Changeset - 8296efe1f4dd
[Not reviewed]
0 2 0
Christopher Esterhuyse - 5 years ago 2020-06-30 16:43:54
christopher.esterhuyse@gmail.com
cbindgen fix
2 files changed with 2 insertions and 5 deletions:
0 comments (0 inline, 0 general)
reowolf.h
Show inline comments
 
/* CBindgen generated */
 

	
 
#ifndef REOWOLF_HEADER_DEFINED
 
#define REOWOLF_HEADER_DEFINED
 

	
 
#include <stdarg.h>
 
#include <stdbool.h>
 
#include <stdint.h>
 
#include <stdlib.h>
 

	
 
typedef enum {
 
  Active,
 
  Passive,
 
} EndpointPolarity;
 

	
 
typedef enum {
 
  Putter,
 
  Getter,
 
} Polarity;
 

	
 
typedef struct Arc_ProtocolDescription Arc_ProtocolDescription;
 

	
 
typedef struct Connector Connector;
 

	
 
typedef int32_t ErrorCode;
 

	
 
typedef uint32_t ConnectorId;
 

	
 
typedef uint32_t PortSuffix;
 

	
 
typedef struct {
 
  ConnectorId connector_id;
 
  PortSuffix u32_suffix;
 
} Id;
 

	
 
typedef Id PortId;
 
} PortId;
 

	
 
/**
 
 * Given
 
 * - an initialized connector in setup or connecting state,
 
 * - a string slice for the component's identifier in the connector's configured protocol description,
 
 * - a set of ports (represented as a slice; duplicates are ignored) in the native component's interface,
 
 * the connector creates a new (internal) protocol component C, such that the set of native ports are moved to C.
 
 * Usable in {setup, communication} states.
 
 */
 
ErrorCode connector_add_component(Connector *connector,
 
                                  const uint8_t *ident_ptr,
 
                                  uintptr_t ident_len,
 
                                  const PortId *ports_ptr,
 
                                  uintptr_t ports_len);
 

	
 
/**
 
 * Given
 
 * - an initialized connector in setup or connecting state,
 
 * - a utf-8 encoded socket address,
 
 * - the logical polarity of P,
 
 * - the "physical" polarity in {Active, Passive} of the endpoint through which P's peer will be discovered,
 
 * returns P, a port newly added to the native interface.
 
 */
 
ErrorCode connector_add_net_port(Connector *connector,
 
                                 PortId *port,
 
                                 const uint8_t *addr_str_ptr,
 
                                 uintptr_t addr_str_len,
 
                                 Polarity port_polarity,
 
                                 EndpointPolarity endpoint_polarity);
 

	
 
/**
 
 * Given an initialized connector in setup or connecting state,
 
 * - Creates a new directed port pair with logical channel putter->getter,
 
 * - adds the ports to the native component's interface,
 
 * - and returns them using the given out pointers.
 
 * Usable in {setup, communication} states.
 
 */
 
void connector_add_port_pair(Connector *connector, PortId *out_putter, PortId *out_getter);
 

	
 
/**
 
 * Connects this connector to the distributed system of connectors reachable through endpoints,
 
 * Usable in setup state, and changes the state to communication.
 
 */
 
ErrorCode connector_connect(Connector *connector, int64_t timeout_millis);
 

	
 
/**
 
 * Destroys the given a pointer to the connector on the heap, freeing its resources.
 
 * Usable in {setup, communication} states.
 
 */
 
void connector_destroy(Connector *connector);
 

	
 
ErrorCode connector_get(Connector *connector, PortId port);
 

	
 
const uint8_t *connector_gotten_bytes(Connector *connector, PortId port, uintptr_t *len);
 
const uint8_t *connector_gotten_bytes(Connector *connector, PortId port, uintptr_t *out_len);
 

	
 
/**
 
 * Initializes `out` with a new connector using the given protocol description as its configuration.
 
 * The connector uses the given (internal) connector ID.
 
 */
 
Connector *connector_new(const Arc_ProtocolDescription *pd);
 

	
 
Connector *connector_new_logging(const Arc_ProtocolDescription *pd,
 
                                 const uint8_t *path_ptr,
 
                                 uintptr_t path_len);
 

	
 
intptr_t connector_next_batch(Connector *connector);
 

	
 
void connector_print_debug(Connector *connector);
 

	
 
/**
 
 * Convenience function combining the functionalities of
 
 * "payload_new" with "connector_put_payload".
 
 */
 
ErrorCode connector_put_bytes(Connector *connector,
 
                              PortId port,
 
                              const uint8_t *bytes_ptr,
 
                              uintptr_t bytes_len);
 

	
 
intptr_t connector_sync(Connector *connector, int64_t timeout_millis);
 

	
 
/**
 
 * Given an initialized protocol description, initializes `out` with a clone which can be independently created or destroyed.
 
 */
 
Arc_ProtocolDescription *protocol_description_clone(const Arc_ProtocolDescription *pd);
 

	
 
/**
 
 * Destroys the given initialized protocol description and frees its resources.
 
 */
 
void protocol_description_destroy(Arc_ProtocolDescription *pd);
 

	
 
/**
 
 * Parses the utf8-encoded string slice to initialize a new protocol description object.
 
 * - On success, initializes `out` and returns 0
 
 * - On failure, stores an error string (see `reowolf_error_peek`) and returns -1
 
 */
 
Arc_ProtocolDescription *protocol_description_parse(const uint8_t *pdl, uintptr_t pdl_len);
 

	
 
/**
 
 * Returns length (via out pointer) and pointer (via return value) of the last Reowolf error.
 
 * - pointer is NULL iff there was no last error
 
 * - data at pointer is null-delimited
 
 * - len does NOT include the length of the null-delimiter
 
 * If len is NULL, it will not written to.
 
 */
 
const uint8_t *reowolf_error_peek(uintptr_t *len);
 

	
 
#endif /* REOWOLF_HEADER_DEFINED */
src/runtime/mod.rs
Show inline comments
 
mod communication;
 
mod endpoints;
 
pub mod error;
 
mod logging;
 
mod setup;
 

	
 
#[cfg(feature = "ffi")]
 
pub mod ffi;
 

	
 
#[cfg(test)]
 
mod tests;
 

	
 
use crate::common::*;
 
use error::*;
 

	
 
#[derive(Debug)]
 
#[repr(C)]
 
pub struct Connector {
 
    unphased: ConnectorUnphased,
 
    phased: ConnectorPhased,
 
}
 
pub trait Logger: Debug {
 
    fn line_writer(&mut self) -> &mut dyn std::io::Write;
 
}
 
#[derive(Debug)]
 
pub struct VecLogger(ConnectorId, Vec<u8>);
 
#[derive(Debug)]
 
pub struct DummyLogger;
 
#[derive(Debug)]
 
pub struct FileLogger(ConnectorId, std::fs::File);
 
pub(crate) struct NonsyncProtoContext<'a> {
 
    logger: &'a mut dyn Logger,
 
    proto_component_id: ProtoComponentId,
 
    port_info: &'a mut PortInfo,
 
    id_manager: &'a mut IdManager,
 
    proto_component_ports: &'a mut HashSet<PortId>,
 
    unrun_components: &'a mut Vec<(ProtoComponentId, ProtoComponent)>,
 
}
 
pub(crate) struct SyncProtoContext<'a> {
 
    logger: &'a mut dyn Logger,
 
    predicate: &'a Predicate,
 
    port_info: &'a PortInfo,
 
    inbox: &'a HashMap<PortId, Payload>,
 
}
 
#[derive(Debug)]
 
struct RoundOk {
 
    batch_index: usize,
 
    gotten: HashMap<PortId, Payload>,
 
}
 
struct VecSet<T: std::cmp::Ord> {
 
    // invariant: ordered, deduplicated
 
    vec: Vec<T>,
 
}
 
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
 
enum ComponentId {
 
    Native,
 
    Proto(ProtoComponentId),
 
}
 
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
 
enum Route {
 
    LocalComponent(ComponentId),
 
    Endpoint { index: usize },
 
}
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct MyPortInfo {
 
    polarity: Polarity,
 
    port: PortId,
 
}
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
enum Decision {
 
    Failure,
 
    Success(Predicate),
 
}
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
enum Msg {
 
    SetupMsg(SetupMsg),
 
    CommMsg(CommMsg),
 
}
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
enum SetupMsg {
 
    MyPortInfo(MyPortInfo),
 
    LeaderWave { wave_leader: ConnectorId },
 
    LeaderAnnounce { tree_leader: ConnectorId },
 
    YouAreMyParent,
 
    SessionGather { unoptimized_map: HashMap<ConnectorId, SessionInfo> },
 
    SessionScatter { optimized_map: HashMap<ConnectorId, SessionInfo> },
 
}
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct SessionInfo {
 
    serde_proto_description: SerdeProtocolDescription,
 
    port_info: PortInfo,
 
    proto_components: HashMap<ProtoComponentId, ProtoComponent>,
 
}
 
#[derive(Debug, Clone)]
 
struct SerdeProtocolDescription(Arc<ProtocolDescription>);
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct CommMsg {
 
    round_index: usize,
 
    contents: CommMsgContents,
 
}
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
enum CommMsgContents {
 
    SendPayload(SendPayloadMsg),
 
    Suggest { suggestion: Decision }, // SINKWARD
 
    Announce { decision: Decision },  // SINKAWAYS
 
}
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct SendPayloadMsg {
 
    predicate: Predicate,
 
    payload: Payload,
 
}
 
#[derive(Debug, PartialEq)]
 
enum CommonSatResult {
 
    FormerNotLatter,
 
    LatterNotFormer,
 
    Equivalent,
 
    New(Predicate),
 
    Nonexistant,
 
}
 
struct Endpoint {
 
    inbox: Vec<u8>,
 
    stream: TcpStream,
 
}
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
struct ProtoComponent {
 
    state: ComponentState,
 
    ports: HashSet<PortId>,
 
}
 
#[derive(Debug, Clone)]
 
struct EndpointSetup {
 
    sock_addr: SocketAddr,
 
    endpoint_polarity: EndpointPolarity,
 
}
 
#[derive(Debug)]
 
struct EndpointExt {
 
    endpoint: Endpoint,
 
    getter_for_incoming: PortId,
 
}
 
#[derive(Debug)]
 
struct Neighborhood {
 
    parent: Option<usize>,
 
    children: VecSet<usize>,
 
}
 
#[derive(Debug)]
 
struct IdManager {
 
    connector_id: ConnectorId,
 
    port_suffix_stream: U32Stream,
 
    proto_component_suffix_stream: U32Stream,
 
}
 
#[derive(Debug)]
 
struct EndpointManager {
 
    // invariants:
 
    // 1. endpoint N is registered READ | WRITE with poller
 
    // 2. Events is empty
 
    poll: Poll,
 
    events: Events,
 
    polled_undrained: IndexSet<usize>,
 
    delayed_messages: Vec<(usize, Msg)>,
 
    undelayed_messages: Vec<(usize, Msg)>,
 
    endpoint_exts: Vec<EndpointExt>,
 
}
 
#[derive(Clone, Debug, Default, serde::Serialize, serde::Deserialize)]
 
struct PortInfo {
 
    polarities: HashMap<PortId, Polarity>,
 
    peers: HashMap<PortId, PortId>,
 
    routes: HashMap<PortId, Route>,
 
}
 
#[derive(Debug)]
 
struct ConnectorCommunication {
 
    round_index: usize,
 
    endpoint_manager: EndpointManager,
 
    neighborhood: Neighborhood,
 
    native_batches: Vec<NativeBatch>,
 
    round_result: Result<Option<RoundOk>, SyncError>,
 
}
 
#[derive(Debug)]
 
struct ConnectorUnphased {
 
    proto_description: Arc<ProtocolDescription>,
 
    proto_components: HashMap<ProtoComponentId, ProtoComponent>,
 
    logger: Box<dyn Logger>,
 
    id_manager: IdManager,
 
    native_ports: HashSet<PortId>,
 
    port_info: PortInfo,
 
}
 
#[derive(Debug)]
 
enum ConnectorPhased {
 
    Setup { endpoint_setups: Vec<(PortId, EndpointSetup)>, surplus_sockets: u16 },
 
    Communication(Box<ConnectorCommunication>),
 
}
 
#[derive(Default, Clone, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
 
struct Predicate {
 
    assigned: BTreeMap<FiringVar, bool>,
 
}
 
#[derive(Debug, Default)]
 
struct NativeBatch {
 
    // invariant: putters' and getters' polarities respected
 
    to_put: HashMap<PortId, Payload>,
 
    to_get: HashSet<PortId>,
 
}
 
////////////////
 
pub fn would_block(err: &std::io::Error) -> bool {
 
    err.kind() == std::io::ErrorKind::WouldBlock
 
}
 
impl<T: std::cmp::Ord> VecSet<T> {
 
    fn new(mut vec: Vec<T>) -> Self {
 
        vec.sort();
 
        vec.dedup();
 
        Self { vec }
 
    }
 
    fn contains(&self, element: &T) -> bool {
 
        self.vec.binary_search(element).is_ok()
 
    }
 
    // fn insert(&mut self, element: T) -> bool {
 
    //     match self.vec.binary_search(&element) {
 
    //         Ok(_) => false,
 
    //         Err(index) => {
 
    //             self.vec.insert(index, element);
 
    //             true
 
    //         }
 
    //     }
 
    // }
 
    fn iter(&self) -> std::slice::Iter<T> {
 
        self.vec.iter()
 
    }
 
}
 
impl PortInfo {
 
    fn firing_var_for(&self, port: PortId) -> FiringVar {
 
        FiringVar(match self.polarities.get(&port).unwrap() {
 
            Getter => port,
 
            Putter => *self.peers.get(&port).unwrap(),
 
        })
 
    }
 
}
 
impl IdManager {
 
    fn new(connector_id: ConnectorId) -> Self {
 
        Self {
 
            connector_id,
 
            port_suffix_stream: Default::default(),
 
            proto_component_suffix_stream: Default::default(),
 
        }
 
    }
 
    fn new_port_id(&mut self) -> PortId {
 
        Id { connector_id: self.connector_id, u32_suffix: self.port_suffix_stream.next() }.into()
 
    }
 
    fn new_proto_component_id(&mut self) -> ProtoComponentId {
 
        Id {
 
            connector_id: self.connector_id,
 
            u32_suffix: self.proto_component_suffix_stream.next(),
 
        }
 
        .into()
 
    }
 
}
 
impl Drop for Connector {
 
    fn drop(&mut self) {
 
        log!(&mut *self.unphased.logger, "Connector dropping. Goodbye!");
 
    }
 
}
 
impl Connector {
 
    fn random_id() -> ConnectorId {
 
        type Bytes8 = [u8; std::mem::size_of::<ConnectorId>()];
 
        unsafe {
 
            let mut bytes = std::mem::MaybeUninit::<Bytes8>::uninit();
 
            // getrandom is the canonical crate for a small, secure rng
 
            getrandom::getrandom(&mut *bytes.as_mut_ptr()).unwrap();
 
            // safe! representations of all valid Byte8 values are valid ConnectorId values
 
            std::mem::transmute::<_, _>(bytes.assume_init())
 
        }
 
    }
 
    pub fn swap_logger(&mut self, mut new_logger: Box<dyn Logger>) -> Box<dyn Logger> {
 
        std::mem::swap(&mut self.unphased.logger, &mut new_logger);
 
        new_logger
 
    }
 
    pub fn get_logger(&mut self) -> &mut dyn Logger {
 
        &mut *self.unphased.logger
 
    }
 
    pub fn new_port_pair(&mut self) -> [PortId; 2] {
 
        let cu = &mut self.unphased;
 
        // adds two new associated ports, related to each other, and exposed to the native
 
        let [o, i] = [cu.id_manager.new_port_id(), cu.id_manager.new_port_id()];
 
        cu.native_ports.insert(o);
 
        cu.native_ports.insert(i);
 
        // {polarity, peer, route} known. {} unknown.
 
        cu.port_info.polarities.insert(o, Putter);
 
        cu.port_info.polarities.insert(i, Getter);
 
        cu.port_info.peers.insert(o, i);
 
        cu.port_info.peers.insert(i, o);
 
        let route = Route::LocalComponent(ComponentId::Native);
 
        cu.port_info.routes.insert(o, route);
 
        cu.port_info.routes.insert(i, route);
 
        log!(cu.logger, "Added port pair (out->in) {:?} -> {:?}", o, i);
 
        [o, i]
 
    }
 
    pub fn add_component(
 
        &mut self,
 
        identifier: &[u8],
 
        ports: &[PortId],
 
    ) -> Result<(), AddComponentError> {
 
        // called by the USER. moves ports owned by the NATIVE
 
        use AddComponentError::*;
 
        // 1. check if this is OK
 
        let cu = &mut self.unphased;
 
        let polarities = cu.proto_description.component_polarities(identifier)?;
 
        if polarities.len() != ports.len() {
 
            return Err(WrongNumberOfParamaters { expected: polarities.len() });
 
        }
 
        for (&expected_polarity, port) in polarities.iter().zip(ports.iter()) {
 
            if !cu.native_ports.contains(port) {
 
                return Err(UnknownPort(*port));
 
            }
 
            if expected_polarity != *cu.port_info.polarities.get(port).unwrap() {
 
                return Err(WrongPortPolarity { port: *port, expected_polarity });
 
            }
 
        }
 
        // 3. remove ports from old component & update port->route
 
        let new_id = cu.id_manager.new_proto_component_id();
 
        for port in ports.iter() {
 
            cu.port_info.routes.insert(*port, Route::LocalComponent(ComponentId::Proto(new_id)));
 
        }
 
        cu.native_ports.retain(|port| !ports.contains(port));
 
        // 4. add new component
 
        cu.proto_components.insert(
 
            new_id,
 
            ProtoComponent {
 
                state: cu.proto_description.new_main_component(identifier, ports),
 
                ports: ports.iter().copied().collect(),
 
            },
 
        );
 
        Ok(())
 
    }
 
}
 
impl Predicate {
 
    #[inline]
 
    pub fn inserted(mut self, k: FiringVar, v: bool) -> Self {
 
        self.assigned.insert(k, v);
 
        self
 
    }
 
    // returns true IFF self.unify would return Equivalent OR FormerNotLatter
 
    pub fn satisfies(&self, other: &Self) -> bool {
 
        let mut s_it = self.assigned.iter();
 
        let mut s = if let Some(s) = s_it.next() {
 
            s
 
        } else {
 
            return other.assigned.is_empty();
 
        };
 
        for (oid, ob) in other.assigned.iter() {
 
            while s.0 < oid {
 
                s = if let Some(s) = s_it.next() {
 
                    s
 
                } else {
 
                    return false;
 
                };
 
            }
 
            if s.0 > oid || s.1 != ob {
 
                return false;
 
            }
 
        }
 
        true
 
    }
 

	
 
    /// Given self and other, two predicates, return the most general Predicate possible, N
 
    /// such that n.satisfies(self) && n.satisfies(other).
 
    /// If none exists Nonexistant is returned.
 
    /// If the resulting predicate is equivlanet to self, other, or both,
 
    /// FormerNotLatter, LatterNotFormer and Equivalent are returned respectively.
 
    /// otherwise New(N) is returned.
 
    fn common_satisfier(&self, other: &Self) -> CommonSatResult {
 
        use CommonSatResult as Csr;
 
        // iterators over assignments of both predicates. Rely on SORTED ordering of BTreeMap's keys.
 
        let [mut s_it, mut o_it] = [self.assigned.iter(), other.assigned.iter()];
 
        let [mut s, mut o] = [s_it.next(), o_it.next()];
 
        // lists of assignments in self but not other and vice versa.
 
        let [mut s_not_o, mut o_not_s] = [vec![], vec![]];
 
        loop {
 
            match [s, o] {
 
                [None, None] => break,
 
                [None, Some(x)] => {
 
                    o_not_s.push(x);
 
                    o_not_s.extend(o_it);
 
                    break;
 
                }
 
                [Some(x), None] => {
 
                    s_not_o.push(x);
 
                    s_not_o.extend(s_it);
 
                    break;
 
                }
 
                [Some((sid, sb)), Some((oid, ob))] => {
 
                    if sid < oid {
 
                        // o is missing this element
 
                        s_not_o.push((sid, sb));
 
                        s = s_it.next();
 
                    } else if sid > oid {
 
                        // s is missing this element
 
                        o_not_s.push((oid, ob));
 
                        o = o_it.next();
 
                    } else if sb != ob {
 
                        assert_eq!(sid, oid);
 
                        // both predicates assign the variable but differ on the value
 
                        return Csr::Nonexistant;
 
                    } else {
 
                        // both predicates assign the variable to the same value
 
                        s = s_it.next();
0 comments (0 inline, 0 general)