Changeset - 9b32fa307ceb
src/protocol/ast.rs
Show inline comments
 
@@ -357,6 +357,12 @@ impl Display for Identifier {
 

	
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub enum ParserTypeVariant {
 
    // Special builtin, only usable by the compiler and not constructable by the
 
    // programmer
 
    Void,
 
    InputOrOutput,
 
    ArrayLike,
 
    IntegerLike,
 
    // Basic builtin
 
    Message,
 
    Bool,
 
@@ -381,13 +387,14 @@ impl ParserTypeVariant {
 
        use ParserTypeVariant::*;
 

	
 
        match self {
 
            Void | IntegerLike |
 
            Message | Bool |
 
            UInt8 | UInt16 | UInt32 | UInt64 |
 
            SInt8 | SInt16 | SInt32 | SInt64 |
 
            Character | String | IntegerLiteral |
 
            Inferred | PolymorphicArgument(_, _) =>
 
                0,
 
            Array | Input | Output =>
 
            ArrayLike | InputOrOutput | Array | Input | Output =>
 
                1,
 
            Definition(_, num) => *num,
 
        }
 
@@ -1209,31 +1216,6 @@ pub struct BlockStatement {
 
    pub labels: Vec<LabeledStatementId>,
 
}
 

	
 
impl BlockStatement {
 
    pub fn parent_block(&self, h: &Heap) -> Option<BlockStatementId> {
 
        let parent = self.parent_scope.unwrap();
 
        match parent {
 
            Scope::Definition(_) => {
 
                // If the parent scope is a definition, then there is no
 
                // parent block.
 
                None
 
            }
 
            Scope::Synchronous((parent, _)) => {
 
                // It is always the case that when this function is called,
 
                // the parent of a synchronous statement is a block statement:
 
                // nested synchronous statements are flagged illegal,
 
                // and that happens before resolving variables that
 
                // creates the parent_scope references in the first place.
 
                Some(h[parent].parent_scope.unwrap().to_block())
 
            }
 
            Scope::Regular(parent) => {
 
                // A variable scope is either a definition, sync, or block.
 
                Some(parent)
 
            }
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndBlockStatement {
 
    pub this: EndBlockStatementId,
src/protocol/ast_printer.rs
Show inline comments
 
@@ -423,8 +423,7 @@ impl ASTWriter {
 
                        self.write_variable(heap, stmt.from, indent3);
 
                        self.kv(indent2).with_s_key("To");
 
                        self.write_variable(heap, stmt.to, indent3);
 
                        self.kv(indent2).with_s_key("Next")
 
                            .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
                        self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
                    },
 
                    LocalStatement::Memory(stmt) => {
 
                        self.kv(indent).with_id(PREFIX_MEM_STMT_ID, stmt.this.0.0.index)
 
@@ -432,8 +431,7 @@ impl ASTWriter {
 

	
 
                        self.kv(indent2).with_s_key("Variable");
 
                        self.write_variable(heap, stmt.variable, indent3);
 
                        self.kv(indent2).with_s_key("Next")
 
                            .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
                        self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
                    }
 
                }
 
            },
 
@@ -449,8 +447,7 @@ impl ASTWriter {
 
                self.kv(indent).with_id(PREFIX_IF_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("If");
 

	
 
                self.kv(indent2).with_s_key("EndIf")
 
                    .with_opt_disp_val(stmt.end_if.as_ref().map(|v| &v.0.index));
 
                self.kv(indent2).with_s_key("EndIf").with_disp_val(&stmt.end_if.0.index);
 

	
 
                self.kv(indent2).with_s_key("Condition");
 
                self.write_expr(heap, stmt.test, indent3);
 
@@ -467,15 +464,13 @@ impl ASTWriter {
 
                self.kv(indent).with_id(PREFIX_ENDIF_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndIf");
 
                self.kv(indent2).with_s_key("StartIf").with_disp_val(&stmt.start_if.0.index);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::While(stmt) => {
 
                self.kv(indent).with_id(PREFIX_WHILE_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("While");
 

	
 
                self.kv(indent2).with_s_key("EndWhile")
 
                    .with_opt_disp_val(stmt.end_while.as_ref().map(|v| &v.0.index));
 
                self.kv(indent2).with_s_key("EndWhile").with_disp_val(&stmt.end_while.0.index);
 
                self.kv(indent2).with_s_key("InSync")
 
                    .with_opt_disp_val(stmt.in_sync.as_ref().map(|v| &v.0.index));
 
                self.kv(indent2).with_s_key("Condition");
 
@@ -487,8 +482,7 @@ impl ASTWriter {
 
                self.kv(indent).with_id(PREFIX_ENDWHILE_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndWhile");
 
                self.kv(indent2).with_s_key("StartWhile").with_disp_val(&stmt.start_while.0.index);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::Break(stmt) => {
 
                self.kv(indent).with_id(PREFIX_BREAK_STMT_ID, stmt.this.0.index)
 
@@ -509,8 +503,7 @@ impl ASTWriter {
 
            Statement::Synchronous(stmt) => {
 
                self.kv(indent).with_id(PREFIX_SYNC_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Synchronous");
 
                self.kv(indent2).with_s_key("EndSync")
 
                    .with_opt_disp_val(stmt.end_sync.as_ref().map(|v| &v.0.index));
 
                self.kv(indent2).with_s_key("EndSync").with_disp_val(&stmt.end_sync.0.index);
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, stmt.body.upcast(), indent3);
 
            },
 
@@ -518,8 +511,7 @@ impl ASTWriter {
 
                self.kv(indent).with_id(PREFIX_ENDSYNC_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndSynchronous");
 
                self.kv(indent2).with_s_key("StartSync").with_disp_val(&stmt.start_sync.0.index);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::Return(stmt) => {
 
                self.kv(indent).with_id(PREFIX_RETURN_STMT_ID, stmt.this.0.index)
 
@@ -541,15 +533,13 @@ impl ASTWriter {
 
                    .with_s_key("New");
 
                self.kv(indent2).with_s_key("Expression");
 
                self.write_expr(heap, stmt.expression.upcast(), indent3);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::Expression(stmt) => {
 
                self.kv(indent).with_id(PREFIX_EXPR_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("ExpressionStatement");
 
                self.write_expr(heap, stmt.expression, indent2);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            }
 
        }
 
    }
 
@@ -791,7 +781,7 @@ impl ASTWriter {
 
        let var = &heap[variable_id];
 
        let indent2 = indent + 1;
 

	
 
        self.kv(indent).with_id(PREFIX_VARIABLE_ID, variable_id.0.index)
 
        self.kv(indent).with_id(PREFIX_VARIABLE_ID, variable_id.index)
 
            .with_s_key("Variable");
 

	
 
        self.kv(indent2).with_s_key("Name").with_identifier_val(&var.identifier);
 
@@ -827,39 +817,46 @@ fn write_option<V: Display>(target: &mut String, value: Option<V>) {
 
fn write_parser_type(target: &mut String, heap: &Heap, t: &ParserType) {
 
    use ParserTypeVariant as PTV;
 

	
 
    fn push_bytes(target: &mut String, msg: &[u8]) {
 
        target.push_str(&String::from_utf8_lossy(msg));
 
    }
 

	
 
    fn write_element(target: &mut String, heap: &Heap, t: &ParserType, mut element_idx: usize) -> usize {
 
        let element = &t.elements[element_idx];
 
        match &element.variant {
 
            PTV::Message => { push_bytes(target, KW_TYPE_MESSAGE); },
 
            PTV::Bool => { push_bytes(target, KW_TYPE_BOOL); },
 
            PTV::UInt8 => { push_bytes(target, KW_TYPE_UINT8); },
 
            PTV::UInt16 => { push_bytes(target, KW_TYPE_UINT16); },
 
            PTV::UInt32 => { push_bytes(target, KW_TYPE_UINT32); },
 
            PTV::UInt64 => { push_bytes(target, KW_TYPE_UINT64); },
 
            PTV::SInt8 => { push_bytes(target, KW_TYPE_SINT8); },
 
            PTV::SInt16 => { push_bytes(target, KW_TYPE_SINT16); },
 
            PTV::SInt32 => { push_bytes(target, KW_TYPE_SINT32); },
 
            PTV::SInt64 => { push_bytes(target, KW_TYPE_SINT64); },
 
            PTV::Character => { push_bytes(target, KW_TYPE_CHAR); },
 
            PTV::String => { push_bytes(target, KW_TYPE_STRING); },
 
            PTV::Void => target.push_str("void"),
 
            PTV::InputOrOutput => {
 
                target.push_str("portlike<");
 
                element_idx = write_element(target, heap, t, element_idx + 1);
 
                target.push('>');
 
            },
 
            PTV::ArrayLike => {
 
                element_idx = write_element(target, heap, t, element_idx + 1);
 
                target.push_str("[???]");
 
            },
 
            PTV::IntegerLike => target.push_str("integerlike"),
 
            PTV::Message => { target.push_str(KW_TYPE_MESSAGE_STR); },
 
            PTV::Bool => { target.push_str(KW_TYPE_BOOL_STR); },
 
            PTV::UInt8 => { target.push_str(KW_TYPE_UINT8_STR); },
 
            PTV::UInt16 => { target.push_str(KW_TYPE_UINT16_STR); },
 
            PTV::UInt32 => { target.push_str(KW_TYPE_UINT32_STR); },
 
            PTV::UInt64 => { target.push_str(KW_TYPE_UINT64_STR); },
 
            PTV::SInt8 => { target.push_str(KW_TYPE_SINT8_STR); },
 
            PTV::SInt16 => { target.push_str(KW_TYPE_SINT16_STR); },
 
            PTV::SInt32 => { target.push_str(KW_TYPE_SINT32_STR); },
 
            PTV::SInt64 => { target.push_str(KW_TYPE_SINT64_STR); },
 
            PTV::Character => { target.push_str(KW_TYPE_CHAR_STR); },
 
            PTV::String => { target.push_str(KW_TYPE_STRING_STR); },
 
            PTV::IntegerLiteral => { target.push_str("int_literal"); },
 
            PTV::Inferred => { push_bytes(target, KW_TYPE_INFERRED); },
 
            PTV::Inferred => { target.push_str(KW_TYPE_INFERRED_STR); },
 
            PTV::Array => {
 
                element_idx = write_element(target, heap, t, element_idx + 1);
 
                target.push_str("[]");
 
            },
 
            PTV::Input => {
 
                push_bytes(target, KW_TYPE_IN_PORT);
 
                target.push_str(KW_TYPE_IN_PORT_STR);
 
                target.push('<');
 
                element_idx = write_element(target, heap, t, element_idx + 1);
 
                target.push('>');
 
            },
 
            PTV::Output => {
 
                push_bytes(target, KW_TYPE_OUT_PORT);
 
                target.push_str(KW_TYPE_OUT_PORT_STR);
 
                target.push('<');
 
                element_idx = write_element(target, heap, t, element_idx + 1);
 
                target.push('>');
src/protocol/eval/executor.rs
Show inline comments
 
@@ -6,12 +6,14 @@ use super::store::*;
 
use crate::protocol::*;
 
use crate::protocol::ast::*;
 

	
 
enum ExprInstruction {
 
#[derive(Debug, Clone)]
 
pub(crate) enum ExprInstruction {
 
    EvalExpr(ExpressionId),
 
    PushValToFront,
 
}
 

	
 
struct Frame {
 
#[derive(Debug, Clone)]
 
pub(crate) struct Frame {
 
    definition: DefinitionId,
 
    position: StatementId,
 
    expr_stack: VecDeque<ExprInstruction>, // hack for expression evaluation, evaluated by popping from back
 
@@ -138,7 +140,7 @@ impl Frame {
 
    }
 
}
 

	
 
type EvalResult = Result<(), EvalContinuation>;
 
type EvalResult = Result<EvalContinuation, ()>;
 
pub enum EvalContinuation {
 
    Stepping,
 
    Inconsistent,
 
@@ -151,6 +153,9 @@ pub enum EvalContinuation {
 
    Put(Value, Value),
 
}
 

	
 
// Note: cloning is fine, methinks. cloning all values and the heap regions then
 
// we end up with valid "pointers" to heap regions.
 
#[derive(Debug, Clone)]
 
pub struct Prompt {
 
    pub(crate) frames: Vec<Frame>,
 
    pub(crate) store: Store,
 
@@ -169,13 +174,13 @@ impl Prompt {
 
        prompt
 
    }
 

	
 
    pub fn step(&mut self, heap: &Heap, ctx: &mut EvalContext) -> EvalResult {
 
    pub(crate) fn step(&mut self, heap: &Heap, ctx: &mut EvalContext) -> EvalResult {
 
        let cur_frame = self.frames.last_mut().unwrap();
 
        if cur_frame.position.is_invalid() {
 
            if heap[cur_frame.definition].is_function() {
 
                todo!("End of function without return, return an evaluation error");
 
            }
 
            return Err(EvalContinuation::Terminal);
 
            return Ok(EvalContinuation::Terminal);
 
        }
 

	
 
        while !cur_frame.expr_stack.is_empty() {
 
@@ -190,9 +195,10 @@ impl Prompt {
 
                        Expression::Assignment(expr) => {
 
                            let to = cur_frame.expr_values.pop_back().unwrap().as_ref();
 
                            let rhs = cur_frame.expr_values.pop_back().unwrap();
 
                            let rhs_heap_pos = rhs.get_heap_pos();
 
                            apply_assignment_operator(&mut self.store, to, expr.operation, rhs);
 
                            cur_frame.expr_values.push_back(self.store.read_copy(to));
 
                            self.store.drop_value(&rhs);
 
                            self.store.drop_value(rhs_heap_pos);
 
                        },
 
                        Expression::Binding(_expr) => {
 
                            todo!("Binding expression");
 
@@ -212,24 +218,22 @@ impl Prompt {
 
                            let rhs = cur_frame.expr_values.pop_back().unwrap();
 
                            let result = apply_binary_operator(&mut self.store, &lhs, expr.operation, &rhs);
 
                            cur_frame.expr_values.push_back(result);
 
                            self.store.drop_value(&lhs);
 
                            self.store.drop_value(&rhs);
 
                            self.store.drop_value(lhs.get_heap_pos());
 
                            self.store.drop_value(rhs.get_heap_pos());
 
                        },
 
                        Expression::Unary(expr) => {
 
                            let val = cur_frame.expr_values.pop_back().unwrap();
 
                            let result = apply_unary_operator(&mut self.store, expr.operation, &val);
 
                            cur_frame.expr_values.push_back(result);
 
                            self.store.drop_value(&val);
 
                            self.store.drop_value(val.get_heap_pos());
 
                        },
 
                        Expression::Indexing(expr) => {
 
                            // TODO: Out of bounds checking
 
                            // Evaluate index. Never heap allocated so we do
 
                            // not have to drop it.
 
                            let index = cur_frame.expr_values.pop_back().unwrap();
 
                            let index = match &index {
 
                                Value::Ref(value_ref) => self.store.read_ref(*value_ref),
 
                                index => index,
 
                            };
 
                            let index = self.store.maybe_read_ref(&index);
 

	
 
                            debug_assert!(index.is_integer());
 
                            let index = if index.is_signed_integer() {
 
                                index.as_signed_integer() as u32
 
@@ -237,14 +241,17 @@ impl Prompt {
 
                                index.as_unsigned_integer() as u32
 
                            };
 

	
 
                            // TODO: This is probably wrong, we're dropping the
 
                            //  heap while refering to an element...
 
                            let subject = cur_frame.expr_values.pop_back().unwrap();
 
                            let subject_heap_pos = subject.get_heap_pos();
 
                            let heap_pos = match subject {
 
                                Value::Ref(value_ref) => self.store.read_ref(value_ref).as_array(),
 
                                val => val.as_array(),
 
                            };
 

	
 
                            cur_frame.expr_values.push_back(Value::Ref(ValueId::Heap(heap_pos, index)));
 
                            self.store.drop_value(&subject);
 
                            self.store.drop_value(subject_heap_pos);
 
                        },
 
                        Expression::Slicing(expr) => {
 
                            // TODO: Out of bounds checking
 
@@ -258,7 +265,7 @@ impl Prompt {
 
                            };
 

	
 
                            cur_frame.expr_values.push_back(Value::Ref(ValueId::Heap(heap_pos, expr.field.as_symbolic().field_idx as u32)));
 
                            self.store.drop_value(&subject);
 
                            self.store.drop_value(subject.get_heap_pos());
 
                        },
 
                        Expression::Literal(expr) => {
 
                            let value = match &expr.value {
 
@@ -305,7 +312,7 @@ impl Prompt {
 
                                    Value::Struct(heap_pos)
 
                                }
 
                                Literal::Enum(lit_value) => {
 
                                    Value::Enum(lit_value.variant_idx as i64);
 
                                    Value::Enum(lit_value.variant_idx as i64)
 
                                }
 
                                Literal::Union(lit_value) => {
 
                                    let heap_pos = self.store.alloc_heap();
 
@@ -327,6 +334,7 @@ impl Prompt {
 
                                    for _ in 0..num_values {
 
                                        values.push(cur_frame.expr_values.pop_front().unwrap())
 
                                    }
 
                                    Value::Array(heap_pos)
 
                                }
 
                            };
 

	
 
@@ -351,7 +359,7 @@ impl Prompt {
 

	
 
                            // To simplify the logic a little bit we will now
 
                            // return and ask our caller to call us again
 
                            return Err(EvalContinuation::Stepping);
 
                            return Ok(EvalContinuation::Stepping);
 
                        },
 
                        Expression::Variable(expr) => {
 
                            let variable = &heap[expr.declaration.unwrap()];
 
@@ -373,14 +381,14 @@ impl Prompt {
 
                self.store.reserve_stack(stmt.next_unique_id_in_scope as usize);
 
                cur_frame.position = stmt.statements[0];
 

	
 
                Ok(())
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndBlock(stmt) => {
 
                let block = &heap[stmt.start_block];
 
                self.store.clear_stack(stmt.first_unique_id_in_scope as usize);
 
                self.store.clear_stack(block.first_unique_id_in_scope as usize);
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(())
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Local(stmt) => {
 
                match stmt {
 
@@ -399,12 +407,12 @@ impl Prompt {
 
                    }
 
                }
 

	
 
                Ok(())
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Labeled(stmt) => {
 
                cur_frame.position = stmt.body;
 

	
 
                Ok(())
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::If(stmt) => {
 
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for if statement");
 
@@ -415,14 +423,14 @@ impl Prompt {
 
                    cur_frame.position = false_body.upcast();
 
                } else {
 
                    // Not true, and no false body
 
                    cur_frame.position = stmt.end_if.unwrap().upcast();
 
                    cur_frame.position = stmt.end_if.upcast();
 
                }
 

	
 
                Ok(())
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndIf(stmt) => {
 
                cur_frame.position = stmt.next;
 
                Ok(())
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::While(stmt) => {
 
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for while statement");
 
@@ -430,61 +438,75 @@ impl Prompt {
 
                if test_value {
 
                    cur_frame.position = stmt.body.upcast();
 
                } else {
 
                    cur_frame.position = stmt.end_while.unwrap().upcast();
 
                    cur_frame.position = stmt.end_while.upcast();
 
                }
 

	
 
                Ok(())
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndWhile(stmt) => {
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(())
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Break(stmt) => {
 
                cur_frame.position = stmt.target.unwrap().upcast();
 

	
 
                Ok(())
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Continue(stmt) => {
 
                cur_frame.position = stmt.target.unwrap().upcast();
 

	
 
                Ok(())
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Synchronous(stmt) => {
 
                cur_frame.position = stmt.body.upcast();
 

	
 
                Err(EvalContinuation::SyncBlockStart)
 
                Ok(EvalContinuation::SyncBlockStart)
 
            },
 
            Statement::EndSynchronous(stmt) => {
 
                cur_frame.position = stmt.next;
 

	
 
                Err(EvalContinuation::SyncBlockEnd)
 
                Ok(EvalContinuation::SyncBlockEnd)
 
            },
 
            Statement::Return(stmt) => {
 
                debug_assert!(heap[cur_frame.definition].is_function());
 
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for return statement");
 

	
 
                // Clear any values in the current stack frame
 
                self.store.clear_stack(0);
 

	
 
                // The preceding frame has executed a call, so is expecting the
 
                // return expression on its expression value stack.
 
                // return expression on its expression value stack. Note that
 
                // we may be returning a reference to something on our stack,
 
                // so we need to read that value and clone it.
 
                let return_value = cur_frame.expr_values.pop_back().unwrap();
 
                let return_value = match return_value {
 
                    Value::Ref(value_id) => self.store.read_copy(value_id),
 
                    _ => return_value,
 
                };
 

	
 
                let prev_stack_idx = self.store.stack[self.store.cur_stack_boundary].as_stack_boundary();
 
                self.frames.pop();
 
                self.store.clear_stack(0);
 

	
 
                // TODO: Temporary hack for testing, remove at some point
 
                if self.frames.is_empty() {
 
                    debug_assert!(prev_stack_idx == -1);
 
                    self.store.stack[0] = return_value;
 
                    return Ok(EvalContinuation::Terminal);
 
                }
 

	
 
                debug_assert!(prev_stack_idx >= 0);
 
                self.store.cur_stack_boundary = prev_stack_idx as usize;
 
                self.frames.pop();
 
                let cur_frame = self.frames.last_mut().unwrap();
 
                cur_frame.expr_values.push_back(return_value);
 

	
 
                // Immediately return, we don't care about the current frame
 
                // anymore and there is nothing left to evaluate
 
                return Ok(());
 
                return Ok(EvalContinuation::Stepping);
 
            },
 
            Statement::Goto(stmt) => {
 
                cur_frame.position = stmt.target.unwrap().upcast();
 

	
 
                Ok(())
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::New(stmt) => {
 
                let call_expr = &heap[stmt.expression];
 
@@ -502,10 +524,18 @@ impl Prompt {
 
                    args.push(value);
 
                }
 

	
 
                // Construct argument group, thereby copying heap regions
 
                let argument_group = ValueGroup::from_store(&self.store, &args);
 

	
 
                // Clear any heap regions
 
                for arg in &args {
 
                    self.store.drop_value(arg.get_heap_pos());
 
                }
 

	
 
                cur_frame.position = stmt.next;
 

	
 
                todo!("Make sure this is handled correctly, transfer 'heap' values to another Prompt");
 
                Err(EvalContinuation::NewComponent(call_expr.definition, args))
 
                Ok(EvalContinuation::NewComponent(call_expr.definition, argument_group))
 
            },
 
            Statement::Expression(stmt) => {
 
                // The expression has just been completely evaluated. Some
 
@@ -513,7 +543,7 @@ impl Prompt {
 
                cur_frame.expr_values.clear();
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(())
 
                Ok(EvalContinuation::Stepping)
 
            },
 
        };
 

	
src/protocol/eval/mod.rs
Show inline comments
 
@@ -25,5 +25,6 @@ mod store;
 
mod executor;
 

	
 
pub use value::{Value, ValueGroup};
 
pub(crate) use store::{Store};
 
pub use executor::{EvalContinuation, Prompt};
 

	
src/protocol/eval/store.rs
Show inline comments
 
@@ -3,10 +3,12 @@ use std::collections::VecDeque;
 

	
 
use super::value::{Value, ValueId, HeapPos};
 

	
 
#[derive(Debug, Clone)]
 
pub(crate) struct HeapAllocation {
 
    pub values: Vec<Value>,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub(crate) struct Store {
 
    // The stack where variables/parameters are stored. Note that this is a
 
    // non-shrinking stack. So it may be filled with garbage.
 
@@ -50,7 +52,7 @@ impl Store {
 
    pub(crate) fn clear_stack(&mut self, unique_stack_idx: usize) {
 
        let new_size = self.cur_stack_boundary + unique_stack_idx + 1;
 
        for idx in new_size..self.stack.len() {
 
            self.drop_value(&self.stack[idx]);
 
            self.drop_value(self.stack[idx].get_heap_pos());
 
            self.stack[idx] = Value::Unassigned;
 
        }
 
    }
 
@@ -62,16 +64,27 @@ impl Store {
 
        match address {
 
            ValueId::Stack(pos) => {
 
                let cur_pos = self.cur_stack_boundary + 1 + pos as usize;
 
                return self.clone_value(&self.stack[cur_pos]);
 
                return self.clone_value(self.stack[cur_pos].clone());
 
            },
 
            ValueId::Heap(heap_pos, region_idx) => {
 
                return self.clone_value(&self.heap_regions[heap_pos as usize].values[region_idx as usize])
 
                return self.clone_value(self.heap_regions[heap_pos as usize].values[region_idx as usize].clone())
 
            }
 
        }
 
    }
 

	
 
    /// Potentially reads a reference value. The supplied `Value` might not
 
    /// actually live in the store's stack or heap, but live on the expression
 
    /// stack. Generally speaking you only want to call this if the value comes
 
    /// from the expression stack due to borrowing issues.
 
    pub(crate) fn maybe_read_ref<'a>(&'a self, value: &'a Value) -> &'a Value {
 
        match value {
 
            Value::Ref(value_id) => self.read_ref(*value_id),
 
            _ => value,
 
        }
 
    }
 

	
 
    /// Returns an immutable reference to the value pointed to by an address
 
    pub(crate) fn read_ref(&mut self, address: ValueId) -> &Value {
 
    pub(crate) fn read_ref(&self, address: ValueId) -> &Value {
 
        match address {
 
            ValueId::Stack(pos) => {
 
                let cur_pos = self.cur_stack_boundary + 1 + pos as usize;
 
@@ -101,24 +114,28 @@ impl Store {
 
        match address {
 
            ValueId::Stack(pos) => {
 
                let cur_pos = self.cur_stack_boundary + 1 + pos as usize;
 
                self.drop_value(&self.stack[cur_pos]);
 
                self.drop_value(self.stack[cur_pos].get_heap_pos());
 
                self.stack[cur_pos] = value;
 
            },
 
            ValueId::Heap(heap_pos, region_idx) => {
 
                let heap_pos = heap_pos as usize;
 
                let region_idx = region_idx as usize;
 
                self.drop_value(&self.heap_regions[heap_pos].values[region_idx]);
 
                self.drop_value(self.heap_regions[heap_pos].values[region_idx].get_heap_pos());
 
                self.heap_regions[heap_pos].values[region_idx] = value
 
            }
 
        }
 
    }
 

	
 
    fn clone_value(&mut self, value: &Value) -> Value {
 
    /// This thing takes a cloned Value, because of borrowing issues (which is
 
    /// either a direct value, or might contain an index to a heap value), but
 
    /// should be treated by the programmer as a reference (i.e. don't call
 
    /// `drop_value(thing)` after calling `clone_value(thing.clone())`.
 
    fn clone_value(&mut self, value: Value) -> Value {
 
        // Quickly check if the value is not on the heap
 
        let source_heap_pos = value.get_heap_pos();
 
        if source_heap_pos.is_none() {
 
            // We can do a trivial copy
 
            return value.clone();
 
            return value;
 
        }
 

	
 
        // Value does live on heap, copy it
 
@@ -128,21 +145,21 @@ impl Store {
 

	
 
        let num_values = self.heap_regions[source_heap_pos].values.len();
 
        for value_idx in 0..num_values {
 
            let cloned = self.clone_value(&self.heap_regions[source_heap_pos].values[value_idx]);
 
            let cloned = self.clone_value(self.heap_regions[source_heap_pos].values[value_idx].clone());
 
            self.heap_regions[target_heap_pos_usize].values.push(cloned);
 
        }
 

	
 
        match value {
 
            Value::Message(_) => Value::Message(target_heap_pos),
 
            Value::Array(_) => Value::Array(target_heap_pos),
 
            Value::Union(tag, _) => Value::Union(*tag, target_heap_pos),
 
            Value::Union(tag, _) => Value::Union(tag, target_heap_pos),
 
            Value::Struct(_) => Value::Struct(target_heap_pos),
 
            _ => unreachable!("performed clone_value on heap, but {:?} is not a heap value", value),
 
        }
 
    }
 

	
 
    pub(crate) fn drop_value(&mut self, value: &Value) {
 
        if let Some(heap_pos) = value.get_heap_pos() {
 
    pub(crate) fn drop_value(&mut self, value: Option<HeapPos>) {
 
        if let Some(heap_pos) = value {
 
            self.drop_heap_pos(heap_pos);
 
        }
 
    }
src/protocol/eval/value.rs
Show inline comments
 
@@ -10,7 +10,7 @@ use crate::protocol::ast::{
 
pub type StackPos = u32;
 
pub type HeapPos = u32;
 

	
 
#[derive(Copy, Clone)]
 
#[derive(Debug, Copy, Clone)]
 
pub enum ValueId {
 
    Stack(StackPos), // place on stack
 
    Heap(HeapPos, u32), // allocated region + values within that region
 
@@ -192,7 +192,7 @@ impl ValueGroup {
 
            let from_region = &from_store.heap_regions[heap_pos as usize].values;
 
            let mut new_region = Vec::with_capacity(from_region.len());
 
            for value in from_region {
 
                let transferred = self.transfer_value(value, from_store);
 
                let transferred = self.retrieve_value(value, from_store);
 
                new_region.push(transferred);
 
            }
 

	
 
@@ -216,7 +216,7 @@ impl ValueGroup {
 
    /// Transfers the heap values and the stack values into the store. Stack
 
    /// values are pushed onto the Store's stack in the order in which they
 
    /// appear in the value group.
 
    pub fn into_store(self, store: &mut Store) {
 
    pub(crate) fn into_store(self, store: &mut Store) {
 
        for value in &self.values {
 
            let transferred = self.provide_value(value, store);
 
            store.stack.push(transferred);
 
@@ -328,74 +328,120 @@ pub(crate) fn apply_assignment_operator(store: &mut Store, lhs: ValueId, op: Ass
 
pub(crate) fn apply_binary_operator(store: &mut Store, lhs: &Value, op: BinaryOperator, rhs: &Value) -> Value {
 
    use BinaryOperator as BO;
 

	
 
    macro_rules! apply_int_op_and_return {
 
    macro_rules! apply_int_op_and_return_self {
 
        ($lhs:ident, $operator_tokens:tt, $operator:ident, $rhs:ident) => {
 
            return match $lhs {
 
                Value::UInt8(v)  => { Value::UInt8( *v $operator_tokens $rhs.as_uint8() ); },
 
                Value::UInt16(v) => { Value::UInt16(*v $operator_tokens $rhs.as_uint16()); },
 
                Value::UInt32(v) => { Value::UInt32(*v $operator_tokens $rhs.as_uint32()); },
 
                Value::UInt64(v) => { Value::UInt64(*v $operator_tokens $rhs.as_uint64()); },
 
                Value::SInt8(v)  => { Value::SInt8( *v $operator_tokens $rhs.as_sint8() ); },
 
                Value::SInt16(v) => { Value::SInt16(*v $operator_tokens $rhs.as_sint16()); },
 
                Value::SInt32(v) => { Value::SInt32(*v $operator_tokens $rhs.as_sint32()); },
 
                Value::SInt64(v) => { Value::SInt64(*v $operator_tokens $rhs.as_sint64()); },
 
                Value::UInt8(v)  => { Value::UInt8( *v $operator_tokens $rhs.as_uint8() ) },
 
                Value::UInt16(v) => { Value::UInt16(*v $operator_tokens $rhs.as_uint16()) },
 
                Value::UInt32(v) => { Value::UInt32(*v $operator_tokens $rhs.as_uint32()) },
 
                Value::UInt64(v) => { Value::UInt64(*v $operator_tokens $rhs.as_uint64()) },
 
                Value::SInt8(v)  => { Value::SInt8( *v $operator_tokens $rhs.as_sint8() ) },
 
                Value::SInt16(v) => { Value::SInt16(*v $operator_tokens $rhs.as_sint16()) },
 
                Value::SInt32(v) => { Value::SInt32(*v $operator_tokens $rhs.as_sint32()) },
 
                Value::SInt64(v) => { Value::SInt64(*v $operator_tokens $rhs.as_sint64()) },
 
                _ => unreachable!("apply_binary_operator {:?} on lhs {:?} and rhs {:?}", $operator, $lhs, $rhs)
 
            };
 
        }
 
    }
 

	
 
    match op {
 
        BO::Concatenate => {
 
            let lhs_heap_pos;
 
            let rhs_heap_pos;
 
            let construct_fn;
 
            match lhs {
 
                Value::Message(lhs_pos) => {
 
                    lhs_heap_pos = *lhs_pos;
 
                    rhs_heap_pos = rhs.as_message();
 
                    construct_fn = |pos: HeapPos| Value::Message(pos);
 
                },
 
                Value::String(lhs_pos) => {
 
                    lhs_heap_pos = *lhs_pos;
 
                    rhs_heap_pos = rhs.as_string();
 
                    construct_fn = |pos: HeapPos| Value::String(pos);
 
                },
 
                Value::Array(lhs_pos) => {
 
                    lhs_heap_pos = *lhs_pos;
 
                    rhs_heap_pos = *rhs.as_array();
 
                    construct_fn = |pos: HeapPos| Value::Array(pos);
 
                },
 
                _ => unreachable!("apply_binary_operator {:?} on lhs {:?} and rhs {:?}", op, lhs, rhs)
 
            }
 
    macro_rules! apply_int_op_and_return_bool {
 
        ($lhs:ident, $operator_tokens:tt, $operator:ident, $rhs:ident) => {
 
            return match $lhs {
 
                Value::UInt8(v)  => { Value::Bool(*v $operator_tokens $rhs.as_uint8() ) },
 
                Value::UInt16(v) => { Value::Bool(*v $operator_tokens $rhs.as_uint16()) },
 
                Value::UInt32(v) => { Value::Bool(*v $operator_tokens $rhs.as_uint32()) },
 
                Value::UInt64(v) => { Value::Bool(*v $operator_tokens $rhs.as_uint64()) },
 
                Value::SInt8(v)  => { Value::Bool(*v $operator_tokens $rhs.as_sint8() ) },
 
                Value::SInt16(v) => { Value::Bool(*v $operator_tokens $rhs.as_sint16()) },
 
                Value::SInt32(v) => { Value::Bool(*v $operator_tokens $rhs.as_sint32()) },
 
                Value::SInt64(v) => { Value::Bool(*v $operator_tokens $rhs.as_sint64()) },
 
                _ => unreachable!("apply_binary_operator {:?} on lhs {:?} and rhs {:?}", $operator, $lhs, $rhs)
 
            };
 
        }
 
    }
 

	
 
            let target_heap_pos = store.alloc_heap();
 
            let target = &mut store.heap_regions[target_heap_pos as usize].values;
 
            target.extend(&store.heap_regions[lhs_heap_pos as usize].values);
 
            target.extend(&store.heap_regions[rhs_heap_pos as usize].values);
 
            return construct_fn(target_heap_pos);
 
        },
 
    // We need to handle concatenate in a special way because it needs the store
 
    // mutably.
 
    if op == BO::Concatenate {
 
        let target_heap_pos = store.alloc_heap();
 
        let lhs_heap_pos;
 
        let rhs_heap_pos;
 

	
 
        let lhs = store.maybe_read_ref(lhs);
 
        let rhs = store.maybe_read_ref(rhs);
 

	
 
        enum ValueKind { Message, String, Array };
 
        let value_kind;
 

	
 
        match lhs {
 
            Value::Message(lhs_pos) => {
 
                lhs_heap_pos = *lhs_pos;
 
                rhs_heap_pos = rhs.as_message();
 
                value_kind = ValueKind::Message;
 
            },
 
            Value::String(lhs_pos) => {
 
                lhs_heap_pos = *lhs_pos;
 
                rhs_heap_pos = rhs.as_string();
 
                value_kind = ValueKind::String;
 
            },
 
            Value::Array(lhs_pos) => {
 
                lhs_heap_pos = *lhs_pos;
 
                rhs_heap_pos = rhs.as_array();
 
                value_kind = ValueKind::Array;
 
            },
 
            _ => unreachable!("apply_binary_operator {:?} on lhs {:?} and rhs {:?}", op, lhs, rhs)
 
        }
 

	
 
        // TODO: I hate this, but fine...
 
        let mut concatenated = Vec::new();
 
        concatenated.extend_from_slice(&store.heap_regions[lhs_heap_pos as usize].values);
 
        concatenated.extend_from_slice(&store.heap_regions[rhs_heap_pos as usize].values);
 

	
 
        store.heap_regions[target_heap_pos as usize].values = concatenated;
 

	
 
        return match value_kind{
 
            ValueKind::Message => Value::Message(target_heap_pos),
 
            ValueKind::String => Value::String(target_heap_pos),
 
            ValueKind::Array => Value::Array(target_heap_pos),
 
        };
 
    }
 

	
 
    // If any of the values are references, retrieve the thing they're referring
 
    // to.
 
    let lhs = match lhs {
 
        Value::Ref(value_id) => store.read_ref(*value_id),
 
        _ => lhs,
 
    };
 

	
 
    let rhs = match rhs {
 
        Value::Ref(value_id) => store.read_ref(*value_id),
 
        _ => rhs,
 
    };
 

	
 
    match op {
 
        BO::Concatenate => unreachable!(),
 
        BO::LogicalOr => {
 
            return Value::Bool(lhs.as_bool() || rhs.as_bool());
 
        },
 
        BO::LogicalAnd => {
 
            return Value::Bool(lhs.as_bool() && rhs.as_bool());
 
        },
 
        BO::BitwiseOr        => { apply_int_op_and_return!(lhs, |,  op, rhs); },
 
        BO::BitwiseXor       => { apply_int_op_and_return!(lhs, ^,  op, rhs); },
 
        BO::BitwiseAnd       => { apply_int_op_and_return!(lhs, &,  op, rhs); },
 
        BO::BitwiseOr        => { apply_int_op_and_return_self!(lhs, |,  op, rhs); },
 
        BO::BitwiseXor       => { apply_int_op_and_return_self!(lhs, ^,  op, rhs); },
 
        BO::BitwiseAnd       => { apply_int_op_and_return_self!(lhs, &,  op, rhs); },
 
        BO::Equality => { todo!("implement") },
 
        BO::Inequality =>  { todo!("implement") },
 
        BO::LessThan         => { apply_int_op_and_return!(lhs, <,  op, rhs); },
 
        BO::GreaterThan      => { apply_int_op_and_return!(lhs, >,  op, rhs); },
 
        BO::LessThanEqual    => { apply_int_op_and_return!(lhs, <=, op, rhs); },
 
        BO::GreaterThanEqual => { apply_int_op_and_return!(lhs, >=, op, rhs); },
 
        BO::ShiftLeft        => { apply_int_op_and_return!(lhs, <<, op, rhs); },
 
        BO::ShiftRight       => { apply_int_op_and_return!(lhs, >>, op, rhs); },
 
        BO::Add              => { apply_int_op_and_return!(lhs, +,  op, rhs); },
 
        BO::Subtract         => { apply_int_op_and_return!(lhs, -,  op, rhs); },
 
        BO::Multiply         => { apply_int_op_and_return!(lhs, *,  op, rhs); },
 
        BO::Divide           => { apply_int_op_and_return!(lhs, /,  op, rhs); },
 
        BO::Remainder        => { apply_int_op_and_return!(lhs, %,  op, rhs); }
 
        BO::LessThan         => { apply_int_op_and_return_bool!(lhs, <,  op, rhs); },
 
        BO::GreaterThan      => { apply_int_op_and_return_bool!(lhs, >,  op, rhs); },
 
        BO::LessThanEqual    => { apply_int_op_and_return_bool!(lhs, <=, op, rhs); },
 
        BO::GreaterThanEqual => { apply_int_op_and_return_bool!(lhs, >=, op, rhs); },
 
        BO::ShiftLeft        => { apply_int_op_and_return_self!(lhs, <<, op, rhs); },
 
        BO::ShiftRight       => { apply_int_op_and_return_self!(lhs, >>, op, rhs); },
 
        BO::Add              => { apply_int_op_and_return_self!(lhs, +,  op, rhs); },
 
        BO::Subtract         => { apply_int_op_and_return_self!(lhs, -,  op, rhs); },
 
        BO::Multiply         => { apply_int_op_and_return_self!(lhs, *,  op, rhs); },
 
        BO::Divide           => { apply_int_op_and_return_self!(lhs, /,  op, rhs); },
 
        BO::Remainder        => { apply_int_op_and_return_self!(lhs, %,  op, rhs); }
 
    }
 
}
 

	
 
@@ -418,12 +464,24 @@ pub(crate) fn apply_unary_operator(store: &mut Store, op: UnaryOperator, value:
 
        }
 
    }
 

	
 
    // If the value is a reference, retrieve the thing it is referring to
 
    let value = store.maybe_read_ref(value);
 

	
 
    match op {
 
        UO::Positive   => {
 
        UO::Positive => {
 
            debug_assert!(value.is_integer());
 
            return value.clone();
 
        },
 
        UO::Negative   => { apply_int_expr_and_return!(value, -, op) },
 
        UO::Negative => {
 
            // TODO: Error on negating unsigned integers
 
            return match value {
 
                Value::SInt8(v) => Value::SInt8(-*v),
 
                Value::SInt16(v) => Value::SInt16(-*v),
 
                Value::SInt32(v) => Value::SInt32(-*v),
 
                Value::SInt64(v) => Value::SInt64(-*v),
 
                _ => unreachable!("apply_unary_operator {:?} on value {:?}", op, value),
 
            }
 
        },
 
        UO::BitwiseNot => { apply_int_expr_and_return!(value, !, op)},
 
        UO::LogicalNot => { return Value::Bool(!value.as_bool()); },
 
        UO::PreIncrement => { todo!("implement") },
 
@@ -431,4 +489,8 @@ pub(crate) fn apply_unary_operator(store: &mut Store, op: UnaryOperator, value:
 
        UO::PostIncrement => { todo!("implement") },
 
        UO::PostDecrement => { todo!("implement") },
 
    }
 
}
 

	
 
pub(crate) fn apply_equality_operator(store: &Store, lhs: &Value, rhs: &Value) -> bool {
 

	
 
}
 
\ No newline at end of file
src/protocol/input_source.rs
Show inline comments
 
@@ -21,6 +21,12 @@ pub struct InputSpan {
 
}
 

	
 
impl InputSpan {
 
    // This will only be used for builtin functions
 
    #[inline]
 
    pub fn new() -> InputSpan {
 
        InputSpan{ begin: InputPosition{ line: 0, offset: 0 }, end: InputPosition{ line: 0, offset: 0 }}
 
    }
 

	
 
    #[inline]
 
    pub fn from_positions(begin: InputPosition, end: InputPosition) -> Self {
 
        Self { begin, end }
src/protocol/mod.rs
Show inline comments
 
@@ -20,14 +20,14 @@ pub struct ProtocolDescription {
 
    source: InputSource,
 
    root: RootId,
 
}
 
// #[derive(Debug, Clone)]
 
#[derive(Debug, Clone)]
 
pub(crate) struct ComponentState {
 
    prompt: Prompt,
 
}
 
pub(crate) enum EvalContext<'a> {
 
    Nonsync(&'a mut NonsyncProtoContext<'a>),
 
    Sync(&'a mut SyncProtoContext<'a>),
 
    // None,
 
    None,
 
}
 
//////////////////////////////////////////////
 

	
 
@@ -122,9 +122,8 @@ impl ComponentState {
 
        loop {
 
            let result = self.prompt.step(&pd.heap, &mut context);
 
            match result {
 
                // In component definitions, there are no return statements
 
                Ok(_) => unreachable!(),
 
                Err(cont) => match cont {
 
                Err(_) => todo!("error handling"),
 
                Ok(cont) => match cont {
 
                    EvalContinuation::Stepping => continue,
 
                    EvalContinuation::Inconsistent => return NonsyncBlocker::Inconsistent,
 
                    EvalContinuation::Terminal => return NonsyncBlocker::ComponentExit,
 
@@ -178,9 +177,8 @@ impl ComponentState {
 
        loop {
 
            let result = self.prompt.step(&pd.heap, &mut context);
 
            match result {
 
                // Inside synchronous blocks, there are no return statements
 
                Ok(_) => unreachable!(),
 
                Err(cont) => match cont {
 
                Err(_) => todo!("error handling"),
 
                Ok(cont) => match cont {
 
                    EvalContinuation::Stepping => continue,
 
                    EvalContinuation::Inconsistent => return SyncBlocker::Inconsistent,
 
                    // First need to exit synchronous block before definition may end
 
@@ -252,7 +250,7 @@ impl EvalContext<'_> {
 
    // }
 
    fn new_component(&mut self, moved_ports: HashSet<PortId>, init_state: ComponentState) -> () {
 
        match self {
 
            // EvalContext::None => unreachable!(),
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(context) => {
 
                context.new_component(moved_ports, init_state)
 
            }
 
@@ -261,7 +259,7 @@ impl EvalContext<'_> {
 
    }
 
    fn new_channel(&mut self) -> [Value; 2] {
 
        match self {
 
            // EvalContext::None => unreachable!(),
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(context) => {
 
                let [from, to] = context.new_port_pair();
 
                let from = Value::Output(from);
 
@@ -273,7 +271,7 @@ impl EvalContext<'_> {
 
    }
 
    fn fires(&mut self, port: Value) -> Option<Value> {
 
        match self {
 
            // EvalContext::None => unreachable!(),
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(_) => unreachable!(),
 
            EvalContext::Sync(context) => match port {
 
                Value::Output(port) => context.is_firing(port).map(Value::Bool),
 
@@ -282,17 +280,29 @@ impl EvalContext<'_> {
 
            },
 
        }
 
    }
 
    fn get(&mut self, port: Value) -> Option<Value> {
 
    fn get(&mut self, port: Value, store: &mut Store) -> Option<Value> {
 
        match self {
 
            // EvalContext::None => unreachable!(),
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(_) => unreachable!(),
 
            EvalContext::Sync(context) => match port {
 
                Value::Output(port) => {
 
                    debug_assert!(false, "Getting from an output port? Am I mad?");
 
                    context.read_msg(port).map(Value::receive_message)
 
                    unreachable!();
 
                }
 
                Value::Input(port) => {
 
                    context.read_msg(port).map(Value::receive_message)
 
                    let heap_pos = store.alloc_heap();
 
                    let heap_pos_usize = heap_pos as usize;
 

	
 
                    let payload = context.read_msg(port);
 
                    if payload.is_none() { return None; }
 

	
 
                    let payload = payload.unwrap();
 
                    store.heap_regions[heap_pos_usize].values.reserve(payload.0.len());
 
                    for value in payload.0.iter() {
 
                        store.heap_regions[heap_pos_usize].values.push(Value::UInt8(*value));
 
                    }
 

	
 
                    return Some(Value::Message(heap_pos));
 
                }
 
                _ => unreachable!(),
 
            },
 
@@ -300,6 +310,7 @@ impl EvalContext<'_> {
 
    }
 
    fn did_put(&mut self, port: Value) -> bool {
 
        match self {
 
            EvalContext::None => unreachable!("did_put in None context"),
 
            EvalContext::Nonsync(_) => unreachable!("did_put in nonsync context"),
 
            EvalContext::Sync(context) => match port {
 
                Value::Output(port) => {
src/protocol/parser/depth_visitor.rs
Show inline comments
 
@@ -540,8 +540,7 @@ impl Visitor for LinkStatements {
 
    fn visit_if_statement(&mut self, h: &mut Heap, stmt: IfStatementId) -> VisitorResult {
 
        // Link the two branches to the corresponding EndIf pseudo-statement
 
        let end_if_id = h[stmt].end_if;
 
        assert!(end_if_id.is_some());
 
        let end_if_id = end_if_id.unwrap();
 
        assert!(!end_if_id.is_invalid());
 

	
 
        assert!(self.prev.is_none());
 
        self.visit_block_statement(h, h[stmt].true_body)?;
 
@@ -570,8 +569,7 @@ impl Visitor for LinkStatements {
 
        // We allocate a pseudo-statement, to which the break statement finds its target
 
        // Update the while's next statement to point to the pseudo-statement
 
        let end_while_id = h[stmt].end_while;
 
        assert!(end_while_id.is_some());
 
        // let end_while_id = end_while_id.unwrap();
 
        assert!(!end_while_id.is_invalid());
 

	
 
        assert!(self.prev.is_none());
 
        self.visit_block_statement(h, h[stmt].body)?;
 
@@ -608,8 +606,7 @@ impl Visitor for LinkStatements {
 
        // that marks the end of the synchronous block. Every evaluation has to pause at this
 
        // point, only to resume later when the thread is selected as unique thread to continue.
 
        let end_sync_id = h[stmt].end_sync;
 
        assert!(end_sync_id.is_some());
 
        let end_sync_id = end_sync_id.unwrap();
 
        assert!(!end_sync_id.is_invalid());
 

	
 
        assert!(self.prev.is_none());
 
        self.visit_block_statement(h, h[stmt].body)?;
src/protocol/parser/mod.rs
Show inline comments
 
@@ -14,7 +14,6 @@ mod visitor;
 
use depth_visitor::*;
 
use tokens::*;
 
use crate::collections::*;
 
use symbol_table::SymbolTable;
 
use visitor::Visitor2;
 
use pass_tokenizer::PassTokenizer;
 
use pass_symbols::PassSymbols;
 
@@ -22,12 +21,14 @@ use pass_imports::PassImport;
 
use pass_definitions::PassDefinitions;
 
use pass_validation_linking::PassValidationLinking;
 
use pass_typing::{PassTyping, ResolveQueue};
 
use symbol_table::*;
 
use type_table::TypeTable;
 

	
 
use crate::protocol::ast::*;
 
use crate::protocol::input_source::*;
 

	
 
use crate::protocol::ast_printer::ASTWriter;
 
use crate::protocol::parser::type_table::PolymorphicVariable;
 

	
 
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord)]
 
pub enum ModuleCompilationPhase {
 
@@ -75,7 +76,7 @@ pub struct Parser {
 

	
 
impl Parser {
 
    pub fn new() -> Self {
 
        Parser{
 
        let mut parser = Parser{
 
            heap: Heap::new(),
 
            string_pool: StringPool::new(),
 
            modules: Vec::new(),
 
@@ -87,7 +88,58 @@ impl Parser {
 
            pass_definitions: PassDefinitions::new(),
 
            pass_validation: PassValidationLinking::new(),
 
            pass_typing: PassTyping::new(),
 
        };
 

	
 
        parser.symbol_table.insert_scope(None, SymbolScope::Global);
 

	
 
        fn quick_type(variants: &[ParserTypeVariant]) -> ParserType {
 
            let mut t = ParserType{ elements: Vec::with_capacity(variants.len()) };
 
            for variant in variants {
 
                t.elements.push(ParserTypeElement{ full_span: InputSpan::new(), variant: variant.clone() });
 
            }
 
            t
 
        }
 

	
 
        use ParserTypeVariant as PTV;
 
        insert_builtin_function(&mut parser, "get", &["T"], |id| (
 
            vec![
 
                ("input", quick_type(&[PTV::Input, PTV::PolymorphicArgument(id.upcast(), 0)]))
 
            ],
 
            quick_type(&[PTV::PolymorphicArgument(id.upcast(), 0)])
 
        ));
 
        insert_builtin_function(&mut parser, "put", &["T"], |id| (
 
            vec![
 
                ("output", quick_type(&[PTV::Output, PTV::PolymorphicArgument(id.upcast(), 0)])),
 
                ("value", quick_type(&[PTV::PolymorphicArgument(id.upcast(), 0)])),
 
            ],
 
            quick_type(&[PTV::Void])
 
        ));
 
        insert_builtin_function(&mut parser, "fires", &["T"], |id| (
 
            vec![
 
                ("port", quick_type(&[PTV::InputOrOutput, PTV::PolymorphicArgument(id.upcast(), 0)]))
 
            ],
 
            quick_type(&[PTV::Bool])
 
        ));
 
        insert_builtin_function(&mut parser, "create", &["T"], |id| (
 
            vec![
 
                ("length", quick_type(&[PTV::IntegerLike]))
 
            ],
 
            quick_type(&[PTV::ArrayLike, PTV::PolymorphicArgument(id.upcast(), 0)])
 
        ));
 
        insert_builtin_function(&mut parser, "length", &["T"], |id| (
 
            vec![
 
                ("array", quick_type(&[PTV::ArrayLike, PTV::PolymorphicArgument(id.upcast(), 0)]))
 
            ],
 
            quick_type(&[PTV::IntegerLike])
 
        ));
 
        insert_builtin_function(&mut parser, "assert", &[], |id| (
 
            vec![
 
                ("condition", quick_type(&[PTV::Bool])),
 
            ],
 
            quick_type(&[PTV::Void])
 
        ));
 

	
 
        parser
 
    }
 

	
 
    pub fn feed(&mut self, mut source: InputSource) -> Result<(), ParseError> {
 
@@ -176,9 +228,9 @@ impl Parser {
 
            }
 
        }
 

	
 
        // let mut writer = ASTWriter::new();
 
        // let mut file = std::fs::File::create(std::path::Path::new("ast.txt")).unwrap();
 
        // writer.write_ast(&mut file, &self.heap);
 
        let mut writer = ASTWriter::new();
 
        let mut file = std::fs::File::create(std::path::Path::new("ast.txt")).unwrap();
 
        writer.write_ast(&mut file, &self.heap);
 

	
 
        Ok(())
 
    }
 
@@ -203,4 +255,60 @@ impl Parser {
 

	
 
        Ok(())
 
    }
 
}
 

	
 
// Note: args and return type need to be a function because we need to know the function ID.
 
fn insert_builtin_function<T: Fn(FunctionDefinitionId) -> (Vec<(&'static str, ParserType)>, ParserType)> (
 
    p: &mut Parser, func_name: &str, polymorphic: &[&str], arg_and_return_fn: T) {
 

	
 
    let mut poly_vars = Vec::with_capacity(polymorphic.len());
 
    for poly_var in polymorphic {
 
        poly_vars.push(Identifier{ span: InputSpan::new(), value: p.string_pool.intern(poly_var.as_bytes()) });
 
    }
 

	
 
    let func_ident_ref = p.string_pool.intern(func_name.as_bytes());
 
    let func_id = p.heap.alloc_function_definition(|this| FunctionDefinition{
 
        this,
 
        defined_in: RootId::new_invalid(),
 
        builtin: true,
 
        span: InputSpan::new(),
 
        identifier: Identifier{ span: InputSpan::new(), value: func_ident_ref.clone() },
 
        poly_vars,
 
        return_types: Vec::new(),
 
        parameters: Vec::new(),
 
        body: BlockStatementId::new_invalid(),
 
    });
 

	
 
    let (args, ret) = arg_and_return_fn(func_id);
 

	
 
    let mut parameters = Vec::with_capacity(args.len());
 
    for (arg_name, arg_type) in args {
 
        let identifier = Identifier{ span: InputSpan::new(), value: p.string_pool.intern(arg_name.as_bytes()) };
 
        let param_id = p.heap.alloc_variable(|this| Variable{
 
            this,
 
            kind: VariableKind::Parameter,
 
            parser_type: arg_type.clone(),
 
            identifier,
 
            relative_pos_in_block: 0,
 
            unique_id_in_scope: 0
 
        });
 
        parameters.push(param_id);
 
    }
 

	
 
    let func = &mut p.heap[func_id];
 
    func.parameters = parameters;
 
    func.return_types.push(ret);
 

	
 
    p.symbol_table.insert_symbol(SymbolScope::Global, Symbol{
 
        name: func_ident_ref,
 
        variant: SymbolVariant::Definition(SymbolDefinition{
 
            defined_in_module: RootId::new_invalid(),
 
            defined_in_scope: SymbolScope::Global,
 
            definition_span: InputSpan::new(),
 
            identifier_span: InputSpan::new(),
 
            imported_at: None,
 
            class: DefinitionClass::Function,
 
            definition_id: func_id.upcast(),
 
        })
 
    }).unwrap();
 
}
 
\ No newline at end of file
src/protocol/parser/pass_definitions.rs
Show inline comments
 
@@ -453,7 +453,10 @@ impl PassDefinitions {
 
                    section.push(id.upcast());
 
                }
 
            }
 
        };
 
        } else {
 
            let id = self.consume_expression_statement(module, iter, ctx)?;
 
            section.push(id.upcast());
 
        }
 

	
 
        return Ok(());
 
    }
src/protocol/parser/pass_symbols.rs
Show inline comments
 
@@ -89,7 +89,7 @@ impl PassSymbols {
 

	
 
        // Add the module's symbol scope and the symbols we just parsed
 
        let module_scope = SymbolScope::Module(root_id);
 
        ctx.symbols.insert_scope(None, module_scope);
 
        ctx.symbols.insert_scope(Some(SymbolScope::Global), module_scope);
 
        for symbol in self.symbols.drain(..) {
 
            ctx.symbols.insert_scope(Some(module_scope), SymbolScope::Definition(symbol.variant.as_definition().definition_id));
 
            if let Err((new_symbol, old_symbol)) = ctx.symbols.insert_symbol(module_scope, symbol) {
src/protocol/parser/pass_typing.rs
Show inline comments
 
@@ -992,7 +992,7 @@ impl Visitor2 for PassTyping {
 
            let param = &ctx.heap[param_id];
 
            let var_type = self.determine_inference_type_from_parser_type_elements(&param.parser_type.elements, true);
 
            debug_assert!(var_type.is_done, "expected component arguments to be concrete types");
 
            self.var_types.insert(param_id.upcast(), VarData::new_local(var_type));
 
            self.var_types.insert(param_id, VarData::new_local(var_type));
 
        }
 

	
 
        let body_stmt_id = ctx.heap[id].body;
 
@@ -1013,7 +1013,7 @@ impl Visitor2 for PassTyping {
 
            let param = &ctx.heap[param_id];
 
            let var_type = self.determine_inference_type_from_parser_type_elements(&param.parser_type.elements, true);
 
            debug_assert!(var_type.is_done, "expected function arguments to be concrete types");
 
            self.var_types.insert(param_id.upcast(), VarData::new_local(var_type));
 
            self.var_types.insert(param_id, VarData::new_local(var_type));
 
        }
 

	
 
        let body_stmt_id = ctx.heap[id].body;
 
@@ -1038,7 +1038,7 @@ impl Visitor2 for PassTyping {
 

	
 
        let local = &ctx.heap[memory_stmt.variable];
 
        let var_type = self.determine_inference_type_from_parser_type_elements(&local.parser_type.elements, true);
 
        self.var_types.insert(memory_stmt.variable.upcast(), VarData::new_local(var_type));
 
        self.var_types.insert(memory_stmt.variable, VarData::new_local(var_type));
 

	
 
        Ok(())
 
    }
 
@@ -1048,11 +1048,11 @@ impl Visitor2 for PassTyping {
 

	
 
        let from_local = &ctx.heap[channel_stmt.from];
 
        let from_var_type = self.determine_inference_type_from_parser_type_elements(&from_local.parser_type.elements, true);
 
        self.var_types.insert(from_local.this.upcast(), VarData::new_channel(from_var_type, channel_stmt.to.upcast()));
 
        self.var_types.insert(from_local.this, VarData::new_channel(from_var_type, channel_stmt.to));
 

	
 
        let to_local = &ctx.heap[channel_stmt.to];
 
        let to_var_type = self.determine_inference_type_from_parser_type_elements(&to_local.parser_type.elements, true);
 
        self.var_types.insert(to_local.this.upcast(), VarData::new_channel(to_var_type, channel_stmt.from.upcast()));
 
        self.var_types.insert(to_local.this, VarData::new_channel(to_var_type, channel_stmt.from));
 

	
 
        Ok(())
 
    }
 
@@ -2373,7 +2373,7 @@ impl PassTyping {
 
        if infer_res == DualInferenceResult::Incompatible {
 
            let var_decl = &ctx.heap[var_id];
 
            return Err(ParseError::new_error_at_span(
 
                &ctx.module.source, var_decl.identifier().span, format!(
 
                &ctx.module.source, var_decl.identifier.span, format!(
 
                    "Conflicting types for this variable, previously assigned the type '{}'",
 
                    var_data.var_type.display_name(&ctx.heap)
 
                )
 
@@ -2425,12 +2425,12 @@ impl PassTyping {
 
                        let link_decl = &ctx.heap[linked_id];
 

	
 
                        return Err(ParseError::new_error_at_span(
 
                            &ctx.module.source, var_decl.identifier().span, format!(
 
                            &ctx.module.source, var_decl.identifier.span, format!(
 
                                "Conflicting types for this variable, assigned the type '{}'",
 
                                var_data.var_type.display_name(&ctx.heap)
 
                            )
 
                        ).with_info_at_span(
 
                            &ctx.module.source, link_decl.identifier().span, format!(
 
                            &ctx.module.source, link_decl.identifier.span, format!(
 
                                "Because it is incompatible with this variable, assigned the type '{}'",
 
                                link_data.var_type.display_name(&ctx.heap)
 
                            )
 
@@ -3099,6 +3099,12 @@ impl PassTyping {
 

	
 
        for element in elements {
 
            match &element.variant {
 
                // Compiler-only types
 
                PTV::Void => { infer_type.push(ITP::Void); },
 
                PTV::InputOrOutput => { infer_type.push(ITP::PortLike); },
 
                PTV::ArrayLike => { infer_type.push(ITP::ArrayLike); },
 
                PTV::IntegerLike => { infer_type.push(ITP::IntegerLike); },
 
                // Builtins
 
                PTV::Message => {
 
                    // TODO: @types Remove the Message -> Byte hack at some point...
 
                    infer_type.push(ITP::Message);
 
@@ -3115,11 +3121,13 @@ impl PassTyping {
 
                PTV::SInt64 => { infer_type.push(ITP::SInt64); },
 
                PTV::Character => { infer_type.push(ITP::Character); },
 
                PTV::String => { infer_type.push(ITP::String); },
 
                // Special markers
 
                PTV::IntegerLiteral => { unreachable!("integer literal type on variable type"); },
 
                PTV::Inferred => {
 
                    infer_type.push(ITP::Unknown);
 
                    has_inferred = true;
 
                },
 
                // With nested types
 
                PTV::Array => { infer_type.push(ITP::Array); },
 
                PTV::Input => { infer_type.push(ITP::Input); },
 
                PTV::Output => { infer_type.push(ITP::Output); },
src/protocol/parser/pass_validation_linking.rs
Show inline comments
 
@@ -239,8 +239,9 @@ impl Visitor2 for PassValidationLinking {
 
            let stmt = &ctx.heap[id];
 
            let target_while_id = self.resolve_break_or_continue_target(ctx, stmt.span, &stmt.label)?;
 
            let target_while = &ctx.heap[target_while_id];
 
            debug_assert!(target_while.end_while.is_some());
 
            target_while.end_while.unwrap()
 
            debug_assert!(!target_while.end_while.is_invalid());
 

	
 
            target_while.end_while
 
        };
 

	
 
        let stmt = &mut ctx.heap[id];
 
@@ -980,8 +981,7 @@ impl PassValidationLinking {
 
            }
 

	
 
            // Current scope is fine, move to parent scope if any
 
            debug_assert!(block.parent_scope.is_some(), "block scope does not have a parent");
 
            scope = block.parent_scope.as_ref().unwrap();
 
            scope = &block.parent_scope;
 
            if let Scope::Definition(definition_id) = scope {
 
                // At outer scope, check parameters of function/component
 
                for parameter_id in ctx.heap[*definition_id].parameters() {
 
@@ -1034,12 +1034,11 @@ impl PassValidationLinking {
 
                let local = &ctx.heap[*local_id];
 
                
 
                if local.relative_pos_in_block < relative_pos && identifier == &local.identifier {
 
                    return Ok(local_id.upcast());
 
                    return Ok(*local_id);
 
                }
 
            }
 

	
 
            debug_assert!(block.parent_scope.is_some());
 
            scope = block.parent_scope.as_ref().unwrap();
 
            scope = &block.parent_scope;
 
            if !scope.is_block() {
 
                // Definition scope, need to check arguments to definition
 
                match scope {
 
@@ -1048,7 +1047,7 @@ impl PassValidationLinking {
 
                        for parameter_id in definition.parameters() {
 
                            let parameter = &ctx.heap[*parameter_id];
 
                            if identifier == &parameter.identifier {
 
                                return Ok(parameter_id.upcast());
 
                                return Ok(*parameter_id);
 
                            }
 
                        }
 
                    },
 
@@ -1094,15 +1093,14 @@ impl PassValidationLinking {
 
                }
 
            }
 

	
 
            debug_assert!(block.parent_scope.is_some(), "block scope does not have a parent");
 
            scope = block.parent_scope.as_ref().unwrap();
 
            scope = &block.parent_scope;
 
            if !scope.is_block() {
 
                break;
 
            }
 
        }
 

	
 
        // No collisions
 
        let block = &mut ctx.heap[self.cur_scope.as_ref().unwrap().to_block()];
 
        let block = &mut ctx.heap[self.cur_scope.to_block()];
 
        block.labels.push(id);
 

	
 
        Ok(())
 
@@ -1141,8 +1139,7 @@ impl PassValidationLinking {
 
                }
 
            }
 

	
 
            debug_assert!(block.parent_scope.is_some(), "block scope does not have a parent");
 
            scope = block.parent_scope.as_ref().unwrap();
 
            scope = &block.parent_scope;
 
            if !scope.is_block() {
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module.source, identifier.span, "could not find this label"
 
@@ -1155,7 +1152,6 @@ impl PassValidationLinking {
 
    /// This function will check if the provided while statement ID has a block
 
    /// statement that is one of our current parents.
 
    fn has_parent_while_scope(&self, ctx: &Ctx, id: WhileStatementId) -> bool {
 
        debug_assert!(self.cur_scope.is_some());
 
        let mut scope = &self.cur_scope;
 
        let while_stmt = &ctx.heap[id];
 
        loop {
 
@@ -1166,7 +1162,6 @@ impl PassValidationLinking {
 
            }
 

	
 
            let block = &ctx.heap[block];
 
            debug_assert!(block.parent_scope.is_some(), "block scope does not have a parent");
 
            scope = &block.parent_scope;
 
            if !scope.is_block() {
 
                return false;
src/protocol/parser/tokens.rs
Show inline comments
 
@@ -320,7 +320,7 @@ impl<'a> TokenIter<'a> {
 

	
 
    /// Advances the iterator to the next (meaningful) token.
 
    pub(crate) fn consume(&mut self) {
 
        if let Some(kind) = self.next() {
 
        if let Some(kind) = self.next_including_comments() {
 
            if kind.has_span_end() {
 
                self.cur += 2;
 
            } else {
src/protocol/parser/type_table.rs
Show inline comments
 
@@ -275,7 +275,7 @@ impl TypeTable {
 
            }
 
        }
 

	
 
        debug_assert_eq!(self.lookup.len(), reserve_size, "mismatch in reserved size of type table");
 
        debug_assert_eq!(self.lookup.len() + 6, reserve_size, "mismatch in reserved size of type table"); // NOTE: Temp fix for builtin functions
 
        for module in modules {
 
            module.phase = ModuleCompilationPhase::TypesAddedToTable;
 
        }
 
@@ -727,6 +727,9 @@ impl TypeTable {
 

	
 
        for element in parser_type.elements.iter() {
 
            match element.variant {
 
                PTV::Void | PTV::InputOrOutput | PTV::ArrayLike | PTV::IntegerLike => {
 
                    unreachable!("compiler-only ParserTypeVariant within type definition");
 
                },
 
                PTV::Message | PTV::Bool |
 
                PTV::UInt8 | PTV::UInt16 | PTV::UInt32 | PTV::UInt64 |
 
                PTV::SInt8 | PTV::SInt16 | PTV::SInt32 | PTV::SInt64 |
src/protocol/parser/visitor.rs
Show inline comments
 
@@ -86,6 +86,7 @@ pub(crate) trait Visitor2 {
 
                let this = stmt.this;
 
                self.visit_block_stmt(ctx, this)
 
            },
 
            Statement::EndBlock(_stmt) => Ok(()),
 
            Statement::Local(stmt) => {
 
                let this = stmt.this();
 
                self.visit_local_stmt(ctx, this)
src/protocol/tests/eval_operators.rs
Show inline comments
 
new file 100644
 
use super::*;
 

	
 
#[test]
 
fn test_assignment() {
 
    fn construct_source(value_type: &str, value_initial: &str, value_op: &str) -> String {
 
        return format!(
 
            "func foo() -> {} {{
 
                {} value = {};
 
                value {};
 
                return value;
 
            }}",
 
            value_type, value_type, value_initial, value_op
 
        );
 
    }
 
    Tester::new_single_source_expect_ok(
 
        "set", construct_source("u32", "1", "= 5")
 
    ).for_function("foo", |f| { f.call(); });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "multiplied", construct_source("u32", "2", "*= 4")
 
    ).for_function("foo", |f| { f.call(); });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "divided", construct_source("u32", "8", "/= 4")
 
    ).for_function("foo", |f| { f.call(); });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "remained", construct_source("u32", "8", "%= 3")
 
    ).for_function("foo", |f| { f.call(); });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "added", construct_source("u32", "2", "+= 4")
 
    ).for_function("foo", |f| { f.call(); });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "subtracted", construct_source("u32", "6", "-= 4")
 
    ).for_function("foo", |f| { f.call(); });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "shifted left", construct_source("u32", "2", "<<= 2")
 
    ).for_function("foo", |f| { f.call(); });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "shifted right", construct_source("u32", "8", ">>= 2")
 
    ).for_function("foo", |f| { f.call(); });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "bitwise and", construct_source("u32", "3", "&= 2")
 
    ).for_function("foo", |f| { f.call(); });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "bitwise xor", construct_source("u32", "3", "^= 7")
 
    ).for_function("foo", |f| { f.call(); });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "bitwise or", construct_source("u32", "12", "|= 3")
 
    ).for_function("foo", |f| { f.call(); });
 
}
 

	
 
#[test]
 
fn test_function_call() {
 
    Tester::new_single_source_expect_ok("calling", "
 
    func add_two(u32 value) -> u32 {
 
        return value + 2;
 
    }
 
    func foo() -> u32 {
 
        return add_two(5);
 
    }
 
    ").for_function("foo", |f| { f.call(); });
 
}
 
\ No newline at end of file
src/protocol/tests/lexer.rs
Show inline comments
 
@@ -9,7 +9,7 @@ use super::*;
 
fn test_disallowed_inference() {
 
    Tester::new_single_source_expect_err(
 
        "argument auto inference",
 
            "s32 func(auto arg) { return 0; }"
 
            "func thing(auto arg) -> s32 { return 0; }"
 
    ).error(|e| { e
 
        .assert_msg_has(0, "inference is not allowed")
 
        .assert_occurs_at(0, "auto arg");
 
@@ -17,15 +17,15 @@ fn test_disallowed_inference() {
 

	
 
    Tester::new_single_source_expect_err(
 
        "return type auto inference",
 
        "auto func(s32 arg) { return 0; }"
 
        "func thing(s32 arg) -> auto { return 0; }"
 
    ).error(|e| { e
 
        .assert_msg_has(0, "inference is not allowed")
 
        .assert_occurs_at(0, "auto func");
 
        .assert_occurs_at(0, "auto {");
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "implicit polymorph argument auto inference",
 
        "s32 func(in port) { return port; }"
 
        "func thing(in port) -> s32 { return port; }"
 
    ).error(|e| { e
 
        .assert_msg_has(0, "inference is not allowed")
 
        .assert_occurs_at(0, "in port");
 
@@ -33,7 +33,7 @@ fn test_disallowed_inference() {
 

	
 
    Tester::new_single_source_expect_err(
 
        "explicit polymorph argument auto inference",
 
        "s32 func(in<auto> port) { return port; }"
 
        "func thing(in<auto> port) -> s32 { return port; }"
 
    ).error(|e| { e
 
        .assert_msg_has(0, "inference is not allowed")
 
        .assert_occurs_at(0, "auto> port");
 
@@ -41,18 +41,18 @@ fn test_disallowed_inference() {
 

	
 
    Tester::new_single_source_expect_err(
 
        "implicit polymorph return type auto inference",
 
        "in func(in<msg> a, in<msg> b) { return a; }"
 
        "func thing(in<msg> a, in<msg> b) -> in { return a; }"
 
    ).error(|e| { e
 
        .assert_msg_has(0, "inference is not allowed")
 
        .assert_occurs_at(0, "in func");
 
        .assert_occurs_at(0, "in {");
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "explicit polymorph return type auto inference",
 
        "in<auto> func(in<msg> a) { return a; }"
 
        "func thing(in<msg> a) -> in<auto> { return a; }"
 
    ).error(|e| { e
 
        .assert_msg_has(0, "inference is not allowed")
 
        .assert_occurs_at(0, "auto> func");
 
        .assert_occurs_at(0, "auto> {");
 
    });
 
}
 

	
src/protocol/tests/mod.rs
Show inline comments
 
@@ -4,5 +4,6 @@ mod parser_validation;
 
mod parser_inference;
 
mod parser_monomorphs;
 
mod parser_imports;
 
mod eval_operators;
 

	
 
pub(crate) use utils::{Tester};
 
\ No newline at end of file
src/protocol/tests/utils.rs
Show inline comments
 
@@ -8,6 +8,7 @@ use crate::protocol::{
 
        symbol_table::SymbolTable,
 
        token_parsing::*,
 
    },
 
    eval::*,
 
};
 

	
 
// Carries information about the test into utility structures for builder-like
 
@@ -572,6 +573,24 @@ impl<'a> FunctionTester<'a> {
 
        self
 
    }
 

	
 
    pub(crate) fn call(self, expected_result: Option<Value>) -> Self {
 
        use crate::protocol::*;
 
        use crate::runtime::*;
 

	
 
        let mut prompt = Prompt::new(&self.ctx.heap, self.def.this.upcast(), ValueGroup::new_stack(Vec::new()));
 
        let mut call_context = EvalContext::None;
 
        loop {
 
            let result = prompt.step(&self.ctx.heap, &mut call_context).unwrap();
 
            match result {
 
                EvalContinuation::Stepping => {},
 
                _ => break,
 
            }
 
        }
 

	
 

	
 
        self
 
    }
 

	
 
    fn assert_postfix(&self) -> String {
 
        format!("Function{{ name: {} }}", self.def.identifier.value.as_str())
 
    }
 
@@ -580,20 +599,20 @@ impl<'a> FunctionTester<'a> {
 
pub(crate) struct VariableTester<'a> {
 
    ctx: TestCtx<'a>,
 
    definition_id: DefinitionId,
 
    local: &'a Local,
 
    variable: &'a Variable,
 
    assignment: &'a AssignmentExpression,
 
}
 

	
 
impl<'a> VariableTester<'a> {
 
    fn new(
 
        ctx: TestCtx<'a>, definition_id: DefinitionId, local: &'a Local, assignment: &'a AssignmentExpression
 
        ctx: TestCtx<'a>, definition_id: DefinitionId, variable: &'a Variable, assignment: &'a AssignmentExpression
 
    ) -> Self {
 
        Self{ ctx, definition_id, local, assignment }
 
        Self{ ctx, definition_id, variable, assignment }
 
    }
 

	
 
    pub(crate) fn assert_parser_type(self, expected: &str) -> Self {
 
        let mut serialized = String::new();
 
        serialize_parser_type(&mut serialized, self.ctx.heap, &self.local.parser_type);
 
        serialize_parser_type(&mut serialized, self.ctx.heap, &self.variable.parser_type);
 

	
 
        assert_eq!(
 
            expected, &serialized,
 
@@ -619,7 +638,7 @@ impl<'a> VariableTester<'a> {
 
    }
 

	
 
    fn assert_postfix(&self) -> String {
 
        format!("Variable{{ name: {} }}", self.local.identifier.value.as_str())
 
        format!("Variable{{ name: {} }}", self.variable.identifier.value.as_str())
 
    }
 
}
 

	
 
@@ -826,32 +845,43 @@ fn serialize_parser_type(buffer: &mut String, heap: &Heap, parser_type: &ParserT
 

	
 
    fn serialize_variant(buffer: &mut String, heap: &Heap, parser_type: &ParserType, mut idx: usize) -> usize {
 
        match &parser_type.elements[idx].variant {
 
            PTV::Message => write_bytes(buffer, KW_TYPE_MESSAGE),
 
            PTV::Bool => write_bytes(buffer, KW_TYPE_BOOL),
 
            PTV::UInt8 => write_bytes(buffer, KW_TYPE_UINT8),
 
            PTV::UInt16 => write_bytes(buffer, KW_TYPE_UINT16),
 
            PTV::UInt32 => write_bytes(buffer, KW_TYPE_UINT32),
 
            PTV::UInt64 => write_bytes(buffer, KW_TYPE_UINT64),
 
            PTV::SInt8 => write_bytes(buffer, KW_TYPE_SINT8),
 
            PTV::SInt16 => write_bytes(buffer, KW_TYPE_SINT16),
 
            PTV::SInt32 => write_bytes(buffer, KW_TYPE_SINT32),
 
            PTV::SInt64 => write_bytes(buffer, KW_TYPE_SINT64),
 
            PTV::Character => write_bytes(buffer, KW_TYPE_CHAR),
 
            PTV::String => write_bytes(buffer, KW_TYPE_STRING),
 
            PTV::Void => buffer.push_str("void"),
 
            PTV::InputOrOutput => {
 
                buffer.push_str("portlike<");
 
                idx = serialize_variant(buffer, heap, parser_type, idx + 1);
 
                buffer.push('>');
 
            },
 
            PTV::ArrayLike => {
 
                idx = serialize_variant(buffer, heap, parser_type, idx + 1);
 
                buffer.push_str("[???]");
 
            },
 
            PTV::IntegerLike => buffer.push_str("integerlike"),
 
            PTV::Message => buffer.push_str(KW_TYPE_MESSAGE_STR),
 
            PTV::Bool => buffer.push_str(KW_TYPE_BOOL_STR),
 
            PTV::UInt8 => buffer.push_str(KW_TYPE_UINT8_STR),
 
            PTV::UInt16 => buffer.push_str(KW_TYPE_UINT16_STR),
 
            PTV::UInt32 => buffer.push_str(KW_TYPE_UINT32_STR),
 
            PTV::UInt64 => buffer.push_str(KW_TYPE_UINT64_STR),
 
            PTV::SInt8 => buffer.push_str(KW_TYPE_SINT8_STR),
 
            PTV::SInt16 => buffer.push_str(KW_TYPE_SINT16_STR),
 
            PTV::SInt32 => buffer.push_str(KW_TYPE_SINT32_STR),
 
            PTV::SInt64 => buffer.push_str(KW_TYPE_SINT64_STR),
 
            PTV::Character => buffer.push_str(KW_TYPE_CHAR_STR),
 
            PTV::String => buffer.push_str(KW_TYPE_STRING_STR),
 
            PTV::IntegerLiteral => buffer.push_str("int_literal"),
 
            PTV::Inferred => write_bytes(buffer, KW_TYPE_INFERRED),
 
            PTV::Inferred => buffer.push_str(KW_TYPE_INFERRED_STR),
 
            PTV::Array => {
 
                idx = serialize_variant(buffer, heap, parser_type, idx + 1);
 
                buffer.push_str("[]");
 
            },
 
            PTV::Input => {
 
                write_bytes(buffer, KW_TYPE_IN_PORT);
 
                buffer.push_str(KW_TYPE_IN_PORT_STR);
 
                buffer.push('<');
 
                idx = serialize_variant(buffer, heap, parser_type, idx + 1);
 
                buffer.push('>');
 
            },
 
            PTV::Output => {
 
                write_bytes(buffer, KW_TYPE_OUT_PORT);
 
                buffer.push_str(KW_TYPE_OUT_PORT_STR);
 
                buffer.push('<');
 
                idx = serialize_variant(buffer, heap, parser_type, idx + 1);
 
                buffer.push('>');
0 comments (0 inline, 0 general)