Changeset - 935120e93ef1
[Not reviewed]
0 3 0
Hans-Dieter Hiep - 5 years ago 2020-02-05 17:27:11
hdh@cwi.nl
Rework setup of protocol description
3 files changed with 26 insertions and 47 deletions:
0 comments (0 inline, 0 general)
src/protocol/ast.rs
Show inline comments
 
use std::fmt;
 
use std::fmt::{Debug, Display, Formatter};
 
use std::ops::{Index, IndexMut};
 

	
 
use id_arena::{Arena, Id};
 

	
 
use crate::protocol::inputsource::*;
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct RootId(Id<Root>);
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct PragmaId(Id<Pragma>);
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct ImportId(Id<Import>);
 

	
 
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
 
pub struct IdentifierId(Id<Identifier>);
 

	
 
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
 
pub struct SourceIdentifierId(IdentifierId);
 

	
 
impl SourceIdentifierId {
 
    pub fn upcast(self) -> IdentifierId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
 
pub struct ExternalIdentifierId(IdentifierId);
 

	
 
impl ExternalIdentifierId {
 
    pub fn upcast(self) -> IdentifierId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct TypeAnnotationId(Id<TypeAnnotation>);
 

	
 
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
 
pub struct VariableId(Id<Variable>);
 

	
 
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
 
pub struct ParameterId(VariableId);
 

	
 
impl ParameterId {
 
    pub fn upcast(self) -> VariableId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
 
pub struct LocalId(VariableId);
 

	
 
impl LocalId {
 
    pub fn upcast(self) -> VariableId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct DefinitionId(Id<Definition>);
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct ComponentId(DefinitionId);
 

	
 
impl ComponentId {
 
    pub fn upcast(self) -> DefinitionId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct FunctionId(DefinitionId);
 

	
 
impl FunctionId {
 
    pub fn upcast(self) -> DefinitionId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct CompositeId(ComponentId);
 

	
 
impl CompositeId {
 
    pub fn upcast(self) -> ComponentId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct PrimitiveId(ComponentId);
 

	
 
impl PrimitiveId {
 
    pub fn upcast(self) -> ComponentId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct StatementId(Id<Statement>);
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct BlockStatementId(StatementId);
 

	
 
impl BlockStatementId {
 
    pub fn upcast(self) -> StatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct LocalStatementId(StatementId);
 

	
 
impl LocalStatementId {
 
    pub fn upcast(self) -> StatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct MemoryStatementId(LocalStatementId);
 

	
 
impl MemoryStatementId {
 
    pub fn upcast(self) -> LocalStatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct ChannelStatementId(LocalStatementId);
 

	
 
impl ChannelStatementId {
 
    pub fn upcast(self) -> LocalStatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct SkipStatementId(StatementId);
 

	
 
impl SkipStatementId {
 
    pub fn upcast(self) -> StatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct LabeledStatementId(StatementId);
 

	
 
impl LabeledStatementId {
 
    pub fn upcast(self) -> StatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct IfStatementId(StatementId);
 

	
 
impl IfStatementId {
 
    pub fn upcast(self) -> StatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct EndIfStatementId(StatementId);
 

	
 
impl EndIfStatementId {
 
    pub fn upcast(self) -> StatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct WhileStatementId(StatementId);
 

	
 
impl WhileStatementId {
 
    pub fn upcast(self) -> StatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct EndWhileStatementId(StatementId);
 

	
 
impl EndWhileStatementId {
 
    pub fn upcast(self) -> StatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct BreakStatementId(StatementId);
 

	
 
impl BreakStatementId {
 
    pub fn upcast(self) -> StatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct ContinueStatementId(StatementId);
 

	
 
impl ContinueStatementId {
 
    pub fn upcast(self) -> StatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct SynchronousStatementId(StatementId);
 

	
 
impl SynchronousStatementId {
 
    pub fn upcast(self) -> StatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct EndSynchronousStatementId(StatementId);
 

	
 
impl EndSynchronousStatementId {
 
    pub fn upcast(self) -> StatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct ReturnStatementId(StatementId);
 

	
 
impl ReturnStatementId {
 
    pub fn upcast(self) -> StatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct AssertStatementId(StatementId);
 

	
 
impl AssertStatementId {
 
    pub fn upcast(self) -> StatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct GotoStatementId(StatementId);
 

	
 
impl GotoStatementId {
 
    pub fn upcast(self) -> StatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct NewStatementId(StatementId);
 

	
 
impl NewStatementId {
 
    pub fn upcast(self) -> StatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct PutStatementId(StatementId);
 

	
 
impl PutStatementId {
 
    pub fn upcast(self) -> StatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct ExpressionStatementId(StatementId);
 

	
 
impl ExpressionStatementId {
 
    pub fn upcast(self) -> StatementId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct ExpressionId(Id<Expression>);
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub struct AssignmentExpressionId(ExpressionId);
 

	
 
impl AssignmentExpressionId {
 
    pub fn upcast(self) -> ExpressionId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct ConditionalExpressionId(ExpressionId);
 

	
 
impl ConditionalExpressionId {
 
    pub fn upcast(self) -> ExpressionId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct BinaryExpressionId(ExpressionId);
 

	
 
impl BinaryExpressionId {
 
    pub fn upcast(self) -> ExpressionId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct UnaryExpressionId(ExpressionId);
 

	
 
impl UnaryExpressionId {
 
    pub fn upcast(self) -> ExpressionId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct IndexingExpressionId(ExpressionId);
 

	
 
impl IndexingExpressionId {
 
    pub fn upcast(self) -> ExpressionId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct SlicingExpressionId(ExpressionId);
 

	
 
impl SlicingExpressionId {
 
    pub fn upcast(self) -> ExpressionId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct SelectExpressionId(ExpressionId);
 

	
 
impl SelectExpressionId {
 
    pub fn upcast(self) -> ExpressionId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct ArrayExpressionId(ExpressionId);
 

	
 
impl ArrayExpressionId {
 
    pub fn upcast(self) -> ExpressionId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct ConstantExpressionId(ExpressionId);
 

	
 
impl ConstantExpressionId {
 
    pub fn upcast(self) -> ExpressionId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct CallExpressionId(ExpressionId);
 

	
 
impl CallExpressionId {
 
    pub fn upcast(self) -> ExpressionId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct VariableExpressionId(ExpressionId);
 

	
 
impl VariableExpressionId {
 
    pub fn upcast(self) -> ExpressionId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct DeclarationId(Id<Declaration>);
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct DefinedDeclarationId(DeclarationId);
 

	
 
impl DefinedDeclarationId {
 
    pub fn upcast(self) -> DeclarationId {
 
        self.0
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct ImportedDeclarationId(DeclarationId);
 

	
 
impl ImportedDeclarationId {
 
    pub fn upcast(self) -> DeclarationId {
 
        self.0
 
    }
 
}
 

	
 
pub struct Heap {
 
    // Phase 0: allocation
 
    protocol_descriptions: Arena<Root>,
 
    pragmas: Arena<Pragma>,
 
    imports: Arena<Import>,
 
    identifiers: Arena<Identifier>,
 
    type_annotations: Arena<TypeAnnotation>,
 
    variables: Arena<Variable>,
 
    definitions: Arena<Definition>,
 
    statements: Arena<Statement>,
 
    expressions: Arena<Expression>,
 
    declarations: Arena<Declaration>,
 
}
 

	
 
impl Heap {
 
    pub fn new() -> Heap {
 
        Heap {
 
            protocol_descriptions: Arena::new(),
 
            pragmas: Arena::new(),
 
            imports: Arena::new(),
 
            identifiers: Arena::new(),
 
            type_annotations: Arena::new(),
 
            variables: Arena::new(),
 
            definitions: Arena::new(),
 
            statements: Arena::new(),
 
            expressions: Arena::new(),
 
            declarations: Arena::new(),
 
        }
 
    }
 
    pub fn alloc_source_identifier(
 
        &mut self,
 
        f: impl FnOnce(SourceIdentifierId) -> SourceIdentifier,
 
    ) -> SourceIdentifierId {
 
        SourceIdentifierId(IdentifierId(
 
            self.identifiers
 
                .alloc_with_id(|id| Identifier::Source(f(SourceIdentifierId(IdentifierId(id))))),
 
        ))
 
    }
 
    pub fn alloc_external_identifier(
 
        &mut self,
 
        f: impl FnOnce(ExternalIdentifierId) -> ExternalIdentifier,
 
    ) -> ExternalIdentifierId {
 
        ExternalIdentifierId(IdentifierId(
 
            self.identifiers.alloc_with_id(|id| {
 
                Identifier::External(f(ExternalIdentifierId(IdentifierId(id))))
 
            }),
 
        ))
 
    }
 
    pub fn alloc_type_annotation(
 
        &mut self,
 
        f: impl FnOnce(TypeAnnotationId) -> TypeAnnotation,
 
    ) -> TypeAnnotationId {
 
        TypeAnnotationId(self.type_annotations.alloc_with_id(|id| f(TypeAnnotationId(id))))
 
    }
 
    pub fn alloc_parameter(&mut self, f: impl FnOnce(ParameterId) -> Parameter) -> ParameterId {
 
        ParameterId(VariableId(
 
            self.variables.alloc_with_id(|id| Variable::Parameter(f(ParameterId(VariableId(id))))),
 
        ))
 
    }
 
    pub fn alloc_local(&mut self, f: impl FnOnce(LocalId) -> Local) -> LocalId {
 
        LocalId(VariableId(
 
            self.variables.alloc_with_id(|id| Variable::Local(f(LocalId(VariableId(id))))),
 
        ))
 
    }
 
    pub fn alloc_assignment_expression(
 
        &mut self,
 
        f: impl FnOnce(AssignmentExpressionId) -> AssignmentExpression,
 
    ) -> AssignmentExpressionId {
 
        AssignmentExpressionId(ExpressionId(self.expressions.alloc_with_id(|id| {
 
            Expression::Assignment(f(AssignmentExpressionId(ExpressionId(id))))
 
        })))
 
    }
 
    pub fn alloc_conditional_expression(
 
        &mut self,
 
        f: impl FnOnce(ConditionalExpressionId) -> ConditionalExpression,
 
    ) -> ConditionalExpressionId {
 
        ConditionalExpressionId(ExpressionId(self.expressions.alloc_with_id(|id| {
 
            Expression::Conditional(f(ConditionalExpressionId(ExpressionId(id))))
 
        })))
 
    }
 
    pub fn alloc_binary_expression(
 
        &mut self,
 
        f: impl FnOnce(BinaryExpressionId) -> BinaryExpression,
 
    ) -> BinaryExpressionId {
 
        BinaryExpressionId(ExpressionId(
 
            self.expressions
 
                .alloc_with_id(|id| Expression::Binary(f(BinaryExpressionId(ExpressionId(id))))),
 
        ))
 
    }
 
    pub fn alloc_unary_expression(
 
        &mut self,
 
        f: impl FnOnce(UnaryExpressionId) -> UnaryExpression,
 
    ) -> UnaryExpressionId {
 
        UnaryExpressionId(ExpressionId(
 
            self.expressions
 
                .alloc_with_id(|id| Expression::Unary(f(UnaryExpressionId(ExpressionId(id))))),
 
        ))
 
    }
 
    pub fn alloc_slicing_expression(
 
        &mut self,
 
        f: impl FnOnce(SlicingExpressionId) -> SlicingExpression,
 
    ) -> SlicingExpressionId {
 
        SlicingExpressionId(ExpressionId(
 
            self.expressions
 
                .alloc_with_id(|id| Expression::Slicing(f(SlicingExpressionId(ExpressionId(id))))),
 
        ))
 
    }
 
    pub fn alloc_indexing_expression(
 
        &mut self,
 
        f: impl FnOnce(IndexingExpressionId) -> IndexingExpression,
 
    ) -> IndexingExpressionId {
 
        IndexingExpressionId(ExpressionId(
 
            self.expressions.alloc_with_id(|id| {
 
                Expression::Indexing(f(IndexingExpressionId(ExpressionId(id))))
 
            }),
 
        ))
 
    }
 
    pub fn alloc_select_expression(
 
        &mut self,
 
        f: impl FnOnce(SelectExpressionId) -> SelectExpression,
 
    ) -> SelectExpressionId {
 
        SelectExpressionId(ExpressionId(
 
            self.expressions
 
                .alloc_with_id(|id| Expression::Select(f(SelectExpressionId(ExpressionId(id))))),
 
        ))
 
    }
 
    pub fn alloc_array_expression(
 
        &mut self,
 
        f: impl FnOnce(ArrayExpressionId) -> ArrayExpression,
 
    ) -> ArrayExpressionId {
 
        ArrayExpressionId(ExpressionId(
 
            self.expressions
 
                .alloc_with_id(|id| Expression::Array(f(ArrayExpressionId(ExpressionId(id))))),
 
        ))
 
    }
 
    pub fn alloc_constant_expression(
 
        &mut self,
 
        f: impl FnOnce(ConstantExpressionId) -> ConstantExpression,
 
    ) -> ConstantExpressionId {
 
        ConstantExpressionId(ExpressionId(
 
            self.expressions.alloc_with_id(|id| {
 
                Expression::Constant(f(ConstantExpressionId(ExpressionId(id))))
 
            }),
 
        ))
 
    }
 
    pub fn alloc_call_expression(
 
        &mut self,
 
        f: impl FnOnce(CallExpressionId) -> CallExpression,
 
    ) -> CallExpressionId {
 
        CallExpressionId(ExpressionId(
 
            self.expressions
 
                .alloc_with_id(|id| Expression::Call(f(CallExpressionId(ExpressionId(id))))),
 
        ))
 
    }
 
    pub fn alloc_variable_expression(
 
        &mut self,
 
        f: impl FnOnce(VariableExpressionId) -> VariableExpression,
 
    ) -> VariableExpressionId {
 
        VariableExpressionId(ExpressionId(
 
            self.expressions.alloc_with_id(|id| {
 
                Expression::Variable(f(VariableExpressionId(ExpressionId(id))))
 
            }),
 
        ))
 
    }
 
    pub fn alloc_block_statement(
 
        &mut self,
 
        f: impl FnOnce(BlockStatementId) -> BlockStatement,
 
    ) -> BlockStatementId {
 
        BlockStatementId(StatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::Block(f(BlockStatementId(StatementId(id))))),
 
        ))
 
    }
 
    pub fn alloc_memory_statement(
 
        &mut self,
 
        f: impl FnOnce(MemoryStatementId) -> MemoryStatement,
 
    ) -> MemoryStatementId {
 
        MemoryStatementId(LocalStatementId(StatementId(self.statements.alloc_with_id(|id| {
 
            Statement::Local(LocalStatement::Memory(f(MemoryStatementId(LocalStatementId(
 
                StatementId(id),
 
            )))))
 
        }))))
 
    }
 
    pub fn alloc_channel_statement(
 
        &mut self,
 
        f: impl FnOnce(ChannelStatementId) -> ChannelStatement,
 
    ) -> ChannelStatementId {
 
        ChannelStatementId(LocalStatementId(StatementId(self.statements.alloc_with_id(|id| {
 
            Statement::Local(LocalStatement::Channel(f(ChannelStatementId(LocalStatementId(
 
                StatementId(id),
 
            )))))
 
        }))))
 
    }
 
    pub fn alloc_skip_statement(
 
        &mut self,
 
        f: impl FnOnce(SkipStatementId) -> SkipStatement,
 
    ) -> SkipStatementId {
 
        SkipStatementId(StatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::Skip(f(SkipStatementId(StatementId(id))))),
 
        ))
 
    }
 
    pub fn alloc_if_statement(
 
        &mut self,
 
        f: impl FnOnce(IfStatementId) -> IfStatement,
 
    ) -> IfStatementId {
 
        IfStatementId(StatementId(
 
            self.statements.alloc_with_id(|id| Statement::If(f(IfStatementId(StatementId(id))))),
 
        ))
 
    }
 
    pub fn alloc_end_if_statement(
 
        &mut self,
 
        f: impl FnOnce(EndIfStatementId) -> EndIfStatement,
 
    ) -> EndIfStatementId {
 
        EndIfStatementId(StatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::EndIf(f(EndIfStatementId(StatementId(id))))),
 
        ))
 
    }
 
    pub fn alloc_while_statement(
 
        &mut self,
 
        f: impl FnOnce(WhileStatementId) -> WhileStatement,
 
    ) -> WhileStatementId {
 
        WhileStatementId(StatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::While(f(WhileStatementId(StatementId(id))))),
 
        ))
 
    }
 
    pub fn alloc_end_while_statement(
 
        &mut self,
 
        f: impl FnOnce(EndWhileStatementId) -> EndWhileStatement,
 
    ) -> EndWhileStatementId {
 
        EndWhileStatementId(StatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::EndWhile(f(EndWhileStatementId(StatementId(id))))),
 
        ))
 
    }
 
    pub fn alloc_break_statement(
 
        &mut self,
 
        f: impl FnOnce(BreakStatementId) -> BreakStatement,
 
    ) -> BreakStatementId {
 
        BreakStatementId(StatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::Break(f(BreakStatementId(StatementId(id))))),
 
        ))
 
    }
 
    pub fn alloc_continue_statement(
 
        &mut self,
 
        f: impl FnOnce(ContinueStatementId) -> ContinueStatement,
 
    ) -> ContinueStatementId {
 
        ContinueStatementId(StatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::Continue(f(ContinueStatementId(StatementId(id))))),
 
        ))
 
    }
 
    pub fn alloc_synchronous_statement(
 
        &mut self,
 
        f: impl FnOnce(SynchronousStatementId) -> SynchronousStatement,
 
    ) -> SynchronousStatementId {
 
        SynchronousStatementId(StatementId(self.statements.alloc_with_id(|id| {
 
            Statement::Synchronous(f(SynchronousStatementId(StatementId(id))))
 
        })))
 
    }
 
    pub fn alloc_end_synchronous_statement(
 
        &mut self,
 
        f: impl FnOnce(EndSynchronousStatementId) -> EndSynchronousStatement,
 
    ) -> EndSynchronousStatementId {
 
        EndSynchronousStatementId(StatementId(self.statements.alloc_with_id(|id| {
 
            Statement::EndSynchronous(f(EndSynchronousStatementId(StatementId(id))))
 
        })))
 
    }
 
    pub fn alloc_return_statement(
 
        &mut self,
 
        f: impl FnOnce(ReturnStatementId) -> ReturnStatement,
 
    ) -> ReturnStatementId {
 
        ReturnStatementId(StatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::Return(f(ReturnStatementId(StatementId(id))))),
 
        ))
 
    }
 
    pub fn alloc_assert_statement(
 
        &mut self,
 
        f: impl FnOnce(AssertStatementId) -> AssertStatement,
 
    ) -> AssertStatementId {
 
        AssertStatementId(StatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::Assert(f(AssertStatementId(StatementId(id))))),
 
        ))
 
    }
 
    pub fn alloc_goto_statement(
 
        &mut self,
 
        f: impl FnOnce(GotoStatementId) -> GotoStatement,
 
    ) -> GotoStatementId {
 
        GotoStatementId(StatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::Goto(f(GotoStatementId(StatementId(id))))),
 
        ))
 
    }
 
    pub fn alloc_new_statement(
 
        &mut self,
 
        f: impl FnOnce(NewStatementId) -> NewStatement,
 
    ) -> NewStatementId {
 
        NewStatementId(StatementId(
 
            self.statements.alloc_with_id(|id| Statement::New(f(NewStatementId(StatementId(id))))),
 
        ))
 
    }
 
    pub fn alloc_put_statement(
 
        &mut self,
 
        f: impl FnOnce(PutStatementId) -> PutStatement,
 
    ) -> PutStatementId {
 
        PutStatementId(StatementId(
 
            self.statements.alloc_with_id(|id| Statement::Put(f(PutStatementId(StatementId(id))))),
 
        ))
 
    }
 
    pub fn alloc_labeled_statement(
 
        &mut self,
 
        f: impl FnOnce(LabeledStatementId) -> LabeledStatement,
 
    ) -> LabeledStatementId {
 
        LabeledStatementId(StatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::Labeled(f(LabeledStatementId(StatementId(id))))),
 
        ))
 
    }
 
    pub fn alloc_expression_statement(
 
        &mut self,
 
        f: impl FnOnce(ExpressionStatementId) -> ExpressionStatement,
 
    ) -> ExpressionStatementId {
 
        ExpressionStatementId(StatementId(
 
            self.statements.alloc_with_id(|id| {
 
                Statement::Expression(f(ExpressionStatementId(StatementId(id))))
 
            }),
 
        ))
 
    }
 
    pub fn alloc_composite(&mut self, f: impl FnOnce(CompositeId) -> Composite) -> CompositeId {
 
        CompositeId(ComponentId(DefinitionId(self.definitions.alloc_with_id(|id| {
 
            Definition::Component(Component::Composite(f(CompositeId(ComponentId(DefinitionId(
 
                id,
 
            ))))))
 
        }))))
 
    }
 
    pub fn alloc_primitive(&mut self, f: impl FnOnce(PrimitiveId) -> Primitive) -> PrimitiveId {
 
        PrimitiveId(ComponentId(DefinitionId(self.definitions.alloc_with_id(|id| {
 
            Definition::Component(Component::Primitive(f(PrimitiveId(ComponentId(DefinitionId(
 
                id,
 
            ))))))
 
        }))))
 
    }
 
    pub fn alloc_function(&mut self, f: impl FnOnce(FunctionId) -> Function) -> FunctionId {
 
        FunctionId(DefinitionId(
 
            self.definitions
 
                .alloc_with_id(|id| Definition::Function(f(FunctionId(DefinitionId(id))))),
 
        ))
 
    }
 
    pub fn alloc_pragma(&mut self, f: impl FnOnce(PragmaId) -> Pragma) -> PragmaId {
 
        PragmaId(self.pragmas.alloc_with_id(|id| f(PragmaId(id))))
 
    }
 
    pub fn alloc_import(&mut self, f: impl FnOnce(ImportId) -> Import) -> ImportId {
 
        ImportId(self.imports.alloc_with_id(|id| f(ImportId(id))))
 
    }
 
    pub fn alloc_protocol_description(&mut self, f: impl FnOnce(RootId) -> Root) -> RootId {
 
        RootId(self.protocol_descriptions.alloc_with_id(|id| f(RootId(id))))
 
    }
 
    pub fn alloc_imported_declaration(
 
        &mut self,
 
        f: impl FnOnce(ImportedDeclarationId) -> ImportedDeclaration,
 
    ) -> ImportedDeclarationId {
 
        ImportedDeclarationId(DeclarationId(self.declarations.alloc_with_id(|id| {
 
            Declaration::Imported(f(ImportedDeclarationId(DeclarationId(id))))
 
        })))
 
    }
 
    pub fn alloc_defined_declaration(
 
        &mut self,
 
        f: impl FnOnce(DefinedDeclarationId) -> DefinedDeclaration,
 
    ) -> DefinedDeclarationId {
 
        DefinedDeclarationId(DeclarationId(
 
            self.declarations.alloc_with_id(|id| {
 
                Declaration::Defined(f(DefinedDeclarationId(DeclarationId(id))))
 
            }),
 
        ))
 
    }
 

	
 
    pub fn get_external_identifier(&mut self, ident: &[u8]) -> ExternalIdentifierId {
 
        for (_, id) in self.identifiers.iter() {
 
            if id.is_external() && id.ident() == ident {
 
                return id.as_external().this;
 
            }
 
        }
 
        // Not found
 
        self.alloc_external_identifier(|this| ExternalIdentifier { this, value: ident.to_vec() })
 
    }
 
}
 

	
 
impl Index<RootId> for Heap {
 
    type Output = Root;
 
    fn index(&self, index: RootId) -> &Self::Output {
 
        &self.protocol_descriptions[index.0]
 
    }
 
}
 

	
 
impl IndexMut<RootId> for Heap {
 
    fn index_mut(&mut self, index: RootId) -> &mut Self::Output {
 
        &mut self.protocol_descriptions[index.0]
 
    }
 
}
 

	
 
impl Index<PragmaId> for Heap {
 
    type Output = Pragma;
 
    fn index(&self, index: PragmaId) -> &Self::Output {
 
        &self.pragmas[index.0]
 
    }
 
}
 

	
 
impl Index<ImportId> for Heap {
 
    type Output = Import;
 
    fn index(&self, index: ImportId) -> &Self::Output {
 
        &self.imports[index.0]
 
    }
 
}
 

	
 
impl Index<IdentifierId> for Heap {
 
    type Output = Identifier;
 
    fn index(&self, index: IdentifierId) -> &Self::Output {
 
        &self.identifiers[index.0]
 
    }
 
}
 

	
 
impl Index<SourceIdentifierId> for Heap {
 
    type Output = SourceIdentifier;
 
    fn index(&self, index: SourceIdentifierId) -> &Self::Output {
 
        &self.identifiers[(index.0).0].as_source()
 
    }
 
}
 

	
 
impl Index<ExternalIdentifierId> for Heap {
 
    type Output = ExternalIdentifier;
 
    fn index(&self, index: ExternalIdentifierId) -> &Self::Output {
 
        &self.identifiers[(index.0).0].as_external()
 
    }
 
}
 

	
 
impl Index<TypeAnnotationId> for Heap {
 
    type Output = TypeAnnotation;
 
    fn index(&self, index: TypeAnnotationId) -> &Self::Output {
 
        &self.type_annotations[index.0]
 
    }
 
}
 

	
 
impl Index<VariableId> for Heap {
 
    type Output = Variable;
 
    fn index(&self, index: VariableId) -> &Self::Output {
 
        &self.variables[index.0]
 
    }
 
}
 

	
 
impl Index<ParameterId> for Heap {
 
    type Output = Parameter;
 
    fn index(&self, index: ParameterId) -> &Self::Output {
 
        &self.variables[(index.0).0].as_parameter()
 
    }
 
}
 

	
 
impl Index<LocalId> for Heap {
 
    type Output = Local;
 
    fn index(&self, index: LocalId) -> &Self::Output {
 
        &self.variables[(index.0).0].as_local()
 
    }
 
}
 

	
 
impl Index<DefinitionId> for Heap {
 
    type Output = Definition;
 
    fn index(&self, index: DefinitionId) -> &Self::Output {
 
        &self.definitions[index.0]
 
    }
 
}
 

	
 
impl Index<ComponentId> for Heap {
 
    type Output = Component;
 
    fn index(&self, index: ComponentId) -> &Self::Output {
 
        &self.definitions[(index.0).0].as_component()
 
    }
 
}
 

	
 
impl Index<FunctionId> for Heap {
 
    type Output = Function;
 
    fn index(&self, index: FunctionId) -> &Self::Output {
 
        &self.definitions[(index.0).0].as_function()
 
    }
 
}
 

	
 
impl Index<CompositeId> for Heap {
 
    type Output = Composite;
 
    fn index(&self, index: CompositeId) -> &Self::Output {
 
        &self.definitions[((index.0).0).0].as_composite()
 
    }
 
}
 

	
 
impl Index<PrimitiveId> for Heap {
 
    type Output = Primitive;
 
    fn index(&self, index: PrimitiveId) -> &Self::Output {
 
        &self.definitions[((index.0).0).0].as_primitive()
 
    }
 
}
 

	
 
impl Index<StatementId> for Heap {
 
    type Output = Statement;
 
    fn index(&self, index: StatementId) -> &Self::Output {
 
        &self.statements[index.0]
 
    }
 
}
 

	
 
impl IndexMut<StatementId> for Heap {
 
    fn index_mut(&mut self, index: StatementId) -> &mut Self::Output {
 
        &mut self.statements[index.0]
 
    }
 
}
 

	
 
impl Index<BlockStatementId> for Heap {
 
    type Output = BlockStatement;
 
    fn index(&self, index: BlockStatementId) -> &Self::Output {
 
        &self.statements[(index.0).0].as_block()
 
    }
 
}
 

	
 
impl IndexMut<BlockStatementId> for Heap {
 
    fn index_mut(&mut self, index: BlockStatementId) -> &mut Self::Output {
 
        (&mut self.statements[(index.0).0]).as_block_mut()
 
    }
 
}
 

	
 
impl Index<LocalStatementId> for Heap {
 
    type Output = LocalStatement;
 
    fn index(&self, index: LocalStatementId) -> &Self::Output {
 
        &self.statements[(index.0).0].as_local()
 
    }
 
}
 

	
 
impl Index<MemoryStatementId> for Heap {
 
    type Output = MemoryStatement;
 
    fn index(&self, index: MemoryStatementId) -> &Self::Output {
 
        &self.statements[((index.0).0).0].as_memory()
 
    }
 
}
 

	
 
impl Index<ChannelStatementId> for Heap {
 
    type Output = ChannelStatement;
 
    fn index(&self, index: ChannelStatementId) -> &Self::Output {
 
        &self.statements[((index.0).0).0].as_channel()
 
    }
 
}
 

	
 
impl Index<SkipStatementId> for Heap {
 
    type Output = SkipStatement;
 
    fn index(&self, index: SkipStatementId) -> &Self::Output {
 
        &self.statements[(index.0).0].as_skip()
 
    }
 
}
 

	
 
impl Index<LabeledStatementId> for Heap {
 
    type Output = LabeledStatement;
 
    fn index(&self, index: LabeledStatementId) -> &Self::Output {
 
        &self.statements[(index.0).0].as_labeled()
 
    }
 
}
 

	
 
impl IndexMut<LabeledStatementId> for Heap {
 
    fn index_mut(&mut self, index: LabeledStatementId) -> &mut Self::Output {
 
        (&mut self.statements[(index.0).0]).as_labeled_mut()
 
    }
 
}
 

	
 
impl Index<IfStatementId> for Heap {
 
    type Output = IfStatement;
 
    fn index(&self, index: IfStatementId) -> &Self::Output {
 
        &self.statements[(index.0).0].as_if()
 
    }
 
}
 

	
 
impl Index<EndIfStatementId> for Heap {
 
    type Output = EndIfStatement;
 
    fn index(&self, index: EndIfStatementId) -> &Self::Output {
 
        &self.statements[(index.0).0].as_end_if()
 
    }
 
}
 

	
 
impl Index<WhileStatementId> for Heap {
 
    type Output = WhileStatement;
 
    fn index(&self, index: WhileStatementId) -> &Self::Output {
 
        &self.statements[(index.0).0].as_while()
 
    }
 
}
 

	
 
impl IndexMut<WhileStatementId> for Heap {
 
    fn index_mut(&mut self, index: WhileStatementId) -> &mut Self::Output {
 
        (&mut self.statements[(index.0).0]).as_while_mut()
 
    }
 
}
 

	
 
impl Index<BreakStatementId> for Heap {
 
    type Output = BreakStatement;
 
    fn index(&self, index: BreakStatementId) -> &Self::Output {
 
        &self.statements[(index.0).0].as_break()
 
    }
 
}
 

	
 
impl IndexMut<BreakStatementId> for Heap {
 
    fn index_mut(&mut self, index: BreakStatementId) -> &mut Self::Output {
 
        (&mut self.statements[(index.0).0]).as_break_mut()
 
    }
 
}
 

	
 
impl Index<ContinueStatementId> for Heap {
 
    type Output = ContinueStatement;
 
    fn index(&self, index: ContinueStatementId) -> &Self::Output {
 
        &self.statements[(index.0).0].as_continue()
 
    }
 
}
 

	
 
impl IndexMut<ContinueStatementId> for Heap {
 
    fn index_mut(&mut self, index: ContinueStatementId) -> &mut Self::Output {
 
        (&mut self.statements[(index.0).0]).as_continue_mut()
 
    }
 
}
 

	
 
impl Index<SynchronousStatementId> for Heap {
 
    type Output = SynchronousStatement;
 
    fn index(&self, index: SynchronousStatementId) -> &Self::Output {
 
        &self.statements[(index.0).0].as_synchronous()
 
    }
 
}
 

	
 
impl IndexMut<SynchronousStatementId> for Heap {
 
    fn index_mut(&mut self, index: SynchronousStatementId) -> &mut Self::Output {
 
        (&mut self.statements[(index.0).0]).as_synchronous_mut()
 
    }
 
}
 

	
 
impl Index<EndSynchronousStatementId> for Heap {
 
    type Output = EndSynchronousStatement;
 
    fn index(&self, index: EndSynchronousStatementId) -> &Self::Output {
 
        &self.statements[(index.0).0].as_end_synchronous()
 
    }
 
}
 

	
 
impl Index<ReturnStatementId> for Heap {
 
    type Output = ReturnStatement;
 
    fn index(&self, index: ReturnStatementId) -> &Self::Output {
 
        &self.statements[(index.0).0].as_return()
 
    }
 
}
 

	
 
impl Index<AssertStatementId> for Heap {
 
    type Output = AssertStatement;
 
    fn index(&self, index: AssertStatementId) -> &Self::Output {
 
        &self.statements[(index.0).0].as_assert()
 
    }
 
}
 

	
 
impl Index<GotoStatementId> for Heap {
 
    type Output = GotoStatement;
 
    fn index(&self, index: GotoStatementId) -> &Self::Output {
 
        &self.statements[(index.0).0].as_goto()
 
    }
 
}
 

	
 
impl IndexMut<GotoStatementId> for Heap {
 
    fn index_mut(&mut self, index: GotoStatementId) -> &mut Self::Output {
 
        (&mut self.statements[(index.0).0]).as_goto_mut()
 
    }
 
}
 

	
 
impl Index<NewStatementId> for Heap {
 
    type Output = NewStatement;
 
    fn index(&self, index: NewStatementId) -> &Self::Output {
 
        &self.statements[(index.0).0].as_new()
 
    }
 
}
 

	
 
impl Index<PutStatementId> for Heap {
 
    type Output = PutStatement;
 
    fn index(&self, index: PutStatementId) -> &Self::Output {
 
        &self.statements[(index.0).0].as_put()
 
    }
 
}
 

	
 
impl Index<ExpressionStatementId> for Heap {
 
    type Output = ExpressionStatement;
 
    fn index(&self, index: ExpressionStatementId) -> &Self::Output {
 
        &self.statements[(index.0).0].as_expression()
 
    }
 
}
 

	
 
impl Index<ExpressionId> for Heap {
 
    type Output = Expression;
 
    fn index(&self, index: ExpressionId) -> &Self::Output {
 
        &self.expressions[index.0]
 
    }
 
}
 

	
 
impl Index<AssignmentExpressionId> for Heap {
 
    type Output = AssignmentExpression;
 
    fn index(&self, index: AssignmentExpressionId) -> &Self::Output {
 
        &self.expressions[(index.0).0].as_assignment()
 
    }
 
}
 

	
 
impl Index<ConditionalExpressionId> for Heap {
 
    type Output = ConditionalExpression;
 
    fn index(&self, index: ConditionalExpressionId) -> &Self::Output {
 
        &self.expressions[(index.0).0].as_conditional()
 
    }
 
}
 

	
 
impl Index<BinaryExpressionId> for Heap {
 
    type Output = BinaryExpression;
 
    fn index(&self, index: BinaryExpressionId) -> &Self::Output {
 
        &self.expressions[(index.0).0].as_binary()
 
    }
 
}
 

	
 
impl Index<UnaryExpressionId> for Heap {
 
    type Output = UnaryExpression;
 
    fn index(&self, index: UnaryExpressionId) -> &Self::Output {
 
        &self.expressions[(index.0).0].as_unary()
 
    }
 
}
 

	
 
impl Index<IndexingExpressionId> for Heap {
 
    type Output = IndexingExpression;
 
    fn index(&self, index: IndexingExpressionId) -> &Self::Output {
 
        &self.expressions[(index.0).0].as_indexing()
 
    }
 
}
 

	
 
impl Index<SlicingExpressionId> for Heap {
 
    type Output = SlicingExpression;
 
    fn index(&self, index: SlicingExpressionId) -> &Self::Output {
 
        &self.expressions[(index.0).0].as_slicing()
 
    }
 
}
 

	
 
impl Index<SelectExpressionId> for Heap {
 
    type Output = SelectExpression;
 
    fn index(&self, index: SelectExpressionId) -> &Self::Output {
 
        &self.expressions[(index.0).0].as_select()
 
    }
 
}
 

	
 
impl Index<ArrayExpressionId> for Heap {
 
    type Output = ArrayExpression;
 
    fn index(&self, index: ArrayExpressionId) -> &Self::Output {
 
        &self.expressions[(index.0).0].as_array()
 
    }
 
}
 

	
 
impl Index<ConstantExpressionId> for Heap {
 
    type Output = ConstantExpression;
 
    fn index(&self, index: ConstantExpressionId) -> &Self::Output {
 
        &self.expressions[(index.0).0].as_constant()
 
    }
 
}
 

	
 
impl Index<CallExpressionId> for Heap {
 
    type Output = CallExpression;
 
    fn index(&self, index: CallExpressionId) -> &Self::Output {
 
        &self.expressions[(index.0).0].as_call()
 
    }
 
}
 

	
 
impl IndexMut<CallExpressionId> for Heap {
 
    fn index_mut(&mut self, index: CallExpressionId) -> &mut Self::Output {
 
        (&mut self.expressions[(index.0).0]).as_call_mut()
 
    }
 
}
 

	
 
impl Index<VariableExpressionId> for Heap {
 
    type Output = VariableExpression;
 
    fn index(&self, index: VariableExpressionId) -> &Self::Output {
 
        &self.expressions[(index.0).0].as_variable()
 
    }
 
}
 

	
 
impl IndexMut<VariableExpressionId> for Heap {
 
    fn index_mut(&mut self, index: VariableExpressionId) -> &mut Self::Output {
 
        (&mut self.expressions[(index.0).0]).as_variable_mut()
 
    }
 
}
 

	
 
impl Index<DeclarationId> for Heap {
 
    type Output = Declaration;
 
    fn index(&self, index: DeclarationId) -> &Self::Output {
 
        &self.declarations[index.0]
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Root {
 
    pub this: RootId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub pragmas: Vec<PragmaId>,
 
    pub imports: Vec<ImportId>,
 
    pub definitions: Vec<DefinitionId>,
 
    // Pase 2: linker
 
    pub declarations: Vec<DeclarationId>,
 
}
 

	
 
impl Root {
 
    pub fn get_definition(&self, h: &Heap, id: IdentifierId) -> Option<DefinitionId> {
 
        for &def in self.definitions.iter() {
 
            if h[h[def].identifier()] == h[id] {
 
                return Some(def);
 
            }
 
        }
 
        None
 
    }
 
    pub fn get_definition_ident(&self, h: &Heap, id: &[u8]) -> Option<DefinitionId> {
 
        for &def in self.definitions.iter() {
 
            if h[h[def].identifier()].ident() == id {
 
                return Some(def);
 
            }
 
        }
 
        None
 
    }
 
    pub fn get_declaration(&self, h: &Heap, id: IdentifierId) -> Option<DeclarationId> {
 
        for &decl in self.declarations.iter() {
 
            if h[h[decl].identifier()] == h[id] {
 
                return Some(decl);
 
            }
 
        }
 
        None
 
    }
 
}
 

	
 
impl SyntaxElement for Root {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Pragma {
 
    pub this: PragmaId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub value: Vec<u8>,
 
}
 

	
 
impl SyntaxElement for Pragma {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Import {
 
    pub this: ImportId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub value: Vec<u8>,
 
}
 

	
 
impl SyntaxElement for Import {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Identifier {
 
    External(ExternalIdentifier),
 
    Source(SourceIdentifier),
 
}
 

	
 
impl Identifier {
 
    pub fn as_source(&self) -> &SourceIdentifier {
 
        match self {
 
            Identifier::Source(result) => result,
 
            _ => panic!("Unable to cast `Identifier` to `SourceIdentifier`"),
 
        }
 
    }
 
    pub fn is_external(&self) -> bool {
 
        match self {
 
            Identifier::External(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub fn as_external(&self) -> &ExternalIdentifier {
 
        match self {
 
            Identifier::External(result) => result,
 
            _ => panic!("Unable to cast `Identifier` to `ExternalIdentifier`"),
 
        }
 
    }
 
    fn ident(&self) -> &[u8] {
 
        match self {
 
            Identifier::External(eid) => eid.ident(),
 
            Identifier::Source(sid) => sid.ident(),
 
        }
 
    }
 
}
 

	
 
impl Display for Identifier {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        // A source identifier is in ASCII range.
 
        write!(f, "{}", String::from_utf8_lossy(self.ident()))
 
    }
 
}
 

	
 
impl PartialEq<Identifier> for Identifier {
 
    fn eq(&self, rhs: &Identifier) -> bool {
 
        self.ident() == rhs.ident()
 
    }
 
}
 

	
 
impl PartialEq<SourceIdentifier> for Identifier {
 
    fn eq(&self, rhs: &SourceIdentifier) -> bool {
 
        self.ident() == rhs.ident()
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ExternalIdentifier {
 
    pub this: ExternalIdentifierId,
 
    // Phase 1: parser
 
    pub value: Vec<u8>,
 
}
 

	
 
impl ExternalIdentifier {
 
    fn ident(&self) -> &[u8] {
 
        &self.value
 
    }
 
}
 

	
 
impl Display for ExternalIdentifier {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        // A source identifier is in ASCII range.
 
        write!(f, "{}", String::from_utf8_lossy(&self.value))
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct SourceIdentifier {
 
    pub this: SourceIdentifierId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub value: Vec<u8>,
 
}
 

	
 
impl SourceIdentifier {
 
    fn ident(&self) -> &[u8] {
 
        &self.value
 
    }
 
}
 

	
 
impl SyntaxElement for SourceIdentifier {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
impl Display for SourceIdentifier {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        // A source identifier is in ASCII range.
 
        write!(f, "{}", String::from_utf8_lossy(&self.value))
 
    }
 
}
 

	
 
impl PartialEq<Identifier> for SourceIdentifier {
 
    fn eq(&self, rhs: &Identifier) -> bool {
 
        self.ident() == rhs.ident()
 
    }
 
}
 

	
 
impl PartialEq<SourceIdentifier> for SourceIdentifier {
 
    fn eq(&self, rhs: &SourceIdentifier) -> bool {
 
        self.ident() == rhs.ident()
 
    }
 
}
 

	
 
type TypeData = Vec<u8>;
 

	
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub enum PrimitiveType {
 
    Input,
 
    Output,
 
    Message,
 
    Boolean,
 
    Byte,
 
    Short,
 
    Int,
 
    Long,
 
    Symbolic(TypeData),
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub struct Type {
 
    pub primitive: PrimitiveType,
 
    pub array: bool,
 
}
 

	
 
#[allow(dead_code)]
 
impl Type {
 
    pub const INPUT: Type = Type { primitive: PrimitiveType::Input, array: false };
 
    pub const OUTPUT: Type = Type { primitive: PrimitiveType::Output, array: false };
 
    pub const MESSAGE: Type = Type { primitive: PrimitiveType::Message, array: false };
 
    pub const BOOLEAN: Type = Type { primitive: PrimitiveType::Boolean, array: false };
 
    pub const BYTE: Type = Type { primitive: PrimitiveType::Byte, array: false };
 
    pub const SHORT: Type = Type { primitive: PrimitiveType::Short, array: false };
 
    pub const INT: Type = Type { primitive: PrimitiveType::Int, array: false };
 
    pub const LONG: Type = Type { primitive: PrimitiveType::Long, array: false };
 

	
 
    pub const INPUT_ARRAY: Type = Type { primitive: PrimitiveType::Input, array: true };
 
    pub const OUTPUT_ARRAY: Type = Type { primitive: PrimitiveType::Output, array: true };
 
    pub const MESSAGE_ARRAY: Type = Type { primitive: PrimitiveType::Message, array: true };
 
    pub const BOOLEAN_ARRAY: Type = Type { primitive: PrimitiveType::Boolean, array: true };
 
    pub const BYTE_ARRAY: Type = Type { primitive: PrimitiveType::Byte, array: true };
 
    pub const SHORT_ARRAY: Type = Type { primitive: PrimitiveType::Short, array: true };
 
    pub const INT_ARRAY: Type = Type { primitive: PrimitiveType::Int, array: true };
 
    pub const LONG_ARRAY: Type = Type { primitive: PrimitiveType::Long, array: true };
 
}
 

	
 
impl Display for Type {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        match &self.primitive {
 
            PrimitiveType::Input => {
 
                write!(f, "in")?;
 
            }
 
            PrimitiveType::Output => {
 
                write!(f, "out")?;
 
            }
 
            PrimitiveType::Message => {
 
                write!(f, "msg")?;
 
            }
 
            PrimitiveType::Boolean => {
 
                write!(f, "boolean")?;
 
            }
 
            PrimitiveType::Byte => {
 
                write!(f, "byte")?;
 
            }
 
            PrimitiveType::Short => {
 
                write!(f, "short")?;
 
            }
 
            PrimitiveType::Int => {
 
                write!(f, "int")?;
 
            }
 
            PrimitiveType::Long => {
 
                write!(f, "long")?;
 
            }
 
            PrimitiveType::Symbolic(data) => {
 
                // Type data is in ASCII range.
 
                write!(f, "{}", String::from_utf8_lossy(&data))?;
 
            }
 
        }
 
        if self.array {
 
            write!(f, "[]")
 
        } else {
 
            Ok(())
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct TypeAnnotation {
 
    pub this: TypeAnnotationId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub the_type: Type,
 
}
 

	
 
impl SyntaxElement for TypeAnnotation {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
type CharacterData = Vec<u8>;
 
type IntegerData = Vec<u8>;
 

	
 
#[derive(Debug, Clone)]
 
pub enum Constant {
 
    Null, // message
 
    True,
 
    False,
 
    Character(CharacterData),
 
    Integer(IntegerData),
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Method {
 
    Get,
 
    Fires,
 
    Create,
 
    Symbolic(SourceIdentifierId),
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Field {
 
    Length,
 
    Symbolic(SourceIdentifierId),
 
}
 
impl Field {
 
    pub fn is_length(&self) -> bool {
 
        match self {
 
            Field::Length => true,
 
            _ => false,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub enum Scope {
 
    Definition(DefinitionId),
 
    Block(BlockStatementId),
 
    Synchronous(SynchronousStatementId),
 
}
 

	
 
impl Scope {
 
    pub fn to_block(&self) -> BlockStatementId {
 
        match &self {
 
            Scope::Block(id) => *id,
 
            _ => panic!("Unable to cast `Scope` to `BlockStatement`"),
 
        }
 
    }
 
}
 

	
 
pub trait VariableScope {
 
    fn parent_scope(&self, h: &Heap) -> Option<Scope>;
 
    fn get_variable(&self, h: &Heap, id: SourceIdentifierId) -> Option<VariableId>;
 
}
 

	
 
impl VariableScope for Scope {
 
    fn parent_scope(&self, h: &Heap) -> Option<Scope> {
 
        match self {
 
            Scope::Definition(def) => h[*def].parent_scope(h),
 
            Scope::Block(stmt) => h[*stmt].parent_scope(h),
 
            Scope::Synchronous(stmt) => h[*stmt].parent_scope(h),
 
        }
 
    }
 
    fn get_variable(&self, h: &Heap, id: SourceIdentifierId) -> Option<VariableId> {
 
        match self {
 
            Scope::Definition(def) => h[*def].get_variable(h, id),
 
            Scope::Block(stmt) => h[*stmt].get_variable(h, id),
 
            Scope::Synchronous(stmt) => h[*stmt].get_variable(h, id),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Variable {
 
    Parameter(Parameter),
 
    Local(Local),
 
}
 

	
 
impl Variable {
 
    pub fn identifier(&self) -> SourceIdentifierId {
 
        match self {
 
            Variable::Parameter(var) => var.identifier,
 
            Variable::Local(var) => var.identifier,
 
        }
 
    }
 
    pub fn is_parameter(&self) -> bool {
 
        match self {
 
            Variable::Parameter(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub fn as_parameter(&self) -> &Parameter {
 
        match self {
 
            Variable::Parameter(result) => result,
 
            _ => panic!("Unable to cast `Variable` to `Parameter`"),
 
        }
 
    }
 
    pub fn as_local(&self) -> &Local {
 
        match self {
 
            Variable::Local(result) => result,
 
            _ => panic!("Unable to cast `Variable` to `Local`"),
 
        }
 
    }
 
    pub fn the_type<'b>(&self, h: &'b Heap) -> &'b Type {
 
        match self {
 
            Variable::Parameter(param) => &h[param.type_annotation].the_type,
 
            Variable::Local(local) => &h[local.type_annotation].the_type,
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for Variable {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            Variable::Parameter(decl) => decl.position(),
 
            Variable::Local(decl) => decl.position(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Parameter {
 
    pub this: ParameterId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub type_annotation: TypeAnnotationId,
 
    pub identifier: SourceIdentifierId,
 
}
 

	
 
impl SyntaxElement for Parameter {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Local {
 
    pub this: LocalId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub type_annotation: TypeAnnotationId,
 
    pub identifier: SourceIdentifierId,
 
}
 
impl SyntaxElement for Local {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Definition {
 
    Component(Component),
 
    Function(Function),
 
}
 

	
 
impl Definition {
 
    pub fn is_component(&self) -> bool {
 
        match self {
 
            Definition::Component(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub fn as_component(&self) -> &Component {
 
        match self {
 
            Definition::Component(result) => result,
 
            _ => panic!("Unable to cast `Definition` to `Component`"),
 
        }
 
    }
 
    pub fn as_function(&self) -> &Function {
 
        match self {
 
            Definition::Function(result) => result,
 
            _ => panic!("Unable to cast `Definition` to `Function`"),
 
        }
 
    }
 
    pub fn as_composite(&self) -> &Composite {
 
        self.as_component().as_composite()
 
    }
 
    pub fn as_primitive(&self) -> &Primitive {
 
        self.as_component().as_primitive()
 
    }
 
    pub fn identifier(&self) -> SourceIdentifierId {
 
        match self {
 
            Definition::Component(com) => com.identifier(),
 
            Definition::Function(fun) => fun.identifier,
 
        }
 
    }
 
    pub fn parameters(&self) -> &Vec<ParameterId> {
 
        match self {
 
            Definition::Component(com) => com.parameters(),
 
            Definition::Function(fun) => &fun.parameters,
 
        }
 
    }
 
    pub fn body(&self) -> StatementId {
 
        match self {
 
            Definition::Component(com) => com.body(),
 
            Definition::Function(fun) => fun.body,
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for Definition {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            Definition::Component(def) => def.position(),
 
            Definition::Function(def) => def.position(),
 
        }
 
    }
 
}
 

	
 
impl VariableScope for Definition {
 
    fn parent_scope(&self, _h: &Heap) -> Option<Scope> {
 
        None
 
    }
 
    fn get_variable(&self, h: &Heap, id: SourceIdentifierId) -> Option<VariableId> {
 
        for &param in self.parameters().iter() {
 
            if h[h[param].identifier] == h[id] {
 
                return Some(param.0);
 
            }
 
        }
 
        None
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Component {
 
    Composite(Composite),
 
    Primitive(Primitive),
 
}
 

	
 
impl Component {
 
    pub fn this(&self) -> ComponentId {
 
        match self {
 
            Component::Composite(com) => com.this.upcast(),
 
            Component::Primitive(prim) => prim.this.upcast(),
 
        }
 
    }
 
    pub fn as_composite(&self) -> &Composite {
 
        match self {
 
            Component::Composite(result) => result,
 
            _ => panic!("Unable to cast `Component` to `Composite`"),
 
        }
 
    }
 
    pub fn as_primitive(&self) -> &Primitive {
 
        match self {
 
            Component::Primitive(result) => result,
 
            _ => panic!("Unable to cast `Component` to `Primitive`"),
 
        }
 
    }
 
    fn identifier(&self) -> SourceIdentifierId {
 
        match self {
 
            Component::Composite(com) => com.identifier,
 
            Component::Primitive(prim) => prim.identifier,
 
        }
 
    }
 
    pub fn parameters(&self) -> &Vec<ParameterId> {
 
        match self {
 
            Component::Composite(com) => &com.parameters,
 
            Component::Primitive(prim) => &prim.parameters,
 
        }
 
    }
 
    pub fn body(&self) -> StatementId {
 
        match self {
 
            Component::Composite(com) => com.body,
 
            Component::Primitive(prim) => prim.body,
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for Component {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            Component::Composite(def) => def.position(),
 
            Component::Primitive(def) => def.position(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Composite {
 
    pub this: CompositeId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub identifier: SourceIdentifierId,
 
    pub parameters: Vec<ParameterId>,
 
    pub body: StatementId,
 
}
 

	
 
impl SyntaxElement for Composite {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Primitive {
 
    pub this: PrimitiveId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub identifier: SourceIdentifierId,
 
    pub parameters: Vec<ParameterId>,
 
    pub body: StatementId,
 
}
 

	
 
impl SyntaxElement for Primitive {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Function {
 
    pub this: FunctionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub return_type: TypeAnnotationId,
 
    pub identifier: SourceIdentifierId,
 
    pub parameters: Vec<ParameterId>,
 
    pub body: StatementId,
 
}
 

	
 
impl SyntaxElement for Function {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Declaration {
 
    Defined(DefinedDeclaration),
 
    Imported(ImportedDeclaration),
 
}
 

	
 
impl Declaration {
 
    pub fn signature(&self) -> &Signature {
 
        match self {
 
            Declaration::Defined(decl) => &decl.signature,
 
            Declaration::Imported(decl) => &decl.signature,
 
        }
 
    }
 
    pub fn identifier(&self) -> IdentifierId {
 
        self.signature().identifier()
 
    }
 
    pub fn is_component(&self) -> bool {
 
        self.signature().is_component()
 
    }
 
    pub fn is_function(&self) -> bool {
 
        self.signature().is_function()
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct DefinedDeclaration {
 
    pub this: DefinedDeclarationId,
 
    // Phase 2: linker
 
    pub definition: DefinitionId,
 
    pub signature: Signature,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ImportedDeclaration {
 
    pub this: ImportedDeclarationId,
 
    // Phase 2: linker
 
    pub import: ImportId,
 
    pub signature: Signature,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Signature {
 
    Component(ComponentSignature),
 
    Function(FunctionSignature),
 
}
 

	
 
impl Signature {
 
    pub fn from_definition(h: &Heap, def: DefinitionId) -> Signature {
 
        match &h[def] {
 
            Definition::Component(com) => Signature::Component(ComponentSignature {
 
                identifier: com.identifier().0,
 
                arity: Signature::convert_parameters(h, com.parameters()),
 
            }),
 
            Definition::Function(fun) => Signature::Function(FunctionSignature {
 
                return_type: h[fun.return_type].the_type.clone(),
 
                identifier: fun.identifier.0,
 
                arity: Signature::convert_parameters(h, &fun.parameters),
 
            }),
 
        }
 
    }
 
    fn convert_parameters(h: &Heap, params: &Vec<ParameterId>) -> Vec<Type> {
 
        let mut result = Vec::new();
 
        for &param in params.iter() {
 
            result.push(h[h[param].type_annotation].the_type.clone());
 
        }
 
        result
 
    }
 
    fn identifier(&self) -> IdentifierId {
 
        match self {
 
            Signature::Component(com) => com.identifier,
 
            Signature::Function(fun) => fun.identifier,
 
        }
 
    }
 
    pub fn is_component(&self) -> bool {
 
        match self {
 
            Signature::Component(_) => true,
 
            Signature::Function(_) => false,
 
        }
 
    }
 
    pub fn is_function(&self) -> bool {
 
        match self {
 
            Signature::Component(_) => false,
 
            Signature::Function(_) => true,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ComponentSignature {
 
    pub identifier: IdentifierId,
 
    pub arity: Vec<Type>,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct FunctionSignature {
 
    pub return_type: Type,
 
    pub identifier: IdentifierId,
 
    pub arity: Vec<Type>,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Statement {
 
    Block(BlockStatement),
 
    Local(LocalStatement),
 
    Skip(SkipStatement),
 
    Labeled(LabeledStatement),
 
    If(IfStatement),
 
    EndIf(EndIfStatement),
 
    While(WhileStatement),
 
    EndWhile(EndWhileStatement),
 
    Break(BreakStatement),
 
    Continue(ContinueStatement),
 
    Synchronous(SynchronousStatement),
 
    EndSynchronous(EndSynchronousStatement),
 
    Return(ReturnStatement),
 
    Assert(AssertStatement),
 
    Goto(GotoStatement),
 
    New(NewStatement),
 
    Put(PutStatement),
 
    Expression(ExpressionStatement),
 
}
 

	
 
impl Statement {
 
    pub fn as_block(&self) -> &BlockStatement {
 
        match self {
 
            Statement::Block(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `BlockStatement`"),
 
        }
 
    }
 
    pub fn as_block_mut(&mut self) -> &mut BlockStatement {
 
        match self {
 
            Statement::Block(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `BlockStatement`"),
 
        }
 
    }
 
    pub fn as_local(&self) -> &LocalStatement {
 
        match self {
 
            Statement::Local(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `LocalStatement`"),
 
        }
 
    }
 
    pub fn as_memory(&self) -> &MemoryStatement {
 
        self.as_local().as_memory()
 
    }
 
    pub fn as_channel(&self) -> &ChannelStatement {
 
        self.as_local().as_channel()
 
    }
 
    pub fn as_skip(&self) -> &SkipStatement {
 
        match self {
 
            Statement::Skip(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `SkipStatement`"),
 
        }
 
    }
 
    pub fn as_labeled(&self) -> &LabeledStatement {
 
        match self {
 
            Statement::Labeled(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `LabeledStatement`"),
 
        }
 
    }
 
    pub fn as_labeled_mut(&mut self) -> &mut LabeledStatement {
 
        match self {
 
            Statement::Labeled(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `LabeledStatement`"),
 
        }
 
    }
 
    pub fn as_if(&self) -> &IfStatement {
 
        match self {
 
            Statement::If(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `IfStatement`"),
 
        }
 
    }
 
    pub fn as_end_if(&self) -> &EndIfStatement {
 
        match self {
 
            Statement::EndIf(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `EndIfStatement`"),
 
        }
 
    }
 
    pub fn is_while(&self) -> bool {
 
        match self {
 
            Statement::While(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub fn as_while(&self) -> &WhileStatement {
 
        match self {
 
            Statement::While(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `WhileStatement`"),
 
        }
 
    }
 
    pub fn as_while_mut(&mut self) -> &mut WhileStatement {
 
        match self {
 
            Statement::While(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `WhileStatement`"),
 
        }
 
    }
 
    pub fn as_end_while(&self) -> &EndWhileStatement {
 
        match self {
 
            Statement::EndWhile(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `EndWhileStatement`"),
 
        }
 
    }
 
    pub fn as_break(&self) -> &BreakStatement {
 
        match self {
 
            Statement::Break(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `BreakStatement`"),
 
        }
 
    }
 
    pub fn as_break_mut(&mut self) -> &mut BreakStatement {
 
        match self {
 
            Statement::Break(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `BreakStatement`"),
 
        }
 
    }
 
    pub fn as_continue(&self) -> &ContinueStatement {
 
        match self {
 
            Statement::Continue(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `ContinueStatement`"),
 
        }
 
    }
 
    pub fn as_continue_mut(&mut self) -> &mut ContinueStatement {
 
        match self {
 
            Statement::Continue(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `ContinueStatement`"),
 
        }
 
    }
 
    pub fn as_synchronous(&self) -> &SynchronousStatement {
 
        match self {
 
            Statement::Synchronous(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `SynchronousStatement`"),
 
        }
 
    }
 
    pub fn as_synchronous_mut(&mut self) -> &mut SynchronousStatement {
 
        match self {
 
            Statement::Synchronous(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `SynchronousStatement`"),
 
        }
 
    }
 
    pub fn as_end_synchronous(&self) -> &EndSynchronousStatement {
 
        match self {
 
            Statement::EndSynchronous(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `EndSynchronousStatement`"),
 
        }
 
    }
 
    pub fn as_return(&self) -> &ReturnStatement {
 
        match self {
 
            Statement::Return(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `ReturnStatement`"),
 
        }
 
    }
 
    pub fn as_assert(&self) -> &AssertStatement {
 
        match self {
 
            Statement::Assert(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `AssertStatement`"),
 
        }
 
    }
 
    pub fn as_goto(&self) -> &GotoStatement {
 
        match self {
 
            Statement::Goto(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `GotoStatement`"),
 
        }
 
    }
 
    pub fn as_goto_mut(&mut self) -> &mut GotoStatement {
 
        match self {
 
            Statement::Goto(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `GotoStatement`"),
 
        }
 
    }
 
    pub fn as_new(&self) -> &NewStatement {
 
        match self {
 
            Statement::New(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `NewStatement`"),
 
        }
 
    }
 
    pub fn as_put(&self) -> &PutStatement {
 
        match self {
 
            Statement::Put(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `PutStatement`"),
 
        }
 
    }
 
    pub fn as_expression(&self) -> &ExpressionStatement {
 
        match self {
 
            Statement::Expression(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `ExpressionStatement`"),
 
        }
 
    }
 
    pub fn link_next(&mut self, next: StatementId) {
 
        match self {
 
            Statement::Block(stmt) => panic!(),
 
            Statement::Local(stmt) => match stmt {
 
                LocalStatement::Channel(stmt) => stmt.next = Some(next),
 
                LocalStatement::Memory(stmt) => stmt.next = Some(next),
 
            },
 
            Statement::Skip(stmt) => stmt.next = Some(next),
 
            Statement::Labeled(stmt) => panic!(),
 
            Statement::If(stmt) => panic!(),
 
            Statement::EndIf(stmt) => stmt.next = Some(next),
 
            Statement::While(stmt) => panic!(), // although while has a next field, it is linked manually
 
            Statement::EndWhile(stmt) => stmt.next = Some(next),
 
            Statement::Break(stmt) => panic!(),
 
            Statement::Continue(stmt) => panic!(),
 
            Statement::Synchronous(stmt) => panic!(),
 
            Statement::EndSynchronous(stmt) => stmt.next = Some(next),
 
            Statement::Return(stmt) => panic!(),
 
            Statement::Assert(stmt) => stmt.next = Some(next),
 
            Statement::Goto(stmt) => panic!(),
 
            Statement::New(stmt) => stmt.next = Some(next),
 
            Statement::Put(stmt) => stmt.next = Some(next),
 
            Statement::Expression(stmt) => stmt.next = Some(next),
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for Statement {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            Statement::Block(stmt) => stmt.position(),
 
            Statement::Local(stmt) => stmt.position(),
 
            Statement::Skip(stmt) => stmt.position(),
 
            Statement::Labeled(stmt) => stmt.position(),
 
            Statement::If(stmt) => stmt.position(),
 
            Statement::EndIf(stmt) => stmt.position(),
 
            Statement::While(stmt) => stmt.position(),
 
            Statement::EndWhile(stmt) => stmt.position(),
 
            Statement::Break(stmt) => stmt.position(),
 
            Statement::Continue(stmt) => stmt.position(),
 
            Statement::Synchronous(stmt) => stmt.position(),
 
            Statement::EndSynchronous(stmt) => stmt.position(),
 
            Statement::Return(stmt) => stmt.position(),
 
            Statement::Assert(stmt) => stmt.position(),
 
            Statement::Goto(stmt) => stmt.position(),
 
            Statement::New(stmt) => stmt.position(),
 
            Statement::Put(stmt) => stmt.position(),
 
            Statement::Expression(stmt) => stmt.position(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct BlockStatement {
 
    pub this: BlockStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub statements: Vec<StatementId>,
 
    // Phase 2: linker
 
    pub parent_scope: Option<Scope>,
 
    pub locals: Vec<LocalId>,
 
    pub labels: Vec<LabeledStatementId>,
 
}
 

	
 
impl BlockStatement {
 
    pub fn parent_block(&self, h: &Heap) -> Option<BlockStatementId> {
 
        let parent = self.parent_scope.unwrap();
 
        match parent {
 
            Scope::Definition(_) => {
 
                // If the parent scope is a definition, then there is no
 
                // parent block.
 
                None
 
            }
 
            Scope::Synchronous(parent) => {
 
                // It is always the case that when this function is called,
 
                // the parent of a synchronous statement is a block statement:
 
                // nested synchronous statements are flagged illegal,
 
                // and that happens before resolving variables that
 
                // creates the parent_scope references in the first place.
 
                Some(h[parent].parent_scope(h).unwrap().to_block())
 
            }
 
            Scope::Block(parent) => {
 
                // A variable scope is either a definition, sync, or block.
 
                Some(parent)
 
            }
 
        }
 
    }
 
    pub fn first(&self) -> StatementId {
 
        *self.statements.first().unwrap()
 
    }
 
}
 

	
 
impl SyntaxElement for BlockStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
impl VariableScope for BlockStatement {
 
    fn parent_scope(&self, _h: &Heap) -> Option<Scope> {
 
        self.parent_scope
 
    }
 
    fn get_variable(&self, h: &Heap, id: SourceIdentifierId) -> Option<VariableId> {
 
        for &local in self.locals.iter() {
 
            if h[h[local].identifier] == h[id] {
 
                return Some(local.0);
 
            }
 
        }
 
        None
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum LocalStatement {
 
    Memory(MemoryStatement),
 
    Channel(ChannelStatement),
 
}
 

	
 
impl LocalStatement {
 
    pub fn this(&self) -> LocalStatementId {
 
        match self {
 
            LocalStatement::Memory(stmt) => stmt.this.upcast(),
 
            LocalStatement::Channel(stmt) => stmt.this.upcast(),
 
        }
 
    }
 
    pub fn as_memory(&self) -> &MemoryStatement {
 
        match self {
 
            LocalStatement::Memory(result) => result,
 
            _ => panic!("Unable to cast `LocalStatement` to `MemoryStatement`"),
 
        }
 
    }
 
    pub fn as_channel(&self) -> &ChannelStatement {
 
        match self {
 
            LocalStatement::Channel(result) => result,
 
            _ => panic!("Unable to cast `LocalStatement` to `ChannelStatement`"),
 
        }
 
    }
 
    pub fn next(&self) -> Option<StatementId> {
 
        match self {
 
            LocalStatement::Memory(stmt) => stmt.next,
 
            LocalStatement::Channel(stmt) => stmt.next,
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for LocalStatement {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            LocalStatement::Memory(stmt) => stmt.position(),
 
            LocalStatement::Channel(stmt) => stmt.position(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct MemoryStatement {
 
    pub this: MemoryStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub variable: LocalId,
 
    pub initial: ExpressionId,
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for MemoryStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ChannelStatement {
 
    pub this: ChannelStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub from: LocalId, // output
 
    pub to: LocalId,   // input
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for ChannelStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct SkipStatement {
 
    pub this: SkipStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for SkipStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LabeledStatement {
 
    pub this: LabeledStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub label: SourceIdentifierId,
 
    pub body: StatementId,
 
    // Phase 2: linker
 
    pub in_sync: Option<SynchronousStatementId>,
 
}
 

	
 
impl SyntaxElement for LabeledStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct IfStatement {
 
    pub this: IfStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub test: ExpressionId,
 
    pub true_body: StatementId,
 
    pub false_body: StatementId,
 
}
 

	
 
impl SyntaxElement for IfStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndIfStatement {
 
    pub this: EndIfStatementId,
 
    // Phase 2: linker
 
    pub position: InputPosition, // of corresponding if statement
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for EndIfStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct WhileStatement {
 
    pub this: WhileStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub test: ExpressionId,
 
    pub body: StatementId,
 
    // Phase 2: linker
 
    pub next: Option<EndWhileStatementId>,
 
    pub in_sync: Option<SynchronousStatementId>,
 
}
 

	
 
impl SyntaxElement for WhileStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndWhileStatement {
 
    pub this: EndWhileStatementId,
 
    // Phase 2: linker
 
    pub position: InputPosition, // of corresponding while
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for EndWhileStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct BreakStatement {
 
    pub this: BreakStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub label: Option<SourceIdentifierId>,
 
    // Phase 2: linker
 
    pub target: Option<EndWhileStatementId>,
 
}
 

	
 
impl SyntaxElement for BreakStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ContinueStatement {
 
    pub this: ContinueStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub label: Option<SourceIdentifierId>,
 
    // Phase 2: linker
 
    pub target: Option<WhileStatementId>,
 
}
 

	
 
impl SyntaxElement for ContinueStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct SynchronousStatement {
 
    pub this: SynchronousStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub parameters: Vec<ParameterId>,
 
    pub body: StatementId,
 
    // Phase 2: linker
 
    pub parent_scope: Option<Scope>,
 
}
 

	
 
impl SyntaxElement for SynchronousStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
impl VariableScope for SynchronousStatement {
 
    fn parent_scope(&self, _h: &Heap) -> Option<Scope> {
 
        self.parent_scope
 
    }
 
    fn get_variable(&self, h: &Heap, id: SourceIdentifierId) -> Option<VariableId> {
 
        for &param in self.parameters.iter() {
 
            if h[h[param].identifier] == h[id] {
 
                return Some(param.0);
 
            }
 
        }
 
        None
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndSynchronousStatement {
 
    pub this: EndSynchronousStatementId,
 
    // Phase 2: linker
 
    pub position: InputPosition, // of corresponding sync statement
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for EndSynchronousStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ReturnStatement {
 
    pub this: ReturnStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub expression: ExpressionId,
 
}
 

	
 
impl SyntaxElement for ReturnStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct AssertStatement {
 
    pub this: AssertStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub expression: ExpressionId,
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for AssertStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct GotoStatement {
 
    pub this: GotoStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub label: SourceIdentifierId,
 
    // Phase 2: linker
 
    pub target: Option<LabeledStatementId>,
 
}
 

	
 
impl SyntaxElement for GotoStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct NewStatement {
 
    pub this: NewStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub expression: CallExpressionId,
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for NewStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct PutStatement {
 
    pub this: PutStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub port: ExpressionId,
 
    pub message: ExpressionId,
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for PutStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ExpressionStatement {
 
    pub this: ExpressionStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub expression: ExpressionId,
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for ExpressionStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Expression {
 
    Assignment(AssignmentExpression),
 
    Conditional(ConditionalExpression),
 
    Binary(BinaryExpression),
 
    Unary(UnaryExpression),
 
    Indexing(IndexingExpression),
 
    Slicing(SlicingExpression),
 
    Select(SelectExpression),
 
    Array(ArrayExpression),
 
    Constant(ConstantExpression),
 
    Call(CallExpression),
 
    Variable(VariableExpression),
 
}
 

	
 
impl Expression {
 
    pub fn as_assignment(&self) -> &AssignmentExpression {
 
        match self {
 
            Expression::Assignment(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `AssignmentExpression`"),
 
        }
 
    }
 
    pub fn as_conditional(&self) -> &ConditionalExpression {
 
        match self {
 
            Expression::Conditional(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `ConditionalExpression`"),
 
        }
 
    }
 
    pub fn as_binary(&self) -> &BinaryExpression {
 
        match self {
 
            Expression::Binary(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `BinaryExpression`"),
 
        }
 
    }
 
    pub fn as_unary(&self) -> &UnaryExpression {
 
        match self {
 
            Expression::Unary(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `UnaryExpression`"),
 
        }
 
    }
 
    pub fn as_indexing(&self) -> &IndexingExpression {
 
        match self {
 
            Expression::Indexing(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `IndexingExpression`"),
 
        }
 
    }
 
    pub fn as_slicing(&self) -> &SlicingExpression {
 
        match self {
 
            Expression::Slicing(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `SlicingExpression`"),
 
        }
 
    }
 
    pub fn as_select(&self) -> &SelectExpression {
 
        match self {
 
            Expression::Select(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `SelectExpression`"),
 
        }
 
    }
 
    pub fn as_array(&self) -> &ArrayExpression {
 
        match self {
 
            Expression::Array(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `ArrayExpression`"),
 
        }
 
    }
 
    pub fn as_constant(&self) -> &ConstantExpression {
 
        match self {
 
            Expression::Constant(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `ConstantExpression`"),
 
        }
 
    }
 
    pub fn as_call(&self) -> &CallExpression {
 
        match self {
 
            Expression::Call(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `CallExpression`"),
 
        }
 
    }
 
    pub fn as_call_mut(&mut self) -> &mut CallExpression {
 
        match self {
 
            Expression::Call(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `CallExpression`"),
 
        }
 
    }
 
    pub fn as_variable(&self) -> &VariableExpression {
 
        match self {
 
            Expression::Variable(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `VariableExpression`"),
 
        }
 
    }
 
    pub fn as_variable_mut(&mut self) -> &mut VariableExpression {
 
        match self {
 
            Expression::Variable(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `VariableExpression`"),
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for Expression {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            Expression::Assignment(expr) => expr.position(),
 
            Expression::Conditional(expr) => expr.position(),
 
            Expression::Binary(expr) => expr.position(),
 
            Expression::Unary(expr) => expr.position(),
 
            Expression::Indexing(expr) => expr.position(),
 
            Expression::Slicing(expr) => expr.position(),
 
            Expression::Select(expr) => expr.position(),
 
            Expression::Array(expr) => expr.position(),
 
            Expression::Constant(expr) => expr.position(),
 
            Expression::Call(expr) => expr.position(),
 
            Expression::Variable(expr) => expr.position(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum AssignmentOperator {
 
    Set,
 
    Multiplied,
 
    Divided,
 
    Remained,
 
    Added,
 
    Subtracted,
 
    ShiftedLeft,
 
    ShiftedRight,
 
    BitwiseAnded,
 
    BitwiseXored,
 
    BitwiseOred,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct AssignmentExpression {
 
    pub this: AssignmentExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub left: ExpressionId,
 
    pub operation: AssignmentOperator,
 
    pub right: ExpressionId,
 
}
 

	
 
impl SyntaxElement for AssignmentExpression {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ConditionalExpression {
 
    pub this: ConditionalExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub test: ExpressionId,
 
    pub true_expression: ExpressionId,
 
    pub false_expression: ExpressionId,
 
}
 

	
 
impl SyntaxElement for ConditionalExpression {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub enum BinaryOperator {
 
    Concatenate,
 
    LogicalOr,
 
    LogicalAnd,
 
    BitwiseOr,
 
    BitwiseXor,
 
    BitwiseAnd,
 
    Equality,
 
    Inequality,
 
    LessThan,
 
    GreaterThan,
 
    LessThanEqual,
 
    GreaterThanEqual,
 
    ShiftLeft,
 
    ShiftRight,
 
    Add,
 
    Subtract,
 
    Multiply,
 
    Divide,
 
    Remainder,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct BinaryExpression {
 
    pub this: BinaryExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub left: ExpressionId,
 
    pub operation: BinaryOperator,
 
    pub right: ExpressionId,
 
}
 

	
 
impl SyntaxElement for BinaryExpression {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub enum UnaryOperation {
 
    Positive,
 
    Negative,
 
    BitwiseNot,
 
    LogicalNot,
 
    PreIncrement,
 
    PreDecrement,
 
    PostIncrement,
 
    PostDecrement,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct UnaryExpression {
 
    pub this: UnaryExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub operation: UnaryOperation,
 
    pub expression: ExpressionId,
 
}
src/protocol/mod.rs
Show inline comments
 
mod ast;
 
mod eval;
 
pub mod inputsource;
 
mod lexer;
 
mod library;
 
mod parser;
 

	
 
use crate::common::*;
 
use crate::protocol::ast::*;
 
use crate::protocol::eval::*;
 
use crate::protocol::inputsource::*;
 
use crate::protocol::parser::*;
 
use std::hint::unreachable_unchecked;
 

	
 
pub struct ProtocolDescriptionImpl {
 
    heap: Heap,
 
    source: InputSource,
 
    root: RootId,
 
    main: ComponentId,
 
    root: RootId
 
}
 

	
 
impl std::fmt::Debug for ProtocolDescriptionImpl {
 
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
 
        write!(f, "Protocol")
 
    }
 
}
 

	
 
impl ProtocolDescription for ProtocolDescriptionImpl {
 
    type S = ComponentStateImpl;
 

	
 
    fn parse(buffer: &[u8]) -> Result<Self, String> {
 
        let mut heap = Heap::new();
 
        let mut source = InputSource::from_buffer(buffer).unwrap();
 
        let mut parser = Parser::new(&mut source);
 
        match parser.parse(&mut heap) {
 
            Ok(root) => {
 
                // Find main definition (grammar rule ensures this exists)
 
                let sym = heap.get_external_identifier(b"main");
 
                let def = heap[root].get_definition(&heap, sym.upcast()).unwrap();
 
                let main = heap[def].as_component().this();
 
                return Ok(ProtocolDescriptionImpl { heap, source, root, main });
 
                return Ok(ProtocolDescriptionImpl { heap, source, root });
 
            }
 
            Err(err) => {
 
                let mut vec: Vec<u8> = Vec::new();
 
                err.write(&source, &mut vec).unwrap();
 
                Err(String::from_utf8_lossy(&vec).to_string())
 
            }
 
        }
 
    }
 
    // fn main_interface_polarities(&self) -> Vec<Polarity> {
 
    //     let def = &self.heap[self.main];
 
    //     let mut result = Vec::new();
 
    //     for &param in def.parameters().iter() {
 
    //         let param = &self.heap[param];
 
    //         let type_annot = &self.heap[param.type_annotation];
 
    //         let ptype = &type_annot.the_type.primitive;
 
    //         if ptype == &PrimitiveType::Input {
 
    //             result.push(Polarity::Getter)
 
    //         } else if ptype == &PrimitiveType::Output {
 
    //             result.push(Polarity::Putter)
 
    //         } else {
 
    //             unreachable!()
 
    //         }
 
    //     }
 
    //     result
 
    // }
 
    fn new_main_component(&self, ports: &[Key]) -> ComponentStateImpl {
 
    fn new_main_component(&self, identifier: &[u8], ports: &[(Polarity, Key)]) -> Result<ComponentStateImpl, NewMainErr> {
 
        // Find symbol with identifier
 
        let def = self.heap[self.root].get_definition_ident(&heap, identifier);
 
        if def.is_none() {
 
            return Err(NewMainErr::NoSuchComponent);
 
        }
 
        let def = &self.heap[def.unwrap()];
 
        if !def.is_component() {
 
            return Err(NewMainErr::NoSuchComponent);
 
        }
 
        let main = def.as_component().this();
 
        //
 
        let mut args = Vec::new();
 
        for (&x, y) in ports.iter().zip(self.main_interface_polarities()) {
 
            match y {
 
                Polarity::Getter => args.push(Value::Input(InputValue(x))),
 
                Polarity::Putter => args.push(Value::Output(OutputValue(x))),
 
        for &(x, y) in ports.iter() {
 
            match x {
 
                Polarity::Getter => args.push(Value::Input(InputValue(y))),
 
                Polarity::Putter => args.push(Value::Output(OutputValue(y))),
 
            }
 
        }
 
        ComponentStateImpl { prompt: Prompt::new(&self.heap, self.main.upcast(), &args) }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ComponentStateImpl {
 
    prompt: Prompt,
 
}
 
impl ComponentState for ComponentStateImpl {
 
    type D = ProtocolDescriptionImpl;
 

	
 
    fn pre_sync_run<C: MonoContext<D = ProtocolDescriptionImpl, S = Self>>(
 
        &mut self,
 
        context: &mut C,
 
        pd: &ProtocolDescriptionImpl,
 
    ) -> MonoBlocker {
 
        let mut context = EvalContext::Mono(context);
 
        loop {
 
            let result = self.prompt.step(&pd.heap, &mut context);
 
            match result {
 
                // In component definitions, there are no return statements
 
                Ok(_) => unreachable!(),
 
                Err(cont) => match cont {
 
                    EvalContinuation::Stepping => continue,
 
                    EvalContinuation::Inconsistent => return MonoBlocker::Inconsistent,
 
                    EvalContinuation::Terminal => return MonoBlocker::ComponentExit,
 
                    EvalContinuation::SyncBlockStart => return MonoBlocker::SyncBlockStart,
 
                    // Not possible to end sync block if never entered one
 
                    EvalContinuation::SyncBlockEnd => unreachable!(),
 
                    EvalContinuation::NewComponent(args) => {
 
                        todo!();
 
                        continue;
 
                    }
 
                    // Outside synchronous blocks, no fires/get/put happens
 
                    EvalContinuation::BlockFires(val) => unreachable!(),
 
                    EvalContinuation::BlockGet(val) => unreachable!(),
 
                    EvalContinuation::Put(port, msg) => unreachable!(),
 
                },
 
            }
 
        }
 
    }
 

	
 
    fn sync_run<C: PolyContext<D = ProtocolDescriptionImpl>>(
 
        &mut self,
 
        context: &mut C,
 
        pd: &ProtocolDescriptionImpl,
 
    ) -> PolyBlocker {
 
        let mut context = EvalContext::Poly(context);
 
        loop {
 
            let result = self.prompt.step(&pd.heap, &mut context);
 
            match result {
 
                // Inside synchronous blocks, there are no return statements
 
                Ok(_) => unreachable!(),
 
                Err(cont) => match cont {
 
                    EvalContinuation::Stepping => continue,
 
                    EvalContinuation::Inconsistent => return PolyBlocker::Inconsistent,
 
                    // First need to exit synchronous block before definition may end
 
                    EvalContinuation::Terminal => unreachable!(),
 
                    // No nested synchronous blocks
 
                    EvalContinuation::SyncBlockStart => unreachable!(),
 
                    EvalContinuation::SyncBlockEnd => return PolyBlocker::SyncBlockEnd,
 
                    // Not possible to create component in sync block
 
                    EvalContinuation::NewComponent(args) => unreachable!(),
 
                    EvalContinuation::BlockFires(port) => match port {
 
                        Value::Output(OutputValue(key)) => {
 
                            return PolyBlocker::CouldntCheckFiring(key);
 
                        }
 
                        Value::Input(InputValue(key)) => {
 
                            return PolyBlocker::CouldntCheckFiring(key);
 
                        }
 
                        _ => unreachable!(),
 
                    },
 
                    EvalContinuation::BlockGet(port) => match port {
 
                        Value::Output(OutputValue(key)) => {
 
                            return PolyBlocker::CouldntReadMsg(key);
 
                        }
 
                        Value::Input(InputValue(key)) => {
 
                            return PolyBlocker::CouldntReadMsg(key);
 
                        }
 
                        _ => unreachable!(),
 
                    },
 
                    EvalContinuation::Put(port, message) => {
 
                        let key;
 
                        match port {
 
                            Value::Output(OutputValue(the_key)) => {
 
                                key = the_key;
 
                            }
 
                            Value::Input(InputValue(the_key)) => {
 
                                key = the_key;
 
                            }
 
                            _ => unreachable!(),
 
                        }
 
                        let payload;
 
                        match message {
 
                            Value::Message(MessageValue(None)) => {
 
                                // Putting a null message is inconsistent
 
                                return PolyBlocker::Inconsistent;
 
                            }
 
                            Value::Message(MessageValue(Some(buffer))) => {
 
                                // Create a copy of the payload
 
                                payload = buffer.clone();
 
                            }
 
                            _ => unreachable!(),
 
                        }
 
                        return PolyBlocker::PutMsg(key, payload);
 
                    }
 
                },
 
            }
 
        }
 
    }
 
}
 

	
 
pub enum EvalContext<'a> {
 
    Mono(&'a mut dyn MonoContext<D = ProtocolDescriptionImpl, S = ComponentStateImpl>),
 
    Poly(&'a mut dyn PolyContext<D = ProtocolDescriptionImpl>),
 
    None,
 
}
 
impl EvalContext<'_> {
 
    fn random(&mut self) -> LongValue {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Mono(context) => todo!(),
 
            EvalContext::Poly(context) => unreachable!(),
 
        }
 
    }
 
    fn channel(&mut self) -> (Value, Value) {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Mono(context) => unreachable!(),
 
            EvalContext::Poly(context) => todo!(),
 
        }
 
    }
 
    fn fires(&mut self, port: Value) -> Option<Value> {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Mono(context) => unreachable!(),
 
            EvalContext::Poly(context) => match port {
 
                Value::Output(OutputValue(key)) => context.is_firing(key).map(Value::from),
 
                Value::Input(InputValue(key)) => context.is_firing(key).map(Value::from),
 
                _ => unreachable!(),
 
            },
 
        }
 
    }
 
    fn get(&mut self, port: Value) -> Option<Value> {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Mono(context) => unreachable!(),
 
            EvalContext::Poly(context) => match port {
 
                Value::Output(OutputValue(key)) => {
 
                    context.read_msg(key).map(Value::receive_message)
 
                }
 
                Value::Input(InputValue(key)) => context.read_msg(key).map(Value::receive_message),
 
                _ => unreachable!(),
 
            },
 
        }
 
    }
 
}
src/protocol/parser.rs
Show inline comments
 
@@ -251,1664 +251,1629 @@ fn recursive_composite_definition<T: Visitor>(
 
    for &param in h[def].parameters.clone().iter() {
 
        recursive_parameter_as_variable(this, h, param)?;
 
    }
 
    this.visit_statement(h, h[def].body)
 
}
 

	
 
fn recursive_primitive_definition<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    def: PrimitiveId,
 
) -> VisitorResult {
 
    for &param in h[def].parameters.clone().iter() {
 
        recursive_parameter_as_variable(this, h, param)?;
 
    }
 
    this.visit_statement(h, h[def].body)
 
}
 

	
 
fn recursive_function_definition<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    def: FunctionId,
 
) -> VisitorResult {
 
    for &param in h[def].parameters.clone().iter() {
 
        recursive_parameter_as_variable(this, h, param)?;
 
    }
 
    this.visit_statement(h, h[def].body)
 
}
 

	
 
fn recursive_variable_declaration<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    decl: VariableId,
 
) -> VisitorResult {
 
    match h[decl].clone() {
 
        Variable::Parameter(decl) => this.visit_parameter_declaration(h, decl.this),
 
        Variable::Local(decl) => this.visit_local_declaration(h, decl.this),
 
    }
 
}
 

	
 
fn recursive_statement<T: Visitor>(this: &mut T, h: &mut Heap, stmt: StatementId) -> VisitorResult {
 
    match h[stmt].clone() {
 
        Statement::Block(stmt) => this.visit_block_statement(h, stmt.this),
 
        Statement::Local(stmt) => this.visit_local_statement(h, stmt.this()),
 
        Statement::Skip(stmt) => this.visit_skip_statement(h, stmt.this),
 
        Statement::Labeled(stmt) => this.visit_labeled_statement(h, stmt.this),
 
        Statement::If(stmt) => this.visit_if_statement(h, stmt.this),
 
        Statement::EndIf(stmt) => unreachable!(), // pseudo-statement
 
        Statement::While(stmt) => this.visit_while_statement(h, stmt.this),
 
        Statement::EndWhile(stmt) => unreachable!(), // pseudo-statement
 
        Statement::Break(stmt) => this.visit_break_statement(h, stmt.this),
 
        Statement::Continue(stmt) => this.visit_continue_statement(h, stmt.this),
 
        Statement::Synchronous(stmt) => this.visit_synchronous_statement(h, stmt.this),
 
        Statement::EndSynchronous(stmt) => unreachable!(), // pseudo-statement
 
        Statement::Return(stmt) => this.visit_return_statement(h, stmt.this),
 
        Statement::Assert(stmt) => this.visit_assert_statement(h, stmt.this),
 
        Statement::Goto(stmt) => this.visit_goto_statement(h, stmt.this),
 
        Statement::New(stmt) => this.visit_new_statement(h, stmt.this),
 
        Statement::Put(stmt) => this.visit_put_statement(h, stmt.this),
 
        Statement::Expression(stmt) => this.visit_expression_statement(h, stmt.this),
 
    }
 
}
 

	
 
fn recursive_block_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    block: BlockStatementId,
 
) -> VisitorResult {
 
    for &local in h[block].locals.clone().iter() {
 
        recursive_local_as_variable(this, h, local)?;
 
    }
 
    for &stmt in h[block].statements.clone().iter() {
 
        this.visit_statement(h, stmt)?;
 
    }
 
    Ok(())
 
}
 

	
 
fn recursive_local_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: LocalStatementId,
 
) -> VisitorResult {
 
    match h[stmt].clone() {
 
        LocalStatement::Channel(stmt) => this.visit_channel_statement(h, stmt.this),
 
        LocalStatement::Memory(stmt) => this.visit_memory_statement(h, stmt.this),
 
    }
 
}
 

	
 
fn recursive_memory_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: MemoryStatementId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[stmt].initial)
 
}
 

	
 
fn recursive_labeled_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: LabeledStatementId,
 
) -> VisitorResult {
 
    this.visit_statement(h, h[stmt].body)
 
}
 

	
 
fn recursive_if_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: IfStatementId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[stmt].test)?;
 
    this.visit_statement(h, h[stmt].true_body)?;
 
    this.visit_statement(h, h[stmt].false_body)
 
}
 

	
 
fn recursive_while_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: WhileStatementId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[stmt].test)?;
 
    this.visit_statement(h, h[stmt].body)
 
}
 

	
 
fn recursive_synchronous_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: SynchronousStatementId,
 
) -> VisitorResult {
 
    for &param in h[stmt].parameters.clone().iter() {
 
        recursive_parameter_as_variable(this, h, param)?;
 
    }
 
    this.visit_statement(h, h[stmt].body)
 
}
 

	
 
fn recursive_return_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: ReturnStatementId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[stmt].expression)
 
}
 

	
 
fn recursive_assert_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: AssertStatementId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[stmt].expression)
 
}
 

	
 
fn recursive_new_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: NewStatementId,
 
) -> VisitorResult {
 
    recursive_call_expression_as_expression(this, h, h[stmt].expression)
 
}
 

	
 
fn recursive_put_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: PutStatementId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[stmt].port)?;
 
    this.visit_expression(h, h[stmt].message)
 
}
 

	
 
fn recursive_expression_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: ExpressionStatementId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[stmt].expression)
 
}
 

	
 
fn recursive_expression<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    expr: ExpressionId,
 
) -> VisitorResult {
 
    match h[expr].clone() {
 
        Expression::Assignment(expr) => this.visit_assignment_expression(h, expr.this),
 
        Expression::Conditional(expr) => this.visit_conditional_expression(h, expr.this),
 
        Expression::Binary(expr) => this.visit_binary_expression(h, expr.this),
 
        Expression::Unary(expr) => this.visit_unary_expression(h, expr.this),
 
        Expression::Indexing(expr) => this.visit_indexing_expression(h, expr.this),
 
        Expression::Slicing(expr) => this.visit_slicing_expression(h, expr.this),
 
        Expression::Select(expr) => this.visit_select_expression(h, expr.this),
 
        Expression::Array(expr) => this.visit_array_expression(h, expr.this),
 
        Expression::Constant(expr) => this.visit_constant_expression(h, expr.this),
 
        Expression::Call(expr) => this.visit_call_expression(h, expr.this),
 
        Expression::Variable(expr) => this.visit_variable_expression(h, expr.this),
 
    }
 
}
 

	
 
fn recursive_assignment_expression<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    expr: AssignmentExpressionId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[expr].left)?;
 
    this.visit_expression(h, h[expr].right)
 
}
 

	
 
fn recursive_conditional_expression<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    expr: ConditionalExpressionId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[expr].test)?;
 
    this.visit_expression(h, h[expr].true_expression)?;
 
    this.visit_expression(h, h[expr].false_expression)
 
}
 

	
 
fn recursive_binary_expression<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    expr: BinaryExpressionId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[expr].left)?;
 
    this.visit_expression(h, h[expr].right)
 
}
 

	
 
fn recursive_unary_expression<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    expr: UnaryExpressionId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[expr].expression)
 
}
 

	
 
fn recursive_indexing_expression<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    expr: IndexingExpressionId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[expr].subject)?;
 
    this.visit_expression(h, h[expr].index)
 
}
 

	
 
fn recursive_slicing_expression<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    expr: SlicingExpressionId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[expr].subject)?;
 
    this.visit_expression(h, h[expr].from_index)?;
 
    this.visit_expression(h, h[expr].to_index)
 
}
 

	
 
fn recursive_select_expression<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    expr: SelectExpressionId,
 
) -> VisitorResult {
 
    this.visit_expression(h, h[expr].subject)
 
}
 

	
 
fn recursive_array_expression<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    expr: ArrayExpressionId,
 
) -> VisitorResult {
 
    for &expr in h[expr].elements.clone().iter() {
 
        this.visit_expression(h, expr)?;
 
    }
 
    Ok(())
 
}
 

	
 
fn recursive_call_expression<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    expr: CallExpressionId,
 
) -> VisitorResult {
 
    for &expr in h[expr].arguments.clone().iter() {
 
        this.visit_expression(h, expr)?;
 
    }
 
    Ok(())
 
}
 

	
 
// ====================
 
// Grammar Rules
 
// ====================
 

	
 
struct NestedSynchronousStatements {
 
    illegal: bool,
 
}
 

	
 
impl NestedSynchronousStatements {
 
    fn new() -> Self {
 
        NestedSynchronousStatements { illegal: false }
 
    }
 
}
 

	
 
impl Visitor for NestedSynchronousStatements {
 
    fn visit_composite_definition(&mut self, h: &mut Heap, def: CompositeId) -> VisitorResult {
 
        assert!(!self.illegal);
 
        self.illegal = true;
 
        recursive_composite_definition(self, h, def)?;
 
        self.illegal = false;
 
        Ok(())
 
    }
 
    fn visit_function_definition(&mut self, h: &mut Heap, def: FunctionId) -> VisitorResult {
 
        assert!(!self.illegal);
 
        self.illegal = true;
 
        recursive_function_definition(self, h, def)?;
 
        self.illegal = false;
 
        Ok(())
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        if self.illegal {
 
            return Err(ParseError::new(
 
                h[stmt].position(),
 
                "Illegal nested synchronous statement",
 
            ));
 
        }
 
        self.illegal = true;
 
        recursive_synchronous_statement(self, h, stmt)?;
 
        self.illegal = false;
 
        Ok(())
 
    }
 
    fn visit_expression(&mut self, _h: &mut Heap, _expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
struct ChannelStatementOccurrences {
 
    illegal: bool,
 
}
 

	
 
impl ChannelStatementOccurrences {
 
    fn new() -> Self {
 
        ChannelStatementOccurrences { illegal: false }
 
    }
 
}
 

	
 
impl Visitor for ChannelStatementOccurrences {
 
    fn visit_primitive_definition(&mut self, h: &mut Heap, def: PrimitiveId) -> VisitorResult {
 
        assert!(!self.illegal);
 
        self.illegal = true;
 
        recursive_primitive_definition(self, h, def)?;
 
        self.illegal = false;
 
        Ok(())
 
    }
 
    fn visit_function_definition(&mut self, h: &mut Heap, def: FunctionId) -> VisitorResult {
 
        assert!(!self.illegal);
 
        self.illegal = true;
 
        recursive_function_definition(self, h, def)?;
 
        self.illegal = false;
 
        Ok(())
 
    }
 
    fn visit_channel_statement(&mut self, h: &mut Heap, stmt: ChannelStatementId) -> VisitorResult {
 
        if self.illegal {
 
            return Err(ParseError::new(h[stmt].position(), "Illegal channel delcaration"));
 
        }
 
        Ok(())
 
    }
 
    fn visit_expression(&mut self, _h: &mut Heap, _expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
struct FunctionStatementReturns {}
 

	
 
impl FunctionStatementReturns {
 
    fn new() -> Self {
 
        FunctionStatementReturns {}
 
    }
 
    fn function_error(&self, position: InputPosition) -> VisitorResult {
 
        Err(ParseError::new(position, "Function definition must return"))
 
    }
 
}
 

	
 
impl Visitor for FunctionStatementReturns {
 
    fn visit_component_definition(&mut self, _h: &mut Heap, _def: ComponentId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_variable_declaration(&mut self, _h: &mut Heap, _decl: VariableId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_block_statement(&mut self, h: &mut Heap, block: BlockStatementId) -> VisitorResult {
 
        let len = h[block].statements.len();
 
        assert!(len > 0);
 
        self.visit_statement(h, h[block].statements[len - 1])
 
    }
 
    fn visit_skip_statement(&mut self, h: &mut Heap, stmt: SkipStatementId) -> VisitorResult {
 
        self.function_error(h[stmt].position)
 
    }
 
    fn visit_break_statement(&mut self, h: &mut Heap, stmt: BreakStatementId) -> VisitorResult {
 
        self.function_error(h[stmt].position)
 
    }
 
    fn visit_continue_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: ContinueStatementId,
 
    ) -> VisitorResult {
 
        self.function_error(h[stmt].position)
 
    }
 
    fn visit_assert_statement(&mut self, h: &mut Heap, stmt: AssertStatementId) -> VisitorResult {
 
        self.function_error(h[stmt].position)
 
    }
 
    fn visit_new_statement(&mut self, h: &mut Heap, stmt: NewStatementId) -> VisitorResult {
 
        self.function_error(h[stmt].position)
 
    }
 
    fn visit_expression_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: ExpressionStatementId,
 
    ) -> VisitorResult {
 
        self.function_error(h[stmt].position)
 
    }
 
    fn visit_expression(&mut self, _h: &mut Heap, _expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
struct ComponentStatementReturnNew {
 
    illegal_new: bool,
 
    illegal_return: bool,
 
}
 

	
 
impl ComponentStatementReturnNew {
 
    fn new() -> Self {
 
        ComponentStatementReturnNew { illegal_new: false, illegal_return: false }
 
    }
 
}
 

	
 
impl Visitor for ComponentStatementReturnNew {
 
    fn visit_component_definition(&mut self, h: &mut Heap, def: ComponentId) -> VisitorResult {
 
        assert!(!(self.illegal_new || self.illegal_return));
 
        self.illegal_return = true;
 
        recursive_component_definition(self, h, def)?;
 
        self.illegal_return = false;
 
        Ok(())
 
    }
 
    fn visit_primitive_definition(&mut self, h: &mut Heap, def: PrimitiveId) -> VisitorResult {
 
        assert!(!self.illegal_new);
 
        self.illegal_new = true;
 
        recursive_primitive_definition(self, h, def)?;
 
        self.illegal_new = false;
 
        Ok(())
 
    }
 
    fn visit_function_definition(&mut self, h: &mut Heap, def: FunctionId) -> VisitorResult {
 
        assert!(!(self.illegal_new || self.illegal_return));
 
        self.illegal_new = true;
 
        recursive_function_definition(self, h, def)?;
 
        self.illegal_new = false;
 
        Ok(())
 
    }
 
    fn visit_variable_declaration(&mut self, _h: &mut Heap, _decl: VariableId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_return_statement(&mut self, h: &mut Heap, stmt: ReturnStatementId) -> VisitorResult {
 
        if self.illegal_return {
 
            Err(ParseError::new(h[stmt].position, "Component definition must not return"))
 
        } else {
 
            recursive_return_statement(self, h, stmt)
 
        }
 
    }
 
    fn visit_new_statement(&mut self, h: &mut Heap, stmt: NewStatementId) -> VisitorResult {
 
        if self.illegal_new {
 
            Err(ParseError::new(
 
                h[stmt].position,
 
                "Symbol definition contains illegal new statement",
 
            ))
 
        } else {
 
            recursive_new_statement(self, h, stmt)
 
        }
 
    }
 
    fn visit_expression(&mut self, _h: &mut Heap, _expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
struct CheckBuiltinOccurrences {
 
    legal: bool,
 
}
 

	
 
impl CheckBuiltinOccurrences {
 
    fn new() -> Self {
 
        CheckBuiltinOccurrences { legal: false }
 
    }
 
}
 

	
 
impl Visitor for CheckBuiltinOccurrences {
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        assert!(!self.legal);
 
        self.legal = true;
 
        recursive_synchronous_statement(self, h, stmt)?;
 
        self.legal = false;
 
        Ok(())
 
    }
 
    fn visit_call_expression(&mut self, h: &mut Heap, expr: CallExpressionId) -> VisitorResult {
 
        match h[expr].method {
 
            Method::Get | Method::Fires => {
 
                if !self.legal {
 
                    return Err(ParseError::new(h[expr].position, "Illegal built-in occurrence"));
 
                }
 
            }
 
            _ => {}
 
        }
 
        recursive_call_expression(self, h, expr)
 
    }
 
}
 

	
 
struct BuildSymbolDeclarations {
 
    declarations: Vec<DeclarationId>,
 
}
 

	
 
impl BuildSymbolDeclarations {
 
    fn new() -> Self {
 
        BuildSymbolDeclarations { declarations: Vec::new() }
 
    }
 
    fn checked_add(&mut self, h: &mut Heap, decl: DeclarationId) -> VisitorResult {
 
        for &old in self.declarations.iter() {
 
            let id = h[decl].identifier();
 
            if h[id] == h[h[old].identifier()] {
 
                return match h[decl].clone() {
 
                    Declaration::Defined(defined) => Err(ParseError::new(
 
                        h[defined.definition].position(),
 
                        format!("Defined symbol clash: {}", h[id]),
 
                    )),
 
                    Declaration::Imported(imported) => Err(ParseError::new(
 
                        h[imported.import].position(),
 
                        format!("Imported symbol clash: {}", h[id]),
 
                    )),
 
                };
 
            }
 
        }
 
        self.declarations.push(decl);
 
        Ok(())
 
    }
 
}
 

	
 
impl Visitor for BuildSymbolDeclarations {
 
    fn visit_protocol_description(&mut self, h: &mut Heap, pd: RootId) -> VisitorResult {
 
        recursive_protocol_description(self, h, pd)?;
 
        // Move all collected declarations to the protocol description
 
        h[pd].declarations.append(&mut self.declarations);
 
        Ok(())
 
    }
 
    fn visit_import(&mut self, h: &mut Heap, import: ImportId) -> VisitorResult {
 
        let vec = library::get_declarations(h, import)?;
 
        // Destructively iterate over the vector
 
        for decl in vec {
 
            self.checked_add(h, decl)?;
 
        }
 
        Ok(())
 
    }
 
    fn visit_symbol_definition(&mut self, h: &mut Heap, definition: DefinitionId) -> VisitorResult {
 
        let signature = Signature::from_definition(h, definition);
 
        let decl = h
 
            .alloc_defined_declaration(|this| DefinedDeclaration { this, definition, signature })
 
            .upcast();
 
        self.checked_add(h, decl)?;
 
        Ok(())
 
    }
 
}
 

	
 
struct LinkCallExpressions {
 
    pd: Option<RootId>,
 
    composite: bool,
 
    new_statement: bool,
 
}
 

	
 
impl LinkCallExpressions {
 
    fn new() -> Self {
 
        LinkCallExpressions { pd: None, composite: false, new_statement: false }
 
    }
 
    fn get_declaration(
 
        &self,
 
        h: &Heap,
 
        id: SourceIdentifierId,
 
    ) -> Result<DeclarationId, ParseError> {
 
        match h[self.pd.unwrap()].get_declaration(h, id.upcast()) {
 
            Some(id) => Ok(id),
 
            None => Err(ParseError::new(h[id].position, "Unresolved method")),
 
        }
 
    }
 
}
 

	
 
impl Visitor for LinkCallExpressions {
 
    fn visit_protocol_description(&mut self, h: &mut Heap, pd: RootId) -> VisitorResult {
 
        self.pd = Some(pd);
 
        recursive_protocol_description(self, h, pd)?;
 
        self.pd = None;
 
        Ok(())
 
    }
 
    fn visit_composite_definition(&mut self, h: &mut Heap, def: CompositeId) -> VisitorResult {
 
        assert!(!self.composite);
 
        self.composite = true;
 
        recursive_composite_definition(self, h, def)?;
 
        self.composite = false;
 
        Ok(())
 
    }
 
    fn visit_new_statement(&mut self, h: &mut Heap, stmt: NewStatementId) -> VisitorResult {
 
        assert!(self.composite);
 
        assert!(!self.new_statement);
 
        self.new_statement = true;
 
        recursive_new_statement(self, h, stmt)?;
 
        self.new_statement = false;
 
        Ok(())
 
    }
 
    fn visit_call_expression(&mut self, h: &mut Heap, expr: CallExpressionId) -> VisitorResult {
 
        if let Method::Symbolic(id) = h[expr].method {
 
            let decl = self.get_declaration(h, id)?;
 
            if self.new_statement && h[decl].is_function() {
 
                return Err(ParseError::new(h[id].position, "Illegal call expression"));
 
            }
 
            if !self.new_statement && h[decl].is_component() {
 
                return Err(ParseError::new(h[id].position, "Illegal call expression"));
 
            }
 
            // Set the corresponding declaration of the call
 
            h[expr].declaration = Some(decl);
 
        }
 
        // A new statement's call expression may have as arguments function calls
 
        let old = self.new_statement;
 
        self.new_statement = false;
 
        recursive_call_expression(self, h, expr)?;
 
        self.new_statement = old;
 
        Ok(())
 
    }
 
}
 

	
 
struct BuildScope {
 
    scope: Option<Scope>,
 
}
 

	
 
impl BuildScope {
 
    fn new() -> Self {
 
        BuildScope { scope: None }
 
    }
 
}
 

	
 
impl Visitor for BuildScope {
 
    fn visit_symbol_definition(&mut self, h: &mut Heap, def: DefinitionId) -> VisitorResult {
 
        assert!(self.scope.is_none());
 
        self.scope = Some(Scope::Definition(def));
 
        recursive_symbol_definition(self, h, def)?;
 
        self.scope = None;
 
        Ok(())
 
    }
 
    fn visit_block_statement(&mut self, h: &mut Heap, stmt: BlockStatementId) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let old = self.scope;
 
        // First store the current scope
 
        h[stmt].parent_scope = self.scope;
 
        // Then move scope down to current block
 
        self.scope = Some(Scope::Block(stmt));
 
        recursive_block_statement(self, h, stmt)?;
 
        // Move scope back up
 
        self.scope = old;
 
        Ok(())
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let old = self.scope;
 
        // First store the current scope
 
        h[stmt].parent_scope = self.scope;
 
        // Then move scope down to current sync
 
        self.scope = Some(Scope::Synchronous(stmt));
 
        recursive_synchronous_statement(self, h, stmt)?;
 
        // Move scope back up
 
        self.scope = old;
 
        Ok(())
 
    }
 
    fn visit_expression(&mut self, h: &mut Heap, expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
struct ResolveVariables {
 
    scope: Option<Scope>,
 
}
 

	
 
impl ResolveVariables {
 
    fn new() -> Self {
 
        ResolveVariables { scope: None }
 
    }
 
    fn get_variable(&self, h: &Heap, id: SourceIdentifierId) -> Result<VariableId, ParseError> {
 
        if let Some(var) = self.find_variable(h, id) {
 
            Ok(var)
 
        } else {
 
            Err(ParseError::new(h[id].position, "Unresolved variable"))
 
        }
 
    }
 
    fn find_variable(&self, h: &Heap, id: SourceIdentifierId) -> Option<VariableId> {
 
        ResolveVariables::find_variable_impl(h, self.scope, id)
 
    }
 
    fn find_variable_impl(
 
        h: &Heap,
 
        scope: Option<Scope>,
 
        id: SourceIdentifierId,
 
    ) -> Option<VariableId> {
 
        if let Some(scope) = scope {
 
            // The order in which we check for variables is important:
 
            // otherwise, two variables with the same name are shadowed.
 
            if let Some(var) = ResolveVariables::find_variable_impl(h, scope.parent_scope(h), id) {
 
                Some(var)
 
            } else {
 
                scope.get_variable(h, id)
 
            }
 
        } else {
 
            None
 
        }
 
    }
 
}
 

	
 
impl Visitor for ResolveVariables {
 
    fn visit_symbol_definition(&mut self, h: &mut Heap, def: DefinitionId) -> VisitorResult {
 
        assert!(self.scope.is_none());
 
        self.scope = Some(Scope::Definition(def));
 
        recursive_symbol_definition(self, h, def)?;
 
        self.scope = None;
 
        Ok(())
 
    }
 
    fn visit_variable_declaration(&mut self, h: &mut Heap, decl: VariableId) -> VisitorResult {
 
        // This is only called for parameters of definitions and synchronous statements,
 
        // since the local variables of block statements are still empty
 
        // the moment it is traversed. After resolving variables, this
 
        // function is also called for every local variable declaration.
 

	
 
        // We want to make sure that the resolved variable is the variable declared itself;
 
        // otherwise, there is some variable defined in the parent scope. This check
 
        // imposes that the order in which find_variable looks is significant!
 
        let id = h[decl].identifier();
 
        let check_same = self.find_variable(h, id);
 
        if let Some(check_same) = check_same {
 
            if check_same != decl {
 
                return Err(ParseError::new(h[id].position, "Declared variable clash"));
 
            }
 
        }
 
        recursive_variable_declaration(self, h, decl)
 
    }
 
    fn visit_memory_statement(&mut self, h: &mut Heap, stmt: MemoryStatementId) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let var = h[stmt].variable;
 
        let id = h[var].identifier;
 
        // First check whether variable with same identifier is in scope
 
        let check_duplicate = self.find_variable(h, id);
 
        if !check_duplicate.is_none() {
 
            return Err(ParseError::new(h[id].position, "Declared variable clash"));
 
        }
 
        // Then check the expression's variables (this should not refer to own variable)
 
        recursive_memory_statement(self, h, stmt)?;
 
        // Finally, we may add the variable to the scope, which is guaranteed to be a block
 
        {
 
            let mut block = &mut h[self.scope.unwrap().to_block()];
 
            block.locals.push(var);
 
        }
 
        Ok(())
 
    }
 
    fn visit_channel_statement(&mut self, h: &mut Heap, stmt: ChannelStatementId) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        // First handle the from variable
 
        {
 
            let var = h[stmt].from;
 
            let id = h[var].identifier;
 
            let check_duplicate = self.find_variable(h, id);
 
            if !check_duplicate.is_none() {
 
                return Err(ParseError::new(h[id].position, "Declared variable clash"));
 
            }
 
            let mut block = &mut h[self.scope.unwrap().to_block()];
 
            block.locals.push(var);
 
        }
 
        // Then handle the to variable (which may not be the same as the from)
 
        {
 
            let var = h[stmt].to;
 
            let id = h[var].identifier;
 
            let check_duplicate = self.find_variable(h, id);
 
            if !check_duplicate.is_none() {
 
                return Err(ParseError::new(h[id].position, "Declared variable clash"));
 
            }
 
            let mut block = &mut h[self.scope.unwrap().to_block()];
 
            block.locals.push(var);
 
        }
 
        Ok(())
 
    }
 
    fn visit_block_statement(&mut self, h: &mut Heap, stmt: BlockStatementId) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let old = self.scope;
 
        self.scope = Some(Scope::Block(stmt));
 
        recursive_block_statement(self, h, stmt)?;
 
        self.scope = old;
 
        Ok(())
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let old = self.scope;
 
        self.scope = Some(Scope::Synchronous(stmt));
 
        recursive_synchronous_statement(self, h, stmt)?;
 
        self.scope = old;
 
        Ok(())
 
    }
 
    fn visit_variable_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: VariableExpressionId,
 
    ) -> VisitorResult {
 
        let var = self.get_variable(h, h[expr].identifier)?;
 
        h[expr].declaration = Some(var);
 
        Ok(())
 
    }
 
}
 

	
 
struct UniqueStatementId(StatementId);
 

	
 
struct LinkStatements {
 
    prev: Option<UniqueStatementId>,
 
}
 

	
 
impl LinkStatements {
 
    fn new() -> Self {
 
        LinkStatements { prev: None }
 
    }
 
}
 

	
 
impl Visitor for LinkStatements {
 
    fn visit_statement(&mut self, h: &mut Heap, stmt: StatementId) -> VisitorResult {
 
        if let Some(UniqueStatementId(prev)) = std::mem::replace(&mut self.prev, None) {
 
            h[prev].link_next(stmt);
 
        }
 
        recursive_statement(self, h, stmt)
 
    }
 
    fn visit_local_statement(&mut self, _h: &mut Heap, stmt: LocalStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_labeled_statement(&mut self, h: &mut Heap, stmt: LabeledStatementId) -> VisitorResult {
 
        recursive_labeled_statement(self, h, stmt)
 
    }
 
    fn visit_skip_statement(&mut self, _h: &mut Heap, stmt: SkipStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_if_statement(&mut self, h: &mut Heap, stmt: IfStatementId) -> VisitorResult {
 
        // We allocate a pseudo-statement, which combines both branches into one next statement
 
        let position = h[stmt].position;
 
        let pseudo =
 
            h.alloc_end_if_statement(|this| EndIfStatement { this, position, next: None }).upcast();
 
        assert!(self.prev.is_none());
 
        self.visit_statement(h, h[stmt].true_body)?;
 
        if let Some(UniqueStatementId(prev)) = std::mem::replace(&mut self.prev, None) {
 
            h[prev].link_next(pseudo);
 
        }
 
        assert!(self.prev.is_none());
 
        self.visit_statement(h, h[stmt].false_body)?;
 
        if let Some(UniqueStatementId(prev)) = std::mem::replace(&mut self.prev, None) {
 
            h[prev].link_next(pseudo);
 
        }
 
        // Use the pseudo-statement as the statement where to update the next pointer
 
        self.prev = Some(UniqueStatementId(pseudo));
 
        Ok(())
 
    }
 
    fn visit_while_statement(&mut self, h: &mut Heap, stmt: WhileStatementId) -> VisitorResult {
 
        // We allocate a pseudo-statement, to which the break statement finds its target
 
        let position = h[stmt].position;
 
        let pseudo =
 
            h.alloc_end_while_statement(|this| EndWhileStatement { this, position, next: None });
 
        // Update the while's next statement to point to the pseudo-statement
 
        h[stmt].next = Some(pseudo);
 
        assert!(self.prev.is_none());
 
        self.visit_statement(h, h[stmt].body)?;
 
        // The body's next statement loops back to the while statement itself
 
        // Note: continue statements also loop back to the while statement itself
 
        if let Some(UniqueStatementId(prev)) = std::mem::replace(&mut self.prev, None) {
 
            h[prev].link_next(stmt.upcast());
 
        }
 
        // Use the while statement as the statement where the next pointer is updated
 
        self.prev = Some(UniqueStatementId(pseudo.upcast()));
 
        Ok(())
 
    }
 
    fn visit_break_statement(&mut self, _h: &mut Heap, _stmt: BreakStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_continue_statement(
 
        &mut self,
 
        _h: &mut Heap,
 
        _stmt: ContinueStatementId,
 
    ) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        // Allocate a pseudo-statement, that is added for helping the evaluator to issue a command
 
        // that marks the end of the synchronous block. Every evaluation has to pause at this
 
        // point, only to resume later when the thread is selected as unique thread to continue.
 
        let position = h[stmt].position;
 
        let pseudo = h
 
            .alloc_end_synchronous_statement(|this| EndSynchronousStatement {
 
                this,
 
                position,
 
                next: None,
 
            })
 
            .upcast();
 
        assert!(self.prev.is_none());
 
        self.visit_statement(h, h[stmt].body)?;
 
        // The body's next statement points to the pseudo element
 
        if let Some(UniqueStatementId(prev)) = std::mem::replace(&mut self.prev, None) {
 
            h[prev].link_next(pseudo);
 
        }
 
        // Use the pseudo-statement as the statement where the next pointer is updated
 
        self.prev = Some(UniqueStatementId(pseudo));
 
        Ok(())
 
    }
 
    fn visit_return_statement(&mut self, h: &mut Heap, stmt: ReturnStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_assert_statement(&mut self, h: &mut Heap, stmt: AssertStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_goto_statement(&mut self, _h: &mut Heap, _stmt: GotoStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_new_statement(&mut self, h: &mut Heap, stmt: NewStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_put_statement(&mut self, h: &mut Heap, stmt: PutStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_expression_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: ExpressionStatementId,
 
    ) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_expression(&mut self, h: &mut Heap, expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
struct BuildLabels {
 
    block: Option<BlockStatementId>,
 
    sync_enclosure: Option<SynchronousStatementId>,
 
}
 

	
 
impl BuildLabels {
 
    fn new() -> Self {
 
        BuildLabels { block: None, sync_enclosure: None }
 
    }
 
}
 

	
 
impl Visitor for BuildLabels {
 
    fn visit_block_statement(&mut self, h: &mut Heap, stmt: BlockStatementId) -> VisitorResult {
 
        assert_eq!(self.block, h[stmt].parent_block(h));
 
        let old = self.block;
 
        self.block = Some(stmt);
 
        recursive_block_statement(self, h, stmt)?;
 
        self.block = old;
 
        Ok(())
 
    }
 
    fn visit_labeled_statement(&mut self, h: &mut Heap, stmt: LabeledStatementId) -> VisitorResult {
 
        assert!(!self.block.is_none());
 
        // Store label in current block (on the fly)
 
        h[self.block.unwrap()].labels.push(stmt);
 
        // Update synchronous scope of label
 
        h[stmt].in_sync = self.sync_enclosure;
 
        recursive_labeled_statement(self, h, stmt)
 
    }
 
    fn visit_while_statement(&mut self, h: &mut Heap, stmt: WhileStatementId) -> VisitorResult {
 
        h[stmt].in_sync = self.sync_enclosure;
 
        recursive_while_statement(self, h, stmt)
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        assert!(self.sync_enclosure.is_none());
 
        self.sync_enclosure = Some(stmt);
 
        recursive_synchronous_statement(self, h, stmt)?;
 
        self.sync_enclosure = None;
 
        Ok(())
 
    }
 
    fn visit_expression(&mut self, h: &mut Heap, expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
struct ResolveLabels {
 
    block: Option<BlockStatementId>,
 
    while_enclosure: Option<WhileStatementId>,
 
    sync_enclosure: Option<SynchronousStatementId>,
 
}
 

	
 
impl ResolveLabels {
 
    fn new() -> Self {
 
        ResolveLabels { block: None, while_enclosure: None, sync_enclosure: None }
 
    }
 
    fn check_duplicate_impl(
 
        h: &Heap,
 
        block: Option<BlockStatementId>,
 
        stmt: LabeledStatementId,
 
    ) -> VisitorResult {
 
        if let Some(block) = block {
 
            // Checking the parent first is important. Otherwise, labels
 
            // overshadow previously defined labels: and this is illegal!
 
            ResolveLabels::check_duplicate_impl(h, h[block].parent_block(h), stmt)?;
 
            // For the current block, check for a duplicate.
 
            for &other_stmt in h[block].labels.iter() {
 
                if other_stmt == stmt {
 
                    continue;
 
                } else {
 
                    if h[h[other_stmt].label] == h[h[stmt].label] {
 
                        return Err(ParseError::new(h[stmt].position, "Duplicate label"));
 
                    }
 
                }
 
            }
 
        }
 
        Ok(())
 
    }
 
    fn check_duplicate(&self, h: &Heap, stmt: LabeledStatementId) -> VisitorResult {
 
        ResolveLabels::check_duplicate_impl(h, self.block, stmt)
 
    }
 
    fn get_target(
 
        &self,
 
        h: &Heap,
 
        id: SourceIdentifierId,
 
    ) -> Result<LabeledStatementId, ParseError> {
 
        if let Some(stmt) = ResolveLabels::find_target(h, self.block, id) {
 
            Ok(stmt)
 
        } else {
 
            Err(ParseError::new(h[id].position, "Unresolved label"))
 
        }
 
    }
 
    fn find_target(
 
        h: &Heap,
 
        block: Option<BlockStatementId>,
 
        id: SourceIdentifierId,
 
    ) -> Option<LabeledStatementId> {
 
        if let Some(block) = block {
 
            // It does not matter in what order we find the labels.
 
            // If there are duplicates: that is checked elsewhere.
 
            for &stmt in h[block].labels.iter() {
 
                if h[h[stmt].label] == h[id] {
 
                    return Some(stmt);
 
                }
 
            }
 
            if let Some(stmt) = ResolveLabels::find_target(h, h[block].parent_block(h), id) {
 
                return Some(stmt);
 
            }
 
        }
 
        None
 
    }
 
}
 

	
 
impl Visitor for ResolveLabels {
 
    fn visit_block_statement(&mut self, h: &mut Heap, stmt: BlockStatementId) -> VisitorResult {
 
        assert_eq!(self.block, h[stmt].parent_block(h));
 
        let old = self.block;
 
        self.block = Some(stmt);
 
        recursive_block_statement(self, h, stmt)?;
 
        self.block = old;
 
        Ok(())
 
    }
 
    fn visit_labeled_statement(&mut self, h: &mut Heap, stmt: LabeledStatementId) -> VisitorResult {
 
        assert!(!self.block.is_none());
 
        self.check_duplicate(h, stmt)?;
 
        recursive_labeled_statement(self, h, stmt)
 
    }
 
    fn visit_while_statement(&mut self, h: &mut Heap, stmt: WhileStatementId) -> VisitorResult {
 
        let old = self.while_enclosure;
 
        self.while_enclosure = Some(stmt);
 
        recursive_while_statement(self, h, stmt)?;
 
        self.while_enclosure = old;
 
        Ok(())
 
    }
 
    fn visit_break_statement(&mut self, h: &mut Heap, stmt: BreakStatementId) -> VisitorResult {
 
        let the_while;
 
        if let Some(label) = h[stmt].label {
 
            let target = self.get_target(h, label)?;
 
            let target = &h[h[target].body];
 
            if !target.is_while() {
 
                return Err(ParseError::new(
 
                    h[stmt].position,
 
                    "Illegal break: target not a while statement",
 
                ));
 
            }
 
            the_while = target.as_while();
 
        // TODO: check if break is nested under while
 
        } else {
 
            if self.while_enclosure.is_none() {
 
                return Err(ParseError::new(
 
                    h[stmt].position,
 
                    "Illegal break: no surrounding while statement",
 
                ));
 
            }
 
            the_while = &h[self.while_enclosure.unwrap()];
 
            // break is always nested under while, by recursive vistor
 
        }
 
        if the_while.in_sync != self.sync_enclosure {
 
            return Err(ParseError::new(
 
                h[stmt].position,
 
                "Illegal break: synchronous statement escape",
 
            ));
 
        }
 
        h[stmt].target = the_while.next;
 
        Ok(())
 
    }
 
    fn visit_continue_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: ContinueStatementId,
 
    ) -> VisitorResult {
 
        let the_while;
 
        if let Some(label) = h[stmt].label {
 
            let target = self.get_target(h, label)?;
 
            let target = &h[h[target].body];
 
            if !target.is_while() {
 
                return Err(ParseError::new(
 
                    h[stmt].position,
 
                    "Illegal continue: target not a while statement",
 
                ));
 
            }
 
            the_while = target.as_while();
 
        // TODO: check if continue is nested under while
 
        } else {
 
            if self.while_enclosure.is_none() {
 
                return Err(ParseError::new(
 
                    h[stmt].position,
 
                    "Illegal continue: no surrounding while statement",
 
                ));
 
            }
 
            the_while = &h[self.while_enclosure.unwrap()];
 
            // continue is always nested under while, by recursive vistor
 
        }
 
        if the_while.in_sync != self.sync_enclosure {
 
            return Err(ParseError::new(
 
                h[stmt].position,
 
                "Illegal continue: synchronous statement escape",
 
            ));
 
        }
 
        h[stmt].target = Some(the_while.this);
 
        Ok(())
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        assert!(self.sync_enclosure.is_none());
 
        self.sync_enclosure = Some(stmt);
 
        recursive_synchronous_statement(self, h, stmt)?;
 
        self.sync_enclosure = None;
 
        Ok(())
 
    }
 
    fn visit_goto_statement(&mut self, h: &mut Heap, stmt: GotoStatementId) -> VisitorResult {
 
        let target = self.get_target(h, h[stmt].label)?;
 
        if h[target].in_sync != self.sync_enclosure {
 
            return Err(ParseError::new(
 
                h[stmt].position,
 
                "Illegal goto: synchronous statement escape",
 
            ));
 
        }
 
        h[stmt].target = Some(target);
 
        Ok(())
 
    }
 
    fn visit_expression(&mut self, h: &mut Heap, expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
struct AssignableExpressions {
 
    assignable: bool,
 
}
 

	
 
impl AssignableExpressions {
 
    fn new() -> Self {
 
        AssignableExpressions { assignable: false }
 
    }
 
    fn error(&self, position: InputPosition) -> VisitorResult {
 
        Err(ParseError::new(position, "Unassignable expression"))
 
    }
 
}
 

	
 
impl Visitor for AssignableExpressions {
 
    fn visit_assignment_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: AssignmentExpressionId,
 
    ) -> VisitorResult {
 
        if self.assignable {
 
            self.error(h[expr].position)
 
        } else {
 
            self.assignable = true;
 
            self.visit_expression(h, h[expr].left)?;
 
            self.assignable = false;
 
            self.visit_expression(h, h[expr].right)
 
        }
 
    }
 
    fn visit_conditional_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: ConditionalExpressionId,
 
    ) -> VisitorResult {
 
        if self.assignable {
 
            self.error(h[expr].position)
 
        } else {
 
            recursive_conditional_expression(self, h, expr)
 
        }
 
    }
 
    fn visit_binary_expression(&mut self, h: &mut Heap, expr: BinaryExpressionId) -> VisitorResult {
 
        if self.assignable {
 
            self.error(h[expr].position)
 
        } else {
 
            recursive_binary_expression(self, h, expr)
 
        }
 
    }
 
    fn visit_unary_expression(&mut self, h: &mut Heap, expr: UnaryExpressionId) -> VisitorResult {
 
        if self.assignable {
 
            self.error(h[expr].position)
 
        } else {
 
            match h[expr].operation {
 
                UnaryOperation::PostDecrement
 
                | UnaryOperation::PreDecrement
 
                | UnaryOperation::PostIncrement
 
                | UnaryOperation::PreIncrement => {
 
                    self.assignable = true;
 
                    recursive_unary_expression(self, h, expr)?;
 
                    self.assignable = false;
 
                    Ok(())
 
                }
 
                _ => recursive_unary_expression(self, h, expr),
 
            }
 
        }
 
    }
 
    fn visit_indexing_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: IndexingExpressionId,
 
    ) -> VisitorResult {
 
        let old = self.assignable;
 
        self.assignable = false;
 
        recursive_indexing_expression(self, h, expr)?;
 
        self.assignable = old;
 
        Ok(())
 
    }
 
    fn visit_slicing_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: SlicingExpressionId,
 
    ) -> VisitorResult {
 
        let old = self.assignable;
 
        self.assignable = false;
 
        recursive_slicing_expression(self, h, expr)?;
 
        self.assignable = old;
 
        Ok(())
 
    }
 
    fn visit_select_expression(&mut self, h: &mut Heap, expr: SelectExpressionId) -> VisitorResult {
 
        if h[expr].field.is_length() && self.assignable {
 
            return self.error(h[expr].position);
 
        }
 
        let old = self.assignable;
 
        self.assignable = false;
 
        recursive_select_expression(self, h, expr)?;
 
        self.assignable = old;
 
        Ok(())
 
    }
 
    fn visit_array_expression(&mut self, h: &mut Heap, expr: ArrayExpressionId) -> VisitorResult {
 
        if self.assignable {
 
            self.error(h[expr].position)
 
        } else {
 
            recursive_array_expression(self, h, expr)
 
        }
 
    }
 
    fn visit_call_expression(&mut self, h: &mut Heap, expr: CallExpressionId) -> VisitorResult {
 
        if self.assignable {
 
            self.error(h[expr].position)
 
        } else {
 
            recursive_call_expression(self, h, expr)
 
        }
 
    }
 
    fn visit_constant_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: ConstantExpressionId,
 
    ) -> VisitorResult {
 
        if self.assignable {
 
            self.error(h[expr].position)
 
        } else {
 
            Ok(())
 
        }
 
    }
 
    fn visit_variable_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: VariableExpressionId,
 
    ) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
struct IndexableExpressions {
 
    indexable: bool,
 
}
 

	
 
impl IndexableExpressions {
 
    fn new() -> Self {
 
        IndexableExpressions { indexable: false }
 
    }
 
    fn error(&self, position: InputPosition) -> VisitorResult {
 
        Err(ParseError::new(position, "Unindexable expression"))
 
    }
 
}
 

	
 
impl Visitor for IndexableExpressions {
 
    fn visit_assignment_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: AssignmentExpressionId,
 
    ) -> VisitorResult {
 
        if self.indexable {
 
            self.error(h[expr].position)
 
        } else {
 
            recursive_assignment_expression(self, h, expr)
 
        }
 
    }
 
    fn visit_conditional_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: ConditionalExpressionId,
 
    ) -> VisitorResult {
 
        let old = self.indexable;
 
        self.indexable = false;
 
        self.visit_expression(h, h[expr].test)?;
 
        self.indexable = old;
 
        self.visit_expression(h, h[expr].true_expression)?;
 
        self.visit_expression(h, h[expr].false_expression)
 
    }
 
    fn visit_binary_expression(&mut self, h: &mut Heap, expr: BinaryExpressionId) -> VisitorResult {
 
        if self.indexable && h[expr].operation != BinaryOperator::Concatenate {
 
            self.error(h[expr].position)
 
        } else {
 
            recursive_binary_expression(self, h, expr)
 
        }
 
    }
 
    fn visit_unary_expression(&mut self, h: &mut Heap, expr: UnaryExpressionId) -> VisitorResult {
 
        if self.indexable {
 
            self.error(h[expr].position)
 
        } else {
 
            recursive_unary_expression(self, h, expr)
 
        }
 
    }
 
    fn visit_indexing_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: IndexingExpressionId,
 
    ) -> VisitorResult {
 
        if self.indexable {
 
            self.error(h[expr].position)
 
        } else {
 
            self.indexable = true;
 
            self.visit_expression(h, h[expr].subject)?;
 
            self.indexable = false;
 
            self.visit_expression(h, h[expr].index)
 
        }
 
    }
 
    fn visit_slicing_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: SlicingExpressionId,
 
    ) -> VisitorResult {
 
        let old = self.indexable;
 
        self.indexable = true;
 
        self.visit_expression(h, h[expr].subject)?;
 
        self.indexable = false;
 
        self.visit_expression(h, h[expr].from_index)?;
 
        self.visit_expression(h, h[expr].to_index)?;
 
        self.indexable = old;
 
        Ok(())
 
    }
 
    fn visit_select_expression(&mut self, h: &mut Heap, expr: SelectExpressionId) -> VisitorResult {
 
        let old = self.indexable;
 
        self.indexable = false;
 
        recursive_select_expression(self, h, expr)?;
 
        self.indexable = old;
 
        Ok(())
 
    }
 
    fn visit_array_expression(&mut self, h: &mut Heap, expr: ArrayExpressionId) -> VisitorResult {
 
        let old = self.indexable;
 
        self.indexable = false;
 
        recursive_array_expression(self, h, expr)?;
 
        self.indexable = old;
 
        Ok(())
 
    }
 
    fn visit_call_expression(&mut self, h: &mut Heap, expr: CallExpressionId) -> VisitorResult {
 
        let old = self.indexable;
 
        self.indexable = false;
 
        recursive_call_expression(self, h, expr)?;
 
        self.indexable = old;
 
        Ok(())
 
    }
 
    fn visit_constant_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: ConstantExpressionId,
 
    ) -> VisitorResult {
 
        if self.indexable {
 
            self.error(h[expr].position)
 
        } else {
 
            Ok(())
 
        }
 
    }
 
}
 

	
 
struct SelectableExpressions {
 
    selectable: bool,
 
}
 

	
 
impl SelectableExpressions {
 
    fn new() -> Self {
 
        SelectableExpressions { selectable: false }
 
    }
 
    fn error(&self, position: InputPosition) -> VisitorResult {
 
        Err(ParseError::new(position, "Unselectable expression"))
 
    }
 
}
 

	
 
impl Visitor for SelectableExpressions {
 
    fn visit_assignment_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: AssignmentExpressionId,
 
    ) -> VisitorResult {
 
        // left-hand side of assignment can be skipped
 
        let old = self.selectable;
 
        self.selectable = false;
 
        self.visit_expression(h, h[expr].right)?;
 
        self.selectable = old;
 
        Ok(())
 
    }
 
    fn visit_conditional_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: ConditionalExpressionId,
 
    ) -> VisitorResult {
 
        let old = self.selectable;
 
        self.selectable = false;
 
        self.visit_expression(h, h[expr].test)?;
 
        self.selectable = old;
 
        self.visit_expression(h, h[expr].true_expression)?;
 
        self.visit_expression(h, h[expr].false_expression)
 
    }
 
    fn visit_binary_expression(&mut self, h: &mut Heap, expr: BinaryExpressionId) -> VisitorResult {
 
        if self.selectable && h[expr].operation != BinaryOperator::Concatenate {
 
            self.error(h[expr].position)
 
        } else {
 
            recursive_binary_expression(self, h, expr)
 
        }
 
    }
 
    fn visit_unary_expression(&mut self, h: &mut Heap, expr: UnaryExpressionId) -> VisitorResult {
 
        if self.selectable {
 
            self.error(h[expr].position)
 
        } else {
 
            recursive_unary_expression(self, h, expr)
 
        }
 
    }
 
    fn visit_indexing_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: IndexingExpressionId,
 
    ) -> VisitorResult {
 
        let old = self.selectable;
 
        self.selectable = false;
 
        recursive_indexing_expression(self, h, expr)?;
 
        self.selectable = old;
 
        Ok(())
 
    }
 
    fn visit_slicing_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: SlicingExpressionId,
 
    ) -> VisitorResult {
 
        let old = self.selectable;
 
        self.selectable = false;
 
        recursive_slicing_expression(self, h, expr)?;
 
        self.selectable = old;
 
        Ok(())
 
    }
 
    fn visit_select_expression(&mut self, h: &mut Heap, expr: SelectExpressionId) -> VisitorResult {
 
        let old = self.selectable;
 
        self.selectable = false;
 
        recursive_select_expression(self, h, expr)?;
 
        self.selectable = old;
 
        Ok(())
 
    }
 
    fn visit_array_expression(&mut self, h: &mut Heap, expr: ArrayExpressionId) -> VisitorResult {
 
        let old = self.selectable;
 
        self.selectable = false;
 
        recursive_array_expression(self, h, expr)?;
 
        self.selectable = old;
 
        Ok(())
 
    }
 
    fn visit_call_expression(&mut self, h: &mut Heap, expr: CallExpressionId) -> VisitorResult {
 
        let old = self.selectable;
 
        self.selectable = false;
 
        recursive_call_expression(self, h, expr)?;
 
        self.selectable = old;
 
        Ok(())
 
    }
 
    fn visit_constant_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: ConstantExpressionId,
 
    ) -> VisitorResult {
 
        if self.selectable {
 
            self.error(h[expr].position)
 
        } else {
 
            Ok(())
 
        }
 
    }
 
}
 

	
 
struct CheckMainComponent {}
 

	
 
impl CheckMainComponent {
 
    fn new() -> Self {
 
        CheckMainComponent {}
 
    }
 
    fn visit_protocol_description(&mut self, h: &mut Heap, root: RootId) -> VisitorResult {
 
        let sym = h.get_external_identifier(b"main");
 
        let root = &h[root];
 
        let def = root.get_definition(h, sym.upcast());
 
        if def.is_none() {
 
            return Err(ParseError::new(root.position, "Missing main definition"));
 
        }
 
        let def = &h[def.unwrap()];
 
        if !def.is_component() {
 
            return Err(ParseError::new(def.position(), "Main definition must be a component"));
 
        }
 
        for &param in def.parameters().iter() {
 
            let param = &h[param];
 
            let type_annot = &h[param.type_annotation];
 
            if type_annot.the_type.array {
 
                return Err(ParseError::new(type_annot.position, "Illegal type"));
 
            }
 
            match type_annot.the_type.primitive {
 
                PrimitiveType::Input | PrimitiveType::Output => continue,
 
                _ => {
 
                    return Err(ParseError::new(type_annot.position, "Illegal type"));
 
                }
 
            }
 
        }
 
        Ok(())
 
    }
 
}
 

	
 
pub struct Parser<'a> {
 
    source: &'a mut InputSource,
 
}
 

	
 
impl<'a> Parser<'a> {
 
    pub fn new(source: &'a mut InputSource) -> Self {
 
        Parser { source }
 
    }
 
    pub fn parse(&mut self, h: &mut Heap) -> Result<RootId, ParseError> {
 
        let mut lex = Lexer::new(self.source);
 
        let pd = lex.consume_protocol_description(h)?;
 
        NestedSynchronousStatements::new().visit_protocol_description(h, pd)?;
 
        ChannelStatementOccurrences::new().visit_protocol_description(h, pd)?;
 
        FunctionStatementReturns::new().visit_protocol_description(h, pd)?;
 
        ComponentStatementReturnNew::new().visit_protocol_description(h, pd)?;
 
        CheckBuiltinOccurrences::new().visit_protocol_description(h, pd)?;
 
        BuildSymbolDeclarations::new().visit_protocol_description(h, pd)?;
 
        LinkCallExpressions::new().visit_protocol_description(h, pd)?;
 
        BuildScope::new().visit_protocol_description(h, pd)?;
 
        ResolveVariables::new().visit_protocol_description(h, pd)?;
 
        LinkStatements::new().visit_protocol_description(h, pd)?;
 
        BuildLabels::new().visit_protocol_description(h, pd)?;
 
        ResolveLabels::new().visit_protocol_description(h, pd)?;
 
        AssignableExpressions::new().visit_protocol_description(h, pd)?;
 
        IndexableExpressions::new().visit_protocol_description(h, pd)?;
 
        SelectableExpressions::new().visit_protocol_description(h, pd)?;
 
        CheckMainComponent::new().visit_protocol_description(h, pd)?;
 
        Ok(pd)
 
    }
 
}
 

	
 
#[cfg(test)]
 
mod tests {
 
    extern crate test_generator;
 

	
 
    use std::fs::File;
 
    use std::io::Read;
 
    use std::path::Path;
 

	
 
    use test_generator::test_resources;
 

	
 
    use super::*;
 

	
 
    #[test_resources("testdata/parser/positive/*.pdl")]
 
    fn batch1(resource: &str) {
 
        let path = Path::new(resource);
 
        let mut heap = Heap::new();
 
        let mut source = InputSource::from_file(&path).unwrap();
 
        let mut parser = Parser::new(&mut source);
 
        match parser.parse(&mut heap) {
 
            Ok(_) => {}
 
            Err(err) => {
 
                println!("{}", err.display(&source));
 
                println!("{:?}", err);
 
                assert!(false);
 
            }
 
        }
 
    }
 

	
 
    #[test_resources("testdata/parser/negative/*.pdl")]
 
    fn batch2(resource: &str) {
 
        let path = Path::new(resource);
 
        let expect = path.with_extension("txt");
 
        let mut heap = Heap::new();
 
        let mut source = InputSource::from_file(&path).unwrap();
 
        let mut parser = Parser::new(&mut source);
 
        match parser.parse(&mut heap) {
 
            Ok(pd) => {
 
                println!("{:?}", heap[pd]);
 
                println!("Expected parse error:");
 

	
 
                let mut cev: Vec<u8> = Vec::new();
 
                let mut f = File::open(expect).unwrap();
 
                f.read_to_end(&mut cev).unwrap();
 
                println!("{}", String::from_utf8_lossy(&cev));
 
                assert!(false);
 
            }
 
            Err(err) => {
 
                println!("{:?}", err);
 

	
 
                let mut vec: Vec<u8> = Vec::new();
 
                err.write(&source, &mut vec).unwrap();
 
                println!("{}", String::from_utf8_lossy(&vec));
 

	
 
                let mut cev: Vec<u8> = Vec::new();
 
                let mut f = File::open(expect).unwrap();
 
                f.read_to_end(&mut cev).unwrap();
 
                println!("{}", String::from_utf8_lossy(&cev));
 

	
 
                assert_eq!(vec, cev);
 
            }
 
        }
 
    }
 
}
0 comments (0 inline, 0 general)