Changeset - a2bfd792a202
[Not reviewed]
0 5 1
MH - 4 years ago 2021-11-13 12:36:41
contact@maxhenger.nl
Implement and test explicit forking in runtime
6 files changed with 154 insertions and 4 deletions:
0 comments (0 inline, 0 general)
src/protocol/ast_printer.rs
Show inline comments
 
#![allow(dead_code)]
 

	
 
use std::fmt::{Debug, Display};
 
use std::io::Write as IOWrite;
 

	
 
use super::ast::*;
 
use super::token_parsing::*;
 

	
 
const INDENT: usize = 2;
 

	
 
const PREFIX_EMPTY: &'static str = "    ";
 
const PREFIX_ROOT_ID: &'static str = "Root";
 
const PREFIX_PRAGMA_ID: &'static str = "Prag";
 
const PREFIX_IMPORT_ID: &'static str = "Imp ";
 
const PREFIX_TYPE_ANNOT_ID: &'static str = "TyAn";
 
const PREFIX_VARIABLE_ID: &'static str = "Var ";
 
const PREFIX_DEFINITION_ID: &'static str = "Def ";
 
const PREFIX_STRUCT_ID: &'static str = "DefS";
 
const PREFIX_ENUM_ID: &'static str = "DefE";
 
const PREFIX_UNION_ID: &'static str = "DefU";
 
const PREFIX_COMPONENT_ID: &'static str = "DefC";
 
const PREFIX_FUNCTION_ID: &'static str = "DefF";
 
const PREFIX_STMT_ID: &'static str = "Stmt";
 
const PREFIX_BLOCK_STMT_ID: &'static str = "SBl ";
 
const PREFIX_ENDBLOCK_STMT_ID: &'static str = "SEBl";
 
const PREFIX_LOCAL_STMT_ID: &'static str = "SLoc";
 
const PREFIX_MEM_STMT_ID: &'static str = "SMem";
 
const PREFIX_CHANNEL_STMT_ID: &'static str = "SCha";
 
const PREFIX_SKIP_STMT_ID: &'static str = "SSki";
 
const PREFIX_LABELED_STMT_ID: &'static str = "SLab";
 
const PREFIX_IF_STMT_ID: &'static str = "SIf ";
 
const PREFIX_ENDIF_STMT_ID: &'static str = "SEIf";
 
const PREFIX_WHILE_STMT_ID: &'static str = "SWhi";
 
const PREFIX_ENDWHILE_STMT_ID: &'static str = "SEWh";
 
const PREFIX_BREAK_STMT_ID: &'static str = "SBre";
 
const PREFIX_CONTINUE_STMT_ID: &'static str = "SCon";
 
const PREFIX_SYNC_STMT_ID: &'static str = "SSyn";
 
const PREFIX_ENDSYNC_STMT_ID: &'static str = "SESy";
 
const PREFIX_FORK_STMT_ID: &'static str = "SFrk";
 
const PREFIX_END_FORK_STMT_ID: &'static str = "SEFk";
 
const PREFIX_RETURN_STMT_ID: &'static str = "SRet";
 
const PREFIX_ASSERT_STMT_ID: &'static str = "SAsr";
 
const PREFIX_GOTO_STMT_ID: &'static str = "SGot";
 
const PREFIX_NEW_STMT_ID: &'static str = "SNew";
 
const PREFIX_PUT_STMT_ID: &'static str = "SPut";
 
const PREFIX_EXPR_STMT_ID: &'static str = "SExp";
 
const PREFIX_ASSIGNMENT_EXPR_ID: &'static str = "EAsi";
 
const PREFIX_BINDING_EXPR_ID: &'static str = "EBnd";
 
const PREFIX_CONDITIONAL_EXPR_ID: &'static str = "ECnd";
 
const PREFIX_BINARY_EXPR_ID: &'static str = "EBin";
 
const PREFIX_UNARY_EXPR_ID: &'static str = "EUna";
 
const PREFIX_INDEXING_EXPR_ID: &'static str = "EIdx";
 
const PREFIX_SLICING_EXPR_ID: &'static str = "ESli";
 
const PREFIX_SELECT_EXPR_ID: &'static str = "ESel";
 
const PREFIX_LITERAL_EXPR_ID: &'static str = "ELit";
 
const PREFIX_CAST_EXPR_ID: &'static str = "ECas";
 
const PREFIX_CALL_EXPR_ID: &'static str = "ECll";
 
const PREFIX_VARIABLE_EXPR_ID: &'static str = "EVar";
 

	
 
struct KV<'a> {
 
    buffer: &'a mut String,
 
    prefix: Option<(&'static str, i32)>,
 
    indent: usize,
 
    temp_key: &'a mut String,
 
    temp_val: &'a mut String,
 
}
 

	
 
impl<'a> KV<'a> {
 
    fn new(buffer: &'a mut String, temp_key: &'a mut String, temp_val: &'a mut String, indent: usize) -> Self {
 
        temp_key.clear();
 
        temp_val.clear();
 
        KV{
 
            buffer,
 
            prefix: None,
 
            indent,
 
            temp_key,
 
            temp_val
 
        }
 
    }
 

	
 
    fn with_id(mut self, prefix: &'static str, id: i32) -> Self {
 
        self.prefix = Some((prefix, id));
 
        self
 
    }
 

	
 
    fn with_s_key(self, key: &str) -> Self {
 
        self.temp_key.push_str(key);
 
        self
 
@@ -466,96 +468,114 @@ impl ASTWriter {
 
            },
 
            Statement::While(stmt) => {
 
                self.kv(indent).with_id(PREFIX_WHILE_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("While");
 

	
 
                self.kv(indent2).with_s_key("EndWhile").with_disp_val(&stmt.end_while.0.index);
 
                self.kv(indent2).with_s_key("InSync")
 
                    .with_disp_val(&stmt.in_sync.0.index);
 
                self.kv(indent2).with_s_key("Condition");
 
                self.write_expr(heap, stmt.test, indent3);
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, stmt.body.upcast(), indent3);
 
            },
 
            Statement::EndWhile(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDWHILE_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndWhile");
 
                self.kv(indent2).with_s_key("StartWhile").with_disp_val(&stmt.start_while.0.index);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::Break(stmt) => {
 
                self.kv(indent).with_id(PREFIX_BREAK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Break");
 
                self.kv(indent2).with_s_key("Label")
 
                    .with_opt_identifier_val(stmt.label.as_ref());
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(stmt.target.as_ref().map(|v| &v.0.index));
 
            },
 
            Statement::Continue(stmt) => {
 
                self.kv(indent).with_id(PREFIX_CONTINUE_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Continue");
 
                self.kv(indent2).with_s_key("Label")
 
                    .with_opt_identifier_val(stmt.label.as_ref());
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(stmt.target.as_ref().map(|v| &v.0.index));
 
            },
 
            Statement::Synchronous(stmt) => {
 
                self.kv(indent).with_id(PREFIX_SYNC_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Synchronous");
 
                self.kv(indent2).with_s_key("EndSync").with_disp_val(&stmt.end_sync.0.index);
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, stmt.body.upcast(), indent3);
 
            },
 
            Statement::EndSynchronous(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDSYNC_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndSynchronous");
 
                self.kv(indent2).with_s_key("StartSync").with_disp_val(&stmt.start_sync.0.index);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::Fork(stmt) => {
 
                self.kv(indent).with_id(PREFIX_FORK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Fork");
 
                self.kv(indent2).with_s_key("EndFork").with_disp_val(&stmt.end_fork.0.index);
 
                self.kv(indent2).with_s_key("LeftBody");
 
                self.write_stmt(heap, stmt.left_body.upcast(), indent3);
 

	
 
                if let Some(right_body_id) = stmt.right_body {
 
                    self.kv(indent2).with_s_key("RightBody");
 
                    self.write_stmt(heap, right_body_id.upcast(), indent3);
 
                }
 
            },
 
            Statement::EndFork(stmt) => {
 
                self.kv(indent).with_id(PREFIX_END_FORK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndFork");
 
                self.kv(indent2).with_s_key("StartFork").with_disp_val(&stmt.start_fork.0.index);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            }
 
            Statement::Return(stmt) => {
 
                self.kv(indent).with_id(PREFIX_RETURN_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Return");
 
                self.kv(indent2).with_s_key("Expressions");
 
                for expr_id in &stmt.expressions {
 
                    self.write_expr(heap, *expr_id, indent3);
 
                }
 
            },
 
            Statement::Goto(stmt) => {
 
                self.kv(indent).with_id(PREFIX_GOTO_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Goto");
 
                self.kv(indent2).with_s_key("Label").with_identifier_val(&stmt.label);
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(stmt.target.as_ref().map(|v| &v.0.index));
 
            },
 
            Statement::New(stmt) => {
 
                self.kv(indent).with_id(PREFIX_NEW_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("New");
 
                self.kv(indent2).with_s_key("Expression");
 
                self.write_expr(heap, stmt.expression.upcast(), indent3);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::Expression(stmt) => {
 
                self.kv(indent).with_id(PREFIX_EXPR_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("ExpressionStatement");
 
                self.write_expr(heap, stmt.expression, indent2);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            }
 
        }
 
    }
 

	
 
    fn write_expr(&mut self, heap: &Heap, expr_id: ExpressionId, indent: usize) {
 
        let expr = &heap[expr_id];
 
        let indent2 = indent + 1;
 
        let indent3 = indent2 + 1;
 

	
 
        match expr {
 
            Expression::Assignment(expr) => {
 
                self.kv(indent).with_id(PREFIX_ASSIGNMENT_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("AssignmentExpr");
 
                self.kv(indent2).with_s_key("Operation").with_debug_val(&expr.operation);
 
                self.kv(indent2).with_s_key("Left");
 
                self.write_expr(heap, expr.left, indent3);
 
                self.kv(indent2).with_s_key("Right");
 
                self.write_expr(heap, expr.right, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
src/runtime2/branch.rs
Show inline comments
 
@@ -20,137 +20,141 @@ trait BranchListItem {
 
pub struct BranchId {
 
    pub index: u32
 
}
 

	
 
impl BranchId {
 
    #[inline]
 
    pub(crate) fn new_invalid() -> Self {
 
        return Self{ index: 0 };
 
    }
 

	
 
    #[inline]
 
    fn new(index: u32) -> Self {
 
        debug_assert!(index != 0);
 
        return Self{ index };
 
    }
 

	
 
    #[inline]
 
    pub(crate) fn is_valid(&self) -> bool {
 
        return self.index != 0;
 
    }
 
}
 

	
 
#[derive(Debug, PartialEq, Eq)]
 
pub(crate) enum SpeculativeState {
 
    // Non-synchronous variants
 
    RunningNonSync,         // regular execution of code
 
    Error,                  // encountered a runtime error
 
    Finished,               // finished executing connector's code
 
    // Synchronous variants
 
    RunningInSync,          // running within a sync block
 
    HaltedAtBranchPoint,    // at a branching point (at a `get` call)
 
    ReachedSyncEnd,         // reached end of sync block, branch represents a local solution
 
    Inconsistent,           // branch can never represent a local solution, so halted
 
}
 

	
 
/// The execution state of a branch. This envelops the PDL code and the
 
/// execution state. And derived from that: if we're ready to keep running the
 
/// code, or if we're halted for some reason (e.g. waiting for a message).
 
pub(crate) struct Branch {
 
    pub id: BranchId,
 
    pub parent_id: BranchId,
 
    // Execution state
 
    pub code_state: ComponentState,
 
    pub sync_state: SpeculativeState,
 
    pub awaiting_port: PortIdLocal, // only valid if in "awaiting message" queue. TODO: Maybe put in enum
 
    pub next_in_queue: BranchId, // used by `ExecTree`/`BranchQueue`
 
    pub inbox: HashMap<PortIdLocal, ValueGroup>, // TODO: Remove, currently only valid in single-get/put mode
 
    pub prepared_channel: Option<(Value, Value)>, // TODO: Maybe remove?
 
    pub prepared_fork: Option<bool>, // TODO: See above
 
}
 

	
 
impl BranchListItem for Branch {
 
    #[inline] fn get_id(&self) -> BranchId { return self.id; }
 
    #[inline] fn set_next_id(&mut self, id: BranchId) { self.next_in_queue = id; }
 
    #[inline] fn get_next_id(&self) -> BranchId { return self.next_in_queue; }
 
}
 

	
 
impl Branch {
 
    /// Creates a new non-speculative branch
 
    pub(crate) fn new_non_sync(component_state: ComponentState) -> Self {
 
        Branch {
 
            id: BranchId::new_invalid(),
 
            parent_id: BranchId::new_invalid(),
 
            code_state: component_state,
 
            sync_state: SpeculativeState::RunningNonSync,
 
            awaiting_port: PortIdLocal::new_invalid(),
 
            next_in_queue: BranchId::new_invalid(),
 
            inbox: HashMap::new(),
 
            prepared_channel: None,
 
            prepared_fork: None,
 
        }
 
    }
 

	
 
    /// Constructs a sync branch. The provided branch is assumed to be the
 
    /// parent of the new branch within the execution tree.
 
    fn new_sync(new_index: u32, parent_branch: &Branch) -> Self {
 
        debug_assert!(
 
            (parent_branch.sync_state == SpeculativeState::RunningNonSync && !parent_branch.parent_id.is_valid()) ||
 
            (parent_branch.sync_state == SpeculativeState::HaltedAtBranchPoint)
 
        ); // forking from non-sync, or forking from a branching point
 
        // debug_assert!(
 
        //     (parent_branch.sync_state == SpeculativeState::RunningNonSync && !parent_branch.parent_id.is_valid()) ||
 
        //     (parent_branch.sync_state == SpeculativeState::HaltedAtBranchPoint)
 
        // ); // forking from non-sync, or forking from a branching point
 
        debug_assert!(parent_branch.prepared_channel.is_none());
 
        debug_assert!(parent_branch.prepared_fork.is_none());
 

	
 
        Branch {
 
            id: BranchId::new(new_index),
 
            parent_id: parent_branch.id,
 
            code_state: parent_branch.code_state.clone(),
 
            sync_state: SpeculativeState::RunningInSync,
 
            awaiting_port: parent_branch.awaiting_port,
 
            next_in_queue: BranchId::new_invalid(),
 
            inbox: parent_branch.inbox.clone(),
 
            prepared_channel: None,
 
            prepared_fork: None,
 
        }
 
    }
 

	
 
    /// Inserts a message into the branch for retrieval by a corresponding
 
    /// `get(port)` call.
 
    pub(crate) fn insert_message(&mut self, target_port: PortIdLocal, contents: ValueGroup) {
 
        debug_assert!(target_port.is_valid());
 
        debug_assert!(self.awaiting_port == target_port);
 
        self.awaiting_port = PortIdLocal::new_invalid();
 
        self.inbox.insert(target_port, contents);
 
    }
 
}
 

	
 
/// Queue of branches. Just a little helper.
 
#[derive(Copy, Clone)]
 
struct BranchQueue {
 
    first: BranchId,
 
    last: BranchId,
 
}
 

	
 
impl BranchQueue {
 
    #[inline]
 
    fn new() -> Self {
 
        Self{
 
            first: BranchId::new_invalid(),
 
            last: BranchId::new_invalid()
 
        }
 
    }
 

	
 
    #[inline]
 
    fn is_empty(&self) -> bool {
 
        debug_assert!(self.first.is_valid() == self.last.is_valid());
 
        return !self.first.is_valid();
 
    }
 
}
 

	
 
const NUM_QUEUES: usize = 3;
 

	
 
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
 
pub(crate) enum QueueKind {
 
    Runnable,
 
    AwaitingMessage,
 
    FinishedSync,
 
}
 

	
 
impl QueueKind {
 
    fn as_index(&self) -> usize {
 
        return match self {
src/runtime2/connector.rs
Show inline comments
 
@@ -30,122 +30,127 @@ use std::collections::HashMap;
 
use std::sync::atomic::AtomicBool;
 

	
 
use crate::PortId;
 
use crate::common::ComponentState;
 
use crate::protocol::eval::{Prompt, Value, ValueGroup};
 
use crate::protocol::{RunContext, RunResult};
 

	
 
use super::branch::{BranchId, ExecTree, QueueKind, SpeculativeState};
 
use super::consensus::{Consensus, Consistency, find_ports_in_value_group};
 
use super::inbox::{DataMessage, DataContent, Message, SyncMessage, PublicInbox};
 
use super::native::Connector;
 
use super::port::{PortKind, PortIdLocal};
 
use super::scheduler::{ComponentCtx, SchedulerCtx};
 

	
 
pub(crate) struct ConnectorPublic {
 
    pub inbox: PublicInbox,
 
    pub sleeping: AtomicBool,
 
}
 

	
 
impl ConnectorPublic {
 
    pub fn new(initialize_as_sleeping: bool) -> Self {
 
        ConnectorPublic{
 
            inbox: PublicInbox::new(),
 
            sleeping: AtomicBool::new(initialize_as_sleeping),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Eq, PartialEq)]
 
pub(crate) enum ConnectorScheduling {
 
    Immediate,      // Run again, immediately
 
    Later,          // Schedule for running, at some later point in time
 
    NotNow,         // Do not reschedule for running
 
    Exit,           // Connector has exited
 
}
 

	
 
pub(crate) struct ConnectorPDL {
 
    tree: ExecTree,
 
    consensus: Consensus,
 
    last_finished_handled: Option<BranchId>,
 
}
 

	
 
struct ConnectorRunContext<'a> {
 
    branch_id: BranchId,
 
    consensus: &'a Consensus,
 
    received: &'a HashMap<PortIdLocal, ValueGroup>,
 
    scheduler: SchedulerCtx<'a>,
 
    prepared_channel: Option<(Value, Value)>,
 
    prepared_fork: Option<bool>,
 
}
 

	
 
impl<'a> RunContext for ConnectorRunContext<'a>{
 
    fn did_put(&mut self, port: PortId) -> bool {
 
        let port_id = PortIdLocal::new(port.0.u32_suffix);
 
        let annotation = self.consensus.get_annotation(self.branch_id, port_id);
 
        return annotation.registered_id.is_some();
 
    }
 

	
 
    fn get(&mut self, port: PortId) -> Option<ValueGroup> {
 
        let port_id = PortIdLocal::new(port.0.u32_suffix);
 
        match self.received.get(&port_id) {
 
            Some(data) => Some(data.clone()),
 
            None => None,
 
        }
 
    }
 

	
 
    fn fires(&mut self, port: PortId) -> Option<Value> {
 
        let port_id = PortIdLocal::new(port.0.u32_suffix);
 
        let annotation = self.consensus.get_annotation(self.branch_id, port_id);
 
        return annotation.expected_firing.map(|v| Value::Bool(v));
 
    }
 

	
 
    fn get_channel(&mut self) -> Option<(Value, Value)> {
 
        return self.prepared_channel.take();
 
    }
 

	
 
    fn get_fork(&mut self) -> Option<bool> {
 
        return self.prepared_fork.take();
 
    }
 
}
 

	
 
impl Connector for ConnectorPDL {
 
    fn run(&mut self, sched_ctx: SchedulerCtx, comp_ctx: &mut ComponentCtx) -> ConnectorScheduling {
 
        self.handle_new_messages(comp_ctx);
 
        if self.tree.is_in_sync() {
 
            // Run in sync mode
 
            let scheduling = self.run_in_sync_mode(sched_ctx, comp_ctx);
 

	
 
            // Handle any new finished branches
 
            let mut iter_id = self.last_finished_handled.or(self.tree.get_queue_first(QueueKind::FinishedSync));
 
            while let Some(branch_id) = iter_id {
 
                iter_id = self.tree.get_queue_next(branch_id);
 
                self.last_finished_handled = Some(branch_id);
 

	
 

	
 
                if let Some(solution_branch_id) = self.consensus.handle_new_finished_sync_branch(branch_id, comp_ctx) {
 
                    // Actually found a solution
 
                    self.collapse_sync_to_solution_branch(solution_branch_id, comp_ctx);
 
                    return ConnectorScheduling::Immediate;
 
                }
 

	
 
                self.last_finished_handled = Some(branch_id);
 
            }
 

	
 
            return scheduling;
 
        } else {
 
            let scheduling = self.run_in_deterministic_mode(sched_ctx, comp_ctx);
 
            return scheduling;
 
        }
 
    }
 
}
 

	
 
impl ConnectorPDL {
 
    pub fn new(initial: ComponentState) -> Self {
 
        Self{
 
            tree: ExecTree::new(initial),
 
            consensus: Consensus::new(),
 
            last_finished_handled: None,
 
        }
 
    }
 

	
 
    // --- Handling messages
 

	
 
    pub fn handle_new_messages(&mut self, ctx: &mut ComponentCtx) {
 
        while let Some(message) = ctx.read_next_message() {
 
            match message {
 
                Message::Data(message) => self.handle_new_data_message(message, ctx),
 
@@ -165,221 +170,238 @@ impl ConnectorPDL {
 

	
 
        let mut iter_id = self.tree.get_queue_first(QueueKind::AwaitingMessage);
 
        while let Some(branch_id) = iter_id {
 
            iter_id = self.tree.get_queue_next(branch_id);
 

	
 
            let branch = &self.tree[branch_id];
 
            if branch.awaiting_port != message.data_header.target_port { continue; }
 
            if !self.consensus.branch_can_receive(branch_id, &message) { continue; }
 

	
 
            // This branch can receive, so fork and given it the message
 
            let receiving_branch_id = self.tree.fork_branch(branch_id);
 
            self.consensus.notify_of_new_branch(branch_id, receiving_branch_id);
 
            let receiving_branch = &mut self.tree[receiving_branch_id];
 

	
 
            receiving_branch.insert_message(message.data_header.target_port, message.content.as_message().unwrap().clone());
 
            self.consensus.notify_of_received_message(receiving_branch_id, &message);
 

	
 
            // And prepare the branch for running
 
            self.tree.push_into_queue(QueueKind::Runnable, receiving_branch_id);
 
        }
 
    }
 

	
 
    pub fn handle_new_sync_message(&mut self, message: SyncMessage, ctx: &mut ComponentCtx) {
 
        if let Some(solution_branch_id) = self.consensus.handle_new_sync_message(message, ctx) {
 
            self.collapse_sync_to_solution_branch(solution_branch_id, ctx);
 
        }
 
    }
 

	
 
    // --- Running code
 

	
 
    pub fn run_in_sync_mode(&mut self, sched_ctx: SchedulerCtx, comp_ctx: &mut ComponentCtx) -> ConnectorScheduling {
 
        // Check if we have any branch that needs running
 
        debug_assert!(self.tree.is_in_sync() && self.consensus.is_in_sync());
 
        let branch_id = self.tree.pop_from_queue(QueueKind::Runnable);
 
        if branch_id.is_none() {
 
            return ConnectorScheduling::NotNow;
 
        }
 

	
 
        // Retrieve the branch and run it
 
        let branch_id = branch_id.unwrap();
 
        let branch = &mut self.tree[branch_id];
 

	
 
        let mut run_context = ConnectorRunContext{
 
            branch_id,
 
            consensus: &self.consensus,
 
            received: &branch.inbox,
 
            scheduler: sched_ctx,
 
            prepared_channel: branch.prepared_channel.take(),
 
            prepared_fork: branch.prepared_fork.take(),
 
        };
 
        let run_result = branch.code_state.run(&mut run_context, &sched_ctx.runtime.protocol_description);
 

	
 
        // Handle the returned result. Note that this match statement contains
 
        // explicit returns in case the run result requires that the component's
 
        // code is ran again immediately
 
        match run_result {
 
            RunResult::BranchInconsistent => {
 
                // Branch became inconsistent
 
                branch.sync_state = SpeculativeState::Inconsistent;
 
            },
 
            RunResult::BranchMissingPortState(port_id) => {
 
                // Branch called `fires()` on a port that has not been used yet.
 
                let port_id = PortIdLocal::new(port_id.0.u32_suffix);
 

	
 
                // Create two forks, one that assumes the port will fire, and
 
                // one that assumes the port remains silent
 
                branch.sync_state = SpeculativeState::HaltedAtBranchPoint;
 

	
 
                let firing_branch_id = self.tree.fork_branch(branch_id);
 
                let silent_branch_id = self.tree.fork_branch(branch_id);
 
                self.consensus.notify_of_new_branch(branch_id, firing_branch_id);
 
                let _result = self.consensus.notify_of_speculative_mapping(firing_branch_id, port_id, true);
 
                debug_assert_eq!(_result, Consistency::Valid);
 
                self.consensus.notify_of_new_branch(branch_id, silent_branch_id);
 
                let _result = self.consensus.notify_of_speculative_mapping(silent_branch_id, port_id, false);
 
                debug_assert_eq!(_result, Consistency::Valid);
 

	
 
                // Somewhat important: we push the firing one first, such that
 
                // that branch is ran again immediately.
 
                self.tree.push_into_queue(QueueKind::Runnable, firing_branch_id);
 
                self.tree.push_into_queue(QueueKind::Runnable, silent_branch_id);
 

	
 
                return ConnectorScheduling::Immediate;
 
            },
 
            RunResult::BranchMissingPortValue(port_id) => {
 
                // Branch performed a `get()` on a port that does not have a
 
                // received message on that port.
 
                let port_id = PortIdLocal::new(port_id.0.u32_suffix);
 
                let consistency = self.consensus.notify_of_speculative_mapping(branch_id, port_id, true);
 
                if consistency == Consistency::Valid {
 
                    // `get()` is valid, so mark the branch as awaiting a message
 
                    branch.sync_state = SpeculativeState::HaltedAtBranchPoint;
 
                    branch.awaiting_port = port_id;
 
                    self.tree.push_into_queue(QueueKind::AwaitingMessage, branch_id);
 

	
 
                    // Note: we only know that a branch is waiting on a message when
 
                    // it reaches the `get` call. But we might have already received
 
                    // a message that targets this branch, so check now.
 
                    let mut any_message_received = false;
 
                    for message in comp_ctx.get_read_data_messages(port_id) {
 
                        if self.consensus.branch_can_receive(branch_id, &message) {
 
                            // This branch can receive the message, so we do the
 
                            // fork-and-receive dance
 
                            let receiving_branch_id = self.tree.fork_branch(branch_id);
 
                            let branch = &mut self.tree[receiving_branch_id];
 

	
 
                            branch.insert_message(port_id, message.content.as_message().unwrap().clone());
 

	
 
                            self.consensus.notify_of_new_branch(branch_id, receiving_branch_id);
 
                            self.consensus.notify_of_received_message(receiving_branch_id, &message);
 
                            self.tree.push_into_queue(QueueKind::Runnable, receiving_branch_id);
 

	
 
                            any_message_received = true;
 
                        }
 
                    }
 

	
 
                    if any_message_received {
 
                        return ConnectorScheduling::Immediate;
 
                    }
 
                } else {
 
                    branch.sync_state = SpeculativeState::Inconsistent;
 
                }
 
            }
 
            RunResult::BranchAtSyncEnd => {
 
                let consistency = self.consensus.notify_of_finished_branch(branch_id);
 
                if consistency == Consistency::Valid {
 
                    branch.sync_state = SpeculativeState::ReachedSyncEnd;
 
                    self.tree.push_into_queue(QueueKind::FinishedSync, branch_id);
 
                } else {
 
                    branch.sync_state = SpeculativeState::Inconsistent;
 
                }
 
            },
 
            RunResult::BranchFork => {
 
                // Like the `NewChannel` result. This means we're setting up
 
                // a branch and putting a marker inside the RunContext for the
 
                // next time we run the PDL code
 
                let left_id = branch_id;
 
                let right_id = self.tree.fork_branch(left_id);
 
                self.consensus.notify_of_new_branch(left_id, right_id);
 
                self.tree.push_into_queue(QueueKind::Runnable, left_id);
 
                self.tree.push_into_queue(QueueKind::Runnable, right_id);
 

	
 
                let left_branch = &mut self.tree[left_id];
 
                left_branch.prepared_fork = Some(true);
 
                let right_branch = &mut self.tree[right_id];
 
                right_branch.prepared_fork = Some(false);
 
            }
 
            RunResult::BranchPut(port_id, content) => {
 
                // Branch is attempting to send data
 
                let port_id = PortIdLocal::new(port_id.0.u32_suffix);
 
                let consistency = self.consensus.notify_of_speculative_mapping(branch_id, port_id, true);
 
                if consistency == Consistency::Valid {
 
                    // `put()` is valid.
 
                    let (sync_header, data_header) = self.consensus.handle_message_to_send(branch_id, port_id, &content, comp_ctx);
 
                    comp_ctx.submit_message(Message::Data(DataMessage {
 
                        sync_header, data_header,
 
                        content: DataContent::Message(content),
 
                    }));
 

	
 
                    self.tree.push_into_queue(QueueKind::Runnable, branch_id);
 
                    return ConnectorScheduling::Immediate;
 
                } else {
 
                    branch.sync_state = SpeculativeState::Inconsistent;
 
                }
 
            },
 
            _ => unreachable!("unexpected run result {:?} in sync mode", run_result),
 
        }
 

	
 
        // If here then the run result did not require a particular action. We
 
        // return whether we have more active branches to run or not.
 
        if self.tree.queue_is_empty(QueueKind::Runnable) {
 
            return ConnectorScheduling::NotNow;
 
        } else {
 
            return ConnectorScheduling::Later;
 
        }
 
    }
 

	
 
    pub fn run_in_deterministic_mode(&mut self, sched_ctx: SchedulerCtx, comp_ctx: &mut ComponentCtx) -> ConnectorScheduling {
 
        debug_assert!(!self.tree.is_in_sync() && !self.consensus.is_in_sync());
 

	
 
        let branch = self.tree.base_branch_mut();
 
        debug_assert!(branch.sync_state == SpeculativeState::RunningNonSync);
 

	
 
        let mut run_context = ConnectorRunContext{
 
            branch_id: branch.id,
 
            consensus: &self.consensus,
 
            received: &branch.inbox,
 
            scheduler: sched_ctx,
 
            prepared_channel: branch.prepared_channel.take(),
 
            prepared_fork: branch.prepared_fork.take(),
 
        };
 
        let run_result = branch.code_state.run(&mut run_context, &sched_ctx.runtime.protocol_description);
 

	
 
        match run_result {
 
            RunResult::ComponentTerminated => {
 
                branch.sync_state = SpeculativeState::Finished;
 

	
 
                return ConnectorScheduling::Exit;
 
            },
 
            RunResult::ComponentAtSyncStart => {
 
                comp_ctx.notify_sync_start();
 
                let sync_branch_id = self.tree.start_sync();
 
                debug_assert!(self.last_finished_handled.is_none());
 
                self.consensus.start_sync(comp_ctx);
 
                self.consensus.notify_of_new_branch(BranchId::new_invalid(), sync_branch_id);
 
                self.tree.push_into_queue(QueueKind::Runnable, sync_branch_id);
 

	
 
                return ConnectorScheduling::Immediate;
 
            },
 
            RunResult::NewComponent(definition_id, monomorph_idx, arguments) => {
 
                // Note: we're relinquishing ownership of ports. But because
 
                // we are in non-sync mode the scheduler will handle and check
 
                // port ownership transfer.
 
                debug_assert!(comp_ctx.workspace_ports.is_empty());
 
                find_ports_in_value_group(&arguments, &mut comp_ctx.workspace_ports);
 

	
 
                let new_state = ComponentState {
 
                    prompt: Prompt::new(
 
                        &sched_ctx.runtime.protocol_description.types,
 
                        &sched_ctx.runtime.protocol_description.heap,
 
                        definition_id, monomorph_idx, arguments
 
                    ),
 
                };
 
                let new_component = ConnectorPDL::new(new_state);
 
                comp_ctx.push_component(new_component, comp_ctx.workspace_ports.clone());
 
                comp_ctx.workspace_ports.clear();
 

	
 
                return ConnectorScheduling::Later;
 
            },
 
            RunResult::NewChannel => {
 
                let (getter, putter) = sched_ctx.runtime.create_channel(comp_ctx.id);
 
                debug_assert!(getter.kind == PortKind::Getter && putter.kind == PortKind::Putter);
 
                branch.prepared_channel = Some((
 
                    Value::Output(PortId::new(putter.self_id.index)),
 
                    Value::Input(PortId::new(getter.self_id.index)),
 
                ));
 

	
 
                comp_ctx.push_port(putter);
src/runtime2/tests/api_component.rs
Show inline comments
 
@@ -77,48 +77,82 @@ fn test_getting_from_component() {
 
            ApplicationSyncAction::Get(channel.getter_id),
 
        ]).expect("start sync round");
 

	
 
        let result = api.wait().expect("finish sync round");
 

	
 
        assert!(result.len() == 1 && result[0].values.len() == 1);
 
        if let Value::UInt32(gotten) = result[0].values[0] {
 
            assert_eq!(gotten, 1337 + loop_idx);
 
        } else {
 
            assert!(false);
 
        }
 
    }
 
}
 

	
 
#[test]
 
fn test_putting_to_component() {
 
    const CODE: &'static str = "
 
    primitive loop_receiver(in<u32> numbers, u32 cur, u32 last) {
 
        while (cur < last) {
 
            sync {
 
                auto number = get(numbers);
 
                assert(number == cur);
 
                cur += 1;
 
            }
 
        }
 
    }
 
    ";
 

	
 
    let pd = ProtocolDescription::parse(CODE.as_bytes()).unwrap();
 
    let rt = Runtime::new(NUM_THREADS, pd);
 
    let mut api = rt.create_interface();
 

	
 
    let channel = api.create_channel().unwrap();
 
    api.create_connector("", "loop_receiver", ValueGroup::new_stack(vec![
 
        Value::Input(PortId::new(channel.getter_id.index)),
 
        Value::UInt32(42),
 
        Value::UInt32(42 + NUM_LOOPS)
 
    ])).unwrap();
 

	
 
    for loop_idx in 0..NUM_LOOPS {
 
        api.perform_sync_round(vec![
 
            ApplicationSyncAction::Put(channel.putter_id, ValueGroup::new_stack(vec![Value::UInt32(42 + loop_idx)])),
 
        ]).expect("start sync round");
 

	
 
        // Note: if we finish a round, then it must have succeeded :)
 
        api.wait().expect("finish sync round");
 
    }
 
}
 

	
 
#[test]
 
fn test_doing_nothing() {
 
    const CODE: &'static str = "
 
    primitive getter(in<bool> input, u32 num_loops) {
 
        u32 index = 0;
 
        while (index < num_loops) {
 
            sync {}
 
            sync { auto res = get(input); assert(res); }
 
            index += 1;
 
        }
 
    }
 
    ";
 

	
 
    let pd = ProtocolDescription::parse(CODE.as_bytes()).unwrap();
 
    let rt = Runtime::new(NUM_THREADS, pd);
 
    let mut api = rt.create_interface();
 

	
 
    let channel = api.create_channel().unwrap();
 
    api.create_connector("", "getter", ValueGroup::new_stack(vec![
 
        Value::Input(PortId::new(channel.getter_id.index)),
 
        Value::UInt32(NUM_LOOPS),
 
    ])).unwrap();
 

	
 
    for _ in 0..NUM_LOOPS {
 
        api.perform_sync_round(vec![]).expect("start silent sync round");
 
        api.wait().expect("finish silent sync round");
 
        api.perform_sync_round(vec![
 
            ApplicationSyncAction::Put(channel.putter_id, ValueGroup::new_stack(vec![Value::Bool(true)]))
 
        ]).expect("start firing sync round");
 
        let res = api.wait().expect("finish firing sync round");
 
        assert!(res.is_empty());
 
    }
 
}
 
\ No newline at end of file
src/runtime2/tests/mod.rs
Show inline comments
 
mod network_shapes;
 
mod api_component;
 
mod speculation_basic;
 

	
 
use super::*;
 
use crate::{PortId, ProtocolDescription};
 
use crate::common::Id;
 
use crate::protocol::eval::*;
 
use crate::runtime2::native::{ApplicationSyncAction};
 

	
 
//
 

	
 
// Generic testing constants, use when appropriate to simplify stress-testing
 
pub(crate) const NUM_THREADS: u32 = 3;     // number of threads in runtime
 
pub(crate) const NUM_INSTANCES: u32 = 5;   // number of test instances constructed
 
pub(crate) const NUM_LOOPS: u32 = 5;       // number of loops within a single test (not used by all tests)
 

	
 
fn create_runtime(pdl: &str) -> Runtime {
 
    let protocol = ProtocolDescription::parse(pdl.as_bytes()).expect("parse pdl");
 
    let runtime = Runtime::new(NUM_THREADS, protocol);
 

	
 
    return runtime;
 
}
 

	
 
fn run_test_in_runtime<F: Fn(&mut ApplicationInterface)>(pdl: &str, constructor: F) {
 
    let protocol = ProtocolDescription::parse(pdl.as_bytes())
 
        .expect("parse PDL");
 
    let runtime = Runtime::new(NUM_THREADS, protocol);
 

	
 
    let mut api = runtime.create_interface();
 
    for _ in 0..NUM_INSTANCES {
 
        constructor(&mut api);
 
    }
 
}
 

	
 
pub(crate) struct TestTimer {
 
    name: &'static str,
 
    started: std::time::Instant
 
}
 

	
 
impl TestTimer {
 
    pub(crate) fn new(name: &'static str) -> Self {
 
        Self{ name, started: std::time::Instant::now() }
 
    }
 
}
 

	
 
impl Drop for TestTimer {
 
    fn drop(&mut self) {
 
        let delta = std::time::Instant::now() - self.started;
 
        let nanos = (delta.as_secs_f64() * 1_000_000.0) as u64;
 
        let millis = nanos / 1000;
src/runtime2/tests/speculation_basic.rs
Show inline comments
 
new file 100644
 
// Testing speculation - Basic forms
 

	
 
use super::*;
 

	
 
#[test]
 
fn test_maybe_do_nothing() {
 
    // Three variants in which the behaviour in which nothing is performed is
 
    // somehow not allowed. Note that we "check" by seeing if the test finishes.
 
    // Only the branches in which ports fire increment the loop index
 
    const CODE: &'static str = "
 
    primitive only_puts(out<bool> output, u32 num_loops) {
 
        u32 index = 0;
 
        while (index < num_loops) {
 
            sync { put(output, true); }
 
            index += 1;
 
        }
 
    }
 

	
 
    primitive might_put(out<bool> output, u32 num_loops) {
 
        u32 index = 0;
 
        while (index < num_loops) {
 
            sync {
 
                fork { put(output, true); index += 1; }
 
                or   {}
 
            }
 
        }
 
    }
 

	
 
    primitive only_gets(in<bool> input, u32 num_loops) {
 
        u32 index = 0;
 
        while (index < num_loops) {
 
            sync { auto res = get(input); assert(res); }
 
            index += 1;
 
        }
 
    }
 

	
 
    primitive might_get(in<bool> input, u32 num_loops) {
 
        u32 index = 0;
 
        while (index < num_loops) {
 
            sync fork { auto res = get(input); assert(res); index += 1; } or {}
 
        }
 
    }
 
    ";
 

	
 
    // Construct all variants which should work and wait until the runtime exits
 
    run_test_in_runtime(CODE, |api| {
 
        // only putting -> maybe getting
 
        let channel = api.create_channel().unwrap();
 
        api.create_connector("", "only_puts", ValueGroup::new_stack(vec![
 
            Value::Output(PortId::new(channel.putter_id.index)),
 
            Value::UInt32(NUM_LOOPS),
 
        ]));
 
        api.create_connector("", "might_get", ValueGroup::new_stack(vec![
 
            Value::Input(PortId::new(channel.getter_id.index)),
 
            Value::UInt32(NUM_LOOPS),
 
        ]));
 

	
 
        // maybe putting -> only getting
 
        let channel = api.create_channel().unwrap();
 
        api.create_connector("", "might_put", ValueGroup::new_stack(vec![
 
            Value::Output(PortId::new(channel.putter_id.index)),
 
            Value::UInt32(NUM_LOOPS),
 
        ]));
 
        api.create_connector("", "only_gets", ValueGroup::new_stack(vec![
 
            Value::Input(PortId::new(channel.getter_id.index)),
 
            Value::UInt32(NUM_LOOPS),
 
        ]));
 
    })
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)