Changeset - 8da6a7632169
[Not reviewed]
0 6 0
MH - 4 years ago 2021-03-28 12:31:53
contact@maxhenger.nl
added a test, pending bugfix
6 files changed with 343 insertions and 24 deletions:
0 comments (0 inline, 0 general)
src/protocol/inputsource.rs
Show inline comments
 
@@ -130,49 +130,49 @@ impl InputSource {
 
            Some(x) if x == b'\r' && self.lookahead(1) != Some(b'\n') || x == b'\n' => {
 
                self.line += 1;
 
                self.offset += 1;
 
                self.column = 1;
 
            }
 
            Some(_) => {
 
                self.offset += 1;
 
                self.column += 1;
 
            }
 
            None => {}
 
        }
 
    }
 
}
 

	
 
impl fmt::Display for InputSource {
 
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 
        self.pos().fmt(f)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, serde::Serialize, serde::Deserialize)]
 
pub struct InputPosition {
 
    line: usize,
 
    column: usize,
 
    offset: usize,
 
    pub(crate) offset: usize,
 
}
 

	
 
impl InputPosition {
 
    fn context<'a>(&self, source: &'a InputSource) -> &'a [u8] {
 
        let start = self.offset - (self.column - 1);
 
        let mut end = self.offset;
 
        while end < source.input.len() {
 
            let cur = (*source.input)[end];
 
            if cur == b'\n' || cur == b'\r' {
 
                break;
 
            }
 
            end += 1;
 
        }
 
        &source.input[start..end]
 
    }
 
    // fn parse_error<S: ToString>(&self, message: S) -> ParseError {
 
    //     ParseError { position: *self, message: message.to_string(), backtrace: Backtrace::new() }
 
    // }
 
    fn eval_error<S: ToString>(&self, message: S) -> EvalError {
 
        EvalError { position: *self, message: message.to_string(), backtrace: Backtrace::new() }
 
    }
 

	
 
    pub(crate) fn col(&self) -> usize { self.column }
 
}
src/protocol/parser/type_resolver.rs
Show inline comments
 
@@ -634,50 +634,55 @@ impl InferenceType {
 
                ITP::Short => CTP::Short,
 
                ITP::Int => CTP::Int,
 
                ITP::Long => CTP::Long,
 
                ITP::String => CTP::String,
 
                ITP::Array => CTP::Array,
 
                ITP::Slice => CTP::Slice,
 
                ITP::Input => CTP::Input,
 
                ITP::Output => CTP::Output,
 
                ITP::Instance(id, num) => CTP::Instance(*id, *num),
 
            };
 

	
 
            concrete_type.parts.push(converted_part);
 
            idx += 1;
 
        }
 
    }
 

	
 
    /// Writes a human-readable version of the type to a string. Mostly a
 
    /// function for interior use.
 
    fn write_display_name(
 
        buffer: &mut String, heap: &Heap, parts: &[InferenceTypePart], mut idx: usize
 
    ) -> usize {
 
        use InferenceTypePart as ITP;
 

	
 
        match &parts[idx] {
 
            ITP::MarkerDefinition(_) | ITP::MarkerBody(_) => {
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1)
 
            ITP::MarkerDefinition(thing) => {
 
                buffer.push_str(&format!("{{D:{}}}", *thing));
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
            }, 
 
            ITP::MarkerBody(thing) => {
 
                buffer.push_str(&format!("{{B:{}}}", *thing));
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
            },
 
            ITP::Unknown => buffer.push_str("?"),
 
            ITP::NumberLike => buffer.push_str("num?"),
 
            ITP::IntegerLike => buffer.push_str("int?"),
 
            ITP::ArrayLike => {
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push_str("[?]");
 
            },
 
            ITP::PortLike => {
 
                buffer.push_str("port?<");
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            }
 
            ITP::Void => buffer.push_str("void"),
 
            ITP::Bool => buffer.push_str("bool"),
 
            ITP::Byte => buffer.push_str("byte"),
 
            ITP::Short => buffer.push_str("short"),
 
            ITP::Int => buffer.push_str("int"),
 
            ITP::Long => buffer.push_str("long"),
 
            ITP::String => buffer.push_str("str"),
 
            ITP::Message => {
 
                buffer.push_str("msg<");
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
@@ -1839,56 +1844,56 @@ impl TypeResolvingVisitor {
 

	
 
                if progress_subject {
 
                    self.expr_queued.insert(subject_id);
 
                }
 
                
 
                // Apply to field's type
 
                let signature_type: *mut _ = &mut poly_data.returned;
 
                let expr_type: *mut _ = self.expr_types.get_mut(&upcast_id).unwrap();
 

	
 
                let (_, progress_expr) = Self::apply_equal2_signature_constraint(
 
                    ctx, upcast_id, None, poly_data, &mut poly_progress, 
 
                    signature_type, 0, expr_type, 0
 
                )?;
 

	
 
                if progress_expr {
 
                    if let Some(parent_id) = ctx.heap[upcast_id].parent_expr_id() {
 
                        self.expr_queued.insert(parent_id);
 
                    }
 
                }
 

	
 
                // Reapply progress in polymorphic variables to struct's type
 
                let signature_type: *mut _ = &mut poly_data.embedded[0];
 
                let subject_type: *mut _ = self.expr_types.get_mut(&subject_id).unwrap();
 
                
 
                let progress_subject = Self::apply_equal2_polyvar_constraint(
 
                let progress_subject = Self::apply_equal2_polyvar_constraint(&ctx.heap,
 
                    poly_data, &poly_progress, signature_type, subject_type
 
                );
 

	
 
                let signature_type: *mut _ = &mut poly_data.returned;
 
                let expr_type: *mut _ = self.expr_types.get_mut(&upcast_id).unwrap();
 

	
 
                let progress_expr = Self::apply_equal2_polyvar_constraint(
 
                let progress_expr = Self::apply_equal2_polyvar_constraint(&ctx.heap,
 
                    poly_data, &poly_progress, signature_type, expr_type
 
                );
 

	
 
                (progress_subject, progress_expr)
 
            }
 
        };
 

	
 
        if progress_subject { self.queue_expr(subject_id); }
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Subject type [{}]: {}", progress_subject, self.expr_types.get(&subject_id).unwrap().display_name(&ctx.heap));
 
        debug_log!("   - Expr    type [{}]: {}", progress_expr, self.expr_types.get(&upcast_id).unwrap().display_name(&ctx.heap));
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_array_expr(&mut self, ctx: &mut Ctx, id: ArrayExpressionId) -> Result<(), ParseError2> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let expr_elements = expr.elements.clone(); // TODO: @performance
 

	
 
        debug_log!("Array expr ({} elements): {}", expr_elements.len(), upcast_id.index);
 
        debug_log!(" * Before:");
 
@@ -1985,67 +1990,67 @@ impl TypeResolvingVisitor {
 
                    "   - Ret type | sig: {}, expr: {}",
 
                    unsafe{&*signature_type}.display_name(&ctx.heap),
 
                    unsafe{&*expr_type}.display_name(&ctx.heap)
 
                );
 

	
 
                if progress_expr {
 
                    // TODO: @cleanup, cannot call utility self.queue_parent thingo
 
                    if let Some(parent_id) = ctx.heap[upcast_id].parent_expr_id() {
 
                        self.expr_queued.insert(parent_id);
 
                    }
 
                }
 

	
 
                // Check which expressions use the polymorphic arguments. If the
 
                // polymorphic variables have been progressed then we try to 
 
                // progress them inside the expression as well.
 
                debug_log!(" * During (reinferring from progressed polyvars):");
 

	
 
                // For all field expressions
 
                for field_idx in 0..extra.embedded.len() {
 
                    debug_assert_eq!(field_idx, data.fields[field_idx].field_idx, "confusing, innit?");
 
                    let signature_type: *mut _ = &mut extra.embedded[field_idx];
 
                    let field_expr_id = data.fields[field_idx].value;
 
                    let field_type: *mut _ = self.expr_types.get_mut(&field_expr_id).unwrap();
 

	
 
                    let progress_arg = Self::apply_equal2_polyvar_constraint(
 
                    let progress_arg = Self::apply_equal2_polyvar_constraint(&ctx.heap,
 
                        extra, &poly_progress, signature_type, field_type
 
                    );
 

	
 
                    debug_log!(
 
                        "   - Field {} type | sig: {}, field: {}", field_idx,
 
                        unsafe{&*signature_type}.display_name(&ctx.heap),
 
                        unsafe{&*field_type}.display_name(&ctx.heap)
 
                    );
 
                    if progress_arg {
 
                        self.expr_queued.insert(field_expr_id);
 
                    }
 
                }
 
                
 
                // For the return type
 
                let signature_type: *mut _ = &mut extra.returned;
 
                let expr_type: *mut _ = self.expr_types.get_mut(&upcast_id).unwrap();
 

	
 
                let progress_expr = Self::apply_equal2_polyvar_constraint(
 
                let progress_expr = Self::apply_equal2_polyvar_constraint(&ctx.heap,
 
                    extra, &poly_progress, signature_type, expr_type
 
                );
 

	
 
                progress_expr
 
            }
 
        };
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Expr type: {}", self.expr_types.get(&upcast_id).unwrap().display_name(&ctx.heap));
 

	
 
        // TODO: FIX!!!!
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    // TODO: @cleanup, see how this can be cleaned up once I implement
 
    //  polymorphic struct/enum/union literals. These likely follow the same
 
    //  pattern as here.
 
    fn progress_call_expr(&mut self, ctx: &mut Ctx, id: CallExpressionId) -> Result<(), ParseError2> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let extra = self.extra_data.get_mut(&upcast_id).unwrap();
 

	
 
@@ -2088,76 +2093,79 @@ impl TypeResolvingVisitor {
 
        let signature_type: *mut _ = &mut extra.returned;
 
        let expr_type: *mut _ = self.expr_types.get_mut(&upcast_id).unwrap();
 
        let (_, progress_expr) = Self::apply_equal2_signature_constraint(
 
            ctx, upcast_id, None, extra, &mut poly_progress,
 
            signature_type, 0, expr_type, 0
 
        )?;
 

	
 
        debug_log!(
 
            "   - Ret type | sig: {}, expr: {}", 
 
            unsafe{&*signature_type}.display_name(&ctx.heap), 
 
            unsafe{&*expr_type}.display_name(&ctx.heap)
 
        );
 

	
 
        if progress_expr {
 
            // TODO: @cleanup, cannot call utility self.queue_parent thingo
 
            if let Some(parent_id) = ctx.heap[upcast_id].parent_expr_id() {
 
                self.expr_queued.insert(parent_id);
 
            }
 
        }
 

	
 
        // If we did not have an error in the polymorph inference above, then
 
        // reapplying the polymorph type to each argument type and the return
 
        // type should always succeed.
 
        debug_log!(" * During (reinferring from progressed polyvars):");
 
        for (poly_idx, poly_var) in extra.poly_vars.iter().enumerate() {
 
            debug_log!("   - Poly {} | sig: {}", poly_idx, poly_var.display_name(&ctx.heap));
 
        }
 
        // TODO: @performance If the algorithm is changed to be more "on demand
 
        //  argument re-evaluation", instead of "all-argument re-evaluation",
 
        //  then this is no longer true
 
        for arg_idx in 0..extra.embedded.len() {
 
            let signature_type: *mut _ = &mut extra.embedded[arg_idx];
 
            let arg_expr_id = expr.arguments[arg_idx];
 
            let arg_type: *mut _ = self.expr_types.get_mut(&arg_expr_id).unwrap();
 
            
 
            let progress_arg = Self::apply_equal2_polyvar_constraint(
 
            let progress_arg = Self::apply_equal2_polyvar_constraint(&ctx.heap,
 
                extra, &poly_progress,
 
                signature_type, arg_type
 
            );
 
            
 
            debug_log!(
 
                "   - Arg {} type | sig: {}, arg: {}", arg_idx, 
 
                unsafe{&*signature_type}.display_name(&ctx.heap), 
 
                unsafe{&*arg_type}.display_name(&ctx.heap)
 
            );
 
            if progress_arg {
 
                self.expr_queued.insert(arg_expr_id);
 
            }
 
        }
 

	
 
        // Once more for the return type
 
        let signature_type: *mut _ = &mut extra.returned;
 
        let ret_type: *mut _ = self.expr_types.get_mut(&upcast_id).unwrap();
 

	
 
        let progress_ret = Self::apply_equal2_polyvar_constraint(
 
        let progress_ret = Self::apply_equal2_polyvar_constraint(&ctx.heap,
 
            extra, &poly_progress, signature_type, ret_type
 
        );
 
        debug_log!(
 
            "   - Ret type | sig: {}, arg: {}", 
 
            unsafe{&*signature_type}.display_name(&ctx.heap), 
 
            unsafe{&*ret_type}.display_name(&ctx.heap)
 
        );
 
        if progress_ret {
 
            self.queue_expr_parent(ctx, upcast_id);
 
        }
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Expr type: {}", self.expr_types.get(&upcast_id).unwrap().display_name(&ctx.heap));
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_variable_expr(&mut self, ctx: &mut Ctx, id: VariableExpressionId) -> Result<(), ParseError2> {
 
        let upcast_id = id.upcast();
 
        let var_expr = &ctx.heap[id];
 
        let var_id = var_expr.declaration.unwrap();
 

	
 
        debug_log!("Variable expr '{}': {}", &String::from_utf8_lossy(&ctx.heap[var_id].identifier().value), upcast_id.index);
 
        debug_log!(" * Before:");
 
@@ -2385,67 +2393,69 @@ impl TypeResolvingVisitor {
 
                let polymorph_type = &mut polymorph_data.poly_vars[poly_idx];
 
                match Self::apply_forced_constraint_types(
 
                    polymorph_type, 0, poly_section, 0
 
                ) {
 
                    Ok(true) => { polymorph_progress.insert(poly_idx); },
 
                    Ok(false) => {},
 
                    Err(()) => { return Err(Self::construct_poly_arg_error(ctx, polymorph_data, outer_expr_id))}
 
                }
 
            }
 
        }
 
        Ok((progress_sig, progress_expr))
 
    }
 

	
 
    /// Applies equal2 constraints on the signature type for each of the 
 
    /// polymorphic variables. If the signature type is progressed then we 
 
    /// progress the expression type as well.
 
    ///
 
    /// This function assumes that the polymorphic variables have already been
 
    /// progressed as far as possible by calling 
 
    /// `apply_equal2_signature_constraint`. As such, we expect to not encounter
 
    /// any errors.
 
    ///
 
    /// This function returns true if the expression's type has been progressed
 
    fn apply_equal2_polyvar_constraint(
 
        heap: &Heap,
 
        polymorph_data: &ExtraData, polymorph_progress: &HashSet<usize>,
 
        signature_type: *mut InferenceType, expr_type: *mut InferenceType
 
    ) -> bool {
 
        // Safety: all pointers should be distinct
 
        //         polymorph_data contains may not be modified
 
        debug_assert_ptrs_distinct!(signature_type, expr_type);
 
        let signature_type = unsafe{&mut *signature_type};
 
        let expr_type = unsafe{&mut *expr_type};
 

	
 
        // Iterate through markers in signature type to try and make progress
 
        // on the polymorphic variable        
 
        let mut seek_idx = 0;
 
        let mut modified_sig = false;
 
        
 
        while let Some((poly_idx, start_idx)) = signature_type.find_body_marker(seek_idx) {
 
            let end_idx = InferenceType::find_subtree_end_idx(&signature_type.parts, start_idx);
 
            if polymorph_progress.contains(&poly_idx) {
 
                // Need to match subtrees
 
                let polymorph_type = &polymorph_data.poly_vars[poly_idx];
 
                debug_log!("   - DEBUG: Applying {} to '{}' from '{}'", polymorph_type.display_name(heap), InferenceType::partial_display_name(heap, &signature_type.parts[start_idx..]), signature_type.display_name(heap));
 
                let modified_at_marker = Self::apply_forced_constraint_types(
 
                    signature_type, start_idx, 
 
                    &polymorph_type.parts, 0
 
                ).expect("no failure when applying polyvar constraints");
 

	
 
                modified_sig = modified_sig || modified_at_marker;
 
            }
 

	
 
            seek_idx = end_idx;
 
        }
 

	
 
        // If we made any progress on the signature's type, then we also need to
 
        // apply it to the expression that is supposed to match the signature.
 
        if modified_sig {
 
            match InferenceType::infer_subtree_for_single_type(
 
                expr_type, 0, &signature_type.parts, 0
 
            ) {
 
                SingleInferenceResult::Modified => true,
 
                SingleInferenceResult::Unmodified => false,
 
                SingleInferenceResult::Incompatible =>
 
                    unreachable!("encountered failure while reapplying modified signature to expression after polyvar inference")
 
            }
 
        } else {
 
            false
src/protocol/tests/mod.rs
Show inline comments
 
mod utils;
 
mod lexer;
 
mod parser_validation;
 
mod parser_inference;
 

	
 
pub(crate) use utils::{Tester};
 
\ No newline at end of file
src/protocol/tests/parser_inference.rs
Show inline comments
 
/// parser_inference.rs
 
///
 
/// Simple tests for the type inferences
 

	
 
use super::*;
 

	
 
#[test]
 
fn test_integer_inference() {
 
    Tester::new_single_source_expect_ok(
 
        "by arguments",
 
        "
 
        int call(byte b, short s, int i, long l) {
 
            auto b2 = b;
 
            auto s2 = s;
 
            auto i2 = i;
 
            auto l2 = l;
 
            return i2;
 
        }
 
        "
 
    ).for_function("call", |f| { f
 
        .for_variable("b2", |v| { v
 
            .assert_parser_type("auto")
 
            .assert_concrete_type("byte");
 
        })
 
        .for_variable("s2", |v| { v
 
            .assert_parser_type("auto")
 
            .assert_concrete_type("short");
 
        })
 
        .for_variable("i2", |v| { v
 
            .assert_parser_type("auto")
 
            .assert_concrete_type("int");
 
        })
 
        .for_variable("l2", |v| { v
 
            .assert_parser_type("auto")
 
            .assert_concrete_type("long");
 
        });
 
    });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "by assignment",
 
        "
 
        int call() {
 
            byte b1 = 0; short s1 = 0; int i1 = 0; long l1 = 0;
 
            auto b2 = b1;
 
            auto s2 = s1;
 
            auto i2 = i1;
 
            auto l2 = l1;
 
            return 0;
 
        }"
 
    ).for_function("call", |f| { f
 
        .for_variable("b2", |v| { v
 
            .assert_parser_type("auto")
 
            .assert_concrete_type("byte");
 
        })
 
        .for_variable("s2", |v| { v
 
            .assert_parser_type("auto")
 
            .assert_concrete_type("short");
 
        })
 
        .for_variable("i2", |v| { v
 
            .assert_parser_type("auto")
 
            .assert_concrete_type("int");
 
        })
 
        .for_variable("l2", |v| { v
 
            .assert_parser_type("auto")
 
            .assert_concrete_type("long");
 
        });
 
    });
 
}
 

	
 
#[test]
 
fn test_struct_inference() {
 
    // Tester::new_single_source_expect_ok(
 
    //     "by function calls",
 
    //     "
 
    //     struct Pair<T1, T2>{ T1 first, T2 second }
 
    //     Pair<T1, T2> construct<T1, T2>(T1 first, T2 second) { 
 
    //         return Pair{ first: first, second: second };
 
    //     }
 
    //     int fix_t1<T2>(Pair<byte, T2> arg) { return 0; }
 
    //     int fix_t2<T1>(Pair<T1, int> arg) { return 0; }
 
    //     int test() {
 
    //         auto first = 0;
 
    //         auto second = 1;
 
    //         auto pair = construct(first, second);
 
    //         fix_t1(pair);
 
    //         fix_t2(pair);
 
    //         return 0;
 
    //     }
 
    //     "
 
    // ).for_function("test", |f| { f
 
    //     .for_variable("first", |v| { v
 
    //         .assert_parser_type("auto")
 
    //         .assert_concrete_type("byte");
 
    //     })
 
    //     .for_variable("second", |v| { v
 
    //         .assert_parser_type("auto")
 
    //         .assert_concrete_type("int");
 
    //     })
 
    //     .for_variable("pair", |v| { v
 
    //         .assert_parser_type("auto")
 
    //         .assert_concrete_type("Pair<byte,int>");
 
    //     });
 
    // });
 

	
 
    // Tester::new_single_source_expect_ok(
 
    //     "by field access",
 
    //     "
 
    //     struct Pair<T1, T2>{ T1 first, T2 second }
 
    //     Pair<T1, T2> construct<T1, T2>(T1 first, T2 second) {
 
    //         return Pair{ first: first, second: second };
 
    //     }
 
    //     int test() {
 
    //         auto first = 0;
 
    //         auto second = 1;
 
    //         auto pair = construct(first, second);
 
    //         byte assign_first = 0;
 
    //         long assign_second = 1;
 
    //         pair.first = assign_first;
 
    //         pair.second = assign_second;
 
    //         return 0;
 
    //     }
 
    //     "
 
    // ).for_function("test", |f| { f
 
    //     .for_variable("first", |v| { v
 
    //         .assert_parser_type("auto")
 
    //         .assert_concrete_type("byte");
 
    //     })
 
    //     .for_variable("second", |v| { v
 
    //         .assert_parser_type("auto")
 
    //         .assert_concrete_type("long");
 
    //     })
 
    //     .for_variable("pair", |v| { v
 
    //         .assert_parser_type("auto")
 
    //         .assert_concrete_type("Pair<byte,long>");
 
    //     });
 
    // });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "by nested field access",
 
        "
 
        struct Node<T1, T2>{ T1 l, T2 r }
 
        Node<T1, T2> construct<T1, T2>(T1 l, T2 r) { return Node{ l: l, r: r }; }
 
        int fix_poly<T>(Node<T, T> a) { return 0; }
 
        int test() {
 
            byte assigned = 0;
 
            auto thing = construct(assigned, construct(0, 1));
 
            fix_poly(thing.r);
 
            thing.r.r = assigned;
 
            return 0;
 
        }
 
        ",
 
    ).for_function("test", |f| { f
 
        .for_variable("thing", |v| { v
 
            .assert_parser_type("auto")
 
            .assert_concrete_type("Pair<byte,Pair<byte,byte>>");
 
        });
 
    });
 
}
 
\ No newline at end of file
src/protocol/tests/parser_validation.rs
Show inline comments
 
@@ -43,46 +43,46 @@ fn test_correct_struct_instance() {
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "multiple fields, same explicit polymorph",
 
        "
 
        struct Pair<T1, T2>{ T1 first, T2 second }
 
        int bar(int arg) {
 
            auto qux = Pair<int, int>{ first: arg, second: arg };
 
            return arg;
 
        }
 
        "
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "multiple fields, same implicit polymorph", 
 
        "
 
        struct Pair<T1, T2>{ T1 first, T2 second }
 
        int bar(int arg) {
 
            auto wup = Pair{ first: arg, second: arg };
 
            return arg;
 
        }
 
        "
 
    );
 

	
 
    Tester::new_single_source_expr_ok(
 
    Tester::new_single_source_expect_ok(
 
        "multiple fields, different explicit polymorph",
 
        "
 
        struct Pair<T1, T2>{ T1 first, T2 second }
 
        int bar(int arg1, byte arg2) {
 
            auto shoo = Pair<int, byte>{ first: arg1, second: arg2 };
 
            return arg1;
 
        }
 
        "
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "multiple fields, different implicit polymorph",
 
        "
 
        struct Pair<T1, T2>{ T1 first, T2 second }
 
        int bar(int arg1, byte arg2) {
 
            auto shrubbery = Pair{ first: arg1, second: arg2 };
 
            return arg1;
 
        }
 
        "
 
    );
 
}
 
\ No newline at end of file
src/protocol/tests/utils.rs
Show inline comments
 
@@ -54,48 +54,49 @@ impl Tester {
 
                return AstTesterResult::Err(AstErrTester::new(self.test_name, err))
 
            }
 
        }
 

	
 
        parser.compile();
 
        if let Err(err) = parser.parse() {
 
            return AstTesterResult::Err(AstErrTester::new(self.test_name, err))
 
        }
 

	
 
        AstTesterResult::Ok(AstOkTester::new(self.test_name, parser))
 
    }
 
}
 

	
 
pub(crate) enum AstTesterResult {
 
    Ok(AstOkTester),
 
    Err(AstErrTester)
 
}
 

	
 
impl AstTesterResult {
 
    pub(crate) fn expect_ok(self) -> AstOkTester {
 
        match self {
 
            AstTesterResult::Ok(v) => v,
 
            AstTesterResult::Err(err) => {
 
                let wrapped = ErrorTester{ test_name: &err.test_name, error: &err.error };
 
                println!("DEBUG: Full error:\n{}", &err.error);
 
                assert!(
 
                    false,
 
                    "[{}] Expected compilation to succeed, but it failed with {}",
 
                    err.test_name, wrapped.assert_postfix()
 
                );
 
                unreachable!();
 
            }
 
        }
 
    }
 

	
 
    pub(crate) fn expect_err(self) -> AstErrTester {
 
        match self {
 
            AstTesterResult::Ok(ok) => {
 
                assert!(false, "[{}] Expected compilation to fail, but it succeeded", ok.test_name);
 
                unreachable!();
 
            },
 
            AstTesterResult::Err(err) => err,
 
        }
 
    }
 
}
 

	
 
//------------------------------------------------------------------------------
 
// Interface for successful compilation
 
//------------------------------------------------------------------------------
 
@@ -161,49 +162,49 @@ impl AstOkTester {
 
        assert!(
 
            false, "[{}] failed to find definition for function '{}'",
 
            self.test_name, name
 
        );
 
        unreachable!();
 
    }
 
}
 

	
 
//------------------------------------------------------------------------------
 
// Utilities for successful compilation
 
//------------------------------------------------------------------------------
 

	
 
pub(crate) struct StructTester<'a> {
 
    test_name: &'a str,
 
    def: &'a StructDefinition,
 
    heap: &'a Heap,
 
}
 

	
 
impl<'a> StructTester<'a> {
 
    fn new(test_name: &'a str, def: &'a StructDefinition, heap: &'a Heap) -> Self {
 
        Self{ test_name, def, heap }
 
    }
 

	
 
    pub(crate) fn assert_num_fields(self, num: usize) -> Self {
 
        debug_assert_eq!(
 
        assert_eq!(
 
            num, self.def.fields.len(),
 
            "[{}] Expected {} struct fields, but found {} for {}",
 
            self.test_name, num, self.def.fields.len(), self.assert_postfix()
 
        );
 
        self
 
    }
 

	
 
    pub(crate) fn for_field<F: Fn(StructFieldTester)>(self, name: &str, f: F) -> Self {
 
        // Find field with specified name
 
        for field in &self.def.fields {
 
            if String::from_utf8_lossy(&field.field.value) == name {
 
                let tester = StructFieldTester::new(self.test_name, field, self.heap);
 
                f(tester);
 
                return self;
 
            }
 
        }
 

	
 
        assert!(
 
            false, "[{}] Could not find struct field '{}' for {}",
 
            self.test_name, name, self.assert_postfix()
 
        );
 
        unreachable!();
 
    }
 

	
 
@@ -214,114 +215,195 @@ impl<'a> StructTester<'a> {
 
        v.push_str(", fields: [");
 
        for (field_idx, field) in self.def.fields.iter().enumerate() {
 
            if field_idx != 0 { v.push_str(", "); }
 
            v.push_str(&String::from_utf8_lossy(&field.field.value));
 
        }
 
        v.push_str("] }");
 
        v
 
    }
 
}
 

	
 
pub(crate) struct StructFieldTester<'a> {
 
    test_name: &'a str,
 
    def: &'a StructFieldDefinition,
 
    heap: &'a Heap,
 
}
 

	
 
impl<'a> StructFieldTester<'a> {
 
    fn new(test_name: &'a str, def: &'a StructFieldDefinition, heap: &'a Heap) -> Self {
 
        Self{ test_name, def, heap }
 
    }
 

	
 
    pub(crate) fn assert_parser_type(self, expected: &str) -> Self {
 
        let mut serialized_type = String::new();
 
        serialize_parser_type(&mut serialized_type, &self.heap, self.def.parser_type);
 
        debug_assert_eq!(
 
        assert_eq!(
 
            expected, &serialized_type,
 
            "[{}] Expected type '{}', but got '{}' for {}",
 
            self.test_name, expected, &serialized_type, self.assert_postfix()
 
        );
 
        self
 
    }
 

	
 
    fn assert_postfix(&self) -> String {
 
        let mut serialized_type = String::new();
 
        serialize_parser_type(&mut serialized_type, &self.heap, self.def.parser_type);
 
        format!(
 
            "StructField{{ name: {}, parser_type: {} }}",
 
            String::from_utf8_lossy(&self.def.field.value), serialized_type
 
        )
 
    }
 
}
 

	
 
pub(crate) struct FunctionTester<'a> {
 
    test_name: &'a str,
 
    def: &'a Function,
 
    heap: &'a Heap,
 
}
 

	
 
impl<'a> FunctionTester<'a> {
 
    fn new(test_name: &'a str, def: &'a Function, heap: &'a Heap) -> Self {
 
        Self{ test_name, def, heap }
 
    }
 

	
 
    pub(crate) fn for_variable<F: Fn(VariableTester)>(self, name: &str, f: F) -> Self {
 
        // Find the memory statement in order to find the local
 
        let mem_stmt_id = seek_stmt(
 
            self.heap, self.def.body,
 
            |stmt| {
 
            &|stmt| {
 
                if let Statement::Local(local) = stmt {
 
                    if let LocalStatement::Memory(memory) = local {
 
                        let local = &self.heap[memory.variable];
 
                        if local.identifier.value == name.as_bytes() {
 
                            return true;
 
                        }
 
                    }
 
                }
 

	
 
                false
 
            }
 
        );
 

	
 
        match mem_stmt_id {
 
            Some(mem_stmt_id) => {
 
                // TODO: Retrieve shit
 
            },
 
            None => {
 
                // TODO: Throw error
 
        assert!(
 
            mem_stmt_id.is_some(), "[{}] Failed to find variable '{}' in {}",
 
            self.test_name, name, self.assert_postfix()
 
        );
 

	
 
        let mem_stmt_id = mem_stmt_id.unwrap();
 
        let local_id = self.heap[mem_stmt_id].as_memory().variable;
 
        let local = &self.heap[local_id];
 

	
 
        // Find the assignment expression that follows it
 
        let assignment_id = seek_expr_in_stmt(
 
            self.heap, self.def.body,
 
            &|expr| {
 
                if let Expression::Assignment(assign_expr) = expr {
 
                    if let Expression::Variable(variable_expr) = &self.heap[assign_expr.left] {
 
                        if variable_expr.position.offset == local.identifier.position.offset {
 
                            return true;
 
                        }
 
                    }
 
                }
 

	
 
                false
 
            }
 
        );
 

	
 
        assert!(
 
            assignment_id.is_some(), "[{}] Failed to find assignment to variable '{}' in {}",
 
            self.test_name, name, self.assert_postfix()
 
        );
 

	
 
        let assignment = &self.heap[assignment_id.unwrap()];
 

	
 
        // Construct tester and pass to tester function
 
        let tester = VariableTester::new(
 
            self.test_name, self.def.this.upcast(), local, 
 
            assignment.as_assignment(), self.heap
 
        );
 
        f(tester);
 

	
 
        self
 
    }
 

	
 
    fn assert_postfix(&self) -> String {
 
        format!(
 
            "Function{{ name: {} }}",
 
            &String::from_utf8_lossy(&self.def.identifier.value)
 
        )
 
    }
 
}
 

	
 

	
 
pub(crate) struct VariableTester<'a> {
 
    test_name: &'a str,
 
    def: &'a Local,
 
    definition_id: DefinitionId,
 
    local: &'a Local,
 
    assignment: &'a AssignmentExpression,
 
    heap: &'a Heap,
 
}
 

	
 
impl<'a> VariableTester<'a> {
 
    fn new(
 
        test_name: &'a str, definition_id: DefinitionId, local: &'a Local, assignment: &'a AssignmentExpression, heap: &'a Heap
 
    ) -> Self {
 
        Self{ test_name, definition_id, local, assignment, heap }
 
    }
 

	
 
    pub(crate) fn assert_parser_type(self, expected: &str) -> Self {
 
        let mut serialized = String::new();
 
        serialize_parser_type(&mut serialized, self.heap, self.local.parser_type);
 

	
 
        assert_eq!(
 
            expected, &serialized,
 
            "[{}] Expected parser type '{}', but got '{}' for {}",
 
            self.test_name, expected, &serialized, self.assert_postfix()
 
        );
 
        self
 
    }
 

	
 
    pub(crate) fn assert_concrete_type(self, expected: &str) -> Self {
 
        let mut serialized = String::new();
 
        serialize_concrete_type(
 
            &mut serialized, self.heap, self.definition_id, 
 
            &self.assignment.concrete_type
 
        );
 

	
 
        assert_eq!(
 
            expected, &serialized,
 
            "[{}] Expected concrete type '{}', but got '{}' for {}",
 
            self.test_name, expected, &serialized, self.assert_postfix()
 
        );
 
        self
 
    }
 

	
 
    fn assert_postfix(&self) -> String {
 
        format!(
 
            "Variable{{ name: {} }}",
 
            &String::from_utf8_lossy(&self.local.identifier.value)
 
        )
 
    }
 
}
 

	
 
//------------------------------------------------------------------------------
 
// Interface for failed compilation
 
//------------------------------------------------------------------------------
 

	
 
pub(crate) struct AstErrTester {
 
    test_name: String,
 
    error: ParseError2,
 
}
 

	
 
impl AstErrTester {
 
    fn new(test_name: String, error: ParseError2) -> Self {
 
        Self{ test_name, error }
 
    }
 

	
 
    pub(crate) fn error<F: Fn(ErrorTester)>(&self, f: F) {
 
        // Maybe multiple errors will be supported in the future
 
        let tester = ErrorTester{ test_name: &self.test_name, error: &self.error };
 
        f(tester)
 
    }
 
}
 

	
 
//------------------------------------------------------------------------------
 
// Utilities for failed compilation
 
@@ -423,151 +505,219 @@ fn serialize_parser_type(buffer: &mut String, heap: &Heap, id: ParserTypeId) {
 
        PTV::Input(sub_id) => {
 
            buffer.push_str("in<");
 
            serialize_parser_type(buffer, heap, *sub_id);
 
            buffer.push('>');
 
        },
 
        PTV::Output(sub_id) => {
 
            buffer.push_str("out<");
 
            serialize_parser_type(buffer, heap, *sub_id);
 
            buffer.push('>');
 
        },
 
        PTV::Symbolic(symbolic) => {
 
            buffer.push_str(&String::from_utf8_lossy(&symbolic.identifier.value));
 
            if symbolic.poly_args.len() > 0 {
 
                buffer.push('<');
 
                for (poly_idx, poly_arg) in symbolic.poly_args.iter().enumerate() {
 
                    if poly_idx != 0 { buffer.push(','); }
 
                    serialize_parser_type(buffer, heap, *poly_arg);
 
                }
 
                buffer.push('>');
 
            }
 
        }
 
    }
 
}
 

	
 
fn seek_stmt<F: Fn(&Statement) -> bool>(heap: &Heap, start: StatementId, f: F) -> Option<StatementId> {
 
fn serialize_concrete_type(buffer: &mut String, heap: &Heap, def: DefinitionId, concrete: &ConcreteType) {
 
    // Retrieve polymorphic variables, if present (since we're dealing with a 
 
    // concrete type we only expect procedure types)
 
    let poly_vars = match &heap[def] {
 
        Definition::Function(func) => &func.poly_vars,
 
        Definition::Component(comp) => &comp.poly_vars,
 
        _ => unreachable!("Error in testing utility: did not expect non-procedure type for concrete type serialization"),
 
    };
 

	
 
    fn serialize_recursive(
 
        buffer: &mut String, heap: &Heap, poly_vars: &Vec<Identifier>, concrete: &ConcreteType, mut idx: usize
 
    ) -> usize {
 
        use ConcreteTypePart as CTP;
 

	
 
        let part = &concrete.parts[idx];
 
        match part {
 
            CTP::Marker(poly_idx) => {
 
                buffer.push_str(&String::from_utf8_lossy(&poly_vars[*poly_idx].value));
 
            },
 
            CTP::Void => buffer.push_str("void"),
 
            CTP::Message => buffer.push_str("msg"),
 
            CTP::Bool => buffer.push_str("bool"),
 
            CTP::Byte => buffer.push_str("byte"),
 
            CTP::Short => buffer.push_str("short"),
 
            CTP::Int => buffer.push_str("int"),
 
            CTP::Long => buffer.push_str("long"),
 
            CTP::String => buffer.push_str("string"),
 
            CTP::Array => {
 
                idx = serialize_recursive(buffer, heap, poly_vars, concrete, idx + 1);
 
                buffer.push_str("[]");
 
                idx += 1;
 
            },
 
            CTP::Slice => {
 
                idx = serialize_recursive(buffer, heap, poly_vars, concrete, idx + 1);
 
                buffer.push_str("[..]");
 
                idx += 1;
 
            },
 
            CTP::Input => {
 
                buffer.push_str("in<");
 
                idx = serialize_recursive(buffer, heap, poly_vars, concrete, idx + 1);
 
                buffer.push('>');
 
                idx += 1;
 
            },
 
            CTP::Output => {
 
                buffer.push_str("out<");
 
                idx = serialize_recursive(buffer, heap, poly_vars, concrete, idx + 1);
 
                buffer.push('>');
 
                idx += 1
 
            },
 
            CTP::Instance(definition_id, num_sub) => {
 
                let definition_name = heap[*definition_id].identifier();
 
                buffer.push_str(&String::from_utf8_lossy(&definition_name.value));
 
                buffer.push('<');
 
                for sub_idx in 0..*num_sub {
 
                    if sub_idx != 0 { buffer.push(','); }
 
                    idx = serialize_recursive(buffer, heap, poly_vars, concrete, idx + 1);
 
                }
 
                buffer.push('>');
 
                idx += 1;
 
            }
 
        }
 

	
 
        idx
 
    }
 

	
 
    serialize_recursive(buffer, heap, poly_vars, concrete, 0);
 
}
 

	
 
fn seek_stmt<F: Fn(&Statement) -> bool>(heap: &Heap, start: StatementId, f: &F) -> Option<StatementId> {
 
    let stmt = &heap[start];
 
    if f(stmt) { return Some(start); }
 

	
 
    // This statement wasn't it, try to recurse
 
    let matched = match stmt {
 
        Statement::Block(block) => {
 
            for sub_id in &block.statements {
 
                if let Some(id) = seek_stmt(heap, *sub_id, f) {
 
                    return Some(id);
 
                }
 
            }
 

	
 
            None
 
        },
 
        Statement::Labeled(stmt) => seek_stmt(heap, stmt.body, f),
 
        Statement::If(stmt) => {
 
            if let Some(id) = seek_stmt(heap,stmt.true_body, f) {
 
                return Some(id);
 
            } else if let Some(id) = seek_stmt(heap, stmt.false_body, f) {
 
                return Some(id);
 
            }
 
            None
 
        },
 
        Statement::While(stmt) => seek_stmt(heap, stmt.body, f),
 
        Statement::Synchronous(stmt) => seek_stmt(heap, stmt.body, f),
 
        _ => None
 
    };
 

	
 
    matched
 
}
 

	
 
fn seek_expr_in_expr<F: Fn(&Expression) -> bool>(heap: &Heap, start: ExpressionId, f: F) -> Option<ExpressionId> {
 
fn seek_expr_in_expr<F: Fn(&Expression) -> bool>(heap: &Heap, start: ExpressionId, f: &F) -> Option<ExpressionId> {
 
    let expr = &heap[start];
 
    if f(expr) { return Some(start); }
 

	
 
    match expr {
 
        Expression::Assignment(expr) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, expr.left, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.right, f))
 
        },
 
        Expression::Conditional(expr) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, expr.test, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.true_expression, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.false_expression, f))
 
        },
 
        Expression::Binary(expr) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, expr.left, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.right, f))
 
        },
 
        Expression::Unary(expr) => {
 
            seek_expr_in_expr(heap, expr.expression, f)
 
        },
 
        Expression::Indexing(expr) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, expr.subject, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.index, f))
 
        },
 
        Expression::Slicing(expr) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, expr.subject, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.from_index, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.to_index, f))
 
        },
 
        Expression::Select(expr) => {
 
            seek_expr_in_expr(heap, expr.subject, f)
 
        },
 
        Expression::Array(expr) => {
 
            for element in &expr.elements {
 
                if let Some(id) = seek_expr_in_expr(heap, *element, f) {
 
                    return Some(id)
 
                }
 
            }
 
            None
 
        },
 
        Expression::Literal(expr) => {
 
            if let Literal::Struct(lit) = expr.value {
 
            if let Literal::Struct(lit) = &expr.value {
 
                for field in &lit.fields {
 
                    if let Some(id) = seek_expr_in_expr(heap, field.value, f) {
 
                        return Some(id)
 
                    }
 
                }
 
            }
 
            None
 
        },
 
        Expression::Call(expr) => {
 
            for arg in &expr.arguments {
 
                if let Some(id) = seek_expr_in_expr(heap, *arg, f) {
 
                    return Some(id)
 
                }
 
            }
 
            None
 
        },
 
        Expression::Variable(expr) => {
 
            None
 
        }
 
    }
 
}
 

	
 
fn seek_expr_in_stmt<F: Fn(&Expression) -> bool>(heap: &Heap, start: StatementId, f: F) -> Option<ExpressionId> {
 
fn seek_expr_in_stmt<F: Fn(&Expression) -> bool>(heap: &Heap, start: StatementId, f: &F) -> Option<ExpressionId> {
 
    let stmt = &heap[start];
 

	
 
    match stmt {
 
        Statement::Block(stmt) => {
 
            for stmt_id in &stmt.statements {
 
                if let Some(id) = seek_expr_in_stmt(heap, *stmt_id, f) {
 
                    return Some(id)
 
                }
 
            }
 
            None
 
        },
 
        Statement::Labeled(stmt) => {
 
            seek_expr_in_stmt(heap, stmt.body, f)
 
        },
 
        Statement::If(stmt) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, stmt.test, f))
 
            .or_else(|| seek_expr_in_stmt(heap, stmt.true_body, f))
 
            .or_else(|| seek_expr_in_stmt(heap, stmt.false_body, f))
 
        },
 
        Statement::While(stmt) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, stmt.test, f))
 
            .or_else(|| seek_expr_in_stmt(heap, stmt.body, f))
0 comments (0 inline, 0 general)