Changeset - 7f9b23076d66
[Not reviewed]
0 6 0
mh - 4 years ago 2021-12-15 16:56:29
contact@maxhenger.nl
Add some tests for tuple member access
6 files changed with 118 insertions and 4 deletions:
0 comments (0 inline, 0 general)
src/protocol/eval/executor.rs
Show inline comments
 
@@ -443,102 +443,108 @@ impl Prompt {
 
                                Value::String(v) => (ValueKind::String, *v),
 
                                Value::Message(v) => (ValueKind::Message, *v),
 
                                _ => unreachable!()
 
                            };
 

	
 
                            if array_inclusive_index_is_invalid(&self.store, array_heap_pos, from_index) {
 
                                return Err(construct_array_error(self, modules, heap, expr.from_index, array_heap_pos, from_index));
 
                            }
 
                            if array_exclusive_index_is_invalid(&self.store, array_heap_pos, to_index) {
 
                                return Err(construct_array_error(self, modules, heap, expr.to_index, array_heap_pos, to_index));
 
                            }
 

	
 
                            // Again: would love to push directly, but rust...
 
                            let new_heap_pos = self.store.alloc_heap();
 
                            debug_assert!(self.store.heap_regions[new_heap_pos as usize].values.is_empty());
 
                            if to_index > from_index {
 
                                let from_index = from_index as usize;
 
                                let to_index = to_index as usize;
 
                                let mut values = Vec::with_capacity(to_index - from_index);
 
                                for idx in from_index..to_index {
 
                                    let value = self.store.heap_regions[array_heap_pos as usize].values[idx].clone();
 
                                    values.push(self.store.clone_value(value));
 
                                }
 

	
 
                                self.store.heap_regions[new_heap_pos as usize].values = values;
 

	
 
                            } // else: empty range
 

	
 
                            cur_frame.expr_values.push_back(match value_kind {
 
                                ValueKind::Array => Value::Array(new_heap_pos),
 
                                ValueKind::String => Value::String(new_heap_pos),
 
                                ValueKind::Message => Value::Message(new_heap_pos),
 
                            });
 

	
 
                            // Dropping the original subject, because we don't
 
                            // want to drop something on the stack
 
                            self.store.drop_value(subject.get_heap_pos());
 
                        },
 
                        Expression::Select(expr) => {
 
                            let subject= cur_frame.expr_values.pop_back().unwrap();
 
                            let mono_data = types.get_procedure_monomorph(cur_frame.monomorph_idx);
 
                            let field_idx = mono_data.expr_data[expr.unique_id_in_definition as usize].field_or_monomorph_idx as u32;
 

	
 
                            // Note: same as above: clone if value lives on expr stack, simply
 
                            // refer to it if it already lives on the stack/heap.
 
                            let (deallocate_heap_pos, value_to_push) = match subject {
 
                                Value::Ref(value_ref) => {
 
                                    let subject = self.store.read_ref(value_ref);
 
                                    let subject_heap_pos = subject.as_struct();
 
                                    let subject_heap_pos = match expr.kind {
 
                                        SelectKind::StructField(_) => subject.as_struct(),
 
                                        SelectKind::TupleMember(_) => subject.as_tuple(),
 
                                    };
 

	
 
                                    (None, Value::Ref(ValueId::Heap(subject_heap_pos, field_idx)))
 
                                },
 
                                _ => {
 
                                    let subject_heap_pos = subject.as_struct();
 
                                    let subject_heap_pos = match expr.kind {
 
                                        SelectKind::StructField(_) => subject.as_struct(),
 
                                        SelectKind::TupleMember(_) => subject.as_tuple(),
 
                                    };
 
                                    let subject_indexed = Value::Ref(ValueId::Heap(subject_heap_pos, field_idx));
 
                                    (Some(subject_heap_pos), self.store.clone_value(subject_indexed))
 
                                },
 
                            };
 

	
 
                            cur_frame.expr_values.push_back(value_to_push);
 
                            self.store.drop_value(deallocate_heap_pos);
 
                        },
 
                        Expression::Literal(expr) => {
 
                            let value = match &expr.value {
 
                                Literal::Null => Value::Null,
 
                                Literal::True => Value::Bool(true),
 
                                Literal::False => Value::Bool(false),
 
                                Literal::Character(lit_value) => Value::Char(*lit_value),
 
                                Literal::String(lit_value) => {
 
                                    let heap_pos = self.store.alloc_heap();
 
                                    let values = &mut self.store.heap_regions[heap_pos as usize].values;
 
                                    let value = lit_value.as_str();
 
                                    debug_assert!(values.is_empty());
 
                                    values.reserve(value.len());
 
                                    for character in value.as_bytes() {
 
                                        debug_assert!(character.is_ascii());
 
                                        values.push(Value::Char(*character as char));
 
                                    }
 
                                    Value::String(heap_pos)
 
                                }
 
                                Literal::Integer(lit_value) => {
 
                                    use ConcreteTypePart as CTP;
 
                                    let def_types = types.get_procedure_monomorph(cur_frame.monomorph_idx);
 
                                    let concrete_type = &def_types.expr_data[expr.unique_id_in_definition as usize].expr_type;
 

	
 
                                    debug_assert_eq!(concrete_type.parts.len(), 1);
 
                                    match concrete_type.parts[0] {
 
                                        CTP::UInt8  => Value::UInt8(lit_value.unsigned_value as u8),
 
                                        CTP::UInt16 => Value::UInt16(lit_value.unsigned_value as u16),
 
                                        CTP::UInt32 => Value::UInt32(lit_value.unsigned_value as u32),
 
                                        CTP::UInt64 => Value::UInt64(lit_value.unsigned_value as u64),
 
                                        CTP::SInt8  => Value::SInt8(lit_value.unsigned_value as i8),
 
                                        CTP::SInt16 => Value::SInt16(lit_value.unsigned_value as i16),
 
                                        CTP::SInt32 => Value::SInt32(lit_value.unsigned_value as i32),
 
                                        CTP::SInt64 => Value::SInt64(lit_value.unsigned_value as i64),
 
                                        _ => unreachable!("got concrete type {:?} for integer literal at expr {:?}", concrete_type, expr_id),
 
                                    }
 
                                }
 
                                Literal::Struct(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.fields.len()
 
                                    );
src/protocol/eval/store.rs
Show inline comments
 
@@ -144,81 +144,82 @@ impl Store {
 
            ValueId::Heap(heap_pos, region_idx) => {
 
                let heap_pos = heap_pos as usize;
 
                let region_idx = region_idx as usize;
 
                self.drop_value(self.heap_regions[heap_pos].values[region_idx].get_heap_pos());
 
                self.heap_regions[heap_pos].values[region_idx] = value
 
            }
 
        }
 
    }
 

	
 
    /// This thing takes a cloned Value, because of borrowing issues (which is
 
    /// either a direct value, or might contain an index to a heap value), but
 
    /// should be treated by the programmer as a reference (i.e. don't call
 
    /// `drop_value(thing)` after calling `clone_value(thing.clone())`.
 
    pub(crate) fn clone_value(&mut self, value: Value) -> Value {
 
        // Quickly check if the value is not on the heap
 
        let source_heap_pos = value.get_heap_pos();
 
        if source_heap_pos.is_none() {
 
            // We can do a trivial copy, unless we're dealing with a value
 
            // reference
 
            return match value {
 
                Value::Ref(ValueId::Stack(stack_pos)) => {
 
                    let abs_stack_pos = self.cur_stack_boundary + stack_pos as usize + 1;
 
                    self.clone_value(self.stack[abs_stack_pos].clone())
 
                },
 
                Value::Ref(ValueId::Heap(heap_pos, val_idx)) => {
 
                    self.clone_value(self.heap_regions[heap_pos as usize].values[val_idx as usize].clone())
 
                },
 
                _ => value,
 
            };
 
        }
 

	
 
        // Value does live on heap, copy it
 
        let source_heap_pos = source_heap_pos.unwrap() as usize;
 
        let target_heap_pos = self.alloc_heap();
 
        let target_heap_pos_usize = target_heap_pos as usize;
 

	
 
        let num_values = self.heap_regions[source_heap_pos].values.len();
 
        for value_idx in 0..num_values {
 
            let cloned = self.clone_value(self.heap_regions[source_heap_pos].values[value_idx].clone());
 
            self.heap_regions[target_heap_pos_usize].values.push(cloned);
 
        }
 

	
 
        match value {
 
            Value::Message(_) => Value::Message(target_heap_pos),
 
            Value::String(_) => Value::String(target_heap_pos),
 
            Value::Array(_) => Value::Array(target_heap_pos),
 
            Value::Union(tag, _) => Value::Union(tag, target_heap_pos),
 
            Value::Struct(_) => Value::Struct(target_heap_pos),
 
            Value::Tuple(_) => Value::Tuple(target_heap_pos),
 
            _ => unreachable!("performed clone_value on heap, but {:?} is not a heap value", value),
 
        }
 
    }
 

	
 
    pub(crate) fn drop_value(&mut self, value: Option<HeapPos>) {
 
        if let Some(heap_pos) = value {
 
            self.drop_heap_pos(heap_pos);
 
        }
 
    }
 

	
 
    pub(crate) fn drop_heap_pos(&mut self, heap_pos: HeapPos) {
 
        let num_values = self.heap_regions[heap_pos as usize].values.len();
 
        for value_idx in 0..num_values {
 
            if let Some(other_heap_pos) = self.heap_regions[heap_pos as usize].values[value_idx].get_heap_pos() {
 
                self.drop_heap_pos(other_heap_pos);
 
            }
 
        }
 

	
 
        self.heap_regions[heap_pos as usize].values.clear();
 
        self.free_regions.push_back(heap_pos);
 
    }
 

	
 
    pub(crate) fn alloc_heap(&mut self) -> HeapPos {
 
        if self.free_regions.is_empty() {
 
            let idx = self.heap_regions.len() as HeapPos;
 
            self.heap_regions.push(HeapAllocation{ values: Vec::new() });
 
            return idx;
 
        } else {
 
            let idx = self.free_regions.pop_back().unwrap();
 
            return idx;
 
        }
 
    }
 
}
 
\ No newline at end of file
src/protocol/parser/pass_typing.rs
Show inline comments
 
@@ -3256,97 +3256,100 @@ impl PassTyping {
 
            EP::None =>
 
                // Should have been set by linker
 
                unreachable!(),
 
            EP::ExpressionStmt(_) =>
 
                // Determined during type inference
 
                InferenceType::new(false, false, vec![ITP::Unknown]),
 
            EP::Expression(parent_id, idx_in_parent) => {
 
                // If we are the test expression of a conditional expression,
 
                // then we must resolve to a boolean
 
                let is_conditional = if let Expression::Conditional(_) = &ctx.heap[*parent_id] {
 
                    true
 
                } else {
 
                    false
 
                };
 

	
 
                if is_conditional && *idx_in_parent == 0 {
 
                    InferenceType::new(false, true, vec![ITP::Bool])
 
                } else {
 
                    InferenceType::new(false, false, vec![ITP::Unknown])
 
                }
 
            },
 
            EP::If(_) | EP::While(_) =>
 
                // Must be a boolean
 
                InferenceType::new(false, true, vec![ITP::Bool]),
 
            EP::Return(_) =>
 
                // Must match the return type of the function
 
                if let DefinitionType::Function(func_id) = self.definition_type {
 
                    debug_assert_eq!(ctx.heap[func_id].return_types.len(), 1);
 
                    let returned = &ctx.heap[func_id].return_types[0];
 
                    self.determine_inference_type_from_parser_type_elements(&returned.elements, true)
 
                } else {
 
                    // Cannot happen: definition always set upon body traversal
 
                    // and "return" calls in components are illegal.
 
                    unreachable!();
 
                },
 
            EP::New(_) =>
 
                // Must be a component call, which we assign a "Void" return
 
                // type
 
                InferenceType::new(false, true, vec![ITP::Void]),
 
        };
 

	
 
        let infer_expr = &mut self.expr_types[expr.get_unique_id_in_definition() as usize];
 
        let needs_extra_data = match expr {
 
            Expression::Call(_) => true,
 
            Expression::Literal(expr) => match expr.value {
 
                Literal::Enum(_) | Literal::Union(_) | Literal::Struct(_) => true,
 
                _ => false,
 
            },
 
            Expression::Select(_) => true,
 
            Expression::Select(expr) => match expr.kind {
 
                SelectKind::StructField(_) => true,
 
                SelectKind::TupleMember(_) => false,
 
            },
 
            _ => false,
 
        };
 

	
 
        if infer_expr.expr_id.is_invalid() {
 
            // Nothing is set yet
 
            infer_expr.expr_type = inference_type;
 
            infer_expr.expr_id = expr_id;
 
            if needs_extra_data {
 
                let extra_idx = self.extra_data.len() as i32;
 
                self.extra_data.push(ExtraData::default());
 
                infer_expr.extra_data_idx = extra_idx;
 
            }
 
        } else {
 
            // We already have an entry
 
            debug_assert!(false, "does this ever happen?");
 
            if let SingleInferenceResult::Incompatible = InferenceType::infer_subtree_for_single_type(
 
                &mut infer_expr.expr_type, 0, &inference_type.parts, 0, false
 
            ) {
 
                return Err(self.construct_expr_type_error(ctx, expr_id, expr_id));
 
            }
 

	
 
            debug_assert!((infer_expr.extra_data_idx != -1) == needs_extra_data);
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn insert_initial_call_polymorph_data(
 
        &mut self, ctx: &mut Ctx, call_id: CallExpressionId
 
    ) {
 
        // Note: the polymorph variables may be partially specified and may
 
        // contain references to the wrapping definition's (i.e. the proctype
 
        // we are currently visiting) polymorphic arguments.
 
        //
 
        // The arguments of the call may refer to polymorphic variables in the
 
        // definition of the function we're calling, not of the wrapping
 
        // definition. We insert markers in these inferred types to be able to
 
        // map them back and forth to the polymorphic arguments of the function
 
        // we are calling.
 
        let call = &ctx.heap[call_id];
 
        let extra_data_idx = self.expr_types[call.unique_id_in_definition as usize].extra_data_idx; // TODO: @Temp
 
        debug_assert!(extra_data_idx != -1, "insert initial call polymorph data, no preallocated ExtraData");
 

	
 
        // Handle the polymorphic arguments (if there are any)
 
        let num_poly_args = call.parser_type.elements[0].variant.num_embedded();
 
        let mut poly_args = Vec::with_capacity(num_poly_args);
 
        for embedded_elements in call.parser_type.iter_embedded(0) {
 
            poly_args.push(self.determine_inference_type_from_parser_type_elements(embedded_elements, true));
src/protocol/tests/eval_operators.rs
Show inline comments
 
@@ -102,106 +102,140 @@ fn test_binary_integer_operators() {
 
            .for_function("foo", move |f| {
 
                f.call_ok(Some(expected_value));
 
            });
 
    }
 

	
 
    perform_test(
 
        "bitwise_or", "u16",
 
        "auto a = 3; return a | 4;", Value::UInt16(7)
 
    );
 
    perform_test(
 
        "bitwise_xor", "u16",
 
        "auto a = 3; return a ^ 7;", Value::UInt16(4)
 
    );
 
    perform_test(
 
        "bitwise and", "u16",
 
        "auto a = 0b110011; return a & 0b011110;", Value::UInt16(0b010010)
 
    );
 
    perform_test(
 
        "shift left", "u16",
 
        "auto a = 0x0F; return a << 4;", Value::UInt16(0xF0)
 
    );
 
    perform_test(
 
        "shift right", "u64",
 
        "auto a = 0xF0; return a >> 4;", Value::UInt64(0x0F)
 
    );
 
    perform_test(
 
        "add", "u32",
 
        "auto a = 5; return a + 5;", Value::UInt32(10)
 
    );
 
    perform_test(
 
        "subtract", "u32",
 
        "auto a = 3; return a - 3;", Value::UInt32(0)
 
    );
 
    perform_test(
 
        "multiply", "u8",
 
        "auto a = 2 * 2; return a * 2 * 2;", Value::UInt8(16)
 
    );
 
    perform_test(
 
        "divide", "u8",
 
        "auto a = 32 / 2; return a / 2 / 2;", Value::UInt8(4)
 
    );
 
    perform_test(
 
        "remainder", "u16",
 
        "auto a = 29; return a % 3;", Value::UInt16(2)
 
    );
 
}
 

	
 
#[test]
 
fn test_tuple_operators() {
 
fn test_tuple_comparison_operators() {
 
    Tester::new_single_source_expect_ok("tuple equality", "
 
    func test_func() -> bool {
 
        auto a1 = (8, 16, 32);
 
        (u8, u16, u32) a2 = (8, 16, 32);
 
        auto b1 = ();
 
        () b2 = ();
 

	
 
        return a1 == a2 && a2 == (8, 16, 32) && b1 == b2 && b2 == ();
 
    }
 
    ").for_function("test_func", |f| { f
 
        .call_ok(Some(Value::Bool(true)));
 
    });
 

	
 
    Tester::new_single_source_expect_ok("tuple inequality", "
 
    func test_func() -> bool {
 
        auto a = (8, 16, 32);
 
        (u8, u16, u32) a_same = (8, 16, 32);
 
        auto a_diff = (0b111, 0b1111, 0b11111);
 
        auto b = ();
 
        return
 
            !(a != a_same) &&
 
            a != a_diff &&
 
            a != (8, 16, 320) &&
 
            !(b != ());
 
    }
 
    ").for_function("test_func", |f| { f
 
        .call_ok(Some(Value::Bool(true)));
 
    });
 
}
 

	
 
#[test]
 
fn test_tuple_select_operator() {
 
    Tester::new_single_source_expect_ok("tuple member assignment", "
 
    func test() -> bool {
 
        auto tuple = (0, 1, 0, 1);
 
        tuple.0 = cast<u8>(1);
 
        tuple.1 = cast<u16>(2);
 
        tuple.2 = cast<u32>(3);
 
        tuple.3 = cast<u64>(4);
 
        return cast(tuple.0) + cast(tuple.1) + tuple.2 + cast(tuple.3) == 10;
 
    }
 
    ").for_function("test", |f| { f
 
        .for_variable("tuple", |v| { v.assert_concrete_type("(u8,u16,u32,u64)"); })
 
        .call_ok(Some(Value::Bool(true)));
 
    });
 

	
 
    Tester::new_single_source_expect_ok("tuple polymorph member access", "
 
    func sum_variant_a<A,B,C,D>((A,B,C,D) v) -> C {
 
        return cast(v.0) + cast(v.1) + v.2 + cast(v.3);
 
    }
 
    func sum_variant_b<A,B,C,D>((A,B,C,D) i) -> B {
 
        (A,B,C,D) c = (0,0,0,0);
 
        c.0 = i.0; c.1 = i.1; c.2 = i.2; c.3 = i.3;
 
        return cast(c.0) + c.1 + cast(c.2) + cast(c.3);
 
    }
 
    func test() -> bool {
 
        (u8,u16,u32,u64) tuple = (1, 2, 3, 4);
 
        return sum_variant_a(tuple) == 10 && sum_variant_b(tuple) == 10;
 
    }
 
    ").for_function("test", |f| { f
 
        .call_ok(Some(Value::Bool(true)));
 
    });
 
}
 

	
 
#[test]
 
fn test_string_operators() {
 
    Tester::new_single_source_expect_ok("string concatenation", "
 
func create_concatenated(string left, string right) -> string {
 
    return left @ \", but also \" @ right;
 
}
 
func perform_concatenate(string left, string right) -> string {
 
    left @= \", but also \";
 
    left @= right;
 
    return left;
 
}
 
func foo() -> bool {
 
    auto left = \"Darth Vader\";
 
    auto right = \"Anakin Skywalker\";
 
    auto res1 = create_concatenated(left, right);
 
    auto res2 = perform_concatenate(left, right);
 
    auto expected = \"Darth Vader, but also Anakin Skywalker\";
 

	
 
    return
 
        res1 == expected &&
 
        res2 == \"Darth Vader, but also Anakin Skywalker\" &&
 
        res1 != \"This kind of thing\" && res2 != \"Another likewise kind of thing\";
 
}
 
    ").for_function("foo", |f| { f
 
        .call_ok(Some(Value::Bool(true)));
 
    });
 
}
 
\ No newline at end of file
src/protocol/tests/parser_inference.rs
Show inline comments
 
@@ -77,97 +77,135 @@ fn test_binary_expr_inference() {
 
            s16 s0 = 0;
 
            s16 s1 = 1;
 
            s32 i0 = 0;
 
            s32 i1 = 1;
 
            s64 l0 = 0;
 
            s64 l1 = 1;
 
            auto b = b0 + b1;
 
            auto s = s0 + s1;
 
            auto i = i0 + i1;
 
            auto l = l0 + l1;
 
            return i;
 
        }"
 
    ).for_function("call", |f| { f
 
        .for_expression_by_source(
 
            "b0 + b1", "+", 
 
            |e| { e.assert_concrete_type("s8"); }
 
        )
 
        .for_expression_by_source(
 
            "s0 + s1", "+", 
 
            |e| { e.assert_concrete_type("s16"); }
 
        )
 
        .for_expression_by_source(
 
            "i0 + i1", "+", 
 
            |e| { e.assert_concrete_type("s32"); }
 
        )
 
        .for_expression_by_source(
 
            "l0 + l1", "+", 
 
            |e| { e.assert_concrete_type("s64"); }
 
        );
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "incompatible types", 
 
        "func call() -> s32 {
 
            s8 b = 0;
 
            s64 l = 1;
 
            auto r = b + l;
 
            return 0;
 
        }"
 
    ).error(|e| { e
 
        .assert_ctx_has(0, "b + l")
 
        .assert_msg_has(0, "cannot apply")
 
        .assert_occurs_at(0, "+")
 
        .assert_msg_has(1, "has type 's8'")
 
        .assert_msg_has(2, "has type 's64'");
 
    });
 
}
 

	
 
#[test]
 
fn test_tuple_inference() {
 
    Tester::new_single_source_expect_ok(
 
        "from tuple to variable",
 
        "
 
        func test() -> u32 {
 
            (u8,u16,u32,u64) tuple = (1, 2, 3, 4);
 
            auto a = tuple.0;
 
            auto b = tuple.1;
 
            auto c = tuple.2;
 
            auto d = tuple.3;
 
            return cast(a) + cast(b) + c + cast(d);
 
        }
 
        "
 
    ).for_function("test", |f| { f
 
        .for_variable("a", |v| { v.assert_concrete_type("u8"); })
 
        .for_variable("b", |v| { v.assert_concrete_type("u16"); })
 
        .for_variable("c", |v| { v.assert_concrete_type("u32"); })
 
        .for_variable("d", |v| { v.assert_concrete_type("u64"); })
 
        .call_ok(Some(Value::UInt32(10)));
 
    });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "from variable to tuple",
 
        "
 
        func test() -> u32 {
 
            auto tuple = (1, 2, 3, 4);
 
            u8  a = tuple.0;
 
            u16 b = tuple.1;
 
            u32 c = tuple.2;
 
            u64 d = tuple.3;
 
            return cast(a) + cast(b) + c + cast(d);
 
        }
 
        "
 
    ).for_function("test", |f| { f
 
        .for_variable("tuple", |v| { v.assert_concrete_type("(u8,u16,u32,u64)"); })
 
        .call_ok(Some(Value::UInt32(10)));
 
    });
 
}
 

	
 
#[test]
 
fn test_struct_inference() {
 
    Tester::new_single_source_expect_ok(
 
        "by function calls",
 
        "
 
        struct Pair<T1, T2>{ T1 first, T2 second }
 
        func construct<T1, T2>(T1 first, T2 second) -> Pair<T1, T2> {
 
            return Pair{ first: first, second: second };
 
        }
 
        func fix_t1<T2>(Pair<s8, T2> arg) -> s32 { return 0; }
 
        func fix_t2<T1>(Pair<T1, s32> arg) -> s32 { return 0; }
 
        func test() -> s32 {
 
            auto first = 0;
 
            auto second = 1;
 
            auto pair = construct(first, second);
 
            fix_t1(pair);
 
            fix_t2(pair);
 
            return 0;
 
        }
 
        "
 
    ).for_function("test", |f| { f
 
        .for_variable("first", |v| { v
 
            .assert_parser_type("auto")
 
            .assert_concrete_type("s8");
 
        })
 
        .for_variable("second", |v| { v
 
            .assert_parser_type("auto")
 
            .assert_concrete_type("s32");
 
        })
 
        .for_variable("pair", |v| { v
 
            .assert_parser_type("auto")
 
            .assert_concrete_type("Pair<s8,s32>");
 
        });
 
    });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "by field access",
 
        "
 
        struct Pair<T1, T2>{ T1 first, T2 second }
 
        func construct<T1, T2>(T1 first, T2 second) -> Pair<T1, T2> {
 
            return Pair{ first: first, second: second };
 
        }
 
        func test() -> s32 {
 
            auto first = 0;
 
            auto second = 1;
 
            auto pair = construct(first, second);
 
            s8 assign_first = 0;
src/protocol/tests/parser_validation.rs
Show inline comments
 
@@ -431,69 +431,101 @@ fn test_correct_tuple_polymorph_args() {
 
            auto b = Option<(u32, u64)>::None;
 
            auto c = Option<(Option<(u8, s8)>, Option<(s8, u8)>)>::None;
 
            return 0;
 
        }
 
        "
 
    ).for_union("Option", |u| { u
 
        .assert_has_monomorph("Option<()>")
 
        .assert_has_monomorph("Option<(u32,u64)>")
 
        .assert_has_monomorph("Option<(Option<(u8,s8)>,Option<(s8,u8)>)>")
 
        .assert_size_alignment("Option<()>", 1, 1, 0, 0)
 
        .assert_size_alignment("Option<(u32,u64)>", 24, 8, 0, 0) // (u32, u64) becomes size 16, alignment 8. Hence union tag is aligned to 8
 
        .assert_size_alignment("Option<(Option<(u8,s8)>,Option<(s8,u8)>)>", 7, 1, 0, 0); // inner unions are size 3, alignment 1. Two of those with a tag is size 7
 
    });
 
}
 

	
 
#[test]
 
fn test_incorrect_tuple_polymorph_args() {
 
    // Do some mismatching brackets. I don't know what else to test
 
    Tester::new_single_source_expect_err(
 
        "mismatch angle bracket",
 
        "
 
        union Option<T>{ Some(T), None }
 
        func f() -> u32 {
 
            auto a = Option<(u32>)::None;
 
            return 0;
 
        }"
 
    ).error(|e| { e
 
        .assert_num(2)
 
        .assert_msg_has(0, "closing '>'").assert_occurs_at(0, ">)::None")
 
        .assert_msg_has(1, "match this '('").assert_occurs_at(1, "(u32>");
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "wrongly placed angle",
 
        "
 
        union O<T>{ S(T), N }
 
        func f() -> u32 {
 
            auto a = O<(<u32>)>::None;
 
            return 0;
 
        }
 
        "
 
    ).error(|e| { e
 
        .assert_num(1)
 
        .assert_msg_has(0, "expected typename")
 
        .assert_occurs_at(0, "<u32");
 
    });
 
}
 

	
 
#[test]
 
fn test_incorrect_tuple_member_access() {
 
    Tester::new_single_source_expect_err(
 
        "zero-tuple",
 
        "func foo() -> () { () a = (); auto b = a.0; return a; }"
 
    ).error(|e| { e
 
        .assert_num(1)
 
        .assert_msg_has(0, "out of bounds")
 
        .assert_occurs_at(0, "a.0");
 
    });
 

	
 
    // Make the type checker do some shenanigans before we can decide the tuple
 
    // type.
 
    Tester::new_single_source_expect_err(
 
        "sized tuple",
 
        "
 
        func determinator<A,B>((A,B,A) v) -> B { return v.1; }
 
        func tester() -> u64 {
 
            auto v = (0,1,2);
 
            u32 a_u32 = 5;
 
            v.2 = a_u32;
 
            v.8 = 5;
 
            return determinator(v);
 
        }
 
        "
 
    ).error(|e| { e
 
        .assert_num(1)
 
        .assert_msg_has(0, "out of bounds")
 
        .assert_occurs_at(0, "v.8");
 
    });
 
}
 

	
 
#[test]
 
fn test_polymorph_array_types() {
 
    Tester::new_single_source_expect_ok(
 
        "array of polymorph in struct",
 
        "
 
        struct Foo<T> { T[] hello }
 
        struct Bar { Foo<u32>[] world }
 
        "
 
    ).for_struct("Bar", |s| { s
 
        .for_field("world", |f| { f.assert_parser_type("Foo<u32>[]"); });
 
    });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "array of port in struct",
 
        "
 
        struct Bar { in<u32>[] inputs }
 
        "
 
    ).for_struct("Bar", |s| { s
 
        .for_field("inputs", |f| { f.assert_parser_type("in<u32>[]"); });
 
    });
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)