finish);
 
                        done_receiving = true;
 
                    }
 
                }
 
                index += 1;
 
            }
 
        }
 

	
 
        print(\"*** TCPSocket: Requesting shutdown\");
 
        sync {
 
            put(cmd_tx, Cmd::Shutdown);
 
            put(cmd_tx, ClientCmd::Shutdown);
 
        }
 
    }
 

	
 
    comp main() {
 
        channel cmd_tx -> cmd_rx;
 
        channel data_tx -> data_rx;
 
        new tcp_client({142, 250, 179, 163}, 80, cmd_rx, data_tx); // port 80 of google
 
        new requester(cmd_tx, data_rx);
 
    }
 
    ").expect("compilation");
 

	
 
    // This test is disabled because it performs a HTTP request to google.
 
    // let rt = Runtime::new(1, true, pd).unwrap();
 
    // let rt = Runtime::new(1, LOG_LEVEL, _pd).unwrap();
 
    // create_component(&rt, "", "main", no_args());
 
}
 

	
 
#[test]
 
fn test_sending_receiving_union() {
 
    let pd = ProtocolDescription::parse(b"
 
    union Cmd {
 
        Set(u8[]),
 
        Get,
 
        Shutdown,
 
    }
 

	
 
    comp database(in<Cmd> rx, out<u8[]> tx) {
 
        auto stored = {};
 
        auto done = false;
 
        while (!done) {
 
            sync {
 
                auto command = get(rx);
 
                if (let Cmd::Set(bytes) = command) {
 
                    print(\"database: storing value\");
 
                    stored = bytes;
 
                } else if (let Cmd::Get = command) {
 
                    print(\"database: returning value\");
 
                    put(tx, stored);
 
                } else if (let Cmd::Shutdown = command) {
 
                    print(\"database: shutting down\");
 
                    done = true;
 
                } else while (true) print(\"impossible\"); // no other case possible
 
            }
 
        }
 
    }
 

	
 
    comp client(out<Cmd> tx, in<u8[]> rx, u32 num_rounds) {
 
        auto round = 0;
 
        while (round < num_rounds) {
 
            auto set_value = b\"hello there\";
 
            print(\"client: putting a value\");
 
            sync put(tx, Cmd::Set(set_value));
 

	
 
            auto retrieved = {};
 
            print(\"client: retrieving what was sent\");
 
            sync {
 
                put(tx, Cmd::Get);
 
                retrieved = get(rx);
 
            }
 

	
 
            if (set_value != retrieved) while (true) print(\"wrong!\");
 

	
 
            round += 1;
 
        }
 

	
 
        sync put(tx, Cmd::Shutdown);
 
    }
 

	
 
    comp main() {
 
        auto num_rounds = 5;
 
        channel cmd_tx -> cmd_rx;
 
        channel data_tx -> data_rx;
 
        new database(cmd_rx, data_tx);
 
        new client(cmd_tx, data_rx, num_rounds);
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(1, LOG_LEVEL, pd).unwrap();
 
    create_component(&rt, "", "main", no_args());
 
}
 
\ No newline at end of file
std/std.internet.pdl
Show inline comments
 
#module std.internet
 

	
 
union ClientCmd {
 
    Send(u8[]),
 
    Receive,
 
    Finish,
 
    Shutdown,
 
}
 

	
 
comp tcp_client(u8[] ip, u16 port, in<Cmd> cmds, out<u8[]> rx) {
 
comp tcp_client(u8[] ip, u16 port, in<ClientCmd> cmds, out<u8[]> rx) {
 
    #builtin
 
}
 

	
 
union ListenerCmd {
 
    Accept,
 
    Shutdown,
 
}
 

	
 
struct TcpConnection {
 
    out<Cmd> tx,
 
    out<ClientCmd> tx,
 
    in<u8[]> rx,
 
}
 

	
 
/* comp tcp_listener(u8[] ip, u16 port, in<ListenerCmd> cmds, out<TcpConnection> rx) {
 
    #builtin
 
} */
 
\ No newline at end of file
0 comments (0 inline, 0 general)