Changeset - a67d4fde9cb5
[Not reviewed]
0 3 0
mh - 3 years ago 2022-02-23 14:08:11
contact@maxhenger.nl
Finish refactoring type table
3 files changed with 157 insertions and 102 deletions:
0 comments (0 inline, 0 general)
src/collections/scoped_buffer.rs
Show inline comments
 
@@ -95,98 +95,98 @@ impl<T: Sized> ScopedSection<T> {
 
        self.check_length();
 
        let vec = unsafe{&mut *self.inner};
 
        hide!(self.cur_size = self.start_size);
 
        vec.truncate(self.start_size as usize);
 
    }
 

	
 
    #[inline]
 
    #[allow(unused_mut)] // used in debug mode
 
    pub(crate) fn into_vec(mut self) -> Vec<T> {
 
        self.check_length();
 
        let vec = unsafe{&mut *self.inner};
 
        hide!(self.cur_size = self.start_size);
 
        let section = Vec::from_iter(vec.drain(self.start_size as usize..));
 
        section
 
    }
 

	
 
    #[inline]
 
    pub(crate) fn check_length(&self) {
 
        hide!({
 
            let vec = unsafe{&*self.inner};
 
            debug_assert_eq!(
 
                vec.len(), self.cur_size as usize,
 
                "incorrect use of ScopedSection: underlying storage vector has changed size"
 
            )
 
        })
 
    }
 
}
 

	
 
impl<T: Sized + PartialEq> ScopedSection<T> {
 
    #[inline]
 
    pub(crate) fn push_unique(&mut self, value: T) {
 
        self.check_length();
 
        let vec = unsafe{&mut *self.inner};
 
        for item in &vec[self.start_size as usize..] {
 
            if *item == value {
 
                // item already exists
 
                return;
 
            }
 
        }
 

	
 
        vec.push(value);
 
        hide!(self.cur_size += 1);
 
    }
 

	
 
    #[inline]
 
    pub(crate) fn contains(&self, value: &T) -> bool {
 
        self.check_length();
 
        let vec = unsafe{&*self.inner};
 
        for index in self.start_size..vec.len() {
 
            if vec[index] == value {
 
        for index in self.start_size as usize..vec.len() {
 
            if &vec[index] == value {
 
                return true;
 
            }
 
        }
 

	
 
        return false;
 
    }
 
}
 

	
 
impl<T: Copy> ScopedSection<T> {
 
    pub(crate) fn iter_copied(&self) -> ScopedIter<T> {
 
        return ScopedIter{
 
            inner: self.inner,
 
            cur_index: self.start_size,
 
            last_index: unsafe{ (*self.inner).len() as u32 },
 
        }
 
    }
 
}
 

	
 
impl<T> std::ops::Index<usize> for ScopedSection<T> {
 
    type Output = T;
 

	
 
    fn index(&self, index: usize) -> &Self::Output {
 
        let vec = unsafe{&*self.inner};
 
        return &vec[self.start_size as usize + index]
 
    }
 
}
 

	
 
impl<T> std::ops::IndexMut<usize> for ScopedSection<T> {
 
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
 
        let vec = unsafe{&mut *self.inner};
 
        return &mut vec[self.start_size as usize + index]
 
    }
 
}
 

	
 
#[cfg(debug_assertions)]
 
impl<T: Sized> Drop for ScopedSection<T> {
 
    fn drop(&mut self) {
 
        let vec = unsafe{&mut *self.inner};
 
        hide!(debug_assert_eq!(vec.len(), self.cur_size as usize));
 
        vec.truncate(self.start_size as usize);
 
    }
 
}
 

	
 
/// Small utility for iterating over a section of the buffer. Same conditions as
 
/// the buffer apply: each time we retrieve an element the buffer must have the
 
/// same size as the moment of creation.
 
pub(crate) struct ScopedIter<T: Copy> {
 
    inner: *mut Vec<T>,
src/protocol/parser/pass_typing.rs
Show inline comments
 
/// pass_typing
 
///
 
/// Performs type inference and type checking. Type inference is implemented by
 
/// applying constraints on (sub)trees of types. During this process the
 
/// resolver takes the `ParserType` structs (the representation of the types
 
/// written by the programmer), converts them to `InferenceType` structs (the
 
/// temporary data structure used during type inference) and attempts to arrive
 
/// at `ConcreteType` structs (the representation of a fully checked and
 
/// validated type).
 
///
 
/// The resolver will visit every statement and expression relevant to the
 
/// procedure and insert and determine its initial type based on context (e.g. a
 
/// return statement's expression must match the function's return type, an
 
/// if statement's test expression must evaluate to a boolean). When all are
 
/// visited we attempt to make progress in evaluating the types. Whenever a type
 
/// is progressed we queue the related expressions for further type progression.
 
/// Once no more expressions are in the queue the algorithm is finished. At this
 
/// point either all types are inferred (or can be trivially implicitly
 
/// determined), or we have incomplete types. In the latter case we return an
 
/// error.
 
///
 
/// TODO: Needs a thorough rewrite:
 
///  0. polymorph_progress is intentionally broken at the moment. Make it work
 
///     again and use a normal VecSomething.
 
///  1. The foundation for doing all of the work with predetermined indices
 
///     instead of with HashMaps is there, but it is not really used because of
 
///     time constraints. When time is available, rewrite the system such that
 
///     AST IDs are not needed, and only indices into arrays are used.
 
///  2. Remove the `msg` type?
 
///  3. Disallow certain types in certain operations (e.g. `Void`).
 

	
 
macro_rules! debug_log_enabled {
 
    () => { false };
 
}
 

	
 
macro_rules! debug_log {
 
    ($format:literal) => {
 
        enabled_debug_print!(false, "types", $format);
 
    };
 
    ($format:literal, $($args:expr),*) => {
 
        enabled_debug_print!(false, "types", $format, $($args),*);
 
    };
 
}
 

	
 
use std::collections::{HashMap, HashSet};
 

	
 
use crate::collections::{ScopedBuffer, ScopedSection, DequeSet};
 
use crate::protocol::ast::*;
 
use crate::protocol::input_source::ParseError;
 
use crate::protocol::parser::ModuleCompilationPhase;
 
use crate::protocol::parser::type_table::*;
 
use crate::protocol::parser::token_parsing::*;
 
use super::visitor::{
 
    BUFFER_INIT_CAP_LARGE,
 
    BUFFER_INIT_CAP_SMALL,
 
    Ctx,
 
};
 

	
 
// -----------------------------------------------------------------------------
 
// Inference type
 
// -----------------------------------------------------------------------------
 

	
 
const VOID_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::Void ];
 
const MESSAGE_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::Message, InferenceTypePart::UInt8 ];
 
const BOOL_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::Bool ];
 
const CHARACTER_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::Character ];
 
const STRING_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::String, InferenceTypePart::Character ];
 
const NUMBERLIKE_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::NumberLike ];
 
const INTEGERLIKE_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::IntegerLike ];
 
const ARRAY_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::Array, InferenceTypePart::Unknown ];
 
const SLICE_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::Slice, InferenceTypePart::Unknown ];
 
const ARRAYLIKE_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::ArrayLike, InferenceTypePart::Unknown ];
 

	
 
/// TODO: @performance Turn into PartialOrd+Ord to simplify checks
 
#[derive(Debug, Clone, Eq, PartialEq)]
 
pub(crate) enum InferenceTypePart {
 
    // When we infer types of AST elements that support polymorphic arguments,
 
    // then we might have the case that multiple embedded types depend on the
 
    // polymorphic type (e.g. func bla(T a, T[] b) -> T[][]). If we can infer
 
    // the type in one place (e.g. argument a), then we may propagate this
 
    // information to other types (e.g. argument b and the return type). For
 
    // this reason we place markers in the `InferenceType` instances such that
 
    // we know which part of the type was originally a polymorphic argument.
 
    Marker(u32),
 
    // Completely unknown type, needs to be inferred
 
    Unknown,
 
    // Partially known type, may be inferred to to be the appropriate related 
 
    // type.
 
    // IndexLike,      // index into array/slice
 
    NumberLike,     // any kind of integer/float
 
    IntegerLike,    // any kind of integer
 
    ArrayLike,      // array or slice. Note that this must have a subtype
 
    PortLike,       // input or output port
 
    // Special types that cannot be instantiated by the user
 
@@ -764,178 +762,180 @@ impl<'a> Iterator for InferenceTypeMarkerIter<'a> {
 
                // Modify internal index, then return items
 
                self.idx = end_idx;
 
                return Some((marker, &self.parts[start_idx..end_idx]));
 
            }
 

	
 
            self.idx += 1;
 
        }
 

	
 
        None
 
    }
 
}
 

	
 
#[derive(Debug, PartialEq, Eq)]
 
enum DualInferenceResult {
 
    Neither,        // neither argument is clarified
 
    First,          // first argument is clarified using the second one
 
    Second,         // second argument is clarified using the first one
 
    Both,           // both arguments are clarified
 
    Incompatible,   // types are incompatible: programmer error
 
}
 

	
 
impl DualInferenceResult {
 
    fn modified_lhs(&self) -> bool {
 
        match self {
 
            DualInferenceResult::First | DualInferenceResult::Both => true,
 
            _ => false
 
        }
 
    }
 
    fn modified_rhs(&self) -> bool {
 
        match self {
 
            DualInferenceResult::Second | DualInferenceResult::Both => true,
 
            _ => false
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, PartialEq, Eq)]
 
enum SingleInferenceResult {
 
    Unmodified,
 
    Modified,
 
    Incompatible
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// PassTyping - Public Interface
 
// -----------------------------------------------------------------------------
 

	
 
type InferNodeIndex = usize;
 
type PolyDataIndex = usize;
 
type PolyDataIndex = isize;
 
type VarDataIndex = usize;
 

	
 
enum DefinitionType{
 
    Component(ComponentDefinitionId),
 
    Function(FunctionDefinitionId),
 
}
 

	
 
impl DefinitionType {
 
    fn definition_id(&self) -> DefinitionId {
 
        match self {
 
            DefinitionType::Component(v) => v.upcast(),
 
            DefinitionType::Function(v) => v.upcast(),
 
        }
 
    }
 
}
 

	
 
pub(crate) struct ResolveQueueElement {
 
    // Note that using the `definition_id` and the `monomorph_idx` one may
 
    // query the type table for the full procedure type, thereby retrieving
 
    // the polymorphic arguments to the procedure.
 
    pub(crate) root_id: RootId,
 
    pub(crate) definition_id: DefinitionId,
 
    pub(crate) reserved_type_id: TypeId,
 
}
 

	
 
pub(crate) type ResolveQueue = Vec<ResolveQueueElement>;
 

	
 
#[derive(Clone)]
 
struct InferenceNode {
 
    expr_type: InferenceType,       // result type from expression
 
    expr_id: ExpressionId,          // expression that is evaluated
 
    inference_rule: InferenceRule,
 
    parent_index: Option<InferNodeIndex>,
 
    field_or_monomorph_index: i32,    // index of field
 
    poly_data_index: PolyDataIndex,            // index of extra data needed for inference
 
    type_id: TypeId,                // when applicable indexes into type table
 
}
 

	
 
/// Inferencing rule to apply. Some of these are reasonably generic. Other ones
 
/// require so much custom logic that we'll not try to come up with an
 
/// abstraction.
 
enum InferenceRule {
 
    Noop,
 
    MonoTemplate(InferenceRuleTemplate),
 
    BiEqual(InferenceRuleBiEqual),
 
    TriEqualArgs(InferenceRuleTriEqualArgs),
 
    TriEqualAll(InferenceRuleTriEqualAll),
 
    Concatenate(InferenceRuleTwoArgs),
 
    IndexingExpr(InferenceRuleIndexingExpr),
 
    SlicingExpr(InferenceRuleSlicingExpr),
 
    SelectStructField(InferenceRuleSelectStructField),
 
    SelectTupleMember(InferenceRuleSelectTupleMember),
 
    LiteralStruct(InferenceRuleLiteralStruct),
 
    LiteralEnum,
 
    LiteralUnion(InferenceRuleLiteralUnion),
 
    LiteralArray(InferenceRuleLiteralArray),
 
    LiteralTuple(InferenceRuleLiteralTuple),
 
    CastExpr(InferenceRuleCastExpr),
 
    CallExpr(InferenceRuleCallExpr),
 
    VariableExpr(InferenceRuleVariableExpr),
 
}
 

	
 
impl InferenceRule {
 
    union_cast_method_impl!(as_mono_template, InferenceRuleTemplate, InferenceRule::MonoTemplate);
 
    union_cast_method_impl!(as_bi_equal, InferenceRuleBiEqual, InferenceRule::BiEqual);
 
    union_cast_method_impl!(as_tri_equal_args, InferenceRuleTriEqualArgs, InferenceRule::TriEqualArgs);
 
    union_cast_method_impl!(as_tri_equal_all, InferenceRuleTriEqualAll, InferenceRule::TriEqualAll);
 
    union_cast_method_impl!(as_concatenate, InferenceRuleTwoArgs, InferenceRule::Concatenate);
 
    union_cast_method_impl!(as_indexing_expr, InferenceRuleIndexingExpr, InferenceRule::IndexingExpr);
 
    union_cast_method_impl!(as_slicing_expr, InferenceRuleSlicingExpr, InferenceRule::SlicingExpr);
 
    union_cast_method_impl!(as_select_struct_field, InferenceRuleSelectStructField, InferenceRule::SelectStructField);
 
    union_cast_method_impl!(as_select_tuple_member, InferenceRuleSelectTupleMember, InferenceRule::SelectTupleMember);
 
    union_cast_method_impl!(as_literal_struct, InferenceRuleLiteralStruct, InferenceRule::LiteralStruct);
 
    union_cast_method_impl!(as_literal_union, InferenceRuleLiteralUnion, InferenceRule::LiteralUnion);
 
    union_cast_method_impl!(as_literal_array, InferenceRuleLiteralArray, InferenceRule::LiteralArray);
 
    union_cast_method_impl!(as_literal_tuple, InferenceRuleLiteralTuple, InferenceRule::LiteralTuple);
 
    union_cast_method_impl!(as_cast_expr, InferenceRuleCastExpr, InferenceRule::CastExpr);
 
    union_cast_method_impl!(as_call_expr, InferenceRuleCallExpr, InferenceRule::CallExpr);
 
    union_cast_method_impl!(as_variable_expr, InferenceRuleVariableExpr, InferenceRule::VariableExpr);
 
}
 

	
 
// Note: InferenceRuleTemplate is `Copy`, so don't add dynamically allocated
 
// members in the future (or review places where this struct is copied)
 
#[derive(Clone, Copy)]
 
struct InferenceRuleTemplate {
 
    template: &'static [InferenceTypePart],
 
    application: InferenceRuleTemplateApplication,
 
}
 

	
 
impl InferenceRuleTemplate {
 
    fn new_none() -> Self {
 
        return Self{
 
            template: &[],
 
            application: InferenceRuleTemplateApplication::None,
 
        };
 
    }
 

	
 
    fn new_forced(template: &'static [InferenceTypePart]) -> Self {
 
        return Self{
 
            template,
 
            application: InferenceRuleTemplateApplication::Forced,
 
        };
 
    }
 

	
 
    fn new_template(template: &'static [InferenceTypePart]) -> Self {
 
        return Self{
 
            template,
 
            application: InferenceRuleTemplateApplication::Template,
 
        }
 
    }
 
}
 

	
 
#[derive(Clone, Copy)]
 
enum InferenceRuleTemplateApplication {
 
    None, // do not apply template, silly, but saves some bytes
 
    Forced,
 
    Template,
 
}
 

	
 
/// Type equality applied to 'self' and the argument. An optional template will
 
/// be applied to 'self' first. Example: "bitwise not"
 
struct InferenceRuleBiEqual {
 
    template: InferenceRuleTemplate,
 
    argument_index: InferNodeIndex,
 
}
 

	
 
/// Type equality applied to two arguments. Template can be applied to 'self'
 
/// (generally forced, since this rule does not apply a type equality constraint
 
/// to 'self') and the two arguments. Example: "equality operator"
 
struct InferenceRuleTriEqualArgs {
 
    argument_template: InferenceRuleTemplate,
 
    result_template: InferenceRuleTemplate,
 
@@ -998,113 +998,119 @@ struct InferenceRuleLiteralTuple {
 
struct InferenceRuleCastExpr {
 
    subject_index: InferNodeIndex,
 
}
 

	
 
struct InferenceRuleCallExpr {
 
    argument_indices: Vec<InferNodeIndex>
 
}
 

	
 
/// Data associated with a variable expression: an expression that reads the
 
/// value from a variable.
 
struct InferenceRuleVariableExpr {
 
    var_data_index: VarDataIndex, // shared variable information
 
}
 

	
 
/// This particular visitor will recurse depth-first into the AST and ensures
 
/// that all expressions have the appropriate types.
 
pub(crate) struct PassTyping {
 
    // Current definition we're typechecking.
 
    reserved_type_id: TypeId,
 
    definition_type: DefinitionType,
 
    poly_vars: Vec<ConcreteType>,
 
    // Temporary variables during construction of inference rulesr
 
    parent_index: Option<InferNodeIndex>,
 
    // Buffers for iteration over various types
 
    var_buffer: ScopedBuffer<VariableId>,
 
    expr_buffer: ScopedBuffer<ExpressionId>,
 
    stmt_buffer: ScopedBuffer<StatementId>,
 
    bool_buffer: ScopedBuffer<bool>,
 
    index_buffer: ScopedBuffer<usize>,
 
    poly_progress_buffer: ScopedBuffer<u32>,
 
    // Mapping from parser type to inferred type. We attempt to continue to
 
    // specify these types until we're stuck or we've fully determined the type.
 
    infer_nodes: Vec<InferenceNode>,                     // will be transferred to type table at end
 
    poly_data: Vec<PolyData>,       // data for polymorph inference
 
    var_data: Vec<VarData>,
 
    // Keeping track of which expressions need to be reinferred because the
 
    // expressions they're linked to made progression on an associated type
 
    node_queued: DequeSet<InferNodeIndex>,
 
}
 

	
 
/// Generic struct that is used to store inferred types associated with
 
/// polymorphic types.
 
struct PolyData {
 
    first_rule_application: bool,
 
    definition_id: DefinitionId, // the definition, only used for user feedback
 
    /// Inferred types of the polymorphic variables as they are written down
 
    /// at the type's definition.
 
    poly_vars: Vec<InferenceType>,
 
    expr_types: PolyDataTypes,
 
}
 

	
 
// silly structure, just so we can use `PolyDataTypeIndex` ergonomically while
 
// making sure we're still capable of borrowing from `poly_vars`.
 
struct PolyDataTypes {
 
    /// Inferred types of associated types (e.g. struct fields, tuple members,
 
    /// function arguments). These types may depend on the polymorphic variables
 
    /// defined above.
 
    associated: Vec<InferenceType>,
 
    /// Inferred "returned" type (e.g. if a struct field is selected, then this
 
    /// contains the type of the selected field, for a function call it contains
 
    /// the return type). May depend on the polymorphic variables defined above.
 
    returned: InferenceType,
 
}
 

	
 
#[derive(Clone, Copy)]
 
enum PolyDataTypeIndex {
 
    Associated(usize), // indexes into `PolyData.associated`
 
    Returned,
 
}
 

	
 
impl PolyData {
 
impl PolyDataTypes {
 
    fn get_type(&self, index: PolyDataTypeIndex) -> &InferenceType {
 
        match index {
 
            PolyDataTypeIndex::Associated(index) => return &self.associated[index],
 
            PolyDataTypeIndex::Returned => return &self.returned,
 
        }
 
    }
 

	
 
    fn get_type_mut(&mut self, index: PolyDataTypeIndex) -> &mut InferenceType {
 
        match index {
 
            PolyDataTypeIndex::Associated(index) => return &mut self.associated[index],
 
            PolyDataTypeIndex::Returned => return &mut self.returned,
 
        }
 
    }
 
}
 

	
 
struct VarData {
 
    var_id: VariableId,
 
    var_type: InferenceType,
 
    used_at: Vec<InferNodeIndex>, // of variable expressions
 
    linked_var: Option<VarDataIndex>,
 
}
 

	
 
impl PassTyping {
 
    pub(crate) fn new() -> Self {
 
        PassTyping {
 
            reserved_type_id: TypeId::new_invalid(),
 
            definition_type: DefinitionType::Function(FunctionDefinitionId::new_invalid()),
 
            poly_vars: Vec::new(),
 
            parent_index: None,
 
            var_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            expr_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            stmt_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            bool_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            index_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            poly_progress_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            infer_nodes: Vec::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            poly_data: Vec::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            var_data: Vec::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            node_queued: DequeSet::new(),
 
        }
 
    }
 

	
 
    pub(crate) fn queue_module_definitions(ctx: &mut Ctx, queue: &mut ResolveQueue) {
 
        debug_assert_eq!(ctx.module().phase, ModuleCompilationPhase::ValidatedAndLinked);
 
        let root_id = ctx.module().root_id;
 
        let root = &ctx.heap.protocol_descriptions[root_id];
 
        for definition_id in &root.definitions {
 
            let definition = &ctx.heap[*definition_id];
 
@@ -1160,146 +1166,138 @@ impl PassTyping {
 
        // Visit the definition, setting up the type resolving process, then
 
        // (attempt to) resolve all types
 
        self.visit_definition(ctx, element.definition_id)?;
 
        self.resolve_types(ctx, queue)?;
 
        Ok(())
 
    }
 

	
 
    fn reset(&mut self) {
 
        self.reserved_type_id = TypeId::new_invalid();
 
        self.definition_type = DefinitionType::Function(FunctionDefinitionId::new_invalid());
 
        self.poly_vars.clear();
 
        self.parent_index = None;
 

	
 
        self.infer_nodes.clear();
 
        self.poly_data.clear();
 
        self.var_data.clear();
 
        self.node_queued.clear();
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// PassTyping - Visitor-like implementation
 
// -----------------------------------------------------------------------------
 

	
 
type VisitorResult = Result<(), ParseError>;
 
type VisitExprResult = Result<InferNodeIndex, ParseError>;
 

	
 
impl PassTyping {
 
    // Definitions
 

	
 
    fn visit_definition(&mut self, ctx: &mut Ctx, id: DefinitionId) -> VisitorResult {
 
        return visitor_recursive_definition_impl!(self, &ctx.heap[id], ctx);
 
    }
 

	
 
    fn visit_enum_definition(&mut self, _: &mut Ctx, _: EnumDefinitionId) -> VisitorResult { return Ok(()) }
 
    fn visit_struct_definition(&mut self, _: &mut Ctx, _: StructDefinitionId) -> VisitorResult { return Ok(()) }
 
    fn visit_union_definition(&mut self, _: &mut Ctx, _: UnionDefinitionId) -> VisitorResult { return Ok(()) }
 

	
 
    fn visit_component_definition(&mut self, ctx: &mut Ctx, id: ComponentDefinitionId) -> VisitorResult {
 
        self.definition_type = DefinitionType::Component(id);
 

	
 
        let comp_def = &ctx.heap[id];
 
        debug_assert_eq!(comp_def.poly_vars.len(), self.poly_vars.len(), "component polyvars do not match imposed polyvars");
 

	
 
        debug_log!("{}", "-".repeat(50));
 
        debug_log!("Visiting component '{}': {}", comp_def.identifier.value.as_str(), id.0.index);
 
        debug_log!("{}", "-".repeat(50));
 

	
 
        // Reserve data for expression types
 
        debug_assert!(self.infer_nodes.is_empty());
 
        self.infer_nodes.resize(comp_def.num_expressions_in_body as usize, Default::default());
 

	
 
        // Visit parameters
 
        let section = self.var_buffer.start_section_initialized(comp_def.parameters.as_slice());
 
        for param_id in section.iter_copied() {
 
            let param = &ctx.heap[param_id];
 
            let var_type = self.determine_inference_type_from_parser_type_elements(&param.parser_type.elements, true);
 
            debug_assert!(var_type.is_done, "expected component arguments to be concrete types");
 
            self.var_data.push(VarData{
 
                var_id: param_id,
 
                var_type,
 
                used_at: Vec::new(),
 
                linked_var: None
 
            });
 
        }
 
        section.forget();
 

	
 
        // Visit the body and all of its expressions
 
        let body_stmt_id = ctx.heap[id].body;
 
        self.parent_index = None;
 
        self.visit_block_stmt(ctx, body_stmt_id)
 
    }
 

	
 
    fn visit_function_definition(&mut self, ctx: &mut Ctx, id: FunctionDefinitionId) -> VisitorResult {
 
        self.definition_type = DefinitionType::Function(id);
 

	
 
        let func_def = &ctx.heap[id];
 
        debug_assert_eq!(func_def.poly_vars.len(), self.poly_vars.len(), "function polyvars do not match imposed polyvars");
 

	
 
        debug_log!("{}", "-".repeat(50));
 
        debug_log!("Visiting function '{}': {}", func_def.identifier.value.as_str(), id.0.index);
 
        if debug_log_enabled!() {
 
            debug_log!("Polymorphic variables:");
 
            for (_idx, poly_var) in self.poly_vars.iter().enumerate() {
 
                let mut infer_type_parts = Vec::new();
 
                Self::determine_inference_type_from_concrete_type(
 
                    &mut infer_type_parts, &poly_var.parts
 
                );
 
                let _infer_type = InferenceType::new(false, true, infer_type_parts);
 
                debug_log!(" - [{:03}] {:?}", _idx, _infer_type.display_name(&ctx.heap));
 
            }
 
        }
 
        debug_log!("{}", "-".repeat(50));
 

	
 
        // Reserve data for expression types
 
        debug_assert!(self.infer_nodes.is_empty());
 
        self.infer_nodes.resize(func_def.num_expressions_in_body as usize, Default::default());
 

	
 
        // Visit parameters
 
        let section = self.var_buffer.start_section_initialized(func_def.parameters.as_slice());
 
        for param_id in section.iter_copied() {
 
            let param = &ctx.heap[param_id];
 
            let var_type = self.determine_inference_type_from_parser_type_elements(&param.parser_type.elements, true);
 
            debug_assert!(var_type.is_done, "expected function arguments to be concrete types");
 
            self.var_data.push(VarData{
 
                var_id: param_id,
 
                var_type,
 
                used_at: Vec::new(),
 
                linked_var: None
 
            })
 
        }
 
        section.forget();
 

	
 
        // Visit all of the expressions within the body
 
        let body_stmt_id = ctx.heap[id].body;
 
        self.parent_index = None;
 
        self.visit_block_stmt(ctx, body_stmt_id)
 
    }
 

	
 
    // Statements
 

	
 
    fn visit_stmt(&mut self, ctx: &mut Ctx, id: StatementId) -> VisitorResult {
 
        return visitor_recursive_statement_impl!(self, &ctx.heap[id], ctx, Ok(()));
 
    }
 

	
 
    fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
 
        // Transfer statements for traversal
 
        let block = &ctx.heap[id];
 

	
 
        let section = self.stmt_buffer.start_section_initialized(block.statements.as_slice());
 
        for stmt_id in section.iter_copied() {
 
            self.visit_stmt(ctx, stmt_id)?;
 
        }
 
        section.forget();
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_local_stmt(&mut self, ctx: &mut Ctx, id: LocalStatementId) -> VisitorResult {
 
        return visitor_recursive_local_impl!(self, &ctx.heap[id], ctx);
 
    }
 

	
 
    fn visit_local_memory_stmt(&mut self, ctx: &mut Ctx, id: MemoryStatementId) -> VisitorResult {
 
        let memory_stmt = &ctx.heap[id];
 
        let initial_expr_id = memory_stmt.initial_expr;
 

	
 
@@ -1724,178 +1722,194 @@ impl PassTyping {
 
        self.progress_inference_rule(ctx, self_index)?;
 
        return Ok(self_index);
 
    }
 

	
 
    fn visit_literal_expr(&mut self, ctx: &mut Ctx, id: LiteralExpressionId) -> VisitExprResult {
 
        let upcast_id = id.upcast();
 
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;
 

	
 
        let old_parent = self.parent_index.replace(self_index);
 

	
 
        let literal_expr = &ctx.heap[id];
 
        match &literal_expr.value {
 
            Literal::Null => {
 
                let node = &mut self.infer_nodes[self_index];
 
                node.inference_rule = InferenceRule::MonoTemplate(InferenceRuleTemplate::new_template(&MESSAGE_TEMPLATE));
 
            },
 
            Literal::Integer(_) => {
 
                let node = &mut self.infer_nodes[self_index];
 
                node.inference_rule = InferenceRule::MonoTemplate(InferenceRuleTemplate::new_template(&INTEGERLIKE_TEMPLATE));
 
            },
 
            Literal::True | Literal::False => {
 
                let node = &mut self.infer_nodes[self_index];
 
                node.inference_rule = InferenceRule::MonoTemplate(InferenceRuleTemplate::new_forced(&BOOL_TEMPLATE));
 
            },
 
            Literal::Character(_) => {
 
                let node = &mut self.infer_nodes[self_index];
 
                node.inference_rule = InferenceRule::MonoTemplate(InferenceRuleTemplate::new_forced(&CHARACTER_TEMPLATE));
 
            },
 
            Literal::String(_) => {
 
                let node = &mut self.infer_nodes[self_index];
 
                node.inference_rule = InferenceRule::MonoTemplate(InferenceRuleTemplate::new_forced(&STRING_TEMPLATE));
 
            },
 
            Literal::Struct(literal) => {
 
                // Visit field expressions
 
                let mut expr_ids = self.expr_buffer.start_section();
 
                for field in &literal.fields {
 
                    expr_ids.push(field.value);
 
                }
 

	
 
                let mut expr_indices = self.index_buffer.start_section();
 
                for expr_id in expr_ids.iter_copied() {
 
                    let expr_index = self.visit_expr(ctx, expr_id)?;
 
                    expr_indices.push(expr_index);
 
                }
 
                expr_ids.forget();
 
                let element_indices = expr_indices.into_vec();
 

	
 
                // Assign rule and extra data index to inference node
 
                let extra_index = self.insert_initial_struct_polymorph_data(ctx, id);
 
                let poly_data_index = self.insert_initial_struct_polymorph_data(ctx, id);
 
                let node = &mut self.infer_nodes[self_index];
 
                node.poly_data_index = extra_index;
 
                node.poly_data_index = poly_data_index;
 
                node.inference_rule = InferenceRule::LiteralStruct(InferenceRuleLiteralStruct{
 
                    element_indices,
 
                });
 
            },
 
            Literal::Enum(_) => {
 
                // Enumerations do not carry any subexpressions, but may still
 
                // have a user-defined polymorphic marker variable. For this 
 
                // reason we may still have to apply inference to this 
 
                // polymorphic variable
 
                let extra_index = self.insert_initial_enum_polymorph_data(ctx, id);
 
                let poly_data_index = self.insert_initial_enum_polymorph_data(ctx, id);
 
                let node = &mut self.infer_nodes[self_index];
 
                node.poly_data_index = extra_index;
 
                node.poly_data_index = poly_data_index;
 
                node.inference_rule = InferenceRule::LiteralEnum;
 
            },
 
            Literal::Union(literal) => {
 
                // May carry subexpressions and polymorphic arguments
 
                let expr_ids = self.expr_buffer.start_section_initialized(literal.values.as_slice());
 
                let extra_index = self.insert_initial_union_polymorph_data(ctx, id);
 
                let poly_data_index = self.insert_initial_union_polymorph_data(ctx, id);
 

	
 
                let mut expr_indices = self.index_buffer.start_section();
 
                for expr_id in expr_ids.iter_copied() {
 
                    let expr_index = self.visit_expr(ctx, expr_id)?;
 
                    expr_indices.push(expr_index);
 
                }
 
                expr_ids.forget();
 
                let element_indices = expr_indices.into_vec();
 

	
 
                let node = &mut self.infer_nodes[self_index];
 
                node.poly_data_index = extra_index;
 
                node.poly_data_index = poly_data_index;
 
                node.inference_rule = InferenceRule::LiteralUnion(InferenceRuleLiteralUnion{
 
                    element_indices,
 
                });
 
            },
 
            Literal::Array(expressions) | Literal::Tuple(expressions) => {
 
            Literal::Array(expressions) => {
 
                let expr_ids = self.expr_buffer.start_section_initialized(expressions.as_slice());
 
                let mut expr_indices = self.index_buffer.start_section();
 

	
 
                let mut expr_indices = self.index_buffer.start_section();
 
                for expr_id in expr_ids.iter_copied() {
 
                    let expr_index = self.visit_expr(ctx, expr_id)?;
 
                    expr_indices.push(expr_index);
 
                }
 
                expr_ids.forget();
 
                let element_indices = expr_indices.into_vec();
 

	
 
                let node = &mut self.infer_nodes[self_index];
 
                node.poly_data_index = extra_index;
 
                node.inference_rule = InferenceRule::LiteralArray(InferenceRuleLiteralArray{
 
                    element_indices,
 
                });
 
            },
 
            Literal::Tuple(expressions) => {
 
                let expr_ids = self.expr_buffer.start_section_initialized(expressions.as_slice());
 

	
 
                let mut expr_indices = self.index_buffer.start_section();
 
                for expr_id in expr_ids.iter_copied() {
 
                    let expr_index = self.visit_expr(ctx, expr_id)?;
 
                    expr_indices.push(expr_index);
 
                }
 
                expr_ids.forget();
 
                let element_indices = expr_indices.into_vec();
 

	
 
                let node = &mut self.infer_nodes[self_index];
 
                node.inference_rule = InferenceRule::LiteralTuple(InferenceRuleLiteralTuple{
 
                    element_indices,
 
                })
 
            }
 
        }
 

	
 
        self.parent_index = old_parent;
 
        self.progress_inference_rule(ctx, self_index)?;
 
        return Ok(self_index);
 
    }
 

	
 
    fn visit_cast_expr(&mut self, ctx: &mut Ctx, id: CastExpressionId) -> VisitExprResult {
 
        let upcast_id = id.upcast();
 
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;
 

	
 
        let cast_expr = &ctx.heap[id];
 
        let subject_expr_id = cast_expr.subject;
 

	
 
        let old_parent = self.parent_index.replace(self_index);
 
        let subject_index = self.visit_expr(ctx, subject_expr_id)?;
 

	
 
        let node = &mut self.infer_nodes[self_index];
 
        node.inference_rule = InferenceRule::CastExpr(InferenceRuleCastExpr{
 
            subject_index,
 
        });
 

	
 
        self.parent_index = old_parent;
 

	
 
        // The cast expression is a bit special at this point: the progression
 
        // function simply makes sure input/output types are compatible. But if
 
        // the programmer explicitly specified the output type, then we can
 
        // already perform that inference rule here.
 
        {
 
            let cast_expr = &ctx.heap[id];
 
            let specified_type = self.determine_inference_type_from_parser_type_elements(&cast_expr.to_type.elements, true);
 
            let _progress = self.apply_template_constraint(ctx, self_index, &specified_type.parts)?;
 
        }
 

	
 
        self.progress_inference_rule_cast_expr(ctx, self_index)?;
 
        return Ok(self_index);
 
    }
 

	
 
    fn visit_call_expr(&mut self, ctx: &mut Ctx, id: CallExpressionId) -> VisitExprResult {
 
        let upcast_id = id.upcast();
 
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;
 
        let extra_index = self.insert_initial_call_polymorph_data(ctx, id);
 

	
 
        // By default we set the polymorph idx for calls to 0. If the call
 
        // refers to a non-polymorphic function, then it will be "monomorphed"
 
        // once, hence we end up pointing to the correct instance.
 
        self.infer_nodes[self_index].field_or_monomorph_index = 0;
 

	
 
        // Visit all arguments
 
        let old_parent = self.parent_index.replace(self_index);
 

	
 
        let call_expr = &ctx.heap[id];
 
        let expr_ids = self.expr_buffer.start_section_initialized(call_expr.arguments.as_slice());
 
        let mut expr_indices = self.index_buffer.start_section();
 

	
 
        for arg_expr_id in expr_ids.iter_copied() {
 
            let expr_index = self.visit_expr(ctx, arg_expr_id)?;
 
            expr_indices.push(expr_index);
 
        }
 
        expr_ids.forget();
 
        let argument_indices = expr_indices.into_vec();
 

	
 
        let node = &mut self.infer_nodes[self_index];
 
        node.poly_data_index = extra_index;
 
        node.inference_rule = InferenceRule::CallExpr(InferenceRuleCallExpr{
 
            argument_indices,
 
        });
 

	
 
        self.parent_index = old_parent;
 
        self.progress_inference_rule_call_expr(ctx, self_index)?;
 
        return Ok(self_index);
 
    }
 

	
 
    fn visit_variable_expr(&mut self, ctx: &mut Ctx, id: VariableExpressionId) -> VisitExprResult {
 
        let upcast_id = id.upcast();
 
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;
 

	
 
        let var_expr = &ctx.heap[id];
 
@@ -1915,1373 +1929,1404 @@ impl PassTyping {
 
            let var_data = &mut self.var_data[var_data_index];
 
            var_data.used_at.push(self_index);
 

	
 
            var_data_index
 
        } else {
 
            // If we're in a binding expression then it might the first time we
 
            // encounter the variable, so add a `VarData` entry.
 
            debug_assert_eq!(declaration.kind, VariableKind::Binding);
 
            let var_type = self.determine_inference_type_from_parser_type_elements(
 
                &declaration.parser_type.elements, true
 
            );
 
            let var_data_index = self.var_data.len();
 
            self.var_data.push(VarData{
 
                var_id: declaration.this,
 
                var_type,
 
                used_at: vec![self_index],
 
                linked_var: None,
 
            });
 

	
 
            var_data_index
 
        };
 

	
 
        let node = &mut self.infer_nodes[self_index];
 
        node.inference_rule = InferenceRule::VariableExpr(InferenceRuleVariableExpr{
 
            var_data_index,
 
        });
 

	
 
        self.parent_index = old_parent;
 
        self.progress_inference_rule_variable_expr(ctx, self_index)?;
 
        return Ok(self_index);
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// PassTyping - Type-inference progression
 
// -----------------------------------------------------------------------------
 

	
 
impl PassTyping {
 
    #[allow(dead_code)] // used when debug flag at the top of this file is true.
 
    fn debug_get_display_name(&self, ctx: &Ctx, expr_id: ExpressionId) -> String {
 
        let expr_idx = ctx.heap[expr_id].get_unique_id_in_definition();
 
        let expr_type = &self.infer_nodes[expr_idx as usize].expr_type;
 
        expr_type.display_name(&ctx.heap)
 
    }
 

	
 
    fn resolve_types(&mut self, ctx: &mut Ctx, queue: &mut ResolveQueue) -> Result<(), ParseError> {
 
        // Keep inferring until we can no longer make any progress
 
        while !self.node_queued.is_empty() {
 
            // Make as much progress as possible without forced integer
 
            // inference.
 
            while !self.node_queued.is_empty() {
 
                let next_expr_idx = self.node_queued.pop_front().unwrap();
 
                self.progress_expr(ctx, next_expr_idx)?;
 
                let node_index = self.node_queued.pop_front().unwrap();
 
                self.progress_inference_rule(ctx, node_index)?;
 
            }
 

	
 
            // Nothing is queued anymore. However we might have integer literals
 
            // whose type cannot be inferred. For convenience's sake we'll
 
            // infer these to be s32.
 
            for (infer_node_index, infer_node) in self.infer_nodes.iter_mut().enumerate() {
 
                let expr_type = &mut infer_node.expr_type;
 
                if !expr_type.is_done && expr_type.parts.len() == 1 && expr_type.parts[0] == InferenceTypePart::IntegerLike {
 
                    // Force integer type to s32
 
                    expr_type.parts[0] = InferenceTypePart::SInt32;
 
                    expr_type.is_done = true;
 

	
 
                    // Requeue expression (and its parent, if it exists)
 
                    self.node_queued.push_back(infer_node_index);
 
                    if let Some(parent_node_index) = infer_node.parent_index {
 
                        self.expr_queued(parent_node_index);
 
                    if let Some(node_parent_index) = infer_node.parent_index {
 
                        self.node_queued.push_back(node_parent_index);
 
                    }
 
                }
 
            }
 
        }
 

	
 
        // Helper for transferring polymorphic variables to concrete types and
 
        // checking if they're completely specified
 
        fn inference_type_to_concrete_type(
 
            ctx: &Ctx, expr_id: ExpressionId, inference: &Vec<InferenceType>,
 
            first_concrete_part: ConcreteTypePart,
 
        ) -> Result<ConcreteType, ParseError> {
 
            // Prepare storage vector
 
            let mut num_inference_parts = 0;
 
            for inference_type in inference {
 
                num_inference_parts += inference_type.parts.len();
 
            }
 

	
 
            let mut concrete_type = ConcreteType{
 
                parts: Vec::with_capacity(1 + num_inference_parts),
 
            };
 
            concrete_type.parts.push(first_concrete_part);
 

	
 
            // Go through all polymorphic arguments and add them to the concrete
 
            // types.
 
            for (poly_idx, poly_type) in inference.iter().enumerate() {
 
                if !poly_type.is_done {
 
                    let expr = &ctx.heap[expr_id];
 
                    let definition = match expr {
 
                        Expression::Call(expr) => expr.definition,
 
                        Expression::Literal(expr) => match &expr.value {
 
                            Literal::Enum(lit) => lit.definition,
 
                            Literal::Union(lit) => lit.definition,
 
                            Literal::Struct(lit) => lit.definition,
 
                            _ => unreachable!()
 
                        },
 
                        _ => unreachable!(),
 
                    };
 
                    let poly_vars = ctx.heap[definition].poly_vars();
 
                    return Err(ParseError::new_error_at_span(
 
                        &ctx.module().source, expr.operation_span(), format!(
 
                            "could not fully infer the type of polymorphic variable '{}' of this expression (got '{}')",
 
                            poly_vars[poly_idx].value.as_str(), poly_type.display_name(&ctx.heap)
 
                        )
 
                    ));
 
                }
 

	
 
                poly_type.write_concrete_type(&mut concrete_type);
 
            }
 

	
 
            Ok(concrete_type)
 
        }
 

	
 
        // Inference is now done. But we may still have uninferred types. So we
 
        // check for these.
 
        for infer_expr in self.infer_nodes.iter_mut() {
 
            if !infer_expr.expr_type.is_done {
 
                let expr = &ctx.heap[infer_expr.expr_id];
 
                return Err(ParseError::new_error_at_span(
 
                    &ctx.module().source, expr.full_span(), format!(
 
                        "could not fully infer the type of this expression (got '{}')",
 
                        infer_expr.expr_type.display_name(&ctx.heap)
 
                    )
 
                ));
 
            }
 

	
 
            // Expression is fine, check if any extra data is attached
 
            if infer_expr.extra_data_idx < 0 { continue; }
 
            if infer_expr.poly_data_index < 0 { continue; }
 

	
 
            // Extra data is attached, perform typechecking and transfer
 
            // resolved information to the expression
 
            let extra_data = &self.poly_data[infer_expr.extra_data_idx as usize];
 
            let poly_data = &self.poly_data[infer_expr.poly_data_index as usize];
 

	
 
            // Note that only call and literal expressions need full inference.
 
            // Select expressions also use `extra_data`, but only for temporary
 
            // storage of the struct type whose field it is selecting.
 
            match &ctx.heap[extra_data.expr_id] {
 
            match &ctx.heap[infer_expr.expr_id] {
 
                Expression::Call(expr) => {
 
                    // Check if it is not a builtin function. If not, then
 
                    // construct the first part of the concrete type.
 
                    let first_concrete_part = if expr.method == Method::UserFunction {
 
                        ConcreteTypePart::Function(expr.definition, extra_data.poly_vars.len() as u32)
 
                        ConcreteTypePart::Function(expr.definition, poly_data.poly_vars.len() as u32)
 
                    } else if expr.method == Method::UserComponent {
 
                        ConcreteTypePart::Component(expr.definition, extra_data.poly_vars.len() as u32)
 
                        ConcreteTypePart::Component(expr.definition, poly_data.poly_vars.len() as u32)
 
                    } else {
 
                        // Builtin function
 
                        continue;
 
                    };
 

	
 
                    let definition_id = expr.definition;
 
                    let concrete_type = inference_type_to_concrete_type(
 
                        ctx, extra_data.expr_id, &extra_data.poly_vars, first_concrete_part
 
                        ctx, infer_expr.expr_id, &poly_data.poly_vars, first_concrete_part
 
                    )?;
 

	
 
                    match ctx.types.get_procedure_monomorph_type_id(&definition_id, &concrete_type.parts) {
 
                        Some(type_id) => {
 
                            // Already typechecked, or already put into the resolve queue
 
                            infer_expr.type_id = type_id;
 
                        },
 
                        None => {
 
                            // Not typechecked yet, so add an entry in the queue
 
                            let reserved_type_id = ctx.types.reserve_procedure_monomorph_type_id(&definition_id, concrete_type);
 
                            infer_expr.type_id = reserved_type_id;
 
                            queue.push(ResolveQueueElement {
 
                                root_id: ctx.heap[definition_id].defined_in(),
 
                                definition_id,
 
                                reserved_type_id,
 
                            });
 
                        }
 
                    }
 
                },
 
                Expression::Literal(expr) => {
 
                    let definition_id = match &expr.value {
 
                        Literal::Enum(lit) => lit.definition,
 
                        Literal::Union(lit) => lit.definition,
 
                        Literal::Struct(lit) => lit.definition,
 
                        _ => unreachable!(),
 
                    };
 
                    let first_concrete_part = ConcreteTypePart::Instance(definition_id, extra_data.poly_vars.len() as u32);
 
                    let first_concrete_part = ConcreteTypePart::Instance(definition_id, poly_data.poly_vars.len() as u32);
 
                    let concrete_type = inference_type_to_concrete_type(
 
                        ctx, extra_data.expr_id, &extra_data.poly_vars, first_concrete_part
 
                        ctx, infer_expr.expr_id, &poly_data.poly_vars, first_concrete_part
 
                    )?;
 
                    let type_id = ctx.types.add_monomorphed_type(ctx.modules, ctx.heap, ctx.arch, definition_id, concrete_type)?;
 
                    infer_expr.type_id = type_id;
 
                },
 
                Expression::Select(_) => {
 
                    debug_assert!(infer_expr.field_or_monomorph_index >= 0);
 
                },
 
                _ => {
 
                    unreachable!("handling extra data for expression {:?}", &ctx.heap[extra_data.expr_id]);
 
                    unreachable!("handling extra data for expression {:?}", &ctx.heap[infer_expr.expr_id]);
 
                }
 
            }
 
        }
 

	
 
        // Every expression checked, and new monomorphs are queued. Transfer the
 
        // expression information to the type table.
 
        let procedure_arguments = match &self.definition_type {
 
            DefinitionType::Component(id) => {
 
                let definition = &ctx.heap[*id];
 
                &definition.parameters
 
            },
 
            DefinitionType::Function(id) => {
 
                let definition = &ctx.heap[*id];
 
                &definition.parameters
 
            },
 
        };
 

	
 
        let target = ctx.types.get_procedure_monomorph_mut(self.reserved_type_id);
 
        debug_assert!(target.arg_types.is_empty()); // makes sure we never queue a procedure's type inferencing twice
 
        debug_assert!(target.expr_data.is_empty());
 

	
 
        // - Write the arguments to the procedure
 
        target.arg_types.reserve(procedure_arguments.len());
 
        for argument_id in procedure_arguments {
 
            let mut concrete = ConcreteType::default();
 
            let var_data = self.var_data.iter().find(|v| v.var_id == *argument_id).unwrap();
 
            var_data.var_type.write_concrete_type(&mut concrete);
 
            target.arg_types.push(concrete);
 
        }
 

	
 
        // - Write the expression data
 
        target.expr_data.reserve(self.infer_nodes.len());
 
        for infer_expr in self.infer_nodes.iter() {
 
            let mut concrete = ConcreteType::default();
 
            infer_expr.expr_type.write_concrete_type(&mut concrete);
 
            target.expr_data.push(MonomorphExpression{
 
                expr_type: concrete,
 
                field_or_monomorph_idx: infer_expr.field_or_monomorph_index,
 
                type_id: infer_expr.type_id,
 
            });
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_inference_rule(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        use InferenceRule as IR;
 

	
 
        let node = &self.infer_nodes[node_index];
 
        match &node.inference_rule {
 
            IR::Noop =>
 
                unreachable!(),
 
            IR::MonoTemplate(_) =>
 
                self.progress_inference_rule_mono_template(ctx, node_index),
 
            IR::BiEqual(_) =>
 
                self.progress_inference_rule_bi_equal(ctx, node_index),
 
            IR::TriEqualArgs(_) =>
 
                self.progress_inference_rule_tri_equal_args(ctx, node_index),
 
            IR::TriEqualAll(_) =>
 
                self.progress_inference_rule_tri_equal_all(ctx, node_index),
 
            IR::Concatenate(_) =>
 
                self.progress_inference_rule_concatenate(ctx, node_index),
 
            IR::IndexingExpr(_) =>
 
                self.progress_inference_rule_indexing_expr(ctx, node_index),
 
            IR::SlicingExpr(_) =>
 
                self.progress_inference_rule_slicing_expr(ctx, node_index),
 
            IR::SelectStructField(_) =>
 
                self.progress_inference_rule_select_struct_field(ctx, node_index),
 
            IR::SelectTupleMember(_) =>
 
                self.progress_inference_rule_select_tuple_member(ctx, node_index),
 
            IR::LiteralStruct(_) =>
 
                self.progress_inference_rule_literal_struct(ctx, node_index),
 
            IR::LiteralEnum =>
 
                self.progress_inference_rule_literal_enum(ctx, node_index),
 
            IR::LiteralUnion(_) =>
 
                self.progress_inference_rule_literal_union(ctx, node_index),
 
            IR::LiteralArray(_) =>
 
                self.progress_inference_rule_literal_array(ctx, node_index),
 
            IR::LiteralTuple(_) =>
 
                self.progress_inference_rule_literal_tuple(ctx, node_index),
 
            IR::CastExpr(_) =>
 
                self.progress_inference_rule_cast_expr(ctx, node_index),
 
            IR::CallExpr(_) =>
 
                self.progress_inference_rule_call_expr(ctx, node_index),
 
            IR::VariableExpr(_) =>
 
                self.progress_inference_rule_variable_expr(ctx, node_index),
 
        }
 
    }
 

	
 
    fn progress_inference_rule_mono_template(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_mono_template();
 
        let rule = *node.inference_rule.as_mono_template();
 

	
 
        let progress = self.progress_template(ctx, node_index, rule.application, rule.template)?;
 
        if progress { self.queue_node_parent(node_index); }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_bi_equal(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_bi_equal();
 
        let template = rule.template;
 
        let arg_index = rule.argument_index;
 

	
 
        let base_progress = self.progress_template(ctx, node_index, rule.template.application, rule.template.template)?;
 
        let base_progress = self.progress_template(ctx, node_index, template.application, template.template)?;
 
        let (node_progress, arg_progress) = self.apply_equal2_constraint(ctx, node_index, node_index, 0, arg_index, 0)?;
 

	
 
        if base_progress || node_progress { self.queue_node_parent(node_index); }
 
        if arg_progress { self.queue_node(arg_index); }
 

	
 
        return Ok(())
 
    }
 

	
 
    fn progress_inference_rule_tri_equal_args(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_tri_equal_args();
 

	
 
        let result_template = rule.result_template;
 
        let argument_template = rule.argument_template;
 
        let arg1_index = rule.argument1_index;
 
        let arg2_index = rule.argument2_index;
 

	
 
        let self_template_progress = self.progress_template(ctx, node_index, rule.result_template.application, rule.result_template.template)?;
 
        let arg1_template_progress = self.progress_template(ctx, arg1_index, rule.argument_template.application, rule.argument_template.template)?;
 
        let self_template_progress = self.progress_template(ctx, node_index, result_template.application, result_template.template)?;
 
        let arg1_template_progress = self.progress_template(ctx, arg1_index, argument_template.application, argument_template.template)?;
 
        let (arg1_progress, arg2_progress) = self.apply_equal2_constraint(ctx, node_index, arg1_index, 0, arg2_index, 0)?;
 

	
 
        if self_template_progress { self.queue_node_parent(node_index); }
 
        if arg1_template_progress || arg1_progress { self.queue_node(arg1_index); }
 
        if arg2_template_progress || arg2_progress { self.queue_node(arg2_index); }
 
        if arg2_progress { self.queue_node(arg2_index); }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_tri_equal_all(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_tri_equal_all();
 

	
 
        let template = rule.template;
 
        let arg1_index = rule.argument1_index;
 
        let arg2_index = rule.argument2_index;
 

	
 
        let template_progress = self.progress_template(ctx, node_index, rule.template.application, rule.template.template)?;
 
        let template_progress = self.progress_template(ctx, node_index, template.application, template.template)?;
 
        let (node_progress, arg1_progress, arg2_progress) =
 
            self.apply_equal3_constraint(ctx, node_index, arg1_index, arg2_index, 0)?;
 

	
 
        if template_progress || node_progress { self.queue_node_parent(node_index); }
 
        if arg1_progress { self.queue_node(arg1_index); }
 
        if arg2_progress { self.queue_node(arg2_index); }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_concatenate(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_concatenate();
 
        let arg1_index = rule.argument1_index;
 
        let arg2_index = rule.argument2_index;
 

	
 
        // Two cases: one of the arguments is a string (then all must be), or
 
        // one of the arguments is an array (and all must be arrays).
 
        let (expr_is_str, expr_is_not_str) = self.type_is_certainly_or_certainly_not_string(node_index);
 
        let (arg1_is_str, arg1_is_not_str) = self.type_is_certainly_or_certainly_not_string(arg1_index);
 
        let (arg2_is_str, arg2_is_not_str) = self.type_is_certainly_or_certainly_not_string(arg2_index);
 

	
 
        let someone_is_str = expr_is_str || arg1_is_str || arg2_is_str;
 
        let someone_is_not_str = expr_is_not_str || arg1_is_not_str || arg2_is_not_str;
 

	
 
        println!("DEBUG: Running concat, is_str = {}, is_not_str = {}", someone_is_str, someone_is_not_str);
 
        // Note: this statement is an expression returning the progression bools
 
        let (node_progress, arg1_progress, arg2_progress) = if someone_is_str {
 
            // One of the arguments is a string, then all must be strings
 
            self.apply_equal3_constraint(ctx, node_index, arg1_index, arg2_index, 0)?
 
        } else {
 
            let progress_expr = if someone_is_not_str {
 
                // Output must be a normal array
 
                self.apply_template_constraint(ctx, node_index, &ARRAY_TEMPLATE)?
 
            } else {
 
                // Output may still be anything
 
                self.apply_template_constraint(ctx, node_index, &ARRAYLIKE_TEMPLATE)?
 
            };
 

	
 
            let progress_arg1 = self.apply_template_constraint(ctx, arg1_index, &ARRAYLIKE_TEMPLATE)?;
 
            let progress_arg2 = self.apply_template_constraint(ctx, arg2_index, &ARRAYLIKE_TEMPLATE)?;
 

	
 
            // If they're all arraylike, then we want the subtype to match
 
            let (subtype_expr, subtype_arg1, subtype_arg2) =
 
                self.apply_equal3_constraint(ctx, node_index, arg1_index, arg2_index, 1)?;
 

	
 
            (progress_expr || subtype_expr, progress_arg1 || subtype_arg1, progress_arg2 || subtype_arg2)
 
        };
 

	
 
        if node_progress { self.queue_node_parent(node_index); }
 
        if arg1_progress { self.queue_node(arg1_index); }
 
        if arg2_progress { self.queue_node(arg2_index); }
 

	
 
        return Ok(())
 
    }
 

	
 
    fn progress_inference_rule_indexing_expr(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_indexing_expr();
 
        let subject_index = rule.subject_index;
 
        let index_index = rule.index_index; // which one?
 

	
 
        // Subject is arraylike, index in integerlike
 
        let subject_template_progress = self.apply_template_constraint(ctx, subject_index, &ARRAYLIKE_TEMPLATE)?;
 
        let index_template_progress = self.apply_template_constraint(ctx, index_index, &INTEGERLIKE_TEMPLATE)?;
 

	
 
        // If subject is type `Array<T>`, then expr type is `T`
 
        let (node_progress, subject_progress) =
 
            self.apply_equal2_constraint(ctx, node_index, node_index, 0, subject_index, 1)?;
 

	
 
        if node_progress { self.queue_node_parent(node_index); }
 
        if subject_template_progress || subject_progress { self.queue_node(subject_index); }
 
        if index_template_progress { self.queue_node(index_index); }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_slicing_expr(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_slicing_expr();
 
        let subject_index = rule.subject_index;
 
        let from_index_index = rule.from_index;
 
        let to_index_index = rule.to_index;
 

	
 
        debug_log!("Rule slicing [node: {}, expr: {}]", node_index, node.expr_id.index);
 

	
 
        // Subject is arraylike, indices are integerlike
 
        let subject_template_progress = self.apply_template_constraint(ctx, subject_index, &ARRAYLIKE_TEMPLATE)?;
 
        let from_template_progress = self.apply_template_constraint(ctx, from_index_index, &INTEGERLIKE_TEMPLATE)?;
 
        let to_template_progress = self.apply_template_constraint(ctx, to_index_index, &INTEGERLIKE_TEMPLATE)?;
 
        let (from_index_progress, to_index_progress) =
 
            self.apply_equal2_constraint(ctx, node_index, from_index_index, 0, to_index_index, 0)?;
 

	
 
        // Same as array indexing: result depends on whether subject is string
 
        // or array
 
        let (is_string, is_not_string) = self.type_is_certainly_or_certainly_not_string(node_index);
 
        println!("DEBUG: Running slicing, is_str = {}, is_not_str = {}", is_string, is_not_string);
 
        let (node_progress, subject_progress) = if is_string {
 
            // Certainly a string
 
            (
 
                self.apply_forced_constraint(ctx, node_index, &STRING_TEMPLATE)?,
 
                false
 
            )
 
        } else if is_not_string {
 
            // Certainly not a string, apply template constraint. Then make sure
 
            // that if we have an `Array<T>`, that the slice produces `Slice<T>`
 
            let node_template_progress = self.apply_template_constraint(ctx, node_index, &SLICE_TEMPLATE)?;
 
            let (node_progress, subject_progress) =
 
                self.apply_equal2_constraint(ctx, node_index, node_index, 1, subject_index, 1)?;
 

	
 
            (
 
                node_template_progress || node_progress,
 
                subject_progress
 
            )
 
        } else {
 
            // Not sure yet
 
            let node_template_progress = self.apply_template_constraint(ctx, node_index, &ARRAYLIKE_TEMPLATE)?;
 
            let (node_progress, subject_progress) =
 
                self.apply_equal2_constraint(ctx, node_index, node_index, 1, subject_index, 1)?;
 

	
 
            (
 
                node_template_progress || node_progress,
 
                subject_progress
 
            )
 
        };
 

	
 
        if node_progress { self.queue_node_parent(node_index); }
 
        if subject_template_progress || subject_progress { self.queue_node(subject_index); }
 
        if from_template_progress || from_index_progress { self.queue_node(from_index_index); }
 
        if to_template_progress || to_index_progress { self.queue_node(to_index_index); }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_select_struct_field(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_select_struct_field();
 

	
 
        let subject_index = rule.subject_index;
 
        let selected_field = rule.selected_field.clone();
 

	
 
        fn get_definition_id_from_inference_type(inference_type: &InferenceType) -> Result<Option<DefinitionId>, ()> {
 
            for part in inference_type.parts.iter() {
 
                if part.is_marker() { continue; }
 
                if !part.is_concrete() { break; }
 

	
 
                if let InferenceTypePart::Instance(definition_id, _) = part {
 
                    return Ok(Some(*definition_id));
 
                } else {
 
                    return Err(())
 
                }
 
            }
 

	
 
            // Nothing is known yet
 
            return Ok(None);
 
        }
 

	
 
        if node.field_or_monomorph_index < 0 {
 
            // Don't know the subject definition, hence the field yet. Try to
 
            // determine it.
 
            let subject_node = &self.infer_nodes[subject_index];
 
            match get_definition_id_from_inference_type(&subject_node.expr_type) {
 
                Ok(Some(definition_id)) => {
 
                    // Determined definition of subject for the first time.
 
                    let base_definition = ctx.types.get_base_definition(&definition_id).unwrap();
 
                    let struct_definition = if let DefinedTypeVariant::Struct(struct_definition) = &base_definition.definition {
 
                        struct_definition
 
                    } else {
 
                        return Err(ParseError::new_error_at_span(
 
                            &ctx.module().source, rule.selected_field.span, format!(
 
                            &ctx.module().source, selected_field.span, format!(
 
                                "Can only apply field access to structs, got a subject of type '{}'",
 
                                subject_type.display_name(&ctx.heap)
 
                                subject_node.expr_type.display_name(&ctx.heap)
 
                            )
 
                        ));
 
                    };
 

	
 
                    // Seek the field that is referenced by the select
 
                    // expression
 
                    let mut field_found = false;
 
                    for (field_index, field) in struct_definition.fields.iter().enumerate() {
 
                        if field.identifier.value == rule.selected_field.value {
 
                        if field.identifier.value == selected_field.value {
 
                            // Found the field of interest
 
                            field_found = true;
 
                            let node = &mut self.infer_nodes[node_index];
 
                            node.field_or_monomorph_index = field_index as i32;
 
                            break;
 
                        }
 
                    }
 

	
 
                    if !field_found {
 
                        let struct_definition = ctx.heap[definition_id].as_struct();
 
                        return Err(ParseError::new_error_at_span(
 
                            &ctx.module().source, rule.selected_field.span, format!(
 
                            &ctx.module().source, selected_field.span, format!(
 
                                "this field does not exist on the struct '{}'",
 
                                ast_struct_def.identifier.value.as_str()
 
                                struct_definition.identifier.value.as_str()
 
                            )
 
                        ));
 
                    }
 

	
 
                    // Insert the initial data needed to infer polymorphic
 
                    // fields
 
                    let extra_index = self.insert_initial_select_polymorph_data(ctx, node_index, definition_id);
 
                    let node = &mut self.infer_nodes[node_index];
 
                    node.poly_data_index = extra_index;
 
                },
 
                Ok(None) => {
 
                    // We don't know what to do yet, because we don't know the
 
                    // subject type yet.
 
                    return Ok(())
 
                },
 
                Err(()) => {
 
                    return Err(ParseError::new_error_at_span(
 
                        &ctx.module().source, rule.selected_field.span, format!(
 
                            "Can only apply field access to structs, got a subject of type '{}'",
 
                            subject_type.display_name(&ctx.heap)
 
                            subject_node.expr_type.display_name(&ctx.heap)
 
                        )
 
                    ));
 
                },
 
            }
 
        }
 

	
 
        // If here then the field index is known, hence we can start inferring
 
        // the type of the selected field
 
        let field_expr_id = self.infer_nodes[node_index].expr_id;
 
        let subject_expr_id = self.infer_nodes[subject_index].expr_id;
 
        let mut poly_progress_section = self.poly_progress_buffer.start_section();
 

	
 
        let (_, progress_subject_1) = self.apply_polydata_equal2_constraint(
 
            ctx, node_index, subject_expr_id, "selected struct's",
 
            PolyDataTypeIndex::Associated(0), 0, subject_index, 0, &mut poly_progress_section
 
        )?;
 
        let (_, progress_field_1) = self.apply_polydata_equal2_constraint(
 
            ctx, node_index, field_expr_id, "selected field's",
 
            PolyDataTypeIndex::Returned, 0, node_index, 0, &mut poly_progress_section
 
        )?;
 

	
 
        // Maybe make progress on types due to inferred polymorphic variables
 
        let progress_subject_2 = self.apply_polydata_polyvar_constraint(
 
            ctx, node_index, PolyDataTypeIndex::Associated(0), subject_index, &poly_progress_section
 
        );
 
        let progress_field_2 = self.apply_polydata_polyvar_constraint(
 
            ctx, node_index, PolyDataTypeIndex::Returned, node_index, &poly_progress_section
 
        );
 

	
 
        if progress_subject_1 || progress_subject_2 { self.queue_node(subject_index); }
 
        if progress_field_1 || progress_field_2 { self.queue_node_parent(node_index); }
 

	
 
        poly_progress_section.forget();
 
        self.finish_polydata_constraint(node_index);
 
        return Ok(())
 
    }
 

	
 
    fn progress_inference_rule_select_tuple_member(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_select_tuple_member();
 
        let subject_index = rule.subject_index;
 
        let tuple_member_index = rule.selected_index;
 

	
 
        if node.field_or_monomorph_index < 0 {
 
            let subject_type = &self.infer_nodes[subject_index].expr_type;
 
            let tuple_size = get_tuple_size_from_inference_type(subject_type);
 
            let tuple_size = match tuple_size {
 
                Ok(Some(tuple_size)) => {
 
                    tuple_size
 
                },
 
                Ok(None) => {
 
                    // We can't infer anything yet
 
                    return Ok(())
 
                },
 
                Err(()) => {
 
                    let select_expr_span = ctx.heap[node.expr_id].full_span();
 
                    return Err(ParseError::new_error_at_span(
 
                        &ctx.module().source, select_expr_span, format!(
 
                            "tuple element select cannot be applied to a subject of type '{}'",
 
                            subject_type.display_name(&ctx.heap)
 
                        )
 
                    ));
 
                }
 
            };
 

	
 
            // If here then we at least have the tuple size. Now check if the
 
            // index doesn't exceed that size.
 
            if tuple_member_index >= tuple_size as u64 {
 
                let select_expr_span = ctx.heap[node.expr_id].full_span();
 
                return Err(ParseError::new_error_at_span(
 
                    &ctx.module().source, select_expr_span, format!(
 
                        "element index {} is out of bounds, tuple has {} elements",
 
                        tuple_member_index, tuple_size
 
                    )
 
                ));
 
            }
 

	
 
            // Within bounds, set index on the type inference node
 
            let node = &mut self.infer_nodes[node_index];
 
            node.field_or_monomorph_index = tuple_member_index as i32;
 
        }
 

	
 
        // If here then we know we can use `tuple_member_index`. We need to keep
 
        // computing the offset to the subtype, as its value changes during
 
        // inference
 
        let subject_type = &self.infer_nodes[subject_index].expr_type;
 
        let mut selected_member_start_index = 1; // start just after the InferenceTypeElement::Tuple
 
        for _ in 0..tuple_member_index {
 
            selected_member_start_index = InferenceType::find_subtree_end_idx(&subject_type.parts, selected_member_start_index);
 
        }
 

	
 
        let (progress_member, progress_subject) = self.apply_equal2_constraint(
 
            ctx, node_index, node_index, 0, subject_index, selected_member_start_idx
 
            ctx, node_index, node_index, 0, subject_index, selected_member_start_index
 
        )?;
 

	
 
        if progress_member { self.queue_node_parent(node_index); }
 
        if progress_subject { self.queue_node(subject_index); }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_literal_struct(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let node_expr_id = node.expr_id;
 
        let rule = node.inference_rule.as_literal_struct();
 

	
 
        // For each of the fields in the literal struct, apply the type equality
 
        // constraint. If the literal is polymorphic, then we try to progress
 
        // their types during this process
 
        let element_indices_section = self.index_buffer.start_section_initialized(&rule.element_indices);
 
        let mut poly_progress_section = self.poly_progress_buffer.start_section();
 
        for (field_index, field_node_index) in rule.element_indices.iter().copied().enumerate() {
 
        for (field_index, field_node_index) in element_indices_section.iter_copied().enumerate() {
 
            let field_expr_id = self.infer_nodes[field_node_index].expr_id;
 
            let (_, progress_field) = self.apply_polydata_equal2_constraint(
 
                ctx, node_index, field_expr_id, "struct field's",
 
                PolyDataTypeIndex::Associated(field_index), 0,
 
                field_node_index, 0, &mut poly_progress_section
 
            )?;
 

	
 
            if progress_field { self.queue_node(field_node_index); }
 
        }
 

	
 
        // Now we do the same thing for the struct literal expression (the type
 
        // of the struct itself).
 
        let (_, progress_literal_1) = self.apply_polydata_equal2_constraint(
 
            ctx, node_index, node.expr_id, "struct literal's",
 
            ctx, node_index, node_expr_id, "struct literal's",
 
            PolyDataTypeIndex::Returned, 0, node_index, 0, &mut poly_progress_section
 
        )?;
 

	
 
        // And the other way around: if any of our polymorphic variables are
 
        // more specific then they were before, then we forward that information
 
        // back to our struct/fields.
 
        for (field_index, field_node_index) in rule.element_indices.iter().copied().enumerate() {
 
        for (field_index, field_node_index) in element_indices_section.iter_copied().enumerate() {
 
            let progress_field = self.apply_polydata_polyvar_constraint(
 
                ctx, node_index, PolyDataTypeIndex::Associated(field_index),
 
                field_node_index, &poly_progress_section
 
            );
 

	
 
            if progress_field { self.queue_node(field_node_index); }
 
        }
 

	
 
        let progress_literal_2 = self.apply_polydata_polyvar_constraint(
 
            ctx, node_index, PolyDataTypeIndex::Returned,
 
            node_index, &poly_progress_section
 
        );
 

	
 
        if progress_literal_1 || progress_literal_2 { self.queue_node_parent(node_index); }
 

	
 
        poly_progress_section.forget();
 
        element_indices_section.forget();
 

	
 
        self.finish_polydata_constraint(node_index);
 
        return Ok(())
 
    }
 

	
 
    fn progress_inference_rule_literal_enum(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_literal_enum();
 

	
 
        let node_expr_id = node.expr_id;
 
        let mut poly_progress_section = self.poly_progress_buffer.start_section();
 

	
 
        // An enum literal type is simply, well, the enum's type. However, it
 
        // might still have polymorphic variables, hence the use of `PolyData`.
 
        let (_, progress_literal_1) = self.apply_polydata_equal2_constraint(
 
            ctx, node_index, node.expr_id, "enum literal's",
 
            ctx, node_index, node_expr_id, "enum literal's",
 
            PolyDataTypeIndex::Returned, 0, node_index, 0, &mut poly_progress_section
 
        )?;
 

	
 
        let progress_literal_2 = self.apply_polydata_polyvar_constraint(
 
            ctx, node_index, PolyDataTypeIndex::Returned, node_index, &poly_progress_section
 
        );
 

	
 
        if progress_literal_1 || progress_literal_2 { self.queue_node_parent(node_index); }
 

	
 
        poly_progress_section.forget();
 
        self.finish_polydata_constraint(node_index);
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_literal_union(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let node_expr_id = node.expr_id;
 
        let rule = node.inference_rule.as_literal_union();
 

	
 
        // Infer type of any embedded values in the union variant. At the same
 
        // time progress the polymorphic variables associated with the union.
 
        let element_indices_section = self.index_buffer.start_section_initialized(&rule.element_indices);
 
        let mut poly_progress_section = self.poly_progress_buffer.start_section();
 

	
 
        for (embedded_index, embedded_node_index) in rule.element_indices.iter().copied().enumerate() {
 
        for (embedded_index, embedded_node_index) in element_indices_section.iter_copied().enumerate() {
 
            let embedded_node_expr_id = self.infer_nodes[embedded_node_index].expr_id;
 
            let (_, progress_embedded) = self.apply_polydata_equal2_constraint(
 
                ctx, node_index, embedded_node_expr_id, "embedded value's",
 
                PolyDataTypeIndex::Associated(embedded_index), 0,
 
                embedded_node_index, 0, &mut poly_progress_section
 
            )?;
 

	
 
            if progress_embedded { self.queue_node(embedded_node_index); }
 
        }
 

	
 
        let (_, progress_literal_1) = self.apply_polydata_equal2_constraint(
 
            ctx, node_index, node.expr_id, "union's",
 
            ctx, node_index, node_expr_id, "union's",
 
            PolyDataTypeIndex::Returned, 0, node_index, 0, &mut poly_progress_section
 
        )?;
 

	
 
        // Propagate progress in the polymorphic variables to the expressions
 
        // that constitute the union literal.
 
        for (embedded_index, embedded_node_index) in rule.element_indices.iter().copied().enumerate() {
 
        for (embedded_index, embedded_node_index) in element_indices_section.iter_copied().enumerate() {
 
            let progress_embedded = self.apply_polydata_polyvar_constraint(
 
                ctx, node_index, PolyDataTypeIndex::Associated(embedded_index),
 
                embedded_node_index, &poly_progress_section
 
            );
 

	
 
            if progress_embedded { self.queue_node(embedded_node_index); }
 
        }
 

	
 
        let progress_literal_2 = self.apply_polydata_polyvar_constraint(
 
            ctx, node_index, PolyDataTypeIndex::Returned, node_index, &poly_progress_section
 
        );
 

	
 
        if progress_literal_1 || progress_literal_2 { self.queue_node_parent(node_index); }
 

	
 
        poly_progress_section.forget();
 
        self.finish_polydata_constraint(node_index);
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_literal_array(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_literal_array();
 

	
 
        // Apply equality rule to all of the elements that form the array
 
        let argument_node_indices = self.index_buffer.start_section_initialized(&rule.element_indices);
 
        let mut argument_progress_section = self.bool_buffer.start_section();
 
        self.apply_equal_n_constraint(ctx, node_index, &argument_node_indices, &mut argument_progress_section)?;
 

	
 
        debug_assert_eq!(argument_node_indices.len(), argument_progress_section.len());
 
        for argument_index in 0..argument_node_indices.len() {
 
            let argument_node_index = argument_node_indices[argument_index];
 
            let progress = argument_progress_section[argument_index];
 

	
 
            if progress { self.queue_node(argument_node_index); }
 
        }
 

	
 
        // If elements are of type `T`, then the array is of type `Array<T>`, so:
 
        let mut progress_literal = self.apply_template_constraint(ctx, node_index, &ARRAY_TEMPLATE)?;
 
        if argument_node_indices.len() != 0 {
 
            let argument_node_index = argument_node_indices[0];
 
            let (progress_literal_inner, progress_argument) = self.apply_equal2_constraint(
 
                ctx, node_index, node_index, 1, argument_node_index, 0
 
            )?;
 

	
 
            progress_literal = progress_literal || progress_literal_inner;
 

	
 
            // It is possible that the `Array<T>` has a more progress `T` then
 
            // the arguments. So in the case we progress our argument type we
 
            // simply queue this rule again
 
            if progress_argument { self.queue_expr(node_index); }
 
            if progress_argument { self.queue_node(node_index); }
 
        }
 

	
 
        argument_node_indices.forget();
 
        argument_progress_section.forget();
 

	
 
        if progress_literal { self.queue_node_parent(node_index); }
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_literal_tuple(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_literal_tuple();
 

	
 
        let element_indices = self.index_buffer.start_section_initialized(&rule.element_indices);
 

	
 
        // Check if we need to apply the initial tuple template type. Note that
 
        // this is a hacky check.
 
        let num_tuple_elements = rule.element_indices.len();
 
        let mut template_type = Vec::with_capacity(num_tuple_elements + 1); // TODO: @performance
 
        template_type.push(InferenceTypePart::Tuple(num_tuple_elements as u32));
 
        for _ in 0..num_tuple_elements {
 
            template_type.push(InferenceTypePart::Unknown);
 
        }
 

	
 
        let mut progress_literal = self.apply_template_constraint(ctx, node_index, &template_type)?;
 

	
 
        // Because of the (early returning error) check above, we're certain
 
        // that the tuple has the correct number of elements. Now match each
 
        // element expression type to the tuple subtype.
 
        let mut element_subtree_start_index = 1; // first element is InferenceTypePart::Tuple
 
        for element_node_index in element_indices.iter_copied() {
 
            let (progress_literal_element, progress_element) = self.apply_equal2_constraint(
 
                ctx, node_index, node_index, element_subtree_start_index, element_node_index, 0
 
            )?;
 

	
 
            progress_literal = progress_literal || progress_literal_element;
 
            if progress_element {
 
                self.queue_node(element_node_index);
 
            }
 

	
 
            // Prepare for next element
 
            let node = &self.infer_nodes[node_index];
 
            let subtree_end_index = InferenceType::find_subtree_end_idx(&node.expr_type.parts, element_subtree_start_index);
 
            element_subtree_start_index = subtree_end_index;
 
        }
 
        debug_assert_eq!(element_subtree_end_index, node.expr_type.parts.len());
 
        debug_assert_eq!(element_subtree_start_index, self.infer_nodes[node_index].expr_type.parts.len());
 

	
 
        if progress_literal { self.queue_node_parent(node_index); }
 

	
 
        element_indices.forget();
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_cast_expr(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_cast_expr();
 
        let subject_index = rule.subject_index;
 
        let subject = &self.infer_nodes[subject_index];
 

	
 
        // Make sure that both types are completely done. Note: a cast
 
        // expression cannot really infer anything between the subject and the
 
        // output type, we can only make sure that, at the end, the cast is
 
        // correct.
 
        if !node.expr_type.is_done || !subject.expr_type.is_done {
 
            return Ok(());
 
        }
 

	
 
        // Both types are known, currently the only valid casts are bool,
 
        // integer and character casts.
 
        fn is_bool_int_or_char(parts: &[InferenceTypePart]) -> bool {
 
            let mut index = 0;
 
            while index < parts.len() {
 
                let part = &parts[index];
 
                if !part.is_marker() { break; }
 
                index += 1;
 
            }
 

	
 
            debug_assert!(index != parts.len());
 
            let part = &parts[index];
 
            if (
 
                *part == InferenceTypePart::Bool ||
 
                *part == InferenceTypePart::Character ||
 
                part.is_concrete_integer()
 
            ) {
 
            if *part == InferenceTypePart::Bool || *part == InferenceTypePart::Character || part.is_concrete_integer() {
 
                debug_assert!(index + 1 == parts.len()); // type is done, first part does not have children -> must be at end
 
                return true;
 
            } else {
 
                return false;
 
            }
 
        }
 

	
 
        let is_valid = if is_bool_int_or_char(&node.expr_type.parts) && is_bool_int_or_char(&subject.expr_type.parts) {
 
            true
 
        } else if InferenceType::check_subtrees(&node.expr_type.parts, 0, &subject.expr_type.parts, 0) {
 
            // again: check_subtrees is sufficient since both types are done
 
            true
 
        } else {
 
            false
 
        };
 

	
 
        if !is_valid {
 
            let cast_expr = &ctx.heap[node.expr_id];
 
            let subject_expr = &ctx.heap[subject.expr_id];
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, cast_expr.full_span(), "invalid casting operation"
 
            ).with_info_at_span(
 
                &ctx.module.source, subject_expr.full_span(), format!(
 
                &ctx.module().source, subject_expr.full_span(), format!(
 
                    "cannot cast the argument type '{}' to the type '{}'",
 
                    subject.expr_type.display_name(&ctx.heap),
 
                    node.expr_type.display_name(&ctx.heap)
 
                )
 
            ));
 
        }
 

	
 
        return Ok(())
 
    }
 

	
 
    fn progress_inference_rule_call_expr(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let node_expr_id = node.expr_id;
 
        let rule = node.inference_rule.as_call_expr();
 

	
 
        let mut poly_progress_section = self.poly_progress_buffer.start_section();
 
        let argument_node_indices = self.index_buffer.start_section_initialized(&rule.argument_indices);
 

	
 
        // Perform inference on arguments to function, while trying to figure
 
        // out the polymorphic variables
 
        for (argument_index, argument_node_index) in argument_node_indices.iter_copied().enumerate() {
 
            let argument_expr_id = self.infer_nodes[argument_node_index].expr_id;
 
            let (_, progress_argument) = self.apply_polydata_equal2_constraint(
 
                ctx, node_index, argument_expr_id, "argument's",
 
                PolyDataTypeIndex::Associated(argument_index), 0,
 
                argument_node_index, 0, &mut poly_progress_section
 
            )?;
 

	
 
            if progress_argument { self.queue_node(argument_node_index); }
 
        }
 

	
 
        // Same for the return type.
 
        let call_expr_id = node.expr_id;
 
        let (_, progress_call_1) = self.apply_polydata_equal2_constraint(
 
            ctx, node_index, call_expr_id, "return",
 
            ctx, node_index, node_expr_id, "return",
 
            PolyDataTypeIndex::Returned, 0,
 
            node_index, 0, &mut poly_progress_section
 
        )?;
 

	
 
        // We will now apply any progression in the polymorphic variable type
 
        // back to the arguments.
 
        for (argument_index, argument_node_index) in argument_node_indices.iter_copied().enumerate() {
 
            let progress_argument = self.apply_polydata_polyvar_constraint(
 
                ctx, node_index, PolyDataTypeIndex::Associated(argument_index),
 
                argument_node_index, &poly_progress_section
 
            );
 

	
 
            if progress_argument { self.queue_node(argument_node_index); }
 
        }
 

	
 
        // And back to the return type.
 
        let progress_call_2 = self.apply_polydata_polyvar_constraint(
 
            ctx, node_index, PolyDataTypeIndex::Returned,
 
            node_index, &poly_progress_section
 
        );
 

	
 
        if progress_call_1 || progress_call_2 { self.queue_node_parent(node_index); }
 

	
 
        poly_progress_section.forget();
 
        argument_node_indices.forget();
 

	
 
        self.finish_polydata_constraint(node_index);
 
        return Ok(())
 
    }
 

	
 
    fn progress_inference_rule_variable_expr(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &mut self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_variable_expr();
 
        let var_data_index = rule.var_data_index;
 
        let var_data = &mut self.var_data[var_data_index];
 

	
 
        let var_data = &mut self.var_data[var_data_index];
 
        // Apply inference to the shared variable type and the expression type
 
        let shared_type: *mut _ = &mut var_data.var_type;
 
        let expr_type: *mut _ = &mut node.expr_type;
 

	
 
        let inference_result = unsafe {
 
            // safety: vectors exist in different storage vectors, so cannot alias
 
            InferenceType::infer_subtrees_for_both_types(shared_type, 0, expr_type, 0)
 
        };
 

	
 
        if inference_result == DualInferenceResult::Incompatible {
 
            return Err(self.construct_variable_type_error(ctx, node_index));
 
        }
 

	
 
        let progress_var_data = inference_result.modified_lhs();
 
        let progress_expr = inference_result.modified_rhs();
 

	
 
        if progress_var_data {
 
            // We progressed the type of the shared variable, so propagate this
 
            // to all associated variable expressions (and relatived variables).
 
            for other_node_index in var_data.used_at.iter().copied() {
 
                if other_node_index != node_index {
 
                    self.queue_node(other_node_index);
 
                    self.node_queued.push_back(other_node_index);
 
                }
 
            }
 

	
 
            if let Some(linked_var_data_index) = var_data.linked_var {
 
                // Only perform one-way inference, progressing the linked
 
                // variable.
 
                // note: because this "linking" is used only for channels, we
 
                // will start inference one level below the top-level in the
 
                // type tree (i.e. ensure `T` in `in<T>` and `out<T>` is equal).
 
                debug_assert!(
 
                    var_data.var_type.parts[0] == InferenceTypePart::Input ||
 
                    var_data.var_type.parts[0] == InferenceTypePart::Output
 
                );
 
                let this_var_type: *const _ = &var_data.var_type;
 
                let linked_var_data = &mut self.var_data[linked_var_data_index];
 
                debug_assert!(
 
                    linked_var_data.var_type.parts[0] == InferenceTypePart::Input ||
 
                    linked_var_data.var_type.parts[0] == InferenceTypePart::Output
 
                );
 

	
 
                // safety: by construction var_data_index and linked_var_data_index cannot be the
 
                // same, hence we're not aliasing here.
 
                let inference_result = InferenceType::infer_subtree_for_single_type(
 
                    &mut linked_var_data.var_type, 1,
 
                    unsafe{ &(*this_var_type).parts }, 1, false
 
                );
 
                match inference_result {
 
                    SingleInferenceResult::Modified => {
 
                        for used_at in linked_var_data.used_at.iter().copied() {
 
                            self.queue_node(used_at);
 
                            self.node_queued.push_back(used_at);
 
                        }
 
                    },
 
                    SingleInferenceResult::Unmodified => {},
 
                    SingleInferenceResult::Incompatible => {
 
                        let var_data_this = &self.var_data[var_data_index];
 
                        let var_decl_this = &ctx.heap[var_data_this.var_id];
 
                        let var_data_linked = &self.var_data[linked_var_data_index];
 
                        let var_decl_linked = &ctx.heap[var_data_linked.var_id];
 

	
 
                        return Err(ParseError::new_error_at_span(
 
                            &ctx.module().source, var_decl_this.identifier.span, format!(
 
                                "conflicting types for this channel, this port has type '{}'",
 
                                var_data_this.var_type.display_name(&ctx.heap)
 
                            )
 
                        ).with_info_at_span(
 
                            &ctx.module().source, var_decl_linked.identifier.span, format!(
 
                                "while this port has type '{}'",
 
                                var_data_linked.var_type.display_name(&ctx.heap)
 
                            )
 
                        ));
 
                    }
 
                }
 
            }
 
        }
 

	
 
        if progress_expr { self.queue_node_parent(node_index); }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn progress_template(&mut self, ctx: &Ctx, node_index: InferNodeIndex, application: InferenceRuleTemplateApplication, template: &[InferenceTypePart]) -> Result<bool, ParseError> {
 
        use InferenceRuleTemplateApplication as TA;
 

	
 
        match application {
 
            TA::None => Ok(false),
 
            TA::Template => self.apply_template_constraint(ctx, node_index, template),
 
            TA::Forced => self.apply_forced_constraint(ctx, node_index, template),
 
        }
 
    }
 

	
 
    fn queue_node_parent(&mut self, node_index: InferNodeIndex) {
 
        let node = &self.infer_nodes[node_index];
 
        if let Some(parent_node_index) = node.parent_index {
 
            self.node_queued.push_back(parent_node_index);
 
        }
 
    }
 

	
 
    #[inline]
 
    fn queue_node(&mut self, node_index: InferNodeIndex) {
 
        self.node_queued.push_back(node_index);
 
    }
 

	
 
    /// Returns whether the type is certainly a string (true, false), certainly
 
    /// not a string (false, true), or still unknown (false, false).
 
    fn type_is_certainly_or_certainly_not_string(&self, node_index: InferNodeIndex) -> (bool, bool) {
 
        let expr_type = &self.infer_nodes[node_index].expr_type;
 
        if expr_type.is_done {
 
            if expr_type.parts[0] == InferenceTypePart::String {
 
        println!("DEBUG: Running test on {:?}", expr_type.parts);
 
        let mut part_index = 0;
 
        while part_index < expr_type.parts.len() {
 
            let part = &expr_type.parts[part_index];
 

	
 
            if part.is_marker() { continue; }
 
            if !part.is_concrete() { break; }
 

	
 
            if *part == InferenceTypePart::String {
 
                // First part is a string
 
                return (true, false);
 
            } else {
 
                return (false, true);
 
            }
 
        }
 

	
 
        // If here then first non-marker type is not concrete
 
        if part_index == expr_type.parts.len() {
 
            // nothing known at all
 
            return (false, false);
 
        }
 

	
 
        // Special case: array-like where its argument is not a character
 
        if part_index + 1 < expr_type.parts.len() {
 
            if expr_type.parts[part_index] == InferenceTypePart::ArrayLike && expr_type.parts[part_index + 1] != InferenceTypePart::Character {
 
                return (false, true);
 
            }
 
        }
 

	
 

	
 
        (false, false)
 
    }
 

	
 
    /// Applies a template type constraint: the type associated with the
 
    /// supplied expression will be molded into the provided `template`. But
 
    /// will be considered valid if the template could've been molded into the
 
    /// expression type as well. Hence the template may be fully specified (e.g.
 
    /// a bool) or contain "inference" variables (e.g. an array of T)
 
    fn apply_template_constraint(
 
        &mut self, ctx: &Ctx, node_index: InferNodeIndex, template: &[InferenceTypePart]
 
    ) -> Result<bool, ParseError> {
 
        let expr_type = &mut self.infer_nodes[node_index].expr_type;
 
        match InferenceType::infer_subtree_for_single_type(expr_type, 0, template, 0, false) {
 
            SingleInferenceResult::Modified => Ok(true),
 
            SingleInferenceResult::Unmodified => Ok(false),
 
            SingleInferenceResult::Incompatible => Err(
 
                self.construct_template_type_error(ctx, node_index, template)
 
            )
 
        }
 
    }
 

	
 
    /// Applies a forced constraint: the supplied expression's type MUST be
 
    /// inferred from the template, the other way around is considered invalid.
 
    fn apply_forced_constraint(
 
        &mut self, ctx: &Ctx, node_index: InferNodeIndex, template: &[InferenceTypePart]
 
    ) -> Result<bool, ParseError> {
 
        let expr_type = &mut self.infer_nodes[node_index].expr_type;
 

	
 
        match InferenceType::infer_subtree_for_single_type(expr_type, 0, template, 0, true) {
 
            SingleInferenceResult::Modified => Ok(true),
 
            SingleInferenceResult::Unmodified => Ok(false),
 
            SingleInferenceResult::Incompatible => Err(
 
                self.construct_template_type_error(ctx, node_index, template)
 
            )
 
        }
 
    }
 

	
 
    /// Applies a type constraint that expects the two provided types to be
 
    /// equal. We attempt to make progress in inferring the types. If the call
 
    /// is successful then the composition of all types are made equal.
 
    /// The "parent" `expr_id` is provided to construct errors.
 
    fn apply_equal2_constraint(
 
        &mut self, ctx: &Ctx, node_index: InferNodeIndex,
 
        arg1_index: InferNodeIndex, arg1_start_idx: usize,
 
        arg2_index: InferNodeIndex, arg2_start_idx: usize
 
    ) -> Result<(bool, bool), ParseError> {
 
        let arg1_type: *mut _ = &mut self.infer_nodes[arg1_index].expr_type;
 
        let arg2_type: *mut _ = &mut self.infer_nodes[arg2_index].expr_type;
 

	
 
        let infer_res = unsafe{ InferenceType::infer_subtrees_for_both_types(
 
            arg1_type, arg1_start_idx,
 
            arg2_type, arg2_start_idx
 
        ) };
 
        if infer_res == DualInferenceResult::Incompatible {
 
            return Err(self.construct_arg_type_error(ctx, node_index, arg1_index, arg2_index));
 
        }
 

	
 
        Ok((infer_res.modified_lhs(), infer_res.modified_rhs()))
 
    }
 

	
 
    /// Applies an equal2 constraint between a member of the `PolyData` struct,
 
    /// and another inferred type. If any progress is made in the `PolyData`
 
    /// struct then the affected polymorphic variables are updated as well.
 
    ///
 
    /// Because a lot of types/expressions are involved in polymorphic typFe
 
    /// inference, some explanation: "outer_node" refers to the main expression
 
    /// that is the root cause of type inference (e.g. a struct literal
 
    /// expression, or a tuple member select expression). Associated with that
 
    /// outer node is `PolyData`, so that is what the "poly_data" variables
 
    /// are referring to. We are applying equality between a "poly_data" type
 
    /// and an associated expression (not necessarily the "outer_node", e.g.
 
    /// the expression that constructs the value of a struct field). Hence the
 
    /// "associated" variables.
 
    ///
 
    /// Finally, when an error occurs we'll first show the outer node's
 
    /// location. As info, the `error_location_expr_id` span is shown,
 
    /// indicating that the "`error_type_name` type has been resolved to
 
    /// `outer_node_type`, but this expression has been resolved to
 
    /// `associated_node_type`".
 
    fn apply_polydata_equal2_constraint(
 
        &mut self, ctx: &Ctx,
 
        outer_node_index: InferNodeIndex, error_location_expr_id: ExpressionId, error_type_name: &str,
 
        poly_data_type_index: PolyDataTypeIndex, poly_data_start_index: usize,
 
        associated_node_index: InferNodeIndex, associated_node_start_index: usize,
 
        poly_progress_section: &mut ScopedSection<u32>,
 
    ) -> Result<(bool, bool), ParseError> {
 
        let poly_data_index = self.infer_nodes[outer_node_index].poly_data_index;
 
        let poly_data_type = self.poly_data[poly_data_index].get_type_mut(poly_data_type_index);
 
        let poly_data = &mut self.poly_data[poly_data_index as usize];
 
        let poly_data_type = poly_data.expr_types.get_type_mut(poly_data_type_index);
 
        let associated_type: *mut _ = &mut self.infer_nodes[associated_node_index].expr_type;
 

	
 
        let inference_result = unsafe{
 
            // Safety: pointers originate from different vectors, so cannot
 
            // alias.
 
            let poly_data_type: *mut _ = poly_data_type;
 
            InferenceType::infer_subtrees_for_both_types(
 
                poly_data_type, poly_data_start_index,
 
                associated_type, associated_node_start_index
 
            )
 
        };
 

	
 
        let modified_poly_data = inference_result.modified_lhs();
 
        let modified_associated = inference_result.modified_rhs();
 
        if inference_result == DualInferenceResult::Incompatible {
 
            let outer_node_expr_id = self.infer_nodes[outer_node_index].expr_id;
 
            let outer_node_span = ctx.heap[outer_node_expr_id].full_span();
 
            let detailed_span = ctx.heap[error_location_expr_id].full_span();
 

	
 
            let outer_node_type = poly_data_type.display_name(&ctx.heap);
 
            let associated_type = self.infer_nodes[associated_node_index].expr_type.display_name(&ctx.heap);
 

	
 
            let source = &ctx.module().source;
 
            return Err(ParseError::new_error_str_at_span(
 
                source, outer_node_span, "failed to resolve the types of this expression"
 
            ).with_info_str_at_span(
 
                source, detailed_span, &format!(
 
                    "because the {} type has been resolved to '{}', but this expression has been resolved to '{}'",
 
                    error_type_name, outer_node_type, associated_type
 
                )
 
            ));
 
        }
 

	
 
        if modified_poly_data {
 
            debug_assert!(poly_data_type.has_marker);
 

	
 
            // Go through markers for polymorphic variables and use the
 
            // (hopefully) more specific types to update their representation
 
            // in the PolyData struct
 
            for (poly_var_index, poly_var_section) in poly_data_type.marker_iter() {
 
                let poly_var_type = &mut self.poly_data[poly_data_index].poly_vars[poly_var_index as usize];
 
                let poly_var_type = &mut poly_data.poly_vars[poly_var_index as usize];
 
                match InferenceType::infer_subtree_for_single_type(poly_var_type, 0, poly_var_section, 0, false) {
 
                    SingleInferenceResult::Modified => {
 
                        poly_progress_section.push_unique(poly_var_index);
 
                    },
 
                    SingleInferenceResult::Unmodified => {
 
                        // nothing to do
 
                    },
 
                    SingleInferenceResult::Incompatible => {
 
                        return Err(Self::construct_poly_arg_error(
 
                            ctx, &self.poly_data[poly_data_index],
 
                            ctx, &self.poly_data[poly_data_index as usize],
 
                            self.infer_nodes[outer_node_index].expr_id
 
                        ));
 
                    }
 
                }
 
            }
 
        }
 

	
 
        return Ok((modified_poly_data, modified_associated));
 
    }
 

	
 
    /// After calling `apply_polydata_equal2_constraint` on several expressions
 
    /// that are associated with some kind of polymorphic expression, several of
 
    /// the polymorphic variables might have been inferred to more specific
 
    /// types than before.
 
    ///
 
    /// At this point one should call this function to apply the progress in
 
    /// these polymorphic variables back onto the types that are functions of
 
    /// these polymorphic variables.
 
    ///
 
    /// An example: a struct literal with a polymorphic variable `T` may have
 
    /// two fields `foo` and `bar` each with different types that are a function
 
    /// of the polymorhic variable `T`. If the expressions constructing the
 
    /// value for the field `foo` causes the type `T` to progress, then we can
 
    /// also progress the type of the expression that constructs `bar`.
 
    ///
 
    /// And so we have `outer_node_index` + `poly_data_type_index` pointing to
 
    /// the appropriate type in the `PolyData` struct. Which will be updated
 
    /// first using the polymorphic variables. If we happen to have updated that
 
    /// type, then we should also progress the associated expression, hence the
 
    /// `associated_node_index`.
 
    fn apply_polydata_polyvar_constraint(
 
        &mut self, ctx: &Ctx,
 
        outer_node_index: InferNodeIndex, poly_data_type_index: PolyDataTypeIndex,
 
        associated_node_index: InferNodeIndex, poly_progress_section: &ScopedSection<u32>
 
    ) -> bool {
 
        let poly_data_index = self.infer_nodes[outer_node_index].poly_data_index;
 
        let poly_data = &mut self.poly_data[poly_data_index];
 
        let poly_data = &mut self.poly_data[poly_data_index as usize];
 

	
 
        // Early exit, most common case (literals or functions calls which are
 
        // actually not polymorphic)
 
        if !poly_data.first_rule_application && poly_progress_section.len() == 0 {
 
            return false;
 
        }
 

	
 
        // safety: we're borrowing from two distinct fields, so should be fine
 
        let poly_data_type = poly_data.get_type_mut(poly_data_type_index);
 
        let poly_data_type = poly_data.expr_types.get_type_mut(poly_data_type_index);
 
        let mut last_start_index = 0;
 
        let mut modified_poly_type = false;
 

	
 
        while let Some((poly_var_index, poly_var_start_index)) = poly_data_type.find_marker(last_start_index) {
 
            let poly_var_end_index = InferenceType::find_subtree_end_idx(&poly_data_type.parts, poly_var_start_index);
 

	
 
            if poly_data.first_rule_application || poly_progress_section.contains(&poly_var_index) {
 
                // We have updated this polymorphic variable, so try updating it
 
                // in the PolyData type
 
                let modified_in_poly_data = match InferenceType::infer_subtree_for_single_type(
 
                    poly_data_type, poly_var_start_index, &poly_data.poly_vars[poly_var_index as usize].parts, 0, false
 
                ) {
 
                    SingleInferenceResult::Modified => true,
 
                    SingleInferenceResult::Unmodified => false,
 
                    SingleInferenceResult::Incompatible => {
 
                        // practically impossible: before calling this function we gather all the
 
                        // data on the polymorphic variables from the associated expressions. So if
 
                        // the polymorphic variables in those expressions were not mutually
 
                        // compatible, we must have encountered that error already.
 
                        unreachable!()
 
                    },
 
                };
 

	
 
                modified_poly_type = modified_poly_type || modified_in_poly_data;
 
            }
 

	
 
            last_start_index = poly_var_end_index;
 
        }
 

	
 
        if modified_poly_type {
 
            let associated_type = &mut self.infer_nodes[associated_node_index].expr_type;
 
            match InferenceType::infer_subtree_for_single_type(
 
                associated_type, 0, &poly_data_type.parts, 0, true
 
            ) {
 
                SingleInferenceResult::Modified => return true,
 
                SingleInferenceResult::Unmodified => return false,
 
                SingleInferenceResult::Incompatible => unreachable!(), // same as above
 
            }
 
        } else {
 
            // Did not update associated type
 
            return false;
 
        }
 
    }
 

	
 
    /// Should be called after completing one full round of applying polydata
 
    /// constraints.
 
    fn finish_polydata_constraint(&mut self, outer_node_index: InferNodeIndex) {
 
        let poly_data_index = self.infer_nodes[outer_node_index].poly_data_index;
 
        let poly_data = &mut self.poly_data[poly_data_index];
 
        let poly_data = &mut self.poly_data[poly_data_index as usize];
 
        poly_data.first_rule_application = false;
 
    }
 

	
 
    /// Applies a type constraint that expects all three provided types to be
 
    /// equal. In case we can make progress in inferring the types then we
 
    /// attempt to do so. If the call is successful then the composition of all
 
    /// types is made equal.
 
    fn apply_equal3_constraint(
 
        &mut self, ctx: &Ctx, node_index: InferNodeIndex,
 
        arg1_index: InferNodeIndex, arg2_index: InferNodeIndex,
 
        start_idx: usize
 
    ) -> Result<(bool, bool, bool), ParseError> {
 
        // Safety: all indices are unique
 
        //         containers may not be modified
 
        let expr_type: *mut _ = &mut self.infer_nodes[node_index].expr_type;
 
        let arg1_type: *mut _ = &mut self.infer_nodes[arg1_index].expr_type;
 
        let arg2_type: *mut _ = &mut self.infer_nodes[arg2_index].expr_type;
 

	
 
        let expr_res = unsafe{
 
            InferenceType::infer_subtrees_for_both_types(expr_type, start_idx, arg1_type, start_idx)
 
        };
 
        if expr_res == DualInferenceResult::Incompatible {
 
            return Err(self.construct_expr_type_error(ctx, node_index, arg1_index));
 
        }
 

	
 
        let args_res = unsafe{
 
            InferenceType::infer_subtrees_for_both_types(arg1_type, start_idx, arg2_type, start_idx) };
 
        if args_res == DualInferenceResult::Incompatible {
 
            return Err(self.construct_arg_type_error(ctx, node_index, arg1_index, arg2_index));
 
        }
 

	
 
        // If all types are compatible, but the second call caused the arg1_type
 
        // to be expanded, then we must also assign this to expr_type.
 
        let mut progress_expr = expr_res.modified_lhs();
 
        let mut progress_arg1 = expr_res.modified_rhs();
 
        let progress_arg2 = args_res.modified_rhs();
 

	
 
        if args_res.modified_lhs() { 
 
            unsafe {
 
                let end_idx = InferenceType::find_subtree_end_idx(&(*arg2_type).parts, start_idx);
 
                let subtree = &((*arg2_type).parts[start_idx..end_idx]);
 
                (*expr_type).replace_subtree(start_idx, subtree);
 
            }
 
            progress_expr = true;
 
            progress_arg1 = true;
 
        }
 

	
 
        Ok((progress_expr, progress_arg1, progress_arg2))
 
@@ -3374,376 +3419,386 @@ impl PassTyping {
 
        let inference_type = match expr.parent() {
 
            EP::None =>
 
                // Should have been set by linker
 
                unreachable!(),
 
            EP::Memory(_) | EP::ExpressionStmt(_) =>
 
                // Determined during type inference
 
                InferenceType::new(false, false, vec![ITP::Unknown]),
 
            EP::Expression(parent_id, idx_in_parent) => {
 
                // If we are the test expression of a conditional expression,
 
                // then we must resolve to a boolean
 
                let is_conditional = if let Expression::Conditional(_) = &ctx.heap[*parent_id] {
 
                    true
 
                } else {
 
                    false
 
                };
 

	
 
                if is_conditional && *idx_in_parent == 0 {
 
                    InferenceType::new(false, true, vec![ITP::Bool])
 
                } else {
 
                    InferenceType::new(false, false, vec![ITP::Unknown])
 
                }
 
            },
 
            EP::If(_) | EP::While(_) =>
 
                // Must be a boolean
 
                InferenceType::new(false, true, vec![ITP::Bool]),
 
            EP::Return(_) =>
 
                // Must match the return type of the function
 
                if let DefinitionType::Function(func_id) = self.definition_type {
 
                    let returned = &ctx.heap[func_id].return_type;
 
                    self.determine_inference_type_from_parser_type_elements(&returned.elements, true)
 
                } else {
 
                    // Cannot happen: definition always set upon body traversal
 
                    // and "return" calls in components are illegal.
 
                    unreachable!();
 
                },
 
            EP::New(_) =>
 
                // Must be a component call, which we assign a "Void" return
 
                // type
 
                InferenceType::new(false, true, vec![ITP::Void]),
 
        };
 

	
 
        let infer_index = self.infer_nodes.len() as InferNodeIndex;
 
        self.infer_nodes.push(InferenceNode {
 
            expr_type: inference_type,
 
            expr_id,
 
            inference_rule: InferenceRule::Noop,
 
            parent_index: self.parent_index,
 
            field_or_monomorph_index: -1,
 
            poly_data_index: PolyDataIndex::MAX,
 
            poly_data_index: -1,
 
            type_id: TypeId::new_invalid(),
 
        });
 

	
 
        return Ok(infer_index);
 
    }
 

	
 
    fn insert_initial_call_polymorph_data(
 
        &mut self, ctx: &mut Ctx, call_id: CallExpressionId
 
    ) -> PolyDataIndex {
 
        // Note: the polymorph variables may be partially specified and may
 
        // contain references to the wrapping definition's (i.e. the proctype
 
        // we are currently visiting) polymorphic arguments.
 
        //
 
        // The arguments of the call may refer to polymorphic variables in the
 
        // definition of the function we're calling, not of the wrapping
 
        // definition. We insert markers in these inferred types to be able to
 
        // map them back and forth to the polymorphic arguments of the function
 
        // we are calling.
 
        let call = &ctx.heap[call_id];
 

	
 
        // Handle the polymorphic arguments (if there are any)
 
        let num_poly_args = call.parser_type.elements[0].variant.num_embedded();
 
        let mut poly_args = Vec::with_capacity(num_poly_args);
 
        for embedded_elements in call.parser_type.iter_embedded(0) {
 
            poly_args.push(self.determine_inference_type_from_parser_type_elements(embedded_elements, true));
 
        }
 

	
 
        // Handle the arguments and return types
 
        let definition = &ctx.heap[call.definition];
 
        let (parameters, returned) = match definition {
 
            Definition::Component(definition) => {
 
                debug_assert_eq!(poly_args.len(), definition.poly_vars.len());
 
                (&definition.parameters, None)
 
            },
 
            Definition::Function(definition) => {
 
                debug_assert_eq!(poly_args.len(), definition.poly_vars.len());
 
                (&definition.parameters, Some(&definition.return_type))
 
            },
 
            Definition::Struct(_) | Definition::Enum(_) | Definition::Union(_) => {
 
                unreachable!("insert_initial_call_polymorph data for non-procedure type");
 
            },
 
        };
 

	
 
        let mut parameter_types = Vec::with_capacity(parameters.len());
 
        for parameter_id in parameters.clone().into_iter() { // TODO: @Performance @Now
 
            let param = &ctx.heap[parameter_id];
 
            parameter_types.push(self.determine_inference_type_from_parser_type_elements(&param.parser_type.elements, false));
 
        }
 

	
 
        let return_type = match returned {
 
            None => {
 
                // Component, so returns a "Void"
 
                InferenceType::new(false, true, vec![InferenceTypePart::Void])
 
            },
 
            Some(returned) => {
 
                self.determine_inference_type_from_parser_type_elements(&returned.elements, false)
 
            }
 
        };
 

	
 
        let extra_data_idx = self.poly_data.len() as PolyDataIndex;
 
        self.poly_data.push(PolyData {
 
            first_rule_application: true,
 
            definition_id: call.definition,
 
            poly_vars: poly_args,
 
            associated: parameter_types,
 
            returned: return_type
 
            expr_types: PolyDataTypes {
 
                associated: parameter_types,
 
                returned: return_type
 
            }
 
        });
 
        return extra_data_idx
 
    }
 

	
 
    fn insert_initial_struct_polymorph_data(
 
        &mut self, ctx: &mut Ctx, lit_id: LiteralExpressionId,
 
    ) -> PolyDataIndex {
 
        use InferenceTypePart as ITP;
 
        let literal = ctx.heap[lit_id].value.as_struct();
 

	
 
        // Handle polymorphic arguments
 
        let num_embedded = literal.parser_type.elements[0].variant.num_embedded();
 
        let mut total_num_poly_parts = 0;
 
        let mut poly_args = Vec::with_capacity(num_embedded);
 

	
 
        for embedded_elements in literal.parser_type.iter_embedded(0) {
 
            let poly_type = self.determine_inference_type_from_parser_type_elements(embedded_elements, true);
 
            total_num_poly_parts += poly_type.parts.len();
 
            poly_args.push(poly_type);
 
        }
 

	
 
        // Handle parser types on struct definition
 
        let defined_type = ctx.types.get_base_definition(&literal.definition).unwrap();
 
        let struct_type = defined_type.definition.as_struct();
 
        debug_assert_eq!(poly_args.len(), defined_type.poly_vars.len());
 

	
 
        // Note: programmer is capable of specifying fields in a struct literal
 
        // in a different order than on the definition. We take the literal-
 
        // specified order to be leading.
 
        let mut embedded_types = Vec::with_capacity(struct_type.fields.len());
 
        for lit_field in literal.fields.iter() {
 
            let def_field = &struct_type.fields[lit_field.field_idx];
 
            let inference_type = self.determine_inference_type_from_parser_type_elements(&def_field.parser_type.elements, false);
 
            embedded_types.push(inference_type);
 
        }
 

	
 
        // Return type is the struct type itself, with the appropriate 
 
        // polymorphic variables. So:
 
        // - 1 part for definition
 
        // - N_poly_arg marker parts for each polymorphic argument
 
        // - all the parts for the currently known polymorphic arguments 
 
        let parts_reserved = 1 + poly_args.len() + total_num_poly_parts;
 
        let mut parts = Vec::with_capacity(parts_reserved);
 
        parts.push(ITP::Instance(literal.definition, poly_args.len() as u32));
 
        let mut return_type_done = true;
 
        for (poly_var_idx, poly_var) in poly_args.iter().enumerate() {
 
            if !poly_var.is_done { return_type_done = false; }
 

	
 
            parts.push(ITP::Marker(poly_var_idx as u32));
 
            parts.extend(poly_var.parts.iter().cloned());
 
        }
 

	
 
        debug_assert_eq!(parts.len(), parts_reserved);
 
        let return_type = InferenceType::new(!poly_args.is_empty(), return_type_done, parts);
 

	
 
        let extra_data_index = self.poly_data.len() as PolyDataIndex;
 
        self.poly_data.push(PolyData {
 
            first_rule_application: true,
 
            definition_id: literal.definition,
 
            poly_vars: poly_args,
 
            associated: embedded_types,
 
            returned: return_type,
 
            expr_types: PolyDataTypes {
 
                associated: embedded_types,
 
                returned: return_type,
 
            },
 
        });
 

	
 
        return extra_data_index
 
    }
 

	
 
    /// Inserts the extra polymorphic data struct for enum expressions. These
 
    /// can never be determined from the enum itself, but may be inferred from
 
    /// the use of the enum.
 
    fn insert_initial_enum_polymorph_data(
 
        &mut self, ctx: &Ctx, lit_id: LiteralExpressionId
 
    ) -> PolyDataIndex {
 
        use InferenceTypePart as ITP;
 
        let literal = ctx.heap[lit_id].value.as_enum();
 

	
 
        // Handle polymorphic arguments to the enum
 
        let num_poly_args = literal.parser_type.elements[0].variant.num_embedded();
 
        let mut total_num_poly_parts = 0;
 
        let mut poly_args = Vec::with_capacity(num_poly_args);
 

	
 
        for embedded_elements in literal.parser_type.iter_embedded(0) {
 
            let poly_type = self.determine_inference_type_from_parser_type_elements(embedded_elements, true);
 
            total_num_poly_parts += poly_type.parts.len();
 
            poly_args.push(poly_type);
 
        }
 

	
 
        // Handle enum type itself
 
        let parts_reserved = 1 + poly_args.len() + total_num_poly_parts;
 
        let mut parts = Vec::with_capacity(parts_reserved);
 
        parts.push(ITP::Instance(literal.definition, poly_args.len() as u32));
 
        let mut enum_type_done = true;
 
        for (poly_var_idx, poly_var) in poly_args.iter().enumerate() {
 
            if !poly_var.is_done { enum_type_done = false; }
 

	
 
            parts.push(ITP::Marker(poly_var_idx as u32));
 
            parts.extend(poly_var.parts.iter().cloned());
 
        }
 

	
 
        debug_assert_eq!(parts.len(), parts_reserved);
 
        let enum_type = InferenceType::new(!poly_args.is_empty(), enum_type_done, parts);
 

	
 
        let extra_data_index = self.poly_data.len() as PolyDataIndex;
 
        self.poly_data.push(PolyData {
 
            first_rule_application: true,
 
            definition_id: literal.definition,
 
            poly_vars: poly_args,
 
            associated: Vec::new(),
 
            returned: enum_type,
 
            expr_types: PolyDataTypes {
 
                associated: Vec::new(),
 
                returned: enum_type,
 
            },
 
        });
 

	
 
        return extra_data_index;
 
    }
 

	
 
    /// Inserts the extra polymorphic data struct for unions. The polymorphic
 
    /// arguments may be partially determined from embedded values in the union.
 
    fn insert_initial_union_polymorph_data(
 
        &mut self, ctx: &Ctx, lit_id: LiteralExpressionId
 
    ) -> PolyDataIndex {
 
        use InferenceTypePart as ITP;
 
        let literal = ctx.heap[lit_id].value.as_union();
 

	
 
        // Construct the polymorphic variables
 
        let num_poly_args = literal.parser_type.elements[0].variant.num_embedded();
 
        let mut total_num_poly_parts = 0;
 
        let mut poly_args = Vec::with_capacity(num_poly_args);
 

	
 
        for embedded_elements in literal.parser_type.iter_embedded(0) {
 
            let poly_type = self.determine_inference_type_from_parser_type_elements(embedded_elements, true);
 
            total_num_poly_parts += poly_type.parts.len();
 
            poly_args.push(poly_type);
 
        }
 

	
 
        // Handle any of the embedded values in the variant, if specified
 
        let definition_id = literal.definition;
 
        let type_definition = ctx.types.get_base_definition(&definition_id).unwrap();
 
        let union_definition = type_definition.definition.as_union();
 
        debug_assert_eq!(poly_args.len(), type_definition.poly_vars.len());
 

	
 
        let variant_definition = &union_definition.variants[literal.variant_idx];
 
        debug_assert_eq!(variant_definition.embedded.len(), literal.values.len());
 

	
 
        let mut embedded = Vec::with_capacity(variant_definition.embedded.len());
 
        for embedded_parser_type in &variant_definition.embedded {
 
            let inference_type = self.determine_inference_type_from_parser_type_elements(&embedded_parser_type.elements, false);
 
            embedded.push(inference_type);
 
        }
 

	
 
        // Handle the type of the union itself
 
        let parts_reserved = 1 + poly_args.len() + total_num_poly_parts;
 
        let mut parts = Vec::with_capacity(parts_reserved);
 
        parts.push(ITP::Instance(definition_id, poly_args.len() as u32));
 
        let mut union_type_done = true;
 
        for (poly_var_idx, poly_var) in poly_args.iter().enumerate() {
 
            if !poly_var.is_done { union_type_done = false; }
 

	
 
            parts.push(ITP::Marker(poly_var_idx as u32));
 
            parts.extend(poly_var.parts.iter().cloned());
 
        }
 

	
 
        debug_assert_eq!(parts_reserved, parts.len());
 
        let union_type = InferenceType::new(!poly_args.is_empty(), union_type_done, parts);
 

	
 
        let extra_data_index = self.poly_data.len();
 
        let extra_data_index = self.poly_data.len() as isize;
 
        self.poly_data.push(PolyData {
 
            first_rule_application: true,
 
            definition_id: literal.definition,
 
            poly_vars: poly_args,
 
            associated: embedded,
 
            returned: union_type
 
            expr_types: PolyDataTypes {
 
                associated: embedded,
 
                returned: union_type,
 
            },
 
        });
 

	
 
        return extra_data_index;
 
    }
 

	
 
    /// Inserts the extra polymorphic data struct. Assumes that the select
 
    /// expression's referenced (definition_id, field_idx) has been resolved.
 
    fn insert_initial_select_polymorph_data(
 
        &mut self, ctx: &Ctx, node_index: InferNodeIndex, struct_def_id: DefinitionId
 
    ) -> PolyDataIndex {
 
        use InferenceTypePart as ITP;
 

	
 
        let definition = ctx.heap[struct_def_id].as_struct();
 
        let node = &self.infer_nodes[node_index];
 
        let field_index = node.field_or_monomorph_index as usize;
 

	
 
        // Generate initial polyvar types and struct type
 
        // TODO: @Performance: we can immediately set the polyvars of the subject's struct type
 
        let num_poly_vars = definition.poly_vars.len();
 
        let mut poly_vars = Vec::with_capacity(num_poly_vars);
 
        let struct_parts_reserved = 1 + 2 * num_poly_vars;
 
        let mut struct_parts = Vec::with_capacity(struct_parts_reserved);
 
        struct_parts.push(ITP::Instance(struct_def_id, num_poly_vars as u32));
 

	
 
        for poly_idx in 0..num_poly_vars {
 
            poly_vars.push(InferenceType::new(true, false, vec![
 
                ITP::Marker(poly_idx as u32), ITP::Unknown,
 
            ]));
 
            struct_parts.push(ITP::Marker(poly_idx as u32));
 
            struct_parts.push(ITP::Unknown);
 
        }
 
        debug_assert_eq!(struct_parts.len(), struct_parts_reserved);
 

	
 
        // Generate initial field type
 
        let field_type = self.determine_inference_type_from_parser_type_elements(&definition.fields[field_index].parser_type.elements, false);
 

	
 
        let extra_data_index = self.poly_data.len() as PolyDataIndex;
 
        self.poly_data.push(PolyData {
 
            first_rule_application: true,
 
            definition_id: struct_def_id,
 
            poly_vars,
 
            associated: vec![InferenceType::new(num_poly_vars != 0, num_poly_vars == 0, struct_parts)],
 
            returned: field_type
 
            expr_types: PolyDataTypes {
 
                associated: vec![InferenceType::new(num_poly_vars != 0, num_poly_vars == 0, struct_parts)],
 
                returned: field_type,
 
            },
 
        });
 

	
 
        return extra_data_index;
 
    }
 

	
 
    /// Determines the initial InferenceType from the provided ParserType. This
 
    /// may be called with two kinds of intentions:
 
    /// 1. To resolve a ParserType within the body of a function, or on
 
    ///     polymorphic arguments to calls/instantiations within that body. This
 
    ///     means that the polymorphic variables are known and can be replaced
 
    ///     with the monomorph we're instantiating.
 
    /// 2. To resolve a ParserType on a called function's definition or on
 
    ///     an instantiated datatype's members. This means that the polymorphic
 
    ///     arguments inside those ParserTypes refer to the polymorphic
 
    ///     variables in the called/instantiated type's definition.
 
    /// In the second case we place InferenceTypePart::Marker instances such
 
    /// that we can perform type inference on the polymorphic variables.
 
    fn determine_inference_type_from_parser_type_elements(
 
        &mut self, elements: &[ParserTypeElement],
 
        use_definitions_known_poly_args: bool
 
    ) -> InferenceType {
 
        use ParserTypeVariant as PTV;
 
        use InferenceTypePart as ITP;
 

	
 
        let mut infer_type = Vec::with_capacity(elements.len());
 
        let mut has_inferred = false;
 
        let mut has_markers = false;
 

	
 
        for element in elements {
 
            match &element.variant {
 
                // Compiler-only types
 
                PTV::Void => { infer_type.push(ITP::Void); },
 
                PTV::InputOrOutput => { infer_type.push(ITP::PortLike); has_inferred = true },
 
                PTV::ArrayLike => { infer_type.push(ITP::ArrayLike); has_inferred = true },
 
                PTV::IntegerLike => { infer_type.push(ITP::IntegerLike); has_inferred = true },
 
                // Builtins
 
                PTV::Message => {
 
                    // TODO: @types Remove the Message -> Byte hack at some point...
 
                    infer_type.push(ITP::Message);
 
                    infer_type.push(ITP::UInt8);
 
                },
 
                PTV::Bool => { infer_type.push(ITP::Bool); },
 
                PTV::UInt8 => { infer_type.push(ITP::UInt8); },
 
                PTV::UInt16 => { infer_type.push(ITP::UInt16); },
 
                PTV::UInt32 => { infer_type.push(ITP::UInt32); },
 
                PTV::UInt64 => { infer_type.push(ITP::UInt64); },
 
                PTV::SInt8 => { infer_type.push(ITP::SInt8); },
 
                PTV::SInt16 => { infer_type.push(ITP::SInt16); },
 
@@ -4015,183 +4070,183 @@ impl PassTyping {
 
                    let (poly_var, struct_name) = get_poly_var_and_definition_name(ctx, poly_var_idx, poly_data.definition_id);
 
                    let field_name = match &expr.kind {
 
                        SelectKind::StructField(v) => v,
 
                        SelectKind::TupleMember(_) => unreachable!(), // because we're constructing a polymorph error, and tuple access does not deal with polymorphs
 
                    };
 
                    return ParseError::new_error_at_span(
 
                        &ctx.module().source, expr.full_span, format!(
 
                            "Conflicting type for polymorphic variable '{}' while accessing field '{}' of '{}'",
 
                            poly_var, field_name.value.as_str(), struct_name
 
                        )
 
                    )
 
                }
 
                _ => unreachable!("called construct_poly_arg_error without an expected expression, got: {:?}", expr)
 
            }
 
        }
 

	
 
        // Actual checking
 
        let expr = &ctx.heap[expr_id];
 
        let (expr_args, expr_return_name) = match expr {
 
            Expression::Call(expr) => 
 
                (
 
                    expr.arguments.clone(),
 
                    "return type"
 
                ),
 
            Expression::Literal(expr) => {
 
                let expressions = match &expr.value {
 
                    Literal::Struct(v) => v.fields.iter()
 
                        .map(|f| f.value)
 
                        .collect(),
 
                    Literal::Enum(_) => Vec::new(),
 
                    Literal::Union(v) => v.values.clone(),
 
                    _ => unreachable!()
 
                };
 

	
 
                ( expressions, "literal" )
 
            },
 
            Expression::Select(expr) =>
 
                // Select expression uses the polymorphic variables of the 
 
                // struct it is accessing, so get the subject expression.
 
                (
 
                    vec![expr.subject],
 
                    "selected field"
 
                ),
 
            _ => unreachable!(),
 
        };
 

	
 
        // - check return type with itself
 
        if let Some((poly_idx, section_a, section_b)) = has_poly_mismatch(
 
            &poly_data.returned, &poly_data.returned
 
            &poly_data.expr_types.returned, &poly_data.expr_types.returned
 
        ) {
 
            return construct_main_error(ctx, poly_data, poly_idx, expr)
 
                .with_info_at_span(
 
                    &ctx.module().source, expr.full_span(), format!(
 
                        "The {} inferred the conflicting types '{}' and '{}'",
 
                        expr_return_name,
 
                        InferenceType::partial_display_name(&ctx.heap, section_a),
 
                        InferenceType::partial_display_name(&ctx.heap, section_b)
 
                    )
 
                );
 
        }
 

	
 
        // - check arguments with each other argument and with return type
 
        for (arg_a_idx, arg_a) in poly_data.associated.iter().enumerate() {
 
            for (arg_b_idx, arg_b) in poly_data.associated.iter().enumerate() {
 
        for (arg_a_idx, arg_a) in poly_data.expr_types.associated.iter().enumerate() {
 
            for (arg_b_idx, arg_b) in poly_data.expr_types.associated.iter().enumerate() {
 
                if arg_b_idx > arg_a_idx {
 
                    break;
 
                }
 

	
 
                if let Some((poly_idx, section_a, section_b)) = has_poly_mismatch(&arg_a, &arg_b) {
 
                    let error = construct_main_error(ctx, poly_data, poly_idx, expr);
 
                    if arg_a_idx == arg_b_idx {
 
                        // Same argument
 
                        let arg = &ctx.heap[expr_args[arg_a_idx]];
 
                        return error.with_info_at_span(
 
                            &ctx.module().source, arg.full_span(), format!(
 
                                "This argument inferred the conflicting types '{}' and '{}'",
 
                                InferenceType::partial_display_name(&ctx.heap, section_a),
 
                                InferenceType::partial_display_name(&ctx.heap, section_b)
 
                            )
 
                        );
 
                    } else {
 
                        let arg_a = &ctx.heap[expr_args[arg_a_idx]];
 
                        let arg_b = &ctx.heap[expr_args[arg_b_idx]];
 
                        return error.with_info_at_span(
 
                            &ctx.module().source, arg_a.full_span(), format!(
 
                                "This argument inferred it to '{}'",
 
                                InferenceType::partial_display_name(&ctx.heap, section_a)
 
                            )
 
                        ).with_info_at_span(
 
                            &ctx.module().source, arg_b.full_span(), format!(
 
                                "While this argument inferred it to '{}'",
 
                                InferenceType::partial_display_name(&ctx.heap, section_b)
 
                            )
 
                        )
 
                    }
 
                }
 
            }
 

	
 
            // Check with return type
 
            if let Some((poly_idx, section_arg, section_ret)) = has_poly_mismatch(arg_a, &poly_data.returned) {
 
            if let Some((poly_idx, section_arg, section_ret)) = has_poly_mismatch(arg_a, &poly_data.expr_types.returned) {
 
                let arg = &ctx.heap[expr_args[arg_a_idx]];
 
                return construct_main_error(ctx, poly_data, poly_idx, expr)
 
                    .with_info_at_span(
 
                        &ctx.module().source, arg.full_span(), format!(
 
                            "This argument inferred it to '{}'",
 
                            InferenceType::partial_display_name(&ctx.heap, section_arg)
 
                        )
 
                    )
 
                    .with_info_at_span(
 
                        &ctx.module().source, expr.full_span(), format!(
 
                            "While the {} inferred it to '{}'",
 
                            expr_return_name,
 
                            InferenceType::partial_display_name(&ctx.heap, section_ret)
 
                        )
 
                    );
 
            }
 
        }
 

	
 
        // Now check against the explicitly specified polymorphic variables (if
 
        // any).
 
        for (arg_idx, arg) in poly_data.associated.iter().enumerate() {
 
        for (arg_idx, arg) in poly_data.expr_types.associated.iter().enumerate() {
 
            if let Some((poly_idx, poly_section, arg_section)) = has_explicit_poly_mismatch(&poly_data.poly_vars, arg) {
 
                let arg = &ctx.heap[expr_args[arg_idx]];
 
                return construct_main_error(ctx, poly_data, poly_idx, expr)
 
                    .with_info_at_span(
 
                        &ctx.module().source, arg.full_span(), format!(
 
                            "The polymorphic variable has type '{}' (which might have been partially inferred) while the argument inferred it to '{}'",
 
                            InferenceType::partial_display_name(&ctx.heap, poly_section),
 
                            InferenceType::partial_display_name(&ctx.heap, arg_section)
 
                        )
 
                    );
 
            }
 
        }
 

	
 
        if let Some((poly_idx, poly_section, ret_section)) = has_explicit_poly_mismatch(&poly_data.poly_vars, &poly_data.returned) {
 
        if let Some((poly_idx, poly_section, ret_section)) = has_explicit_poly_mismatch(&poly_data.poly_vars, &poly_data.expr_types.returned) {
 
            return construct_main_error(ctx, poly_data, poly_idx, expr)
 
                .with_info_at_span(
 
                    &ctx.module().source, expr.full_span(), format!(
 
                        "The polymorphic variable has type '{}' (which might have been partially inferred) while the {} inferred it to '{}'",
 
                        InferenceType::partial_display_name(&ctx.heap, poly_section),
 
                        expr_return_name,
 
                        InferenceType::partial_display_name(&ctx.heap, ret_section)
 
                    )
 
                )
 
        }
 

	
 
        unreachable!("construct_poly_arg_error without actual error found?")
 
    }
 
}
 

	
 
fn get_tuple_size_from_inference_type(inference_type: &InferenceType) -> Result<Option<u32>, ()> {
 
    for part in &inference_type.parts {
 
        if part.is_marker() { continue; }
 
        if !part.is_concrete() { break; }
 

	
 
        if let InferenceTypePart::Tuple(size) = part {
 
            return Ok(Some(*size));
 
        } else {
 
            return Err(()); // not a tuple!
 
        }
 
    }
 

	
 
    return Ok(None);
 
}
 

	
 
#[cfg(test)]
 
mod tests {
 
    use super::*;
 
    use crate::protocol::arena::Id;
 
    use InferenceTypePart as ITP;
 
    use InferenceType as IT;
 

	
 
    #[test]
 
    fn test_single_part_inference() {
 
        // lhs argument inferred from rhs
 
        let pairs = [
 
            (ITP::NumberLike, ITP::UInt8),
 
            (ITP::IntegerLike, ITP::SInt32),
 
            (ITP::Unknown, ITP::UInt64),
 
            (ITP::Unknown, ITP::Bool)
 
        ];
 
        for (lhs, rhs) in pairs.iter() {
 
            // Using infer-both
src/protocol/tests/parser_validation.rs
Show inline comments
 
@@ -302,97 +302,97 @@ fn test_incorrect_union_instance() {
 
        union Foo{ A(s32), A(s8) }
 
        "
 
    ).error(|e| { e 
 
        .assert_num(2)
 
        .assert_occurs_at(0, "A(s8)")
 
        .assert_msg_has(0, "union variant is defined more than once")
 
        .assert_occurs_at(1, "A(s32)")
 
        .assert_msg_has(1, "other union variant");
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "undefined variant",
 
        "
 
        union Silly{ Thing(s8) }
 
        func bar() -> Silly { return Silly::Undefined(5); }
 
        "
 
    ).error(|e| { e
 
        .assert_msg_has(0, "variant 'Undefined' does not exist on the union 'Silly'");
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "using tag instead of embedded",
 
        "
 
        union Foo{ A(s32) }
 
        func bar() -> Foo { return Foo::A; }
 
        "
 
    ).error(|e| { e
 
        .assert_msg_has(0, "variant 'A' of union 'Foo' expects 1 embedded values, but 0 were");
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "using embedded instead of tag",
 
        "
 
        union Foo{ A }
 
        func bar() -> Foo { return Foo::A(3); }
 
        "
 
    ).error(|e| { e 
 
        .assert_msg_has(0, "The variant 'A' of union 'Foo' expects 0");
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "wrong embedded value",
 
        "
 
        union Foo{ A(s32) }
 
        func bar() -> Foo { return Foo::A(false); }
 
        "
 
    ).error(|e| { e
 
        .assert_occurs_at(0, "Foo::A")
 
        .assert_msg_has(0, "failed to fully resolve")
 
        .assert_msg_has(0, "failed to resolve")
 
        .assert_occurs_at(1, "false")
 
        .assert_msg_has(1, "has been resolved to 's32'")
 
        .assert_msg_has(1, "has been resolved to 'bool'");
 
    });
 
}
 

	
 
#[test]
 
fn test_correct_tuple_members() {
 
    // Tuples with zero members
 
    Tester::new_single_source_expect_ok(
 
        "single zero-tuple",
 
        "struct Foo{ () bar }"
 
    ).for_struct("Foo", |s| { s
 
        .for_field("bar", |f| { f.assert_parser_type("()"); })
 
        .assert_size_alignment("Foo", 0, 1);
 
    });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "triple zero-tuple",
 
        "struct Foo{ () bar, () baz, () qux }"
 
    ).for_struct("Foo", |s| { s
 
        .assert_size_alignment("Foo", 0, 1);
 
    });
 

	
 
    // Tuples with one member (which are elided, because due to ambiguity
 
    // between a one-tuple literal and a parenthesized expression, we're not
 
    // going to be able to construct one-tuples).
 
    Tester::new_single_source_expect_ok(
 
        "single elided one-tuple",
 
        "struct Foo{ (u32) bar }"
 
    ).for_struct("Foo", |s| { s
 
        .for_field("bar", |f| { f.assert_parser_type("u32"); })
 
        .assert_size_alignment("Foo", 4, 4);
 
    });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "triple elided one-tuple",
 
        "struct Foo{ (u8) bar, (u16) baz, (u32) qux }"
 
    ).for_struct("Foo", |s| { s
 
        .assert_size_alignment("Foo", 8, 4);
 
    });
 

	
 
    // Tuples with three members
 
    Tester::new_single_source_expect_ok(
 
        "single three-tuple",
 
        "struct Foo{ (u8, u16, u32) bar }"
 
    ).for_struct("Foo", |s| { s
 
        .for_field("bar", |f| { f.assert_parser_type("(u8,u16,u32)"); })
0 comments (0 inline, 0 general)