Changeset - 98726afd4a84
[Not reviewed]
MH - 3 years ago 2022-03-02 11:22:39
contact@maxhenger.nl
Initial implementation of block evaluation
6 files changed with 40 insertions and 28 deletions:
0 comments (0 inline, 0 general)
src/protocol/ast_printer.rs
Show inline comments
 
@@ -482,96 +482,98 @@ impl ASTWriter {
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_disp_val(&stmt.target.0.index);
 
            },
 
            Statement::Synchronous(stmt) => {
 
                self.kv(indent).with_id(PREFIX_SYNC_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Synchronous");
 
                self.kv(indent2).with_s_key("EndSync").with_disp_val(&stmt.end_sync.0.index);
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, stmt.body, indent3);
 
            },
 
            Statement::EndSynchronous(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDSYNC_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndSynchronous");
 
                self.kv(indent2).with_s_key("StartSync").with_disp_val(&stmt.start_sync.0.index);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::Fork(stmt) => {
 
                self.kv(indent).with_id(PREFIX_FORK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Fork");
 
                self.kv(indent2).with_s_key("EndFork").with_disp_val(&stmt.end_fork.0.index);
 
                self.kv(indent2).with_s_key("LeftBody");
 
                self.write_stmt(heap, stmt.left_body, indent3);
 

	
 
                if let Some(right_body_id) = stmt.right_body {
 
                    self.kv(indent2).with_s_key("RightBody");
 
                    self.write_stmt(heap, right_body_id, indent3);
 
                }
 
            },
 
            Statement::EndFork(stmt) => {
 
                self.kv(indent).with_id(PREFIX_END_FORK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndFork");
 
                self.kv(indent2).with_s_key("StartFork").with_disp_val(&stmt.start_fork.0.index);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::Select(stmt) => {
 
                self.kv(indent).with_id(PREFIX_SELECT_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Select");
 
                self.kv(indent2).with_s_key("EndSelect").with_disp_val(&stmt.end_select.0.index);
 
                self.kv(indent2).with_s_key("Cases");
 
                let indent3 = indent2 + 1;
 
                let indent4 = indent3 + 1;
 
                for case in &stmt.cases {
 
                    self.kv(indent3).with_s_key("Guard");
 
                    self.write_stmt(heap, case.guard, indent4);
 

	
 
                    self.kv(indent3).with_s_key("Block");
 
                    self.write_stmt(heap, case.body, indent4);
 
                }
 
                self.kv(indent2).with_s_key("Replacement");
 
                self.write_stmt(heap, stmt.next, indent3);
 
            },
 
            Statement::EndSelect(stmt) => {
 
                self.kv(indent).with_id(PREFIX_END_SELECT_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndSelect");
 
                self.kv(indent2).with_s_key("StartSelect").with_disp_val(&stmt.start_select.0.index);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            }
 
            Statement::Return(stmt) => {
 
                self.kv(indent).with_id(PREFIX_RETURN_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Return");
 
                self.kv(indent2).with_s_key("Expressions");
 
                for expr_id in &stmt.expressions {
 
                    self.write_expr(heap, *expr_id, indent3);
 
                }
 
            },
 
            Statement::Goto(stmt) => {
 
                self.kv(indent).with_id(PREFIX_GOTO_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Goto");
 
                self.kv(indent2).with_s_key("Label").with_identifier_val(&stmt.label);
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_disp_val(&stmt.target.0.index);
 
            },
 
            Statement::New(stmt) => {
 
                self.kv(indent).with_id(PREFIX_NEW_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("New");
 
                self.kv(indent2).with_s_key("Expression");
 
                self.write_expr(heap, stmt.expression.upcast(), indent3);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::Expression(stmt) => {
 
                self.kv(indent).with_id(PREFIX_EXPR_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("ExpressionStatement");
 
                self.write_expr(heap, stmt.expression, indent2);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            }
 
        }
 
    }
 

	
 
    fn write_expr(&mut self, heap: &Heap, expr_id: ExpressionId, indent: usize) {
 
        let expr = &heap[expr_id];
 
        let indent2 = indent + 1;
 
        let indent3 = indent2 + 1;
 

	
 
        match expr {
 
            Expression::Assignment(expr) => {
 
                self.kv(indent).with_id(PREFIX_ASSIGNMENT_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("AssignmentExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
@@ -720,167 +722,174 @@ impl ASTWriter {
 
                        self.kv(indent3).with_s_key("ParserType")
 
                            .with_custom_val(|t| write_parser_type(t, heap, &data.parser_type));
 
                        self.kv(indent3).with_s_key("Definition").with_disp_val(&data.definition.index);
 
                        self.kv(indent3).with_s_key("VariantIdx").with_disp_val(&data.variant_idx);
 

	
 
                        for value in &data.values {
 
                            self.kv(indent3).with_s_key("Value");
 
                            self.write_expr(heap, *value, indent4);
 
                        }
 
                    },
 
                    Literal::Array(data) => {
 
                        val.with_s_val("Array");
 
                        let indent4 = indent3 + 1;
 

	
 
                        self.kv(indent3).with_s_key("Elements");
 
                        for expr_id in data {
 
                            self.write_expr(heap, *expr_id, indent4);
 
                        }
 
                    },
 
                    Literal::Tuple(data) => {
 
                        val.with_s_val("Tuple");
 
                        let indent4 = indent3 + 1;
 
                        self.kv(indent3).with_s_key("Elements");
 
                        for expr_id in data {
 
                            self.write_expr(heap, *expr_id, indent4);
 
                        }
 
                    }
 
                }
 

	
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Cast(expr) => {
 
                self.kv(indent).with_id(PREFIX_CAST_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("CallExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("ToType")
 
                    .with_custom_val(|t| write_parser_type(t, heap, &expr.to_type));
 
                self.kv(indent2).with_s_key("Subject");
 
                self.write_expr(heap, expr.subject, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            }
 
            Expression::Call(expr) => {
 
                self.kv(indent).with_id(PREFIX_CALL_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("CallExpr");
 

	
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 

	
 
                let definition = &heap[expr.procedure];
 
                self.kv(indent2).with_s_key("BuiltIn").with_disp_val(&false);
 
                self.kv(indent2).with_s_key("Variant").with_debug_val(&definition.kind);
 
                self.kv(indent2).with_s_key("MethodName").with_identifier_val(&definition.identifier);
 
                self.kv(indent2).with_s_key("ParserType")
 
                    .with_custom_val(|t| write_parser_type(t, heap, &expr.parser_type));
 
                self.kv(indent2).with_s_key("Method").with_debug_val(&expr.method);
 
                if !expr.procedure.is_invalid() {
 
                    let definition = &heap[expr.procedure];
 
                    self.kv(indent2).with_s_key("BuiltIn").with_disp_val(&definition.builtin);
 
                    self.kv(indent2).with_s_key("Variant").with_debug_val(&definition.kind);
 
                    self.kv(indent2).with_s_key("MethodName").with_identifier_val(&definition.identifier);
 
                    self.kv(indent2).with_s_key("ParserType")
 
                        .with_custom_val(|t| write_parser_type(t, heap, &expr.parser_type));
 
                }
 

	
 
                // Arguments
 
                self.kv(indent2).with_s_key("Arguments");
 
                for arg_id in &expr.arguments {
 
                    self.write_expr(heap, *arg_id, indent3);
 
                }
 

	
 
                // Parent
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Variable(expr) => {
 
                self.kv(indent).with_id(PREFIX_VARIABLE_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("VariableExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("Name").with_identifier_val(&expr.identifier);
 
                self.kv(indent2).with_s_key("Definition")
 
                    .with_opt_disp_val(expr.declaration.as_ref().map(|v| &v.index));
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            }
 
        }
 
    }
 

	
 
    fn write_variable(&mut self, heap: &Heap, variable_id: VariableId, indent: usize) {
 
        let var = &heap[variable_id];
 
        let indent2 = indent + 1;
 

	
 
        self.kv(indent).with_id(PREFIX_VARIABLE_ID, variable_id.index)
 
            .with_s_key("Variable");
 

	
 
        self.kv(indent2).with_s_key("Name").with_identifier_val(&var.identifier);
 
        self.kv(indent2).with_s_key("Kind").with_debug_val(&var.kind);
 
        self.kv(indent2).with_s_key("ParserType")
 
            .with_custom_val(|w| write_parser_type(w, heap, &var.parser_type));
 
        self.kv(indent2).with_s_key("RelativePos").with_disp_val(&var.relative_pos_in_parent);
 
        self.kv(indent2).with_s_key("UniqueScopeID").with_disp_val(&var.unique_id_in_scope);
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Printing Utilities
 
    //--------------------------------------------------------------------------
 

	
 
    fn kv(&mut self, indent: usize) -> KV {
 
        KV::new(&mut self.buffer, &mut self.temp1, &mut self.temp2, indent)
 
    }
 

	
 
    fn flush<W: IOWrite>(&mut self, w: &mut W) {
 
        w.write(self.buffer.as_bytes()).unwrap();
 
        self.buffer.clear()
 
    }
 
}
 

	
 
fn write_option<V: Display>(target: &mut String, value: Option<V>) {
 
    target.clear();
 
    match &value {
 
        Some(v) => target.push_str(&format!("Some({})", v)),
 
        None => target.push_str("None")
 
    };
 
}
 

	
 
fn write_parser_type(target: &mut String, heap: &Heap, t: &ParserType) {
 
    use ParserTypeVariant as PTV;
 

	
 
    if t.elements.is_empty() {
 
        target.push_str("no elements in ParserType (can happen due to compiler-inserted AST nodes)");
 
        return;
 
    }
 

	
 
    fn write_element(target: &mut String, heap: &Heap, t: &ParserType, mut element_idx: usize) -> usize {
 
        let element = &t.elements[element_idx];
 
        match &element.variant {
 
            PTV::Void => target.push_str("void"),
 
            PTV::InputOrOutput => {
 
                target.push_str("portlike<");
 
                element_idx = write_element(target, heap, t, element_idx + 1);
 
                target.push('>');
 
            },
 
            PTV::ArrayLike => {
 
                element_idx = write_element(target, heap, t, element_idx + 1);
 
                target.push_str("[???]");
 
            },
 
            PTV::IntegerLike => target.push_str("integerlike"),
 
            PTV::Message => { target.push_str(KW_TYPE_MESSAGE_STR); },
 
            PTV::Bool => { target.push_str(KW_TYPE_BOOL_STR); },
 
            PTV::UInt8 => { target.push_str(KW_TYPE_UINT8_STR); },
 
            PTV::UInt16 => { target.push_str(KW_TYPE_UINT16_STR); },
 
            PTV::UInt32 => { target.push_str(KW_TYPE_UINT32_STR); },
 
            PTV::UInt64 => { target.push_str(KW_TYPE_UINT64_STR); },
 
            PTV::SInt8 => { target.push_str(KW_TYPE_SINT8_STR); },
 
            PTV::SInt16 => { target.push_str(KW_TYPE_SINT16_STR); },
 
            PTV::SInt32 => { target.push_str(KW_TYPE_SINT32_STR); },
 
            PTV::SInt64 => { target.push_str(KW_TYPE_SINT64_STR); },
 
            PTV::Character => { target.push_str(KW_TYPE_CHAR_STR); },
 
            PTV::String => { target.push_str(KW_TYPE_STRING_STR); },
 
            PTV::IntegerLiteral => { target.push_str("int_literal"); },
 
            PTV::Inferred => { target.push_str(KW_TYPE_INFERRED_STR); },
 
            PTV::Array => {
 
                element_idx = write_element(target, heap, t, element_idx + 1);
 
                target.push_str("[]");
 
            },
 
            PTV::Input => {
 
                target.push_str(KW_TYPE_IN_PORT_STR);
 
                target.push('<');
 
                element_idx = write_element(target, heap, t, element_idx + 1);
 
                target.push('>');
 
            },
 
            PTV::Output => {
 
                target.push_str(KW_TYPE_OUT_PORT_STR);
 
                target.push('<');
 
                element_idx = write_element(target, heap, t, element_idx + 1);
 
                target.push('>');
 
            },
 
            PTV::Tuple(num_embedded) => {
 
                target.push('(');
 
                let num_embedded = *num_embedded;
 
                for embedded_idx in 0..num_embedded {
src/protocol/eval/executor.rs
Show inline comments
 

	
 
use std::collections::VecDeque;
 

	
 
use super::value::*;
 
use super::store::*;
 
use super::error::*;
 
use crate::protocol::*;
 
use crate::protocol::ast::*;
 
use crate::protocol::type_table::*;
 

	
 
macro_rules! debug_enabled { () => { true }; }
 
macro_rules! debug_enabled { () => { false }; }
 
macro_rules! debug_log {
 
    ($format:literal) => {
 
        enabled_debug_print!(true, "exec", $format);
 
        enabled_debug_print!(false, "exec", $format);
 
    };
 
    ($format:literal, $($args:expr),*) => {
 
        enabled_debug_print!(true, "exec", $format, $($args),*);
 
        enabled_debug_print!(false, "exec", $format, $($args),*);
 
    };
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub(crate) enum ExprInstruction {
 
    EvalExpr(ExpressionId),
 
    PushValToFront,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub(crate) struct Frame {
 
    pub(crate) definition: ProcedureDefinitionId,
 
    pub(crate) monomorph_type_id: TypeId,
 
    pub(crate) monomorph_index: usize,
 
    pub(crate) position: StatementId,
 
    pub(crate) expr_stack: VecDeque<ExprInstruction>, // hack for expression evaluation, evaluated by popping from back
 
    pub(crate) expr_values: VecDeque<Value>, // hack for expression results, evaluated by popping from front/back
 
    pub(crate) max_stack_size: u32,
 
}
 

	
 
impl Frame {
 
    /// Creates a new execution frame. Does not modify the stack in any way.
 
    pub fn new(heap: &Heap, definition_id: ProcedureDefinitionId, monomorph_type_id: TypeId, monomorph_index: u32) -> Self {
 
        let definition = &heap[definition_id];
 
        let outer_scope_id = definition.scope;
 
        let first_statement_id = definition.body;
 

	
 
        // Another not-so-pretty thing that has to be replaced somewhere in the
 
        // future...
 
        fn determine_max_stack_size(heap: &Heap, scope_id: ScopeId, max_size: &mut u32) {
 
            let scope = &heap[scope_id];
 

	
 
            // Check current block
 
            let cur_size = scope.next_unique_id_in_scope as u32;
 
            if cur_size > *max_size { *max_size = cur_size; }
 

	
 
            // And child blocks
 
            for child_scope in &scope.nested {
 
                determine_max_stack_size(heap, *child_scope, max_size);
 
            }
 
        }
 

	
 
        let mut max_stack_size = 0;
 
        determine_max_stack_size(heap, outer_scope_id, &mut max_stack_size);
 

	
 
        Frame{
 
            definition: definition_id,
 
            monomorph_type_id,
src/protocol/mod.rs
Show inline comments
 
@@ -8,98 +8,97 @@ pub(crate) mod ast;
 
pub(crate) mod ast_printer;
 

	
 
use std::sync::Mutex;
 

	
 
use crate::collections::{StringPool, StringRef};
 
use crate::protocol::ast::*;
 
use crate::protocol::eval::*;
 
use crate::protocol::input_source::*;
 
use crate::protocol::parser::*;
 
use crate::protocol::type_table::*;
 

	
 
pub use parser::type_table::TypeId;
 

	
 
/// A protocol description module
 
pub struct Module {
 
    pub(crate) source: InputSource,
 
    pub(crate) root_id: RootId,
 
    pub(crate) name: Option<StringRef<'static>>,
 
}
 
/// Description of a protocol object, used to configure new connectors.
 
#[repr(C)]
 
pub struct ProtocolDescription {
 
    pub(crate) modules: Vec<Module>,
 
    pub(crate) heap: Heap,
 
    pub(crate) types: TypeTable,
 
    pub(crate) pool: Mutex<StringPool>,
 
}
 
#[derive(Debug, Clone)]
 
pub(crate) struct ComponentState {
 
    pub(crate) prompt: Prompt,
 
}
 

	
 
#[derive(Debug)]
 
pub enum ComponentCreationError {
 
    ModuleDoesntExist,
 
    DefinitionDoesntExist,
 
    DefinitionNotComponent,
 
    InvalidNumArguments,
 
    InvalidArgumentType(usize),
 
    UnownedPort,
 
    InSync,
 
}
 

	
 
impl ProtocolDescription {
 
    pub fn parse(buffer: &[u8]) -> Result<Self, String> {
 
        let source = InputSource::new(String::new(), Vec::from(buffer));
 
        let mut parser = Parser::new();
 
        parser.feed(source).expect("failed to feed source");
 

	
 
        parser.write_ast_to = Some(String::from("hello.txt"));
 
        
 
        if let Err(err) = parser.parse() {
 
            println!("ERROR:\n{}", err);
 
            return Err(format!("{}", err))
 
        }
 

	
 
        debug_assert_eq!(parser.modules.len(), 1, "only supporting one module here for now");
 
        let modules: Vec<Module> = parser.modules.into_iter()
 
            .map(|module| Module{
 
                source: module.source,
 
                root_id: module.root_id,
 
                name: module.name.map(|(_, name)| name)
 
            })
 
            .collect();
 

	
 
        return Ok(ProtocolDescription {
 
            modules,
 
            heap: parser.heap,
 
            types: parser.type_table,
 
            pool: Mutex::new(parser.string_pool),
 
        });
 
    }
 

	
 
    pub(crate) fn new_component(
 
        &self, module_name: &[u8], identifier: &[u8], arguments: ValueGroup
 
    ) -> Result<Prompt, ComponentCreationError> {
 
        // Find the module in which the definition can be found
 
        let module_root = self.lookup_module_root(module_name);
 
        if module_root.is_none() {
 
            return Err(ComponentCreationError::ModuleDoesntExist);
 
        }
 
        let module_root = module_root.unwrap();
 

	
 
        let root = &self.heap[module_root];
 
        let definition_id = root.get_definition_ident(&self.heap, identifier);
 
        if definition_id.is_none() {
 
            return Err(ComponentCreationError::DefinitionDoesntExist);
 
        }
 
        let definition_id = definition_id.unwrap();
 

	
 
        let ast_definition = &self.heap[definition_id];
 
        if !ast_definition.is_procedure() {
 
            return Err(ComponentCreationError::DefinitionNotComponent);
 
        }
 

	
 
        // Make sure that the types of the provided value group matches that of
 
        // the expected types.
 
        let ast_definition = ast_definition.as_procedure();
 
        if !ast_definition.poly_vars.is_empty() || ast_definition.kind == ProcedureKind::Function {
src/protocol/parser/pass_rewriting.rs
Show inline comments
 
@@ -261,96 +261,102 @@ impl Visitor for PassRewriting {
 
            let variable_stmt_id = create_ast_variable_declaration_stmt(ctx, self.current_procedure_id, select_variable_id, select_variable_type, runtime_call_expr_id.upcast());
 
            transformed_stmts.push(variable_stmt_id.upcast().upcast());
 
        }
 

	
 
        call_id_section.forget();
 
        expr_id_section.forget();
 

	
 
        // Now we transform each of the select block case's guard and code into
 
        // a chained if-else statement.
 
        let mut relative_pos = transformed_stmts.len() as i32;
 
        if total_num_cases > 0 {
 
            let (if_stmt_id, end_if_stmt_id, scope_id) = transform_select_case_code(ctx, self.current_procedure_id, id, 0, select_variable_id, select_variable_type);
 
            link_existing_child_to_new_parent_scope(ctx, &mut self.scope_buffer, outer_scope_id, scope_id, relative_pos);
 
            let first_end_if_stmt = &mut ctx.heap[end_if_stmt_id];
 
            first_end_if_stmt.next = outer_end_block_id.upcast();
 

	
 
            let mut last_if_stmt_id = if_stmt_id;
 
            let mut last_end_if_stmt_id = end_if_stmt_id;
 
            let mut last_parent_scope_id = outer_scope_id;
 
            let mut last_relative_pos = transformed_stmts.len() as i32 + 1;
 
            transformed_stmts.push(last_if_stmt_id.upcast());
 

	
 
            for case_index in 1..total_num_cases {
 
                let (if_stmt_id, end_if_stmt_id, scope_id) = transform_select_case_code(ctx, self.current_procedure_id, id, case_index, select_variable_id, select_variable_type);
 
                let false_case_scope_id = ctx.heap.alloc_scope(|this| Scope::new(this, ScopeAssociation::If(last_if_stmt_id, false)));
 
                link_existing_child_to_new_parent_scope(ctx, &mut self.scope_buffer, false_case_scope_id, scope_id, 0);
 
                link_new_child_to_existing_parent_scope(ctx, &mut self.scope_buffer, last_parent_scope_id, false_case_scope_id, last_relative_pos);
 
                set_ast_if_statement_false_body(ctx, last_if_stmt_id, last_end_if_stmt_id, IfStatementCase{ body: if_stmt_id.upcast(), scope: false_case_scope_id });
 

	
 
                let end_if_stmt = &mut ctx.heap[end_if_stmt_id];
 
                end_if_stmt.next = last_end_if_stmt_id.upcast();
 

	
 
                last_if_stmt_id = if_stmt_id;
 
                last_end_if_stmt_id = end_if_stmt_id;
 
                last_parent_scope_id = false_case_scope_id;
 
                last_relative_pos = 0;
 
            }
 
        }
 

	
 
        // Final steps: set the statements of the replacement block statement,
 
        // link all of those statements together, and update the scopes.
 
        let first_stmt_id = transformed_stmts[0];
 
        let mut last_stmt_id = transformed_stmts[0];
 
        for stmt_id in transformed_stmts.iter().skip(1).copied() {
 
            set_ast_statement_next(ctx, last_stmt_id, stmt_id);
 
            last_stmt_id = stmt_id;
 
        }
 

	
 
        if total_num_cases == 0 {
 
            // If we don't have any cases, then we didn't connect the statements
 
            // up to the end of the outer block, so do that here
 
            set_ast_statement_next(ctx, last_stmt_id, outer_end_block_id.upcast());
 
        }
 

	
 
        let outer_block_stmt = &mut ctx.heap[outer_block_id];
 
        outer_block_stmt.next = first_stmt_id;
 
        outer_block_stmt.statements = transformed_stmts;
 

	
 
        return Ok(())
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// Utilities to create compiler-generated AST nodes
 
// -----------------------------------------------------------------------------
 

	
 
#[derive(Clone, Copy)]
 
enum TypeIdReference {
 
    DirectTypeId(TypeId),
 
    IndirectSameAsExpr(i32), // by type index
 
}
 

	
 
fn create_ast_variable(ctx: &mut Ctx, scope_id: ScopeId) -> VariableId {
 
    let variable_id = ctx.heap.alloc_variable(|this| Variable{
 
        this,
 
        kind: VariableKind::Local,
 
        parser_type: ParserType{
 
            elements: Vec::new(),
 
            full_span: InputSpan::new(),
 
        },
 
        identifier: Identifier::new_empty(InputSpan::new()),
 
        relative_pos_in_parent: -1,
 
        unique_id_in_scope: -1,
 
    });
 
    let scope = &mut ctx.heap[scope_id];
 
    scope.variables.push(variable_id);
 

	
 
    return variable_id;
 
}
 

	
 
fn create_ast_variable_expr(ctx: &mut Ctx, containing_procedure_id: ProcedureDefinitionId, variable_id: VariableId, variable_type_id: TypeIdReference) -> VariableExpressionId {
 
    let variable_type_index = add_new_procedure_expression_type(ctx, containing_procedure_id, variable_type_id);
 
    return ctx.heap.alloc_variable_expression(|this| VariableExpression{
 
        this,
 
        identifier: Identifier::new_empty(InputSpan::new()),
 
        declaration: Some(variable_id),
 
        used_as_binding_target: false,
 
        parent: ExpressionParent::None,
 
        type_index: variable_type_index,
 
    });
 
}
 

	
src/runtime2/component/component_pdl.rs
Show inline comments
 
@@ -335,112 +335,109 @@ impl CompPDL {
 
            EC::BlockGet(port_id) => {
 
                debug_assert_eq!(self.mode, Mode::Sync);
 
                debug_assert!(self.exec_ctx.stmt.is_none());
 

	
 
                let port_id = port_id_from_eval(port_id);
 
                let port_handle = comp_ctx.get_port_handle(port_id);
 
                let port_index = comp_ctx.get_port_index(port_handle);
 
                if let Some(message) = &self.inbox_main[port_index] {
 
                    // Check if we can actually receive the message
 
                    if self.consensus.try_receive_data_message(sched_ctx, comp_ctx, message) {
 
                        // Message was received. Make sure any blocked peers and
 
                        // pending messages are handled.
 
                        let message = self.inbox_main[port_index].take().unwrap();
 
                        self.handle_received_data_message(sched_ctx, comp_ctx, port_handle);
 

	
 
                        self.exec_ctx.stmt = ExecStmt::PerformedGet(message.content);
 
                        return Ok(CompScheduling::Immediate);
 
                    } else {
 
                        todo!("handle sync failure due to message deadlock");
 
                        return Ok(CompScheduling::Sleep);
 
                    }
 
                } else {
 
                    // We need to wait
 
                    self.mode = Mode::BlockedGet;
 
                    self.mode_port = port_id;
 
                    return Ok(CompScheduling::Sleep);
 
                }
 
            },
 
            EC::Put(port_id, value) => {
 
                debug_assert_eq!(self.mode, Mode::Sync);
 
                sched_ctx.log(&format!("Putting value {:?}", value));
 
                let port_id = port_id_from_eval(port_id);
 
                let port_handle = comp_ctx.get_port_handle(port_id);
 
                let port_info = comp_ctx.get_port(port_handle);
 
                if port_info.state.is_blocked() {
 
                    self.mode = Mode::BlockedPut;
 
                    self.mode_port = port_id;
 
                    self.mode_value = value;
 
                    self.exec_ctx.stmt = ExecStmt::PerformedPut; // prepare for when we become unblocked
 
                    return Ok(CompScheduling::Sleep);
 
                } else {
 
                    self.send_data_message_and_wake_up(sched_ctx, comp_ctx, port_handle, value);
 
                    self.exec_ctx.stmt = ExecStmt::PerformedPut;
 
                    return Ok(CompScheduling::Immediate);
 
                }
 
            },
 
            EC::SelectStart(num_cases, _num_ports) => {
 
                debug_assert_eq!(self.mode, Mode::Sync);
 
                println!("DEBUG: AAAAAAAAAA");
 
                self.select.handle_select_start(num_cases);
 
                return Ok(CompScheduling::Requeue);
 
            },
 
            EC::SelectRegisterPort(case_index, port_index, port_id) => {
 
                debug_assert_eq!(self.mode, Mode::Sync);
 
                println!("DEBUG: BBBBBBBBBBB");
 
                let port_id = port_id_from_eval(port_id);
 
                if let Err(_err) = self.select.register_select_case_port(comp_ctx, case_index, port_index, port_id) {
 
                    todo!("handle registering a port multiple times");
 
                }
 
                return Ok(CompScheduling::Immediate);
 
            },
 
            EC::SelectWait => {
 
                debug_assert_eq!(self.mode, Mode::Sync);
 
                println!("DEBUG: CCCCCCCCCCC");
 
                let select_decision = self.select.handle_select_waiting_point(&self.inbox_main, comp_ctx);
 
                if let SelectDecision::Case(case_index) = select_decision {
 
                    // Reached a conclusion, so we can continue immediately
 
                    self.exec_ctx.stmt = ExecStmt::PerformedSelectWait(case_index);
 
                    self.mode = Mode::Sync;
 
                    return Ok(CompScheduling::Immediate);
 
                } else {
 
                    // No decision yet
 
                    self.mode = Mode::BlockedSelect;
 
                    return Ok(CompScheduling::Sleep);
 
                }
 
            },
 
            // Results that can be returned outside of sync mode
 
            EC::ComponentTerminated => {
 
                self.mode = Mode::StartExit; // next call we'll take care of the exit
 
                return Ok(CompScheduling::Immediate);
 
            },
 
            EC::SyncBlockStart => {
 
                debug_assert_eq!(self.mode, Mode::NonSync);
 
                self.handle_sync_start(sched_ctx, comp_ctx);
 
                return Ok(CompScheduling::Immediate);
 
            },
 
            EC::NewComponent(definition_id, type_id, arguments) => {
 
                debug_assert_eq!(self.mode, Mode::NonSync);
 
                self.create_component_and_transfer_ports(
 
                    sched_ctx, comp_ctx,
 
                    definition_id, type_id, arguments
 
                );
 
                return Ok(CompScheduling::Requeue);
 
            },
 
            EC::NewChannel => {
 
                debug_assert_eq!(self.mode, Mode::NonSync);
 
                debug_assert!(self.exec_ctx.stmt.is_none());
 
                let channel = comp_ctx.create_channel();
 
                self.exec_ctx.stmt = ExecStmt::CreatedChannel((
 
                    Value::Output(port_id_to_eval(channel.putter_id)),
 
                    Value::Input(port_id_to_eval(channel.getter_id))
 
                ));
 
                self.inbox_main.push(None);
 
                self.inbox_main.push(None);
 
                return Ok(CompScheduling::Immediate);
 
            }
 
        }
 
    }
 

	
 
    fn execute_prompt(&mut self, sched_ctx: &SchedulerCtx) -> EvalResult {
 
        let mut step_result = EvalContinuation::Stepping;
 
        while let EvalContinuation::Stepping = step_result {
src/runtime2/tests/mod.rs
Show inline comments
 
@@ -90,83 +90,84 @@ fn test_simple_select() {
 
    func infinite_assert<T>(T val, T expected) -> () {
 
        while (val != expected) { print(\"nope!\"); }
 
        return ();
 
    }
 

	
 
    primitive receiver(in<u32> in_a, in<u32> in_b, u32 num_sends) {
 
        auto num_from_a = 0;
 
        auto num_from_b = 0;
 
        while (num_from_a + num_from_b < 2 * num_sends) {
 
            sync select {
 
                auto v = get(in_a) -> {
 
                    print(\"got something from A\");
 
                    auto _ = infinite_assert(v, num_from_a);
 
                    num_from_a += 1;
 
                }
 
                auto v = get(in_b) -> {
 
                    print(\"got something from B\");
 
                    auto _ = infinite_assert(v, num_from_b);
 
                    num_from_b += 1;
 
                }
 
            }
 
        }
 
    }
 

	
 
    primitive sender(out<u32> tx, u32 num_sends) {
 
        auto index = 0;
 
        while (index < num_sends) {
 
            sync {
 
                put(tx, index);
 
                index += 1;
 
            }
 
        }
 
    }
 

	
 
    composite constructor() {
 
        auto num_sends = 15;
 
        channel tx_a -> rx_a;
 
        channel tx_b -> rx_b;
 
        new sender(tx_a, num_sends);
 
        new receiver(rx_a, rx_b, num_sends);
 
        new sender(tx_b, num_sends);
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(3, false, pd);
 
    create_component(&rt, "", "constructor", no_args());
 
}
 

	
 
#[test]
 
fn test_empty_select() {
 
fn test_unguarded_select() {
 
    let pd = ProtocolDescription::parse(b"
 
    primitive constructor() {
 
    primitive constructor_outside_select() {
 
        u32 index = 0;
 
        while (index < 5) {
 
            sync select { auto v = () -> print(\"hello\"); }
 
            index += 1;
 
        }
 
    }
 

	
 
    primitive constructor_inside_select() {
 
        u32 index = 0;
 
        while (index < 5) {
 
            sync select { auto v = () -> index += 1; }
 
        }
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(3, false, pd);
 
    create_component(&rt, "", "constructor", no_args());
 
    create_component(&rt, "", "constructor_outside_select", no_args());
 
    create_component(&rt, "", "constructor_inside_select", no_args());
 
}
 

	
 
#[test]
 
fn test_empty_select_should_not_work() {
 
fn test_empty_select() {
 
    let pd = ProtocolDescription::parse(b"
 
    primitive constructor() {
 
        u32 index = 0;
 
        print(\"before while\");
 
        while (index < 5) {
 
            print(\"before sync\");
 
            sync {
 
                print(\"before select\");
 
                select { }
 
                print(\"after select\");
 
            }
 
            print(\"after sync\");
 
            sync select {}
 
            index += 1;
 
        }
 
        print(\"after while\");
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(3, false, pd);
 
    create_component(&rt, "", "constructor", no_args());
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)