Changeset - ac0d6a5fb496
[Not reviewed]
0 3 0
mh - 4 years ago 2022-02-24 08:01:21
contact@maxhenger.nl
WIP: Adding monomorphs to AST
3 files changed with 72 insertions and 51 deletions:
0 comments (0 inline, 0 general)
src/protocol/ast.rs
Show inline comments
 
use std::fmt;
 
use std::fmt::{Debug, Display, Formatter};
 
use std::ops::{Index, IndexMut};
 

	
 
use super::arena::{Arena, Id};
 
use crate::collections::StringRef;
 
use crate::protocol::input_source::InputSpan;
 
use crate::protocol::TypeId;
 

	
 
/// Helper macro that defines a type alias for a AST element ID. In this case 
 
/// only used to alias the `Id<T>` types.
 
macro_rules! define_aliased_ast_id {
 
    // Variant where we just defined the alias, without any indexing
 
    ($name:ident, $parent:ty) => {
 
        pub type $name = $parent;
 
    };
 
    // Variant where we define the type, and the Index and IndexMut traits
 
    (
 
        $name:ident, $parent:ty, 
 
        index($indexed_type:ty, $indexed_arena:ident)
 
    ) => {
 
        define_aliased_ast_id!($name, $parent);
 
        impl Index<$name> for Heap {
 
            type Output = $indexed_type;
 
            fn index(&self, index: $name) -> &Self::Output {
 
                &self.$indexed_arena[index]
 
            }
 
        }
 

	
 
        impl IndexMut<$name> for Heap {
 
            fn index_mut(&mut self, index: $name) -> &mut Self::Output {
 
                &mut self.$indexed_arena[index]
 
            }
 
        }
 
    };
 
    // Variant where we define type, Index(Mut) traits and an allocation function
 
    (
 
        $name:ident, $parent:ty,
 
        index($indexed_type:ty, $indexed_arena:ident),
 
        alloc($fn_name:ident)
 
    ) => {
 
        define_aliased_ast_id!($name, $parent, index($indexed_type, $indexed_arena));
 
        impl Heap {
 
            pub fn $fn_name(&mut self, f: impl FnOnce($name) -> $indexed_type) -> $name {
 
                self.$indexed_arena.alloc_with_id(|id| f(id))
 
            }
 
        }
 
    };
 
}
 

	
 
/// Helper macro that defines a wrapper type for a particular variant of an AST
 
/// element ID. Only used to define single-wrapping IDs.
 
macro_rules! define_new_ast_id {
 
    // Variant where we just defined the new type, without any indexing
 
    ($name:ident, $parent:ty) => {
 
        #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
 
        pub struct $name (pub(crate) $parent);
 

	
 
        #[allow(dead_code)]
 
        impl $name {
 
            pub(crate) fn new_invalid() -> Self     { Self(<$parent>::new_invalid()) }
 
            pub(crate) fn is_invalid(&self) -> bool { self.0.is_invalid() }
 
            pub fn upcast(self) -> $parent          { self.0 }
 
        }
 
    };
 
    // Variant where we define the type, and the Index and IndexMut traits
 
    (
 
        $name:ident, $parent:ty, 
 
        index($indexed_type:ty, $wrapper_type:path, $indexed_arena:ident)
 
    ) => {
 
        define_new_ast_id!($name, $parent);
 
        impl Index<$name> for Heap {
 
            type Output = $indexed_type;
 
            fn index(&self, index: $name) -> &Self::Output {
 
                if let $wrapper_type(v) = &self.$indexed_arena[index.0] {
 
                    v
 
                } else {
 
                    unreachable!()
 
                }
 
            }
 
        }
 

	
 
        impl IndexMut<$name> for Heap {
 
            fn index_mut(&mut self, index: $name) -> &mut Self::Output {
 
                if let $wrapper_type(v) = &mut self.$indexed_arena[index.0] {
 
                    v
 
                } else {
 
                    unreachable!()
 
                }
 
            }
 
        }
 
    };
 
    // Variant where we define the type, the Index and IndexMut traits, and an allocation function
 
    (
 
        $name:ident, $parent:ty, 
 
        index($indexed_type:ty, $wrapper_type:path, $indexed_arena:ident),
 
        alloc($fn_name:ident)
 
    ) => {
 
        define_new_ast_id!($name, $parent, index($indexed_type, $wrapper_type, $indexed_arena));
 
        impl Heap {
 
            pub fn $fn_name(&mut self, f: impl FnOnce($name) -> $indexed_type) -> $name {
 
                $name(
 
                    self.$indexed_arena.alloc_with_id(|id| {
 
                        $wrapper_type(f($name(id)))
 
                    })
 
                )
 
            }
 
        }
 
    }
 
}
 

	
 
define_aliased_ast_id!(RootId, Id<Root>, index(Root, protocol_descriptions), alloc(alloc_protocol_description));
 
define_aliased_ast_id!(PragmaId, Id<Pragma>, index(Pragma, pragmas), alloc(alloc_pragma));
 
define_aliased_ast_id!(ImportId, Id<Import>, index(Import, imports), alloc(alloc_import));
 
define_aliased_ast_id!(VariableId, Id<Variable>, index(Variable, variables), alloc(alloc_variable));
 

	
 
define_aliased_ast_id!(DefinitionId, Id<Definition>, index(Definition, definitions));
 
define_new_ast_id!(StructDefinitionId, DefinitionId, index(StructDefinition, Definition::Struct, definitions), alloc(alloc_struct_definition));
 
define_new_ast_id!(EnumDefinitionId, DefinitionId, index(EnumDefinition, Definition::Enum, definitions), alloc(alloc_enum_definition));
 
define_new_ast_id!(UnionDefinitionId, DefinitionId, index(UnionDefinition, Definition::Union, definitions), alloc(alloc_union_definition));
 
define_new_ast_id!(ProcedureDefinitionId, DefinitionId, index(ProcedureDefinition, Definition::Procedure, definitions), alloc(alloc_procedure_definition));
 

	
 
define_aliased_ast_id!(StatementId, Id<Statement>, index(Statement, statements));
 
define_new_ast_id!(BlockStatementId, StatementId, index(BlockStatement, Statement::Block, statements), alloc(alloc_block_statement));
 
define_new_ast_id!(EndBlockStatementId, StatementId, index(EndBlockStatement, Statement::EndBlock, statements), alloc(alloc_end_block_statement));
 
define_new_ast_id!(LocalStatementId, StatementId, index(LocalStatement, Statement::Local, statements));
 
define_new_ast_id!(MemoryStatementId, LocalStatementId);
 
define_new_ast_id!(ChannelStatementId, LocalStatementId);
 
define_new_ast_id!(LabeledStatementId, StatementId, index(LabeledStatement, Statement::Labeled, statements), alloc(alloc_labeled_statement));
 
define_new_ast_id!(IfStatementId, StatementId, index(IfStatement, Statement::If, statements), alloc(alloc_if_statement));
 
define_new_ast_id!(EndIfStatementId, StatementId, index(EndIfStatement, Statement::EndIf, statements), alloc(alloc_end_if_statement));
 
define_new_ast_id!(WhileStatementId, StatementId, index(WhileStatement, Statement::While, statements), alloc(alloc_while_statement));
 
define_new_ast_id!(EndWhileStatementId, StatementId, index(EndWhileStatement, Statement::EndWhile, statements), alloc(alloc_end_while_statement));
 
define_new_ast_id!(BreakStatementId, StatementId, index(BreakStatement, Statement::Break, statements), alloc(alloc_break_statement));
 
define_new_ast_id!(ContinueStatementId, StatementId, index(ContinueStatement, Statement::Continue, statements), alloc(alloc_continue_statement));
 
define_new_ast_id!(SynchronousStatementId, StatementId, index(SynchronousStatement, Statement::Synchronous, statements), alloc(alloc_synchronous_statement));
 
define_new_ast_id!(EndSynchronousStatementId, StatementId, index(EndSynchronousStatement, Statement::EndSynchronous, statements), alloc(alloc_end_synchronous_statement));
 
define_new_ast_id!(ForkStatementId, StatementId, index(ForkStatement, Statement::Fork, statements), alloc(alloc_fork_statement));
 
define_new_ast_id!(EndForkStatementId, StatementId, index(EndForkStatement, Statement::EndFork, statements), alloc(alloc_end_fork_statement));
 
define_new_ast_id!(SelectStatementId, StatementId, index(SelectStatement, Statement::Select, statements), alloc(alloc_select_statement));
 
define_new_ast_id!(EndSelectStatementId, StatementId, index(EndSelectStatement, Statement::EndSelect, statements), alloc(alloc_end_select_statement));
 
define_new_ast_id!(ReturnStatementId, StatementId, index(ReturnStatement, Statement::Return, statements), alloc(alloc_return_statement));
 
define_new_ast_id!(GotoStatementId, StatementId, index(GotoStatement, Statement::Goto, statements), alloc(alloc_goto_statement));
 
define_new_ast_id!(NewStatementId, StatementId, index(NewStatement, Statement::New, statements), alloc(alloc_new_statement));
 
define_new_ast_id!(ExpressionStatementId, StatementId, index(ExpressionStatement, Statement::Expression, statements), alloc(alloc_expression_statement));
 

	
 
define_aliased_ast_id!(ExpressionId, Id<Expression>, index(Expression, expressions));
 
define_new_ast_id!(AssignmentExpressionId, ExpressionId, index(AssignmentExpression, Expression::Assignment, expressions), alloc(alloc_assignment_expression));
 
define_new_ast_id!(BindingExpressionId, ExpressionId, index(BindingExpression, Expression::Binding, expressions), alloc(alloc_binding_expression));
 
define_new_ast_id!(ConditionalExpressionId, ExpressionId, index(ConditionalExpression, Expression::Conditional, expressions), alloc(alloc_conditional_expression));
 
define_new_ast_id!(BinaryExpressionId, ExpressionId, index(BinaryExpression, Expression::Binary, expressions), alloc(alloc_binary_expression));
 
define_new_ast_id!(UnaryExpressionId, ExpressionId, index(UnaryExpression, Expression::Unary, expressions), alloc(alloc_unary_expression));
 
define_new_ast_id!(IndexingExpressionId, ExpressionId, index(IndexingExpression, Expression::Indexing, expressions), alloc(alloc_indexing_expression));
 
define_new_ast_id!(SlicingExpressionId, ExpressionId, index(SlicingExpression, Expression::Slicing, expressions), alloc(alloc_slicing_expression));
 
define_new_ast_id!(SelectExpressionId, ExpressionId, index(SelectExpression, Expression::Select, expressions), alloc(alloc_select_expression));
 
define_new_ast_id!(LiteralExpressionId, ExpressionId, index(LiteralExpression, Expression::Literal, expressions), alloc(alloc_literal_expression));
 
define_new_ast_id!(CastExpressionId, ExpressionId, index(CastExpression, Expression::Cast, expressions), alloc(alloc_cast_expression));
 
define_new_ast_id!(CallExpressionId, ExpressionId, index(CallExpression, Expression::Call, expressions), alloc(alloc_call_expression));
 
define_new_ast_id!(VariableExpressionId, ExpressionId, index(VariableExpression, Expression::Variable, expressions), alloc(alloc_variable_expression));
 

	
 
define_aliased_ast_id!(ScopeId, Id<Scope>, index(Scope, scopes), alloc(alloc_scope));
 

	
 
#[derive(Debug)]
 
pub struct Heap {
 
    // Root arena, contains the entry point for different modules. Each root
 
    // contains lists of IDs that correspond to the other arenas.
 
    pub(crate) protocol_descriptions: Arena<Root>,
 
    // Contents of a file, these are the elements the `Root` elements refer to
 
    pragmas: Arena<Pragma>,
 
    pub(crate) imports: Arena<Import>,
 
    pub(crate) variables: Arena<Variable>,
 
    pub(crate) definitions: Arena<Definition>,
 
    pub(crate) statements: Arena<Statement>,
 
    pub(crate) expressions: Arena<Expression>,
 
    pub(crate) scopes: Arena<Scope>,
 
}
 

	
 
impl Heap {
 
    pub fn new() -> Heap {
 
        Heap {
 
            // string_alloc: StringAllocator::new(),
 
            protocol_descriptions: Arena::new(),
 
            pragmas: Arena::new(),
 
            imports: Arena::new(),
 
            variables: Arena::new(),
 
            definitions: Arena::new(),
 
            statements: Arena::new(),
 
            expressions: Arena::new(),
 
            scopes: Arena::new(),
 
        }
 
    }
 
    pub fn alloc_memory_statement(
 
        &mut self,
 
        f: impl FnOnce(MemoryStatementId) -> MemoryStatement,
 
    ) -> MemoryStatementId {
 
        MemoryStatementId(LocalStatementId(self.statements.alloc_with_id(|id| {
 
            Statement::Local(LocalStatement::Memory(
 
                f(MemoryStatementId(LocalStatementId(id)))
 
            ))
 
        })))
 
    }
 
    pub fn alloc_channel_statement(
 
        &mut self,
 
        f: impl FnOnce(ChannelStatementId) -> ChannelStatement,
 
    ) -> ChannelStatementId {
 
        ChannelStatementId(LocalStatementId(self.statements.alloc_with_id(|id| {
 
            Statement::Local(LocalStatement::Channel(
 
                f(ChannelStatementId(LocalStatementId(id)))
 
            ))
 
        })))
 
    }
 
}
 

	
 
impl Index<MemoryStatementId> for Heap {
 
    type Output = MemoryStatement;
 
    fn index(&self, index: MemoryStatementId) -> &Self::Output {
 
        match &self.statements[index.0.0] {
 
            Statement::Local(LocalStatement::Memory(v)) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 
}
 

	
 
impl Index<ChannelStatementId> for Heap {
 
    type Output = ChannelStatement;
 
    fn index(&self, index: ChannelStatementId) -> &Self::Output {
 
        match &self.statements[index.0.0] {
 
            Statement::Local(LocalStatement::Channel(v)) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Root {
 
    pub this: RootId,
 
    // Phase 1: parser
 
    // pub position: InputPosition,
 
    pub pragmas: Vec<PragmaId>,
 
    pub imports: Vec<ImportId>,
 
    pub definitions: Vec<DefinitionId>,
 
}
 

	
 
impl Root {
 
    pub fn get_definition_ident(&self, h: &Heap, id: &[u8]) -> Option<DefinitionId> {
 
        for &def in self.definitions.iter() {
 
            if h[def].identifier().value.as_bytes() == id {
 
                return Some(def);
 
            }
 
        }
 
        None
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Pragma {
 
    Version(PragmaVersion),
 
    Module(PragmaModule),
 
}
 

	
 
impl Pragma {
 
    pub(crate) fn as_module(&self) -> &PragmaModule {
 
        match self {
 
            Pragma::Module(pragma) => pragma,
 
            _ => unreachable!("Tried to obtain {:?} as PragmaModule", self),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct PragmaVersion {
 
    pub this: PragmaId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of full pragma
 
    pub version: u64,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct PragmaModule {
 
    pub this: PragmaId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of full pragma
 
    pub value: Identifier,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Import {
 
    Module(ImportModule),
 
    Symbols(ImportSymbols)
 
}
 

	
 
impl Import {
 
    pub(crate) fn span(&self) -> InputSpan {
 
        match self {
 
            Import::Module(v) => v.span,
 
            Import::Symbols(v) => v.span,
 
        }
 
    }
 

	
 
    pub(crate) fn as_module(&self) -> &ImportModule {
 
        match self {
 
            Import::Module(m) => m,
 
            _ => unreachable!("Unable to cast 'Import' to 'ImportModule'")
 
        }
 
    }
 
    pub(crate) fn as_symbols(&self) -> &ImportSymbols {
 
        match self {
 
            Import::Symbols(m) => m,
 
            _ => unreachable!("Unable to cast 'Import' to 'ImportSymbols'")
 
        }
 
    }
 
    pub(crate) fn as_symbols_mut(&mut self) -> &mut ImportSymbols {
 
        match self {
 
            Import::Symbols(m) => m,
 
            _ => unreachable!("Unable to cast 'Import' to 'ImportSymbols'")
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ImportModule {
 
    pub this: ImportId,
 
    // Phase 1: parser
 
    pub span: InputSpan,
 
    pub module: Identifier,
 
    pub alias: Identifier,
 
    pub module_id: RootId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct AliasedSymbol {
 
    pub name: Identifier,
 
    pub alias: Option<Identifier>,
 
    pub definition_id: DefinitionId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ImportSymbols {
 
    pub this: ImportId,
 
    // Phase 1: parser
 
    pub span: InputSpan,
 
    pub module: Identifier,
 
    pub module_id: RootId,
 
    pub symbols: Vec<AliasedSymbol>,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Identifier {
 
    pub span: InputSpan,
 
    pub value: StringRef<'static>,
 
}
 

	
 
impl Identifier {
 
    pub(crate) const fn new_empty(span: InputSpan) -> Identifier {
 
        return Identifier{
 
            span,
 
            value: StringRef::new_empty(),
 
        };
 
    }
 
}
 

	
 
impl PartialEq for Identifier {
 
    fn eq(&self, other: &Self) -> bool {
 
        return self.value == other.value
 
    }
 
}
 

	
 
impl Display for Identifier {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{}", self.value.as_str())
 
    }
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub enum ParserTypeVariant {
 
    // Special builtin, only usable by the compiler and not constructable by the
 
    // programmer
 
    Void,
 
    InputOrOutput,
 
    ArrayLike,
 
    IntegerLike,
 
    // Basic builtin
 
    Message,
 
    Bool,
 
    UInt8, UInt16, UInt32, UInt64,
 
    SInt8, SInt16, SInt32, SInt64,
 
    Character, String,
 
    // Literals (need to get concrete builtin type during typechecking)
 
    IntegerLiteral,
 
    // Marker for inference
 
    Inferred,
 
    // Builtins expecting one subsequent type
 
    Array,
 
    Input,
 
    Output,
 
    // Tuple: expecting any number of elements. Note that the parser type can
 
    // have one-valued tuples, these will be filtered out later during type
 
    // checking.
 
    Tuple(u32), // u32 = number of subsequent types
 
    // User-defined types
 
    PolymorphicArgument(DefinitionId, u32), // u32 = index into polymorphic variables
 
    Definition(DefinitionId, u32), // u32 = number of subsequent types in the type tree.
 
}
 

	
 
impl ParserTypeVariant {
 
    pub(crate) fn num_embedded(&self) -> usize {
 
        use ParserTypeVariant::*;
 

	
 
        match self {
 
            Void | IntegerLike |
 
            Message | Bool |
 
            UInt8 | UInt16 | UInt32 | UInt64 |
 
            SInt8 | SInt16 | SInt32 | SInt64 |
 
            Character | String | IntegerLiteral |
 
            Inferred | PolymorphicArgument(_, _) =>
 
                0,
 
            ArrayLike | InputOrOutput | Array | Input | Output =>
 
                1,
 
            Definition(_, num) | Tuple(num) => *num as usize,
 
        }
 
    }
 
}
 

	
 
/// ParserTypeElement is an element of the type tree. An element may be
 
/// implicit, meaning that the user didn't specify the type, but it was set by
 
/// the compiler.
 
#[derive(Debug, Clone)]
 
pub struct ParserTypeElement {
 
    pub element_span: InputSpan, // span of this element, not including the child types
 
    pub variant: ParserTypeVariant,
 
}
 

	
 
/// ParserType is a specification of a type during the parsing phase and initial
 
/// linker/validator phase of the compilation process. These types may be
 
/// (partially) inferred or represent literals (e.g. a integer whose bytesize is
 
/// not yet determined).
 
///
 
/// Its contents are the depth-first serialization of the type tree. Each node
 
/// is a type that may accept polymorphic arguments. The polymorphic arguments
 
/// are then the children of the node.
 
#[derive(Debug, Clone)]
 
pub struct ParserType {
 
    pub elements: Vec<ParserTypeElement>,
 
    pub full_span: InputSpan,
 
}
 

	
 
impl ParserType {
 
    pub(crate) fn iter_embedded(&self, parent_idx: usize) -> ParserTypeIter {
 
        ParserTypeIter::new(&self.elements, parent_idx)
 
    }
 
}
 

	
 
/// Iterator over the embedded elements of a specific element.
 
pub struct ParserTypeIter<'a> {
 
    pub elements: &'a [ParserTypeElement],
 
    pub cur_embedded_idx: usize,
 
}
 

	
 
impl<'a> ParserTypeIter<'a> {
 
    fn new(elements: &'a [ParserTypeElement], parent_idx: usize) -> Self {
 
        debug_assert!(parent_idx < elements.len(), "parent index exceeds number of elements in ParserType");
 
        if elements[0].variant.num_embedded() == 0 {
 
            // Parent element does not have any embedded types, place
 
            // `cur_embedded_idx` at end so we will always return `None`
 
            Self{ elements, cur_embedded_idx: elements.len() }
 
        } else {
 
            // Parent element has an embedded type
 
            Self{ elements, cur_embedded_idx: parent_idx + 1 }
 
        }
 
    }
 
}
 

	
 
impl<'a> Iterator for ParserTypeIter<'a> {
 
    type Item = &'a [ParserTypeElement];
 

	
 
    fn next(&mut self) -> Option<Self::Item> {
 
        let elements_len = self.elements.len();
 
        if self.cur_embedded_idx >= elements_len {
 
            return None;
 
        }
 

	
 
        // Seek to the end of the subtree
 
        let mut depth = 1;
 
        let start_element = self.cur_embedded_idx;
 
        while self.cur_embedded_idx < elements_len {
 
            let cur_element = &self.elements[self.cur_embedded_idx];
 
            let depth_change = cur_element.variant.num_embedded() as i32 - 1;
 
            depth += depth_change;
 
            debug_assert!(depth >= 0, "illegally constructed ParserType: {:?}", self.elements);
 

	
 
            self.cur_embedded_idx += 1;
 
            if depth == 0 {
 
                break;
 
            }
 
        }
 

	
 
        debug_assert!(depth == 0, "illegally constructed ParserType: {:?}", self.elements);
 
        return Some(&self.elements[start_element..self.cur_embedded_idx]);
 
    }
 
}
 

	
 
/// ConcreteType is the representation of a type after the type inference and
 
/// checker is finished. These are fully typed.
 
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
 
pub enum ConcreteTypePart {
 
    // Special types (cannot be explicitly constructed by the programmer)
 
    Void,
 
    // Builtin types without nested types
 
    Message,
 
    Bool,
 
    UInt8, UInt16, UInt32, UInt64,
 
    SInt8, SInt16, SInt32, SInt64,
 
    Character, String,
 
    // Builtin types with one nested type
 
    Array,
 
    Slice,
 
    Input,
 
    Output,
 
    Pointer,
 
    // Tuple: variable number of nested types, will never be 1
 
    Tuple(u32),
 
    // User defined type with any number of nested types
 
    Instance(DefinitionId, u32),    // instance of data type
 
    Function(ProcedureDefinitionId, u32),    // instance of function
 
    Component(ProcedureDefinitionId, u32),   // instance of a connector
 
}
 

	
 
impl ConcreteTypePart {
 
    pub(crate) fn num_embedded(&self) -> u32 {
 
        use ConcreteTypePart::*;
 

	
 
        match self {
 
            Void | Message | Bool |
 
            UInt8 | UInt16 | UInt32 | UInt64 |
 
            SInt8 | SInt16 | SInt32 | SInt64 |
 
            Character | String =>
 
                0,
 
            Array | Slice | Input | Output | Pointer =>
 
                1,
 
            Tuple(num_embedded) => *num_embedded,
 
            Instance(_, num_embedded) => *num_embedded,
 
            Function(_, num_embedded) => *num_embedded,
 
            Component(_, num_embedded) => *num_embedded,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Eq, PartialEq)]
 
pub struct ConcreteType {
 
    pub(crate) parts: Vec<ConcreteTypePart>
 
}
 

	
 
impl Default for ConcreteType {
 
    fn default() -> Self {
 
        Self{ parts: Vec::new() }
 
    }
 
}
 

	
 
impl ConcreteType {
 
    /// Returns an iterator over the subtrees that are type arguments (e.g. an
 
    /// array element's type, or a polymorphic type's arguments) to the
 
    /// provided parent type (specified by its index in the `parts` array).
 
    pub(crate) fn embedded_iter(&self, parent_part_idx: usize) -> ConcreteTypeIter {
 
        return ConcreteTypeIter::new(&self.parts, parent_part_idx);
 
    }
 

	
 
    /// Construct a human-readable name for the type. Because this performs
 
    /// a string allocation don't use it for anything else then displaying the
 
    /// type to the user.
 
    pub(crate) fn display_name(&self, heap: &Heap) -> String {
 
        return Self::type_parts_display_name(self.parts.as_slice(), heap);
 
    }
 

	
 
    // --- Utilities that operate on slice of parts
 

	
 
    /// Given the starting position of a type tree, determine the exclusive
 
    /// ending index.
 
    pub(crate) fn type_parts_subtree_end_idx(parts: &[ConcreteTypePart], start_idx: usize) -> usize {
 
        let mut depth = 1;
 
        let num_parts = parts.len();
 
        debug_assert!(start_idx < num_parts);
 

	
 
        for part_idx in start_idx..parts.len() {
 
            let depth_change = parts[part_idx].num_embedded() as i32 - 1;
 
            depth += depth_change;
 
            debug_assert!(depth >= 0);
 

	
 
            if depth == 0 {
 
                return part_idx + 1;
 
            }
 
        }
 

	
 
        debug_assert!(false, "incorrectly constructed ConcreteType instance");
 
        return 0;
 
    }
 

	
 
    /// Produces a human-readable representation of the concrete type parts
 
    fn type_parts_display_name(parts: &[ConcreteTypePart], heap: &Heap) -> String {
 
        let mut name = String::with_capacity(128);
 
        let _final_idx = Self::render_type_part_at(parts, heap, 0, &mut name);
 
        debug_assert_eq!(_final_idx, parts.len());
 

	
 
        return name;
 
    }
 

	
 
    /// Produces a human-readable representation of a single type part. Lower
 
    /// level utility for `type_parts_display_name`.
 
    fn render_type_part_at(parts: &[ConcreteTypePart], heap: &Heap, mut idx: usize, target: &mut String) -> usize {
 
        use ConcreteTypePart as CTP;
 
        use crate::protocol::parser::token_parsing::*;
 

	
 
        let cur_idx = idx;
 
        idx += 1; // increment by 1, because it always happens
 

	
 
        match parts[cur_idx] {
 
            CTP::Void => { target.push_str("void"); },
 
            CTP::Message => { target.push_str(KW_TYPE_MESSAGE_STR); },
 
            CTP::Bool => { target.push_str(KW_TYPE_BOOL_STR); },
 
            CTP::UInt8 => { target.push_str(KW_TYPE_UINT8_STR); },
 
            CTP::UInt16 => { target.push_str(KW_TYPE_UINT16_STR); },
 
            CTP::UInt32 => { target.push_str(KW_TYPE_UINT32_STR); },
 
            CTP::UInt64 => { target.push_str(KW_TYPE_UINT64_STR); },
 
            CTP::SInt8 => { target.push_str(KW_TYPE_SINT8_STR); },
 
            CTP::SInt16 => { target.push_str(KW_TYPE_SINT16_STR); },
 
            CTP::SInt32 => { target.push_str(KW_TYPE_SINT32_STR); },
 
            CTP::SInt64 => { target.push_str(KW_TYPE_SINT64_STR); },
 
            CTP::Character => { target.push_str(KW_TYPE_CHAR_STR); },
 
            CTP::String => { target.push_str(KW_TYPE_STRING_STR); },
 
            CTP::Array | CTP::Slice => {
 
                idx = Self::render_type_part_at(parts, heap, idx, target);
 
                target.push_str("[]");
 
            },
 
            CTP::Input => {
 
                target.push_str(KW_TYPE_IN_PORT_STR);
 
                target.push('<');
 
                idx = Self::render_type_part_at(parts, heap, idx, target);
 
                target.push('>');
 
            },
 
            CTP::Output => {
 
                target.push_str(KW_TYPE_OUT_PORT_STR);
 
                target.push('<');
 
                idx = Self::render_type_part_at(parts, heap, idx, target);
 
                target.push('>');
 
            },
 
            CTP::Pointer => {
 
                target.push('*');
 
                idx = Self::render_type_part_at(parts, heap, idx, target);
 
            }
 
            CTP::Tuple(num_parts) => {
 
                target.push('(');
 
                if num_parts != 0 {
 
                    idx = Self::render_type_part_at(parts, heap, idx, target);
 
                    for _ in 1..num_parts {
 
                        target.push(',');
 
                        idx = Self::render_type_part_at(parts, heap, idx, target);
 
                    }
 
                }
 
                target.push(')');
 
            },
 
            CTP::Instance(definition_id, num_poly_args) => {
 
                idx = Self::render_definition_type_parts_at(parts, heap, definition_id, num_poly_args, idx, target);
 
            }
 
            CTP::Function(definition_id, num_poly_args) |
 
            CTP::Component(definition_id, num_poly_args) => {
 
                idx = Self::render_definition_type_parts_at(parts, heap, definition_id.upcast(), num_poly_args, idx, target);
 
            }
 
        }
 

	
 
        idx
 
    }
 

	
 
    fn render_definition_type_parts_at(parts: &[ConcreteTypePart], heap: &Heap, definition_id: DefinitionId, num_poly_args: u32, mut idx: usize, target: &mut String) -> usize {
 
        let definition = &heap[definition_id];
 
        target.push_str(definition.identifier().value.as_str());
 

	
 
        if num_poly_args != 0 {
 
            target.push('<');
 
            for poly_arg_idx in 0..num_poly_args {
 
                if poly_arg_idx != 0 {
 
                    target.push(',');
 
                }
 
                idx = Self::render_type_part_at(parts, heap, idx, target);
 
            }
 
            target.push('>');
 
        }
 

	
 
        return idx;
 
    }
 
}
 

	
 
#[derive(Debug)]
 
pub struct ConcreteTypeIter<'a> {
 
    parts: &'a [ConcreteTypePart],
 
    idx_embedded: u32,
 
    num_embedded: u32,
 
    part_idx: usize,
 
}
 

	
 
impl<'a> ConcreteTypeIter<'a> {
 
    pub(crate) fn new(parts: &'a[ConcreteTypePart], parent_idx: usize) -> Self {
 
        let num_embedded = parts[parent_idx].num_embedded();
 
        return ConcreteTypeIter{
 
            parts,
 
            idx_embedded: 0,
 
            num_embedded,
 
            part_idx: parent_idx + 1,
 
        }
 
    }
 
}
 

	
 
impl<'a> Iterator for ConcreteTypeIter<'a> {
 
    type Item = &'a [ConcreteTypePart];
 

	
 
    fn next(&mut self) -> Option<Self::Item> {
 
        if self.idx_embedded == self.num_embedded {
 
            return None;
 
        }
 

	
 
        // Retrieve the subtree of interest
 
        let start_idx = self.part_idx;
 
        let end_idx = ConcreteType::type_parts_subtree_end_idx(&self.parts, start_idx);
 

	
 
        self.idx_embedded += 1;
 
        self.part_idx = end_idx;
 

	
 
        return Some(&self.parts[start_idx..end_idx]);
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub enum ScopeAssociation {
 
    Definition(DefinitionId),
 
    Block(BlockStatementId),
 
    If(IfStatementId, bool), // if true, then body of "if", otherwise body of "else"
 
    While(WhileStatementId),
 
    Synchronous(SynchronousStatementId),
 
    SelectCase(SelectStatementId, u32), // index is select case
 
}
 

	
 
/// `ScopeNode` is a helper that links scopes in two directions. It doesn't
 
/// actually contain any information associated with the scope, this may be
 
/// found on the AST elements that `Scope` points to.
 
#[derive(Debug, Clone)]
 
pub struct Scope {
 
    // Relation to other scopes
 
    pub this: ScopeId,
 
    pub parent: Option<ScopeId>,
 
    pub nested: Vec<ScopeId>,
 
    // Locally available variables/labels
 
    pub association: ScopeAssociation,
 
    pub variables: Vec<VariableId>,
 
    pub labels: Vec<LabeledStatementId>,
 
    // Location trackers/counters
 
    pub relative_pos_in_parent: i32,
 
    pub first_unique_id_in_scope: i32,
 
    pub next_unique_id_in_scope: i32,
 
}
 

	
 
impl Scope {
 
    pub(crate) fn new(id: ScopeId, association: ScopeAssociation) -> Self {
 
        return Self{
 
            this: id,
 
            parent: None,
 
            nested: Vec::new(),
 
            association,
 
            variables: Vec::new(),
 
            labels: Vec::new(),
 
            relative_pos_in_parent: -1,
 
            first_unique_id_in_scope: -1,
 
            next_unique_id_in_scope: -1,
 
        }
 
    }
 
}
 

	
 
impl Scope {
 
    pub(crate) fn new_invalid(this: ScopeId) -> Self {
 
        return Self{
 
            this,
 
            parent: None,
 
            nested: Vec::new(),
 
            association: ScopeAssociation::Definition(DefinitionId::new_invalid()),
 
            variables: Vec::new(),
 
            labels: Vec::new(),
 
            relative_pos_in_parent: -1,
 
            first_unique_id_in_scope: -1,
 
            next_unique_id_in_scope: -1,
 
        };
 
    }
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub enum VariableKind {
 
    Parameter,      // in parameter list of function/component
 
    Local,          // declared in function/component body
 
    Binding,        // may be bound to in a binding expression (determined in validator/linker)
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Variable {
 
    pub this: VariableId,
 
    // Parsing
 
    pub kind: VariableKind,
 
    pub parser_type: ParserType,
 
    pub identifier: Identifier,
 
    // Validator/linker
 
    pub relative_pos_in_parent: i32,
 
    pub unique_id_in_scope: i32, // Temporary fix until proper bytecode/asm is generated
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Definition {
 
    Struct(StructDefinition),
 
    Enum(EnumDefinition),
 
    Union(UnionDefinition),
 
    Procedure(ProcedureDefinition),
 
}
 

	
 
impl Definition {
 
    pub fn is_struct(&self) -> bool {
 
        match self {
 
            Definition::Struct(_) => true,
 
            _ => false
 
        }
 
    }
 
    pub(crate) fn as_struct(&self) -> &StructDefinition {
 
        match self {
 
            Definition::Struct(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'StructDefinition'"),
 
        }
 
    }
 
    pub(crate) fn as_struct_mut(&mut self) -> &mut StructDefinition {
 
        match self {
 
            Definition::Struct(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'StructDefinition'"),
 
        }
 
    }
 
    pub fn is_enum(&self) -> bool {
 
        match self {
 
            Definition::Enum(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub(crate) fn as_enum(&self) -> &EnumDefinition {
 
        match self {
 
            Definition::Enum(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'EnumDefinition'"),
 
        }
 
    }
 
    pub(crate) fn as_enum_mut(&mut self) -> &mut EnumDefinition {
 
        match self {
 
            Definition::Enum(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'EnumDefinition'"),
 
        }
 
    }
 
    pub fn is_union(&self) -> bool {
 
        match self {
 
            Definition::Union(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub(crate) fn as_union(&self) -> &UnionDefinition {
 
        match self {
 
            Definition::Union(result) => result, 
 
            _ => panic!("Unable to cast 'Definition' to 'UnionDefinition'"),
 
        }
 
    }
 

	
 
    pub(crate) fn as_union_mut(&mut self) -> &mut UnionDefinition {
 
        match self {
 
            Definition::Union(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'UnionDefinition'"),
 
        }
 
    }
 

	
 
    pub fn is_procedure(&self) -> bool {
 
        match self {
 
            Definition::Procedure(_) => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    pub(crate) fn as_procedure(&self) -> &ProcedureDefinition {
 
        match self {
 
            Definition::Procedure(result) => result,
 
            _ => panic!("Unable to cast `Definition` to `Function`"),
 
        }
 
    }
 

	
 
    pub(crate) fn as_procedure_mut(&mut self) -> &mut ProcedureDefinition {
 
        match self {
 
            Definition::Procedure(result) => result,
 
            _ => panic!("Unable to cast `Definition` to `Function`"),
 
        }
 
    }
 

	
 
    pub fn defined_in(&self) -> RootId {
 
        match self {
 
            Definition::Struct(def) => def.defined_in,
 
            Definition::Enum(def) => def.defined_in,
 
            Definition::Union(def) => def.defined_in,
 
            Definition::Procedure(def) => def.defined_in,
 
        }
 
    }
 

	
 
    pub fn identifier(&self) -> &Identifier {
 
        match self {
 
            Definition::Struct(def) => &def.identifier,
 
            Definition::Enum(def) => &def.identifier,
 
            Definition::Union(def) => &def.identifier,
 
            Definition::Procedure(def) => &def.identifier,
 
        }
 
    }
 
    pub fn poly_vars(&self) -> &Vec<Identifier> {
 
        match self {
 
            Definition::Struct(def) => &def.poly_vars,
 
            Definition::Enum(def) => &def.poly_vars,
 
            Definition::Union(def) => &def.poly_vars,
 
            Definition::Procedure(def) => &def.poly_vars,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct StructFieldDefinition {
 
    pub span: InputSpan,
 
    pub field: Identifier,
 
    pub parser_type: ParserType,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct StructDefinition {
 
    pub this: StructDefinitionId,
 
    pub defined_in: RootId,
 
    // Symbol scanning
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Parsing
 
    pub fields: Vec<StructFieldDefinition>
 
}
 

	
 
impl StructDefinition {
 
    pub(crate) fn new_empty(
 
        this: StructDefinitionId, defined_in: RootId, span: InputSpan,
 
        identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self{ this, defined_in, span, identifier, poly_vars, fields: Vec::new() }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub enum EnumVariantValue {
 
    None,
 
    Integer(i64),
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EnumVariantDefinition {
 
    pub identifier: Identifier,
 
    pub value: EnumVariantValue,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EnumDefinition {
 
    pub this: EnumDefinitionId,
 
    pub defined_in: RootId,
 
    // Symbol scanning
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Parsing
 
    pub variants: Vec<EnumVariantDefinition>,
 
}
 

	
 
impl EnumDefinition {
 
    pub(crate) fn new_empty(
 
        this: EnumDefinitionId, defined_in: RootId, span: InputSpan,
 
        identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self{ this, defined_in, span, identifier, poly_vars, variants: Vec::new() }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct UnionVariantDefinition {
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub value: Vec<ParserType>, // if empty, then union variant does not contain any embedded types
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct UnionDefinition {
 
    pub this: UnionDefinitionId,
 
    pub defined_in: RootId,
 
    // Phase 1: symbol scanning
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Phase 2: parsing
 
    pub variants: Vec<UnionVariantDefinition>,
 
}
 

	
 
impl UnionDefinition {
 
    pub(crate) fn new_empty(
 
        this: UnionDefinitionId, defined_in: RootId, span: InputSpan,
 
        identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self{ this, defined_in, span, identifier, poly_vars, variants: Vec::new() }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
 
pub enum ProcedureKind {
 
    Function, // with return type
 
    Primitive, // without return type
 
    Composite,
 
}
 

	
 
/// Monomorphed instantiation of a procedure (or the sole instantiation of a
 
/// non-polymorphic procedure).
 
pub struct ProcedureDefinitionMonomorph {
 
    pub argument_types: Vec<TypeId>,
 
    pub expr_info: Vec<MonomorphExpressionInfo>
 
}
 

	
 
pub struct MonomorphExpressionInfo {
 
    pub type_id: TypeId,
 
    pub index: i32, // for called procedure's monomorphs, or selected field indices
 
}
 

	
 
/// Generic storage for functions, primitive components and composite
 
/// components.
 
// Note that we will have function definitions for builtin functions as well. In
 
// that case the span, the identifier span and the body are all invalid.
 
#[derive(Debug, Clone)]
 
pub struct ProcedureDefinition {
 
    pub this: ProcedureDefinitionId,
 
    pub defined_in: RootId,
 
    // Symbol scanning
 
    pub builtin: bool,
 
    pub kind: ProcedureKind,
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Parser
 
    pub return_type: Option<ParserType>, // present on functions, not components
 
    pub parameters: Vec<VariableId>,
 
    pub scope: ScopeId,
 
    pub body: BlockStatementId,
 
    // Monomorphization of typed procedures
 

	
 
    pub monomorphs: Vec<ProcedureMonomorph>,
 
    // Validation/linking
 
    pub num_expressions_in_body: i32,
 
}
 

	
 
impl ProcedureDefinition {
 
    pub(crate) fn new_empty(
 
        this: ProcedureDefinitionId, defined_in: RootId, span: InputSpan,
 
        kind: ProcedureKind, identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self {
 
            this, defined_in,
 
            builtin: false,
 
            span,
 
            kind, identifier, poly_vars,
 
            return_type: None,
 
            parameters: Vec::new(),
 
            scope: ScopeId::new_invalid(),
 
            body: BlockStatementId::new_invalid(),
 
            monomorphs: Vec::new(),
 
            num_expressions_in_body: -1,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Statement {
 
    Block(BlockStatement),
 
    EndBlock(EndBlockStatement),
 
    Local(LocalStatement),
 
    Labeled(LabeledStatement),
 
    If(IfStatement),
 
    EndIf(EndIfStatement),
 
    While(WhileStatement),
 
    EndWhile(EndWhileStatement),
 
    Break(BreakStatement),
 
    Continue(ContinueStatement),
 
    Synchronous(SynchronousStatement),
 
    EndSynchronous(EndSynchronousStatement),
 
    Fork(ForkStatement),
 
    EndFork(EndForkStatement),
 
    Select(SelectStatement),
 
    EndSelect(EndSelectStatement),
 
    Return(ReturnStatement),
 
    Goto(GotoStatement),
 
    New(NewStatement),
 
    Expression(ExpressionStatement),
 
}
 

	
 
impl Statement {
 
    pub fn as_new(&self) -> &NewStatement {
 
        match self {
 
            Statement::New(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `NewStatement`"),
 
        }
 
    }
 

	
 
    pub fn span(&self) -> InputSpan {
 
        match self {
 
            Statement::Block(v) => v.span,
 
            Statement::Local(v) => v.span(),
 
            Statement::Labeled(v) => v.label.span,
 
            Statement::If(v) => v.span,
 
            Statement::While(v) => v.span,
 
            Statement::Break(v) => v.span,
 
            Statement::Continue(v) => v.span,
 
            Statement::Synchronous(v) => v.span,
 
            Statement::Fork(v) => v.span,
 
            Statement::Select(v) => v.span,
 
            Statement::Return(v) => v.span,
 
            Statement::Goto(v) => v.span,
 
            Statement::New(v) => v.span,
 
            Statement::Expression(v) => v.span,
 
            Statement::EndBlock(_)
 
            | Statement::EndIf(_)
 
            | Statement::EndWhile(_)
 
            | Statement::EndSynchronous(_)
 
            | Statement::EndFork(_)
 
            | Statement::EndSelect(_) => unreachable!(),
 
        }
 
    }
 
    pub fn link_next(&mut self, next: StatementId) {
 
        match self {
 
            Statement::Block(stmt) => stmt.next = next,
 
            Statement::EndBlock(stmt) => stmt.next = next,
 
            Statement::Local(stmt) => match stmt {
 
                LocalStatement::Channel(stmt) => stmt.next = next,
 
                LocalStatement::Memory(stmt) => stmt.next = next,
 
            },
 
            Statement::EndIf(stmt) => stmt.next = next,
 
            Statement::EndWhile(stmt) => stmt.next = next,
 
            Statement::EndSynchronous(stmt) => stmt.next = next,
 
            Statement::EndFork(stmt) => stmt.next = next,
 
            Statement::EndSelect(stmt) => stmt.next = next,
 
            Statement::New(stmt) => stmt.next = next,
 
            Statement::Expression(stmt) => stmt.next = next,
 
            Statement::Return(_)
 
            | Statement::Break(_)
 
            | Statement::Continue(_)
 
            | Statement::Synchronous(_)
 
            | Statement::Fork(_)
 
            | Statement::Select(_)
 
            | Statement::Goto(_)
 
            | Statement::While(_)
 
            | Statement::Labeled(_)
 
            | Statement::If(_) => unreachable!(),
 
        }
 
    }
 

	
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct BlockStatement {
 
    pub this: BlockStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the complete block
 
    pub statements: Vec<StatementId>,
 
    pub end_block: EndBlockStatementId,
 
    // Phase 2: linker
 
    pub scope: ScopeId,
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndBlockStatement {
 
    pub this: EndBlockStatementId,
 
    // Parser
 
    pub start_block: BlockStatementId,
 
    // Validation/Linking
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum LocalStatement {
 
    Memory(MemoryStatement),
 
    Channel(ChannelStatement),
 
}
 

	
 
impl LocalStatement {
 
    pub fn this(&self) -> LocalStatementId {
 
        match self {
 
            LocalStatement::Memory(stmt) => stmt.this.upcast(),
 
            LocalStatement::Channel(stmt) => stmt.this.upcast(),
 
        }
 
    }
 
    pub fn span(&self) -> InputSpan {
 
        match self {
 
            LocalStatement::Channel(v) => v.span,
 
            LocalStatement::Memory(v) => v.span,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct MemoryStatement {
 
    pub this: MemoryStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan,
 
    pub variable: VariableId,
 
    pub initial_expr: AssignmentExpressionId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
/// ChannelStatement is the declaration of an input and output port associated
 
/// with the same channel. Note that the polarity of the ports are from the
 
/// point of view of the component. So an output port is something that a
 
/// component uses to send data over (i.e. it is the "input end" of the
 
/// channel), and vice versa.
 
#[derive(Debug, Clone)]
 
pub struct ChannelStatement {
 
    pub this: ChannelStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "channel" keyword
 
    pub from: VariableId, // output
 
    pub to: VariableId,   // input
 
    // Phase 2: linker
 
    pub relative_pos_in_parent: i32,
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LabeledStatement {
 
    pub this: LabeledStatementId,
 
    // Phase 1: parser
 
    pub label: Identifier,
 
    pub body: StatementId,
 
    // Phase 2: linker
 
    pub relative_pos_in_parent: i32,
 
    pub in_sync: SynchronousStatementId, // may be invalid
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct IfStatement {
 
    pub this: IfStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "if" keyword
 
    pub test: ExpressionId,
 
    pub true_case: IfStatementCase,
 
    pub false_case: Option<IfStatementCase>,
 
    pub end_if: EndIfStatementId,
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub struct IfStatementCase {
 
    pub body: StatementId,
 
    pub scope: ScopeId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndIfStatement {
 
    pub this: EndIfStatementId,
 
    pub start_if: IfStatementId,
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct WhileStatement {
 
    pub this: WhileStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "while" keyword
 
    pub test: ExpressionId,
 
    pub scope: ScopeId,
 
    pub body: StatementId,
 
    pub end_while: EndWhileStatementId,
 
    pub in_sync: SynchronousStatementId, // may be invalid
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndWhileStatement {
 
    pub this: EndWhileStatementId,
 
    pub start_while: WhileStatementId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct BreakStatement {
 
    pub this: BreakStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "break" keyword
 
    pub label: Option<Identifier>,
 
    // Phase 2: linker
 
    pub target: EndWhileStatementId, // invalid if not yet set
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ContinueStatement {
 
    pub this: ContinueStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "continue" keyword
 
    pub label: Option<Identifier>,
 
    // Phase 2: linker
 
    pub target: WhileStatementId, // invalid if not yet set
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct SynchronousStatement {
 
    pub this: SynchronousStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "sync" keyword
 
    pub scope: ScopeId,
 
    pub body: StatementId,
 
    pub end_sync: EndSynchronousStatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndSynchronousStatement {
 
    pub this: EndSynchronousStatementId,
 
    pub start_sync: SynchronousStatementId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ForkStatement {
 
    pub this: ForkStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "fork" keyword
 
    pub left_body: StatementId,
 
    pub right_body: Option<StatementId>,
 
    pub end_fork: EndForkStatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndForkStatement {
 
    pub this: EndForkStatementId,
 
    pub start_fork: ForkStatementId,
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct SelectStatement {
 
    pub this: SelectStatementId,
 
    pub span: InputSpan, // of the "select" keyword
 
    pub cases: Vec<SelectCase>,
 
    pub end_select: EndSelectStatementId,
 
    pub relative_pos_in_parent: i32,
 
    pub next: StatementId, // note: the select statement will be transformed into other AST elements, this `next` jumps to those replacement statements
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct SelectCase {
 
    // The guard statement of a `select` is either a MemoryStatement or an
 
    // ExpressionStatement. Nothing else is allowed by the initial parsing
 
    pub guard: StatementId,
 
    pub body: StatementId,
 
    pub scope: ScopeId,
 
    // Phase 2: Validation and Linking
 
    pub involved_ports: Vec<(CallExpressionId, ExpressionId)>, // call to `get` and its port argument
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndSelectStatement {
 
    pub this: EndSelectStatementId,
 
    pub start_select: SelectStatementId,
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ReturnStatement {
 
    pub this: ReturnStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "return" keyword
 
    pub expressions: Vec<ExpressionId>,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct GotoStatement {
 
    pub this: GotoStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "goto" keyword
 
    pub label: Identifier,
 
    // Phase 2: linker
 
    pub target: LabeledStatementId, // invalid if not yet set
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct NewStatement {
 
    pub this: NewStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "new" keyword
 
    pub expression: CallExpressionId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ExpressionStatement {
 
    pub this: ExpressionStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan,
 
    pub expression: ExpressionId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
 
pub enum ExpressionParent {
 
    None, // only set during initial parsing
 
    Memory(MemoryStatementId),
 
    If(IfStatementId),
 
    While(WhileStatementId),
 
    Return(ReturnStatementId),
 
    New(NewStatementId),
 
    ExpressionStmt(ExpressionStatementId),
 
    Expression(ExpressionId, u32) // index within expression (e.g LHS or RHS of expression, or index in array literal, etc.)
 
}
 

	
 
impl ExpressionParent {
 
    pub fn is_new(&self) -> bool {
 
        match self {
 
            ExpressionParent::New(_) => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    pub fn as_expression(&self) -> ExpressionId {
 
        match self {
 
            ExpressionParent::Expression(id, _) => *id,
 
            _ => panic!("called as_expression() on {:?}", self),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Expression {
 
    Assignment(AssignmentExpression),
 
    Binding(BindingExpression),
 
    Conditional(ConditionalExpression),
 
    Binary(BinaryExpression),
 
    Unary(UnaryExpression),
 
    Indexing(IndexingExpression),
 
    Slicing(SlicingExpression),
 
    Select(SelectExpression),
 
    Literal(LiteralExpression),
 
    Cast(CastExpression),
 
    Call(CallExpression),
 
    Variable(VariableExpression),
 
}
 

	
 
impl Expression {
 
    pub fn as_variable(&self) -> &VariableExpression {
 
        match self {
 
            Expression::Variable(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `VariableExpression`"),
 
        }
 
    }
 

	
 
    /// Returns operator span, function name, a binding's "let" span, etc. An
 
    /// indicator for the kind of expression that is being applied.
 
    pub fn operation_span(&self) -> InputSpan {
 
        match self {
 
            Expression::Assignment(expr) => expr.operator_span,
 
            Expression::Binding(expr) => expr.operator_span,
 
            Expression::Conditional(expr) => expr.operator_span,
 
            Expression::Binary(expr) => expr.operator_span,
 
            Expression::Unary(expr) => expr.operator_span,
 
            Expression::Indexing(expr) => expr.operator_span,
 
            Expression::Slicing(expr) => expr.slicing_span,
 
            Expression::Select(expr) => expr.operator_span,
 
            Expression::Literal(expr) => expr.span,
 
            Expression::Cast(expr) => expr.cast_span,
 
            Expression::Call(expr) => expr.func_span,
 
            Expression::Variable(expr) => expr.identifier.span,
 
        }
 
    }
 

	
 
    /// Returns the span covering the entire expression (i.e. including the
 
    /// spans of the arguments as well).
 
    pub fn full_span(&self) -> InputSpan {
 
        match self {
 
            Expression::Assignment(expr) => expr.full_span,
 
            Expression::Binding(expr) => expr.full_span,
 
            Expression::Conditional(expr) => expr.full_span,
 
            Expression::Binary(expr) => expr.full_span,
 
            Expression::Unary(expr) => expr.full_span,
 
            Expression::Indexing(expr) => expr.full_span,
 
            Expression::Slicing(expr) => expr.full_span,
 
            Expression::Select(expr) => expr.full_span,
 
            Expression::Literal(expr) => expr.span,
 
            Expression::Cast(expr) => expr.full_span,
 
            Expression::Call(expr) => expr.full_span,
 
            Expression::Variable(expr) => expr.identifier.span,
 
        }
 
    }
 

	
 
    pub fn parent(&self) -> &ExpressionParent {
 
        match self {
 
            Expression::Assignment(expr) => &expr.parent,
 
            Expression::Binding(expr) => &expr.parent,
 
            Expression::Conditional(expr) => &expr.parent,
 
            Expression::Binary(expr) => &expr.parent,
 
            Expression::Unary(expr) => &expr.parent,
 
            Expression::Indexing(expr) => &expr.parent,
 
            Expression::Slicing(expr) => &expr.parent,
 
            Expression::Select(expr) => &expr.parent,
 
            Expression::Literal(expr) => &expr.parent,
 
            Expression::Cast(expr) => &expr.parent,
 
            Expression::Call(expr) => &expr.parent,
 
            Expression::Variable(expr) => &expr.parent,
 
        }
 
    }
 

	
 
    pub fn parent_mut(&mut self) -> &mut ExpressionParent {
 
        match self {
 
            Expression::Assignment(expr) => &mut expr.parent,
 
            Expression::Binding(expr) => &mut expr.parent,
 
            Expression::Conditional(expr) => &mut expr.parent,
 
            Expression::Binary(expr) => &mut expr.parent,
 
            Expression::Unary(expr) => &mut expr.parent,
 
            Expression::Indexing(expr) => &mut expr.parent,
 
            Expression::Slicing(expr) => &mut expr.parent,
 
            Expression::Select(expr) => &mut expr.parent,
 
            Expression::Literal(expr) => &mut expr.parent,
 
            Expression::Cast(expr) => &mut expr.parent,
 
            Expression::Call(expr) => &mut expr.parent,
 
            Expression::Variable(expr) => &mut expr.parent,
 
        }
 
    }
 

	
 
    pub fn parent_expr_id(&self) -> Option<ExpressionId> {
 
        if let ExpressionParent::Expression(id, _) = self.parent() {
 
            Some(*id)
 
        } else {
 
            None
 
        }
 
    }
 

	
 
    pub fn get_unique_id_in_definition(&self) -> i32 {
 
        match self {
 
            Expression::Assignment(expr) => expr.unique_id_in_definition,
 
            Expression::Binding(expr) => expr.unique_id_in_definition,
 
            Expression::Conditional(expr) => expr.unique_id_in_definition,
 
            Expression::Binary(expr) => expr.unique_id_in_definition,
 
            Expression::Unary(expr) => expr.unique_id_in_definition,
 
            Expression::Indexing(expr) => expr.unique_id_in_definition,
 
            Expression::Slicing(expr) => expr.unique_id_in_definition,
 
            Expression::Select(expr) => expr.unique_id_in_definition,
 
            Expression::Literal(expr) => expr.unique_id_in_definition,
 
            Expression::Cast(expr) => expr.unique_id_in_definition,
 
            Expression::Call(expr) => expr.unique_id_in_definition,
 
            Expression::Variable(expr) => expr.unique_id_in_definition,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub enum AssignmentOperator {
 
    Set,
 
    Concatenated,
 
    Multiplied,
 
    Divided,
 
    Remained,
 
    Added,
 
    Subtracted,
 
    ShiftedLeft,
 
    ShiftedRight,
 
    BitwiseAnded,
 
    BitwiseXored,
 
    BitwiseOred,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct AssignmentExpression {
 
    pub this: AssignmentExpressionId,
 
    // Parsing
 
    pub operator_span: InputSpan,
 
    pub full_span: InputSpan,
 
    pub left: ExpressionId,
 
    pub operation: AssignmentOperator,
 
    pub right: ExpressionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub expr_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct BindingExpression {
 
    pub this: BindingExpressionId,
 
    // Parsing
 
    pub operator_span: InputSpan,
 
    pub full_span: InputSpan,
 
    pub bound_to: ExpressionId,
 
    pub bound_from: ExpressionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub expr_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ConditionalExpression {
 
    pub this: ConditionalExpressionId,
 
    // Parsing
 
    pub operator_span: InputSpan,
 
    pub full_span: InputSpan,
 
    pub test: ExpressionId,
 
    pub true_expression: ExpressionId,
 
    pub false_expression: ExpressionId,
 
    // Validator/Linking
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub expr_index: i32,
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
 
pub enum BinaryOperator {
 
    Concatenate,
 
    LogicalOr,
 
    LogicalAnd,
 
    BitwiseOr,
 
    BitwiseXor,
 
    BitwiseAnd,
 
    Equality,
 
    Inequality,
 
    LessThan,
 
    GreaterThan,
 
    LessThanEqual,
 
    GreaterThanEqual,
 
    ShiftLeft,
 
    ShiftRight,
 
    Add,
 
    Subtract,
 
    Multiply,
 
    Divide,
 
    Remainder,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct BinaryExpression {
 
    pub this: BinaryExpressionId,
 
    // Parsing
 
    pub operator_span: InputSpan,
 
    pub full_span: InputSpan,
 
    pub left: ExpressionId,
 
    pub operation: BinaryOperator,
 
    pub right: ExpressionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub expr_index: i32,
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
 
pub enum UnaryOperator {
 
    Positive,
 
    Negative,
 
    BitwiseNot,
 
    LogicalNot,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct UnaryExpression {
 
    pub this: UnaryExpressionId,
 
    // Parsing
 
    pub operator_span: InputSpan,
 
    pub full_span: InputSpan,
 
    pub operation: UnaryOperator,
 
    pub expression: ExpressionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub expr_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct IndexingExpression {
 
    pub this: IndexingExpressionId,
 
    // Parsing
 
    pub operator_span: InputSpan,
 
    pub full_span: InputSpan,
 
    pub subject: ExpressionId,
 
    pub index: ExpressionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub expr_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct SlicingExpression {
 
    pub this: SlicingExpressionId,
 
    // Parsing
 
    pub slicing_span: InputSpan, // from '[' to ']'
 
    pub full_span: InputSpan, // includes subject
 
    pub subject: ExpressionId,
 
    pub from_index: ExpressionId,
 
    pub to_index: ExpressionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub expr_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum SelectKind {
 
    StructField(Identifier),
 
    TupleMember(u64), // u64 is overkill, but space is taken up by `StructField` variant anyway
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct SelectExpression {
 
    pub this: SelectExpressionId,
 
    // Parsing
 
    pub operator_span: InputSpan, // of the '.'
 
    pub full_span: InputSpan, // includes subject and field
 
    pub subject: ExpressionId,
 
    pub kind: SelectKind,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub expr_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct CastExpression {
 
    pub this: CastExpressionId,
 
    // Parsing
 
    pub cast_span: InputSpan, // of the "cast" keyword,
 
    pub full_span: InputSpan, // includes the cast subject
 
    pub to_type: ParserType,
 
    pub subject: ExpressionId,
 
    // Validator/linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub expr_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct CallExpression {
 
    pub this: CallExpressionId,
 
    // Parsing
 
    pub func_span: InputSpan, // of the function name
 
    pub full_span: InputSpan, // includes the arguments and parentheses
 
    pub parser_type: ParserType, // of the function call, not the return type
 
    pub method: Method,
 
    pub arguments: Vec<ExpressionId>,
 
    pub procedure: ProcedureDefinitionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub expr_index: i32,
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub enum Method {
 
    // Builtin, accessible by programmer
 
    Get,
 
    Put,
 
    Fires,
 
    Create,
 
    Length,
 
    Assert,
 
    Print,
 
    // Builtin, not accessible by programmer
 
    SelectStart, // SelectStart(total_num_cases, total_num_ports)
 
    SelectRegisterCasePort, // SelectRegisterCasePort(case_index, port_index, port_id)
 
    SelectWait, // SelectWait() -> u32
 
    // User-defined
 
    UserProcedure,
 
    UserComponent,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct MethodSymbolic {
 
    pub(crate) parser_type: ParserType,
 
    pub(crate) definition: DefinitionId
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralExpression {
 
    pub this: LiteralExpressionId,
 
    // Parsing
 
    pub span: InputSpan,
 
    pub value: Literal,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub expr_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Literal {
 
    Null, // message
 
    True,
 
    False,
 
    Character(char),
 
    String(StringRef<'static>),
 
    Integer(LiteralInteger),
 
    Struct(LiteralStruct),
 
    Enum(LiteralEnum),
 
    Union(LiteralUnion),
 
    Array(Vec<ExpressionId>),
 
    Tuple(Vec<ExpressionId>),
 
}
 

	
 
impl Literal {
 
    pub(crate) fn as_struct(&self) -> &LiteralStruct {
 
        if let Literal::Struct(literal) = self{
 
            literal
 
        } else {
 
            unreachable!("Attempted to obtain {:?} as Literal::Struct", self)
 
        }
 
    }
 

	
 
    pub(crate) fn as_enum(&self) -> &LiteralEnum {
 
        if let Literal::Enum(literal) = self {
 
            literal
 
        } else {
 
            unreachable!("Attempted to obtain {:?} as Literal::Enum", self)
 
        }
 
    }
 

	
 
    pub(crate) fn as_union(&self) -> &LiteralUnion {
 
        if let Literal::Union(literal) = self {
 
            literal
 
        } else {
 
            unreachable!("Attempted to obtain {:?} as Literal::Union", self)
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralInteger {
 
    pub(crate) unsigned_value: u64,
 
    pub(crate) negated: bool, // for constant expression evaluation, TODO: @Int
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralStructField {
 
    // Phase 1: parser
 
    pub(crate) identifier: Identifier,
 
    pub(crate) value: ExpressionId,
 
    // Phase 2: linker
 
    pub(crate) field_idx: usize, // in struct definition
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralStruct {
 
    // Phase 1: parser
 
    pub(crate) parser_type: ParserType,
 
    pub(crate) fields: Vec<LiteralStructField>,
 
    pub(crate) definition: DefinitionId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralEnum {
 
    // Phase 1: parser
 
    pub(crate) parser_type: ParserType,
 
    pub(crate) variant: Identifier,
 
    pub(crate) definition: DefinitionId,
 
    // Phase 2: linker
 
    pub(crate) variant_idx: usize, // as present in the type table
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralUnion {
 
    // Phase 1: parser
 
    pub(crate) parser_type: ParserType,
 
    pub(crate) variant: Identifier,
 
    pub(crate) values: Vec<ExpressionId>,
 
    pub(crate) definition: DefinitionId,
 
    // Phase 2: linker
 
    pub(crate) variant_idx: usize, // as present in type table
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct VariableExpression {
 
    pub this: VariableExpressionId,
 
    // Parsing
 
    pub identifier: Identifier,
 
    // Validator/Linker
 
    pub declaration: Option<VariableId>,
 
    pub used_as_binding_target: bool,
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32, // used to index into type table after all types are determined
 
    // Typing
 
    pub expr_index: i32,
 
}
 
\ No newline at end of file
src/protocol/parser/pass_typing.rs
Show inline comments
 
@@ -456,3168 +456,3173 @@ impl InferenceType {
 
    /// then `to_infer` MUST be less specific than `template` (e.g.
 
    /// `IntegerLike` is less specific than `UInt32`)
 
    fn infer_subtree_for_single_type(
 
        to_infer: &mut InferenceType, mut to_infer_idx: usize,
 
        template: &[InferenceTypePart], mut template_idx: usize,
 
        forced_template: bool,
 
    ) -> SingleInferenceResult {
 
        let mut modified = false;
 
        let mut depth = 1;
 

	
 
        while depth > 0 {
 
            let to_infer_part = &to_infer.parts[to_infer_idx];
 
            let template_part = &template[template_idx];
 

	
 
            if to_infer_part == template_part {
 
                let depth_change = to_infer_part.depth_change();
 
                depth += depth_change;
 
                debug_assert_eq!(depth_change, template_part.depth_change());
 
                to_infer_idx += 1;
 
                template_idx += 1;
 
                continue;
 
            }
 
            if to_infer_part.is_marker() { to_infer_idx += 1; continue; }
 
            if template_part.is_marker() { template_idx += 1; continue; }
 

	
 
            // Types are not equal and not markers. So check if we can infer 
 
            // anything
 
            if let Some(depth_change) = Self::infer_part_for_single_type(
 
                to_infer, &mut to_infer_idx, template, &mut template_idx
 
            ) {
 
                depth += depth_change;
 
                modified = true;
 
                continue;
 
            }
 

	
 
            if !forced_template {
 
                // We cannot infer anything, but the template may still be
 
                // compatible with the type we're inferring
 
                if let Some(depth_change) = Self::check_part_for_single_type(
 
                    template, &mut template_idx, &to_infer.parts, &mut to_infer_idx
 
                ) {
 
                    depth += depth_change;
 
                    continue;
 
                }
 
            }
 

	
 
            return SingleInferenceResult::Incompatible
 
        }
 

	
 
        if modified {
 
            to_infer.recompute_is_done();
 
            return SingleInferenceResult::Modified;
 
        } else {
 
            return SingleInferenceResult::Unmodified;
 
        }
 
    }
 

	
 
    /// Checks if both types are compatible, doesn't perform any inference
 
    fn check_subtrees(
 
        type_parts_a: &[InferenceTypePart], start_idx_a: usize,
 
        type_parts_b: &[InferenceTypePart], start_idx_b: usize
 
    ) -> bool {
 
        let mut depth = 1;
 
        let mut idx_a = start_idx_a;
 
        let mut idx_b = start_idx_b;
 

	
 
        while depth > 0 {
 
            let part_a = &type_parts_a[idx_a];
 
            let part_b = &type_parts_b[idx_b];
 

	
 
            if part_a == part_b {
 
                let depth_change = part_a.depth_change();
 
                depth += depth_change;
 
                debug_assert_eq!(depth_change, part_b.depth_change());
 
                idx_a += 1;
 
                idx_b += 1;
 
                continue;
 
            }
 
            
 
            if part_a.is_marker() { idx_a += 1; continue; }
 
            if part_b.is_marker() { idx_b += 1; continue; }
 

	
 
            if let Some(depth_change) = Self::check_part_for_single_type(
 
                type_parts_a, &mut idx_a, type_parts_b, &mut idx_b
 
            ) {
 
                depth += depth_change;
 
                continue;
 
            }
 
            if let Some(depth_change) = Self::check_part_for_single_type(
 
                type_parts_b, &mut idx_b, type_parts_a, &mut idx_a
 
            ) {
 
                depth += depth_change;
 
                continue;
 
            }
 

	
 
            return false;
 
        }
 

	
 
        true
 
    }
 

	
 
    /// Performs the conversion of the inference type into a concrete type.
 
    /// By calling this function you must make sure that no unspecified types
 
    /// (e.g. Unknown or IntegerLike) exist in the type. Will not clear or check
 
    /// if the supplied `ConcreteType` is empty, will simply append to the parts
 
    /// vector.
 
    fn write_concrete_type(&self, concrete_type: &mut ConcreteType) {
 
        use InferenceTypePart as ITP;
 
        use ConcreteTypePart as CTP;
 

	
 
        // Make sure inference type is specified but concrete type is not yet specified
 
        debug_assert!(!self.parts.is_empty());
 
        concrete_type.parts.reserve(self.parts.len());
 

	
 
        let mut idx = 0;
 
        while idx < self.parts.len() {
 
            let part = &self.parts[idx];
 
            let converted_part = match part {
 
                ITP::Marker(_) => {
 
                    // Markers are removed when writing to the concrete type.
 
                    idx += 1;
 
                    continue;
 
                },
 
                ITP::Unknown | ITP::NumberLike |
 
                ITP::IntegerLike | ITP::ArrayLike | ITP::PortLike => {
 
                    // Should not happen if type inferencing works correctly: we
 
                    // should have returned a programmer-readable error or have
 
                    // inferred all types.
 
                    unreachable!("attempted to convert inference type part {:?} into concrete type", part);
 
                },
 
                ITP::Void => CTP::Void,
 
                ITP::Message => CTP::Message,
 
                ITP::Bool => CTP::Bool,
 
                ITP::UInt8 => CTP::UInt8,
 
                ITP::UInt16 => CTP::UInt16,
 
                ITP::UInt32 => CTP::UInt32,
 
                ITP::UInt64 => CTP::UInt64,
 
                ITP::SInt8 => CTP::SInt8,
 
                ITP::SInt16 => CTP::SInt16,
 
                ITP::SInt32 => CTP::SInt32,
 
                ITP::SInt64 => CTP::SInt64,
 
                ITP::Character => CTP::Character,
 
                ITP::String => {
 
                    // Inferred type has a 'char' subtype to simplify array
 
                    // checking, we remove it here.
 
                    debug_assert_eq!(self.parts[idx + 1], InferenceTypePart::Character);
 
                    idx += 1;
 
                    CTP::String
 
                },
 
                ITP::Array => CTP::Array,
 
                ITP::Slice => CTP::Slice,
 
                ITP::Input => CTP::Input,
 
                ITP::Output => CTP::Output,
 
                ITP::Tuple(num) => CTP::Tuple(*num),
 
                ITP::Instance(id, num) => CTP::Instance(*id, *num),
 
            };
 

	
 
            concrete_type.parts.push(converted_part);
 
            idx += 1;
 
        }
 
    }
 

	
 
    /// Writes a human-readable version of the type to a string. This is used
 
    /// to display error messages
 
    fn write_display_name(
 
        buffer: &mut String, heap: &Heap, parts: &[InferenceTypePart], mut idx: usize
 
    ) -> usize {
 
        use InferenceTypePart as ITP;
 

	
 
        match &parts[idx] {
 
            ITP::Marker(_marker_idx) => {
 
                if debug_log_enabled!() {
 
                    buffer.push_str(&format!("{{Marker:{}}}", *_marker_idx));
 
                }
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
            },
 
            ITP::Unknown => buffer.push_str("?"),
 
            ITP::NumberLike => buffer.push_str("numberlike"),
 
            ITP::IntegerLike => buffer.push_str("integerlike"),
 
            ITP::ArrayLike => {
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push_str("[?]");
 
            },
 
            ITP::PortLike => {
 
                buffer.push_str("portlike<");
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            }
 
            ITP::Void => buffer.push_str("void"),
 
            ITP::Bool => buffer.push_str(KW_TYPE_BOOL_STR),
 
            ITP::UInt8 => buffer.push_str(KW_TYPE_UINT8_STR),
 
            ITP::UInt16 => buffer.push_str(KW_TYPE_UINT16_STR),
 
            ITP::UInt32 => buffer.push_str(KW_TYPE_UINT32_STR),
 
            ITP::UInt64 => buffer.push_str(KW_TYPE_UINT64_STR),
 
            ITP::SInt8 => buffer.push_str(KW_TYPE_SINT8_STR),
 
            ITP::SInt16 => buffer.push_str(KW_TYPE_SINT16_STR),
 
            ITP::SInt32 => buffer.push_str(KW_TYPE_SINT32_STR),
 
            ITP::SInt64 => buffer.push_str(KW_TYPE_SINT64_STR),
 
            ITP::Character => buffer.push_str(KW_TYPE_CHAR_STR),
 
            ITP::String => {
 
                buffer.push_str(KW_TYPE_STRING_STR);
 
                idx += 1; // skip the 'char' subtype
 
            },
 
            ITP::Message => {
 
                buffer.push_str(KW_TYPE_MESSAGE_STR);
 
                buffer.push('<');
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            },
 
            ITP::Array => {
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push_str("[]");
 
            },
 
            ITP::Slice => {
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push_str("[..]");
 
            },
 
            ITP::Input => {
 
                buffer.push_str(KW_TYPE_IN_PORT_STR);
 
                buffer.push('<');
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            },
 
            ITP::Output => {
 
                buffer.push_str(KW_TYPE_OUT_PORT_STR);
 
                buffer.push('<');
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            },
 
            ITP::Tuple(num_sub) => {
 
                buffer.push('(');
 
                if *num_sub > 0 {
 
                    idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                    for _sub_idx in 1..*num_sub {
 
                        buffer.push_str(", ");
 
                        idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                    }
 
                }
 
                buffer.push(')');
 
            }
 
            ITP::Instance(definition_id, num_sub) => {
 
                let definition = &heap[*definition_id];
 
                buffer.push_str(definition.identifier().value.as_str());
 
                if *num_sub > 0 {
 
                    buffer.push('<');
 
                    idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                    for _sub_idx in 1..*num_sub {
 
                        buffer.push_str(", ");
 
                        idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                    }
 
                    buffer.push('>');
 
                }
 
            },
 
        }
 

	
 
        idx
 
    }
 

	
 
    /// Returns the display name of a (part of) the type tree. Will allocate a
 
    /// string.
 
    fn partial_display_name(heap: &Heap, parts: &[InferenceTypePart]) -> String {
 
        let mut buffer = String::with_capacity(parts.len() * 6);
 
        Self::write_display_name(&mut buffer, heap, parts, 0);
 
        buffer
 
    }
 

	
 
    /// Returns the display name of the full type tree. Will allocate a string.
 
    fn display_name(&self, heap: &Heap) -> String {
 
        Self::partial_display_name(heap, &self.parts)
 
    }
 
}
 

	
 
impl Default for InferenceType {
 
    fn default() -> Self {
 
        Self{
 
            has_marker: false,
 
            is_done: false,
 
            parts: Vec::new(),
 
        }
 
    }
 
}
 

	
 
/// Iterator over the subtrees that follow a marker in an `InferenceType`
 
/// instance. Returns immutable slices over the internal parts
 
struct InferenceTypeMarkerIter<'a> {
 
    parts: &'a [InferenceTypePart],
 
    idx: usize,
 
}
 

	
 
impl<'a> InferenceTypeMarkerIter<'a> {
 
    fn new(parts: &'a [InferenceTypePart]) -> Self {
 
        Self{ parts, idx: 0 }
 
    }
 
}
 

	
 
impl<'a> Iterator for InferenceTypeMarkerIter<'a> {
 
    type Item = (u32, &'a [InferenceTypePart]);
 

	
 
    fn next(&mut self) -> Option<Self::Item> {
 
        // Iterate until we find a marker
 
        while self.idx < self.parts.len() {
 
            if let InferenceTypePart::Marker(marker) = self.parts[self.idx] {
 
                // Found a marker, find the subtree end
 
                let start_idx = self.idx + 1;
 
                let end_idx = InferenceType::find_subtree_end_idx(self.parts, start_idx);
 

	
 
                // Modify internal index, then return items
 
                self.idx = end_idx;
 
                return Some((marker, &self.parts[start_idx..end_idx]));
 
            }
 

	
 
            self.idx += 1;
 
        }
 

	
 
        None
 
    }
 
}
 

	
 
#[derive(Debug, PartialEq, Eq)]
 
enum DualInferenceResult {
 
    Neither,        // neither argument is clarified
 
    First,          // first argument is clarified using the second one
 
    Second,         // second argument is clarified using the first one
 
    Both,           // both arguments are clarified
 
    Incompatible,   // types are incompatible: programmer error
 
}
 

	
 
impl DualInferenceResult {
 
    fn modified_lhs(&self) -> bool {
 
        match self {
 
            DualInferenceResult::First | DualInferenceResult::Both => true,
 
            _ => false
 
        }
 
    }
 
    fn modified_rhs(&self) -> bool {
 
        match self {
 
            DualInferenceResult::Second | DualInferenceResult::Both => true,
 
            _ => false
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, PartialEq, Eq)]
 
enum SingleInferenceResult {
 
    Unmodified,
 
    Modified,
 
    Incompatible
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// PassTyping - Public Interface
 
// -----------------------------------------------------------------------------
 

	
 
type InferNodeIndex = usize;
 
type PolyDataIndex = isize;
 
type VarDataIndex = usize;
 

	
 
pub(crate) struct ResolveQueueElement {
 
    // Note that using the `definition_id` and the `monomorph_idx` one may
 
    // query the type table for the full procedure type, thereby retrieving
 
    // the polymorphic arguments to the procedure.
 
    pub(crate) root_id: RootId,
 
    pub(crate) definition_id: DefinitionId,
 
    pub(crate) reserved_type_id: TypeId,
 
}
 

	
 
pub(crate) type ResolveQueue = Vec<ResolveQueueElement>;
 

	
 
struct InferenceNode {
 
    expr_type: InferenceType,       // result type from expression
 
    expr_id: ExpressionId,          // expression that is evaluated
 
    inference_rule: InferenceRule,
 
    parent_index: Option<InferNodeIndex>,
 
    field_or_monomorph_index: i32,    // index of field
 
    poly_data_index: PolyDataIndex,            // index of extra data needed for inference
 
    type_id: TypeId,                // when applicable indexes into type table
 
}
 

	
 
/// Inferencing rule to apply. Some of these are reasonably generic. Other ones
 
/// require so much custom logic that we'll not try to come up with an
 
/// abstraction.
 
enum InferenceRule {
 
    Noop,
 
    MonoTemplate(InferenceRuleTemplate),
 
    BiEqual(InferenceRuleBiEqual),
 
    TriEqualArgs(InferenceRuleTriEqualArgs),
 
    TriEqualAll(InferenceRuleTriEqualAll),
 
    Concatenate(InferenceRuleTwoArgs),
 
    IndexingExpr(InferenceRuleIndexingExpr),
 
    SlicingExpr(InferenceRuleSlicingExpr),
 
    SelectStructField(InferenceRuleSelectStructField),
 
    SelectTupleMember(InferenceRuleSelectTupleMember),
 
    LiteralStruct(InferenceRuleLiteralStruct),
 
    LiteralEnum,
 
    LiteralUnion(InferenceRuleLiteralUnion),
 
    LiteralArray(InferenceRuleLiteralArray),
 
    LiteralTuple(InferenceRuleLiteralTuple),
 
    CastExpr(InferenceRuleCastExpr),
 
    CallExpr(InferenceRuleCallExpr),
 
    VariableExpr(InferenceRuleVariableExpr),
 
}
 

	
 
impl InferenceRule {
 
    union_cast_method_impl!(as_mono_template, InferenceRuleTemplate, InferenceRule::MonoTemplate);
 
    union_cast_method_impl!(as_bi_equal, InferenceRuleBiEqual, InferenceRule::BiEqual);
 
    union_cast_method_impl!(as_tri_equal_args, InferenceRuleTriEqualArgs, InferenceRule::TriEqualArgs);
 
    union_cast_method_impl!(as_tri_equal_all, InferenceRuleTriEqualAll, InferenceRule::TriEqualAll);
 
    union_cast_method_impl!(as_concatenate, InferenceRuleTwoArgs, InferenceRule::Concatenate);
 
    union_cast_method_impl!(as_indexing_expr, InferenceRuleIndexingExpr, InferenceRule::IndexingExpr);
 
    union_cast_method_impl!(as_slicing_expr, InferenceRuleSlicingExpr, InferenceRule::SlicingExpr);
 
    union_cast_method_impl!(as_select_struct_field, InferenceRuleSelectStructField, InferenceRule::SelectStructField);
 
    union_cast_method_impl!(as_select_tuple_member, InferenceRuleSelectTupleMember, InferenceRule::SelectTupleMember);
 
    union_cast_method_impl!(as_literal_struct, InferenceRuleLiteralStruct, InferenceRule::LiteralStruct);
 
    union_cast_method_impl!(as_literal_union, InferenceRuleLiteralUnion, InferenceRule::LiteralUnion);
 
    union_cast_method_impl!(as_literal_array, InferenceRuleLiteralArray, InferenceRule::LiteralArray);
 
    union_cast_method_impl!(as_literal_tuple, InferenceRuleLiteralTuple, InferenceRule::LiteralTuple);
 
    union_cast_method_impl!(as_cast_expr, InferenceRuleCastExpr, InferenceRule::CastExpr);
 
    union_cast_method_impl!(as_call_expr, InferenceRuleCallExpr, InferenceRule::CallExpr);
 
    union_cast_method_impl!(as_variable_expr, InferenceRuleVariableExpr, InferenceRule::VariableExpr);
 
}
 

	
 
// Note: InferenceRuleTemplate is `Copy`, so don't add dynamically allocated
 
// members in the future (or review places where this struct is copied)
 
#[derive(Clone, Copy)]
 
struct InferenceRuleTemplate {
 
    template: &'static [InferenceTypePart],
 
    application: InferenceRuleTemplateApplication,
 
}
 

	
 
impl InferenceRuleTemplate {
 
    fn new_none() -> Self {
 
        return Self{
 
            template: &[],
 
            application: InferenceRuleTemplateApplication::None,
 
        };
 
    }
 

	
 
    fn new_forced(template: &'static [InferenceTypePart]) -> Self {
 
        return Self{
 
            template,
 
            application: InferenceRuleTemplateApplication::Forced,
 
        };
 
    }
 

	
 
    fn new_template(template: &'static [InferenceTypePart]) -> Self {
 
        return Self{
 
            template,
 
            application: InferenceRuleTemplateApplication::Template,
 
        }
 
    }
 
}
 

	
 
#[derive(Clone, Copy)]
 
enum InferenceRuleTemplateApplication {
 
    None, // do not apply template, silly, but saves some bytes
 
    Forced,
 
    Template,
 
}
 

	
 
/// Type equality applied to 'self' and the argument. An optional template will
 
/// be applied to 'self' first. Example: "bitwise not"
 
struct InferenceRuleBiEqual {
 
    template: InferenceRuleTemplate,
 
    argument_index: InferNodeIndex,
 
}
 

	
 
/// Type equality applied to two arguments. Template can be applied to 'self'
 
/// (generally forced, since this rule does not apply a type equality constraint
 
/// to 'self') and the two arguments. Example: "equality operator"
 
struct InferenceRuleTriEqualArgs {
 
    argument_template: InferenceRuleTemplate,
 
    result_template: InferenceRuleTemplate,
 
    argument1_index: InferNodeIndex,
 
    argument2_index: InferNodeIndex,
 
}
 

	
 
/// Type equality applied to 'self' and two arguments. Template may be
 
/// optionally applied to 'self'. Example: "addition operator"
 
struct InferenceRuleTriEqualAll {
 
    template: InferenceRuleTemplate,
 
    argument1_index: InferNodeIndex,
 
    argument2_index: InferNodeIndex,
 
}
 

	
 
/// Information for an inference rule that is applied to 'self' and two
 
/// arguments, see `InferenceRule` for its meaning.
 
struct InferenceRuleTwoArgs {
 
    argument1_index: InferNodeIndex,
 
    argument2_index: InferNodeIndex,
 
}
 

	
 
struct InferenceRuleIndexingExpr {
 
    subject_index: InferNodeIndex,
 
    index_index: InferNodeIndex,
 
}
 

	
 
struct InferenceRuleSlicingExpr {
 
    subject_index: InferNodeIndex,
 
    from_index: InferNodeIndex,
 
    to_index: InferNodeIndex,
 
}
 

	
 
struct InferenceRuleSelectStructField {
 
    subject_index: InferNodeIndex,
 
    selected_field: Identifier,
 
}
 

	
 
struct InferenceRuleSelectTupleMember {
 
    subject_index: InferNodeIndex,
 
    selected_index: u64,
 
}
 

	
 
struct InferenceRuleLiteralStruct {
 
    element_indices: Vec<InferNodeIndex>,
 
}
 

	
 
struct InferenceRuleLiteralUnion {
 
    element_indices: Vec<InferNodeIndex>
 
}
 

	
 
struct InferenceRuleLiteralArray {
 
    element_indices: Vec<InferNodeIndex>
 
}
 

	
 
struct InferenceRuleLiteralTuple {
 
    element_indices: Vec<InferNodeIndex>
 
}
 

	
 
struct InferenceRuleCastExpr {
 
    subject_index: InferNodeIndex,
 
}
 

	
 
struct InferenceRuleCallExpr {
 
    argument_indices: Vec<InferNodeIndex>
 
}
 

	
 
/// Data associated with a variable expression: an expression that reads the
 
/// value from a variable.
 
struct InferenceRuleVariableExpr {
 
    var_data_index: VarDataIndex, // shared variable information
 
}
 

	
 
/// This particular visitor will recurse depth-first into the AST and ensures
 
/// that all expressions have the appropriate types.
 
pub(crate) struct PassTyping {
 
    // Current definition we're typechecking.
 
    reserved_type_id: TypeId,
 
    procedure_id: ProcedureDefinitionId,
 
    procedure_kind: ProcedureKind,
 
    poly_vars: Vec<ConcreteType>,
 
    // Temporary variables during construction of inference rulesr
 
    parent_index: Option<InferNodeIndex>,
 
    // Buffers for iteration over various types
 
    var_buffer: ScopedBuffer<VariableId>,
 
    expr_buffer: ScopedBuffer<ExpressionId>,
 
    stmt_buffer: ScopedBuffer<StatementId>,
 
    bool_buffer: ScopedBuffer<bool>,
 
    index_buffer: ScopedBuffer<usize>,
 
    poly_progress_buffer: ScopedBuffer<u32>,
 
    // Mapping from parser type to inferred type. We attempt to continue to
 
    // specify these types until we're stuck or we've fully determined the type.
 
    infer_nodes: Vec<InferenceNode>,                     // will be transferred to type table at end
 
    poly_data: Vec<PolyData>,       // data for polymorph inference
 
    var_data: Vec<VarData>,
 
    // Keeping track of which expressions need to be reinferred because the
 
    // expressions they're linked to made progression on an associated type
 
    node_queued: DequeSet<InferNodeIndex>,
 
}
 

	
 
/// Generic struct that is used to store inferred types associated with
 
/// polymorphic types.
 
struct PolyData {
 
    first_rule_application: bool,
 
    definition_id: DefinitionId, // the definition, only used for user feedback
 
    /// Inferred types of the polymorphic variables as they are written down
 
    /// at the type's definition.
 
    poly_vars: Vec<InferenceType>,
 
    expr_types: PolyDataTypes,
 
}
 

	
 
// silly structure, just so we can use `PolyDataTypeIndex` ergonomically while
 
// making sure we're still capable of borrowing from `poly_vars`.
 
struct PolyDataTypes {
 
    /// Inferred types of associated types (e.g. struct fields, tuple members,
 
    /// function arguments). These types may depend on the polymorphic variables
 
    /// defined above.
 
    associated: Vec<InferenceType>,
 
    /// Inferred "returned" type (e.g. if a struct field is selected, then this
 
    /// contains the type of the selected field, for a function call it contains
 
    /// the return type). May depend on the polymorphic variables defined above.
 
    returned: InferenceType,
 
}
 

	
 
#[derive(Clone, Copy)]
 
enum PolyDataTypeIndex {
 
    Associated(usize), // indexes into `PolyData.associated`
 
    Returned,
 
}
 

	
 
impl PolyDataTypes {
 
    fn get_type(&self, index: PolyDataTypeIndex) -> &InferenceType {
 
        match index {
 
            PolyDataTypeIndex::Associated(index) => return &self.associated[index],
 
            PolyDataTypeIndex::Returned => return &self.returned,
 
        }
 
    }
 

	
 
    fn get_type_mut(&mut self, index: PolyDataTypeIndex) -> &mut InferenceType {
 
        match index {
 
            PolyDataTypeIndex::Associated(index) => return &mut self.associated[index],
 
            PolyDataTypeIndex::Returned => return &mut self.returned,
 
        }
 
    }
 
}
 

	
 
struct VarData {
 
    var_id: VariableId,
 
    var_type: InferenceType,
 
    used_at: Vec<InferNodeIndex>, // of variable expressions
 
    linked_var: Option<VarDataIndex>,
 
}
 

	
 
impl PassTyping {
 
    pub(crate) fn new() -> Self {
 
        PassTyping {
 
            reserved_type_id: TypeId::new_invalid(),
 
            procedure_id: ProcedureDefinitionId::new_invalid(),
 
            procedure_kind: ProcedureKind::Function,
 
            poly_vars: Vec::new(),
 
            parent_index: None,
 
            var_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            expr_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            stmt_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            bool_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            index_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            poly_progress_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            infer_nodes: Vec::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            poly_data: Vec::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            var_data: Vec::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            node_queued: DequeSet::new(),
 
        }
 
    }
 

	
 
    pub(crate) fn queue_module_definitions(ctx: &mut Ctx, queue: &mut ResolveQueue) {
 
        debug_assert_eq!(ctx.module().phase, ModuleCompilationPhase::ValidatedAndLinked);
 
        let root_id = ctx.module().root_id;
 
        let root = &ctx.heap.protocol_descriptions[root_id];
 
        for definition_id in &root.definitions {
 
            let definition = &ctx.heap[*definition_id];
 

	
 
            let first_concrete_part = match definition {
 
                Definition::Procedure(definition) => {
 
                    if definition.poly_vars.is_empty() {
 
                        if definition.kind == ProcedureKind::Function {
 
                            Some(ConcreteTypePart::Function(definition.this, 0))
 
                        } else {
 
                            Some(ConcreteTypePart::Component(definition.this, 0))
 
                        }
 
                    } else {
 
                        None
 
                    }
 
                }
 
                Definition::Enum(_) | Definition::Struct(_) | Definition::Union(_) => None,
 
            };
 

	
 
            if let Some(first_concrete_part) = first_concrete_part {
 
                let concrete_type = ConcreteType{ parts: vec![first_concrete_part] };
 
                let type_id = ctx.types.reserve_procedure_monomorph_type_id(definition_id, concrete_type);
 
                queue.push(ResolveQueueElement{
 
                    root_id,
 
                    definition_id: *definition_id,
 
                    reserved_type_id: type_id,
 
                })
 
            }
 
        }
 
    }
 

	
 
    pub(crate) fn handle_module_definition(
 
        &mut self, ctx: &mut Ctx, queue: &mut ResolveQueue, element: ResolveQueueElement
 
    ) -> VisitorResult {
 
        self.reset();
 
        debug_assert_eq!(ctx.module().root_id, element.root_id);
 
        debug_assert!(self.poly_vars.is_empty());
 

	
 
        // Prepare for visiting the definition
 
        self.reserved_type_id = element.reserved_type_id;
 

	
 
        let proc_base = ctx.types.get_base_definition(&element.definition_id).unwrap();
 
        if proc_base.is_polymorph {
 
            let monomorph = ctx.types.get_monomorph(element.reserved_type_id);
 
            for poly_arg in monomorph.concrete_type.embedded_iter(0) {
 
                self.poly_vars.push(ConcreteType{ parts: Vec::from(poly_arg) });
 
            }
 
        }
 

	
 
        // Visit the definition, setting up the type resolving process, then
 
        // (attempt to) resolve all types
 
        self.visit_definition(ctx, element.definition_id)?;
 
        self.resolve_types(ctx, queue)?;
 
        Ok(())
 
    }
 

	
 
    fn reset(&mut self) {
 
        self.reserved_type_id = TypeId::new_invalid();
 
        self.procedure_id = ProcedureDefinitionId::new_invalid();
 
        self.procedure_kind = ProcedureKind::Function;
 
        self.poly_vars.clear();
 
        self.parent_index = None;
 

	
 
        self.infer_nodes.clear();
 
        self.poly_data.clear();
 
        self.var_data.clear();
 
        self.node_queued.clear();
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// PassTyping - Visitor-like implementation
 
// -----------------------------------------------------------------------------
 

	
 
type VisitorResult = Result<(), ParseError>;
 
type VisitExprResult = Result<InferNodeIndex, ParseError>;
 

	
 
impl PassTyping {
 
    // Definitions
 

	
 
    fn visit_definition(&mut self, ctx: &mut Ctx, id: DefinitionId) -> VisitorResult {
 
        return visitor_recursive_definition_impl!(self, &ctx.heap[id], ctx);
 
    }
 

	
 
    fn visit_enum_definition(&mut self, _: &mut Ctx, _: EnumDefinitionId) -> VisitorResult { return Ok(()) }
 
    fn visit_struct_definition(&mut self, _: &mut Ctx, _: StructDefinitionId) -> VisitorResult { return Ok(()) }
 
    fn visit_union_definition(&mut self, _: &mut Ctx, _: UnionDefinitionId) -> VisitorResult { return Ok(()) }
 

	
 
    fn visit_procedure_definition(&mut self, ctx: &mut Ctx, id: ProcedureDefinitionId) -> VisitorResult {
 
        let procedure_def = &ctx.heap[id];
 

	
 
        self.procedure_id = id;
 
        self.procedure_kind = procedure_def.kind;
 
        let body_id = procedure_def.body;
 

	
 
        debug_log!("{}", "-".repeat(50));
 
        debug_log!("Visiting procedure: '{}' (id: {}, kind: {:?})", procedure_def.identifier.value.as_str(), id.0.index, procedure_def.kind);
 
        debug_log!("{}", "-".repeat(50));
 

	
 
        // Visit parameters
 
        let section = self.var_buffer.start_section_initialized(procedure_def.parameters.as_slice());
 
        for param_id in section.iter_copied() {
 
            let param = &ctx.heap[param_id];
 
            let var_type = self.determine_inference_type_from_parser_type_elements(&param.parser_type.elements, true);
 
            debug_assert!(var_type.is_done, "expected function arguments to be concrete types");
 
            self.var_data.push(VarData{
 
                var_id: param_id,
 
                var_type,
 
                used_at: Vec::new(),
 
                linked_var: None
 
            })
 
        }
 
        section.forget();
 

	
 
        // Visit all of the expressions within the body
 
        self.parent_index = None;
 
        return self.visit_block_stmt(ctx, body_id);
 
    }
 

	
 
    // Statements
 

	
 
    fn visit_stmt(&mut self, ctx: &mut Ctx, id: StatementId) -> VisitorResult {
 
        return visitor_recursive_statement_impl!(self, &ctx.heap[id], ctx, Ok(()));
 
    }
 

	
 
    fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
 
        // Transfer statements for traversal
 
        let block = &ctx.heap[id];
 

	
 
        let section = self.stmt_buffer.start_section_initialized(block.statements.as_slice());
 
        for stmt_id in section.iter_copied() {
 
            self.visit_stmt(ctx, stmt_id)?;
 
        }
 
        section.forget();
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_local_stmt(&mut self, ctx: &mut Ctx, id: LocalStatementId) -> VisitorResult {
 
        return visitor_recursive_local_impl!(self, &ctx.heap[id], ctx);
 
    }
 

	
 
    fn visit_local_memory_stmt(&mut self, ctx: &mut Ctx, id: MemoryStatementId) -> VisitorResult {
 
        let memory_stmt = &ctx.heap[id];
 
        let initial_expr_id = memory_stmt.initial_expr;
 

	
 
        let local = &ctx.heap[memory_stmt.variable];
 
        let var_type = self.determine_inference_type_from_parser_type_elements(&local.parser_type.elements, true);
 
        self.var_data.push(VarData{
 
            var_id: memory_stmt.variable,
 
            var_type,
 
            used_at: Vec::new(),
 
            linked_var: None,
 
        });
 

	
 
        // Process the initial value
 
        self.visit_assignment_expr(ctx, initial_expr_id)?;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_local_channel_stmt(&mut self, ctx: &mut Ctx, id: ChannelStatementId) -> VisitorResult {
 
        let channel_stmt = &ctx.heap[id];
 

	
 
        let from_var_index = self.var_data.len() as VarDataIndex;
 
        let to_var_index = from_var_index + 1;
 

	
 
        let from_local = &ctx.heap[channel_stmt.from];
 
        let from_var_type = self.determine_inference_type_from_parser_type_elements(&from_local.parser_type.elements, true);
 
        self.var_data.push(VarData{
 
            var_id: channel_stmt.from,
 
            var_type: from_var_type,
 
            used_at: Vec::new(),
 
            linked_var: Some(to_var_index),
 
        });
 

	
 
        let to_local = &ctx.heap[channel_stmt.to];
 
        let to_var_type = self.determine_inference_type_from_parser_type_elements(&to_local.parser_type.elements, true);
 
        self.var_data.push(VarData{
 
            var_id: channel_stmt.to,
 
            var_type: to_var_type,
 
            used_at: Vec::new(),
 
            linked_var: Some(from_var_index),
 
        });
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult {
 
        let labeled_stmt = &ctx.heap[id];
 
        let substmt_id = labeled_stmt.body;
 
        self.visit_stmt(ctx, substmt_id)
 
    }
 

	
 
    fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
 
        let if_stmt = &ctx.heap[id];
 

	
 
        let true_body_case = if_stmt.true_case;
 
        let false_body_case = if_stmt.false_case;
 
        let test_expr_id = if_stmt.test;
 

	
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_stmt(ctx, true_body_case.body)?;
 
        if let Some(false_body_case) = false_body_case {
 
            self.visit_stmt(ctx, false_body_case.body)?;
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult {
 
        let while_stmt = &ctx.heap[id];
 

	
 
        let body_id = while_stmt.body;
 
        let test_expr_id = while_stmt.test;
 

	
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_stmt(ctx, body_id)?;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_break_stmt(&mut self, _: &mut Ctx, _: BreakStatementId) -> VisitorResult { return Ok(()) }
 
    fn visit_continue_stmt(&mut self, _: &mut Ctx, _: ContinueStatementId) -> VisitorResult { return Ok(()) }
 

	
 
    fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult {
 
        let sync_stmt = &ctx.heap[id];
 
        let body_id = sync_stmt.body;
 

	
 
        self.visit_stmt(ctx, body_id)
 
    }
 

	
 
    fn visit_fork_stmt(&mut self, ctx: &mut Ctx, id: ForkStatementId) -> VisitorResult {
 
        let fork_stmt = &ctx.heap[id];
 
        let left_body_id = fork_stmt.left_body;
 
        let right_body_id = fork_stmt.right_body;
 

	
 
        self.visit_stmt(ctx, left_body_id)?;
 
        if let Some(right_body_id) = right_body_id {
 
            self.visit_stmt(ctx, right_body_id)?;
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_select_stmt(&mut self, ctx: &mut Ctx, id: SelectStatementId) -> VisitorResult {
 
        let select_stmt = &ctx.heap[id];
 

	
 
        let mut section = self.stmt_buffer.start_section();
 
        let num_cases = select_stmt.cases.len();
 

	
 
        for case in &select_stmt.cases {
 
            section.push(case.guard);
 
            section.push(case.body);
 
        }
 

	
 
        for case_index in 0..num_cases {
 
            let base_index = 2 * case_index;
 
            let guard_stmt_id = section[base_index    ];
 
            let block_stmt_id = section[base_index + 1];
 

	
 
            self.visit_stmt(ctx, guard_stmt_id)?;
 
            self.visit_stmt(ctx, block_stmt_id)?;
 
        }
 
        section.forget();
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_return_stmt(&mut self, ctx: &mut Ctx, id: ReturnStatementId) -> VisitorResult {
 
        let return_stmt = &ctx.heap[id];
 
        debug_assert_eq!(return_stmt.expressions.len(), 1);
 
        let expr_id = return_stmt.expressions[0];
 

	
 
        self.visit_expr(ctx, expr_id)?;
 
        return Ok(());
 
    }
 

	
 
    fn visit_goto_stmt(&mut self, _: &mut Ctx, _: GotoStatementId) -> VisitorResult { return Ok(()) }
 

	
 
    fn visit_new_stmt(&mut self, ctx: &mut Ctx, id: NewStatementId) -> VisitorResult {
 
        let new_stmt = &ctx.heap[id];
 
        let call_expr_id = new_stmt.expression;
 

	
 
        self.visit_call_expr(ctx, call_expr_id)?;
 
        return Ok(());
 
    }
 

	
 
    fn visit_expr_stmt(&mut self, ctx: &mut Ctx, id: ExpressionStatementId) -> VisitorResult {
 
        let expr_stmt = &ctx.heap[id];
 
        let subexpr_id = expr_stmt.expression;
 

	
 
        self.visit_expr(ctx, subexpr_id)?;
 
        return Ok(());
 
    }
 

	
 
    // Expressions
 

	
 
    fn visit_expr(&mut self, ctx: &mut Ctx, id: ExpressionId) -> VisitExprResult {
 
        return visitor_recursive_expression_impl!(self, &ctx.heap[id], ctx);
 
    }
 

	
 
    fn visit_assignment_expr(&mut self, ctx: &mut Ctx, id: AssignmentExpressionId) -> VisitExprResult {
 
        use AssignmentOperator as AO;
 

	
 
        let upcast_id = id.upcast();
 
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;
 

	
 
        let assign_expr = &ctx.heap[id];
 
        let assign_op = assign_expr.operation;
 
        let left_expr_id = assign_expr.left;
 
        let right_expr_id = assign_expr.right;
 

	
 
        let old_parent = self.parent_index.replace(self_index);
 
        let left_index = self.visit_expr(ctx, left_expr_id)?;
 
        let right_index = self.visit_expr(ctx, right_expr_id)?;
 

	
 
        let node = &mut self.infer_nodes[self_index];
 
        let argument_template = match assign_op {
 
            AO::Set =>
 
                InferenceRuleTemplate::new_none(),
 
            AO::Concatenated =>
 
                InferenceRuleTemplate::new_template(&ARRAYLIKE_TEMPLATE),
 
            AO::Multiplied | AO::Divided | AO::Added | AO::Subtracted =>
 
                InferenceRuleTemplate::new_template(&NUMBERLIKE_TEMPLATE),
 
            AO::Remained | AO::ShiftedLeft | AO::ShiftedRight |
 
            AO::BitwiseAnded | AO::BitwiseXored | AO::BitwiseOred =>
 
                InferenceRuleTemplate::new_template(&INTEGERLIKE_TEMPLATE),
 
        };
 

	
 
        node.inference_rule = InferenceRule::TriEqualArgs(InferenceRuleTriEqualArgs{
 
            argument_template,
 
            result_template: InferenceRuleTemplate::new_forced(&VOID_TEMPLATE),
 
            argument1_index: left_index,
 
            argument2_index: right_index,
 
        });
 

	
 
        self.parent_index = old_parent;
 
        self.progress_inference_rule_tri_equal_args(ctx, self_index)?;
 
        return Ok(self_index);
 
    }
 

	
 
    fn visit_binding_expr(&mut self, ctx: &mut Ctx, id: BindingExpressionId) -> VisitExprResult {
 
        let upcast_id = id.upcast();
 
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;
 

	
 
        let binding_expr = &ctx.heap[id];
 
        let bound_to_id = binding_expr.bound_to;
 
        let bound_from_id = binding_expr.bound_from;
 

	
 
        let old_parent = self.parent_index.replace(self_index);
 
        let arg_to_index = self.visit_expr(ctx, bound_to_id)?;
 
        let arg_from_index = self.visit_expr(ctx, bound_from_id)?;
 

	
 
        let node = &mut self.infer_nodes[self_index];
 
        node.inference_rule = InferenceRule::TriEqualArgs(InferenceRuleTriEqualArgs{
 
            argument_template: InferenceRuleTemplate::new_none(),
 
            result_template: InferenceRuleTemplate::new_forced(&BOOL_TEMPLATE),
 
            argument1_index: arg_to_index,
 
            argument2_index: arg_from_index,
 
        });
 

	
 
        self.parent_index = old_parent;
 
        self.progress_inference_rule_tri_equal_args(ctx, self_index)?;
 
        return Ok(self_index);
 
    }
 

	
 
    fn visit_conditional_expr(&mut self, ctx: &mut Ctx, id: ConditionalExpressionId) -> VisitExprResult {
 
        let upcast_id = id.upcast();
 
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;
 

	
 
        let conditional_expr = &ctx.heap[id];
 
        let test_expr_id = conditional_expr.test;
 
        let true_expr_id = conditional_expr.true_expression;
 
        let false_expr_id = conditional_expr.false_expression;
 

	
 
        let old_parent = self.parent_index.replace(self_index);
 
        self.visit_expr(ctx, test_expr_id)?;
 
        let true_index = self.visit_expr(ctx, true_expr_id)?;
 
        let false_index = self.visit_expr(ctx, false_expr_id)?;
 

	
 
        // Note: the test to the conditional expression has already been forced
 
        // to the boolean type. So the only thing we need to do while progressing
 
        // is to apply an equal3 constraint to the arguments and the result of
 
        // the expression.
 
        let node = &mut self.infer_nodes[self_index];
 
        node.inference_rule = InferenceRule::TriEqualAll(InferenceRuleTriEqualAll{
 
            template: InferenceRuleTemplate::new_none(),
 
            argument1_index: true_index,
 
            argument2_index: false_index,
 
        });
 

	
 
        self.parent_index = old_parent;
 
        self.progress_inference_rule_tri_equal_all(ctx, self_index)?;
 
        return Ok(self_index);
 
    }
 

	
 
    fn visit_binary_expr(&mut self, ctx: &mut Ctx, id: BinaryExpressionId) -> VisitExprResult {
 
        use BinaryOperator as BO;
 

	
 
        let upcast_id = id.upcast();
 
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;
 

	
 
        let binary_expr = &ctx.heap[id];
 
        let binary_op = binary_expr.operation;
 
        let lhs_expr_id = binary_expr.left;
 
        let rhs_expr_id = binary_expr.right;
 

	
 
        let old_parent = self.parent_index.replace(self_index);
 
        let left_index = self.visit_expr(ctx, lhs_expr_id)?;
 
        let right_index = self.visit_expr(ctx, rhs_expr_id)?;
 

	
 
        let inference_rule = match binary_op {
 
            BO::Concatenate =>
 
                InferenceRule::Concatenate(InferenceRuleTwoArgs{
 
                    argument1_index: left_index,
 
                    argument2_index: right_index,
 
                }),
 
            BO::LogicalAnd | BO::LogicalOr =>
 
                InferenceRule::TriEqualAll(InferenceRuleTriEqualAll{
 
                    template: InferenceRuleTemplate::new_forced(&BOOL_TEMPLATE),
 
                    argument1_index: left_index,
 
                    argument2_index: right_index,
 
                }),
 
            BO::BitwiseOr | BO::BitwiseXor | BO::BitwiseAnd | BO::Remainder | BO::ShiftLeft | BO::ShiftRight =>
 
                InferenceRule::TriEqualAll(InferenceRuleTriEqualAll{
 
                    template: InferenceRuleTemplate::new_template(&INTEGERLIKE_TEMPLATE),
 
                    argument1_index: left_index,
 
                    argument2_index: right_index,
 
                }),
 
            BO::Equality | BO::Inequality =>
 
                InferenceRule::TriEqualArgs(InferenceRuleTriEqualArgs{
 
                    argument_template: InferenceRuleTemplate::new_none(),
 
                    result_template: InferenceRuleTemplate::new_forced(&BOOL_TEMPLATE),
 
                    argument1_index: left_index,
 
                    argument2_index: right_index,
 
                }),
 
            BO::LessThan | BO::GreaterThan | BO::LessThanEqual | BO::GreaterThanEqual =>
 
                InferenceRule::TriEqualArgs(InferenceRuleTriEqualArgs{
 
                    argument_template: InferenceRuleTemplate::new_template(&NUMBERLIKE_TEMPLATE),
 
                    result_template: InferenceRuleTemplate::new_forced(&BOOL_TEMPLATE),
 
                    argument1_index: left_index,
 
                    argument2_index: right_index,
 
                }),
 
            BO::Add | BO::Subtract | BO::Multiply | BO::Divide =>
 
                InferenceRule::TriEqualAll(InferenceRuleTriEqualAll{
 
                    template: InferenceRuleTemplate::new_template(&NUMBERLIKE_TEMPLATE),
 
                    argument1_index: left_index,
 
                    argument2_index: right_index,
 
                }),
 
        };
 

	
 
        let node = &mut self.infer_nodes[self_index];
 
        node.inference_rule = inference_rule;
 

	
 
        self.parent_index = old_parent;
 
        self.progress_inference_rule(ctx, self_index)?;
 
        return Ok(self_index);
 
    }
 

	
 
    fn visit_unary_expr(&mut self, ctx: &mut Ctx, id: UnaryExpressionId) -> VisitExprResult {
 
        use UnaryOperator as UO;
 

	
 
        let upcast_id = id.upcast();
 
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;
 

	
 
        let unary_expr = &ctx.heap[id];
 
        let operation = unary_expr.operation;
 
        let arg_expr_id = unary_expr.expression;
 

	
 
        let old_parent = self.parent_index.replace(self_index);
 
        let argument_index = self.visit_expr(ctx, arg_expr_id)?;
 

	
 
        let template = match operation {
 
            UO::Positive | UO::Negative =>
 
                InferenceRuleTemplate::new_template(&NUMBERLIKE_TEMPLATE),
 
            UO::BitwiseNot =>
 
                InferenceRuleTemplate::new_template(&INTEGERLIKE_TEMPLATE),
 
            UO::LogicalNot =>
 
                InferenceRuleTemplate::new_forced(&BOOL_TEMPLATE),
 
        };
 

	
 
        let node = &mut self.infer_nodes[self_index];
 
        node.inference_rule = InferenceRule::BiEqual(InferenceRuleBiEqual{
 
            template, argument_index,
 
        });
 

	
 
        self.parent_index = old_parent;
 
        self.progress_inference_rule_bi_equal(ctx, self_index)?;
 
        return Ok(self_index);
 
    }
 

	
 
    fn visit_indexing_expr(&mut self, ctx: &mut Ctx, id: IndexingExpressionId) -> VisitExprResult {
 
        let upcast_id = id.upcast();
 
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;
 

	
 
        let indexing_expr = &ctx.heap[id];
 
        let subject_expr_id = indexing_expr.subject;
 
        let index_expr_id = indexing_expr.index;
 

	
 
        let old_parent = self.parent_index.replace(self_index);
 
        let subject_index = self.visit_expr(ctx, subject_expr_id)?;
 
        let index_index = self.visit_expr(ctx, index_expr_id)?; // cool name, bro
 

	
 
        let node = &mut self.infer_nodes[self_index];
 
        node.inference_rule = InferenceRule::IndexingExpr(InferenceRuleIndexingExpr{
 
            subject_index, index_index,
 
        });
 

	
 
        self.parent_index = old_parent;
 
        self.progress_inference_rule_indexing_expr(ctx, self_index)?;
 
        return Ok(self_index);
 
    }
 

	
 
    fn visit_slicing_expr(&mut self, ctx: &mut Ctx, id: SlicingExpressionId) -> VisitExprResult {
 
        let upcast_id = id.upcast();
 
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;
 

	
 
        let slicing_expr = &ctx.heap[id];
 
        let subject_expr_id = slicing_expr.subject;
 
        let from_expr_id = slicing_expr.from_index;
 
        let to_expr_id = slicing_expr.to_index;
 

	
 
        let old_parent = self.parent_index.replace(self_index);
 
        let subject_index = self.visit_expr(ctx, subject_expr_id)?;
 
        let from_index = self.visit_expr(ctx, from_expr_id)?;
 
        let to_index = self.visit_expr(ctx, to_expr_id)?;
 

	
 
        let node = &mut self.infer_nodes[self_index];
 
        node.inference_rule = InferenceRule::SlicingExpr(InferenceRuleSlicingExpr{
 
            subject_index, from_index, to_index,
 
        });
 

	
 
        self.parent_index = old_parent;
 
        self.progress_inference_rule_slicing_expr(ctx, self_index)?;
 
        return Ok(self_index);
 
    }
 

	
 
    fn visit_select_expr(&mut self, ctx: &mut Ctx, id: SelectExpressionId) -> VisitExprResult {
 
        let upcast_id = id.upcast();
 
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;
 

	
 
        let select_expr = &ctx.heap[id];
 
        let subject_expr_id = select_expr.subject;
 

	
 
        let old_parent = self.parent_index.replace(self_index);
 
        let subject_index = self.visit_expr(ctx, subject_expr_id)?;
 

	
 
        let node = &mut self.infer_nodes[self_index];
 
        let inference_rule = match &ctx.heap[id].kind {
 
            SelectKind::StructField(field_identifier) =>
 
                InferenceRule::SelectStructField(InferenceRuleSelectStructField{
 
                    subject_index,
 
                    selected_field: field_identifier.clone(),
 
                }),
 
            SelectKind::TupleMember(member_index) =>
 
                InferenceRule::SelectTupleMember(InferenceRuleSelectTupleMember{
 
                    subject_index,
 
                    selected_index: *member_index,
 
                }),
 
        };
 
        node.inference_rule = inference_rule;
 

	
 
        self.parent_index = old_parent;
 
        self.progress_inference_rule(ctx, self_index)?;
 
        return Ok(self_index);
 
    }
 

	
 
    fn visit_literal_expr(&mut self, ctx: &mut Ctx, id: LiteralExpressionId) -> VisitExprResult {
 
        let upcast_id = id.upcast();
 
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;
 

	
 
        let old_parent = self.parent_index.replace(self_index);
 

	
 
        let literal_expr = &ctx.heap[id];
 
        match &literal_expr.value {
 
            Literal::Null => {
 
                let node = &mut self.infer_nodes[self_index];
 
                node.inference_rule = InferenceRule::MonoTemplate(InferenceRuleTemplate::new_template(&MESSAGE_TEMPLATE));
 
            },
 
            Literal::Integer(_) => {
 
                let node = &mut self.infer_nodes[self_index];
 
                node.inference_rule = InferenceRule::MonoTemplate(InferenceRuleTemplate::new_template(&INTEGERLIKE_TEMPLATE));
 
            },
 
            Literal::True | Literal::False => {
 
                let node = &mut self.infer_nodes[self_index];
 
                node.inference_rule = InferenceRule::MonoTemplate(InferenceRuleTemplate::new_forced(&BOOL_TEMPLATE));
 
            },
 
            Literal::Character(_) => {
 
                let node = &mut self.infer_nodes[self_index];
 
                node.inference_rule = InferenceRule::MonoTemplate(InferenceRuleTemplate::new_forced(&CHARACTER_TEMPLATE));
 
            },
 
            Literal::String(_) => {
 
                let node = &mut self.infer_nodes[self_index];
 
                node.inference_rule = InferenceRule::MonoTemplate(InferenceRuleTemplate::new_forced(&STRING_TEMPLATE));
 
            },
 
            Literal::Struct(literal) => {
 
                // Visit field expressions
 
                let mut expr_ids = self.expr_buffer.start_section();
 
                for field in &literal.fields {
 
                    expr_ids.push(field.value);
 
                }
 

	
 
                let mut expr_indices = self.index_buffer.start_section();
 
                for expr_id in expr_ids.iter_copied() {
 
                    let expr_index = self.visit_expr(ctx, expr_id)?;
 
                    expr_indices.push(expr_index);
 
                }
 
                expr_ids.forget();
 
                let element_indices = expr_indices.into_vec();
 

	
 
                // Assign rule and extra data index to inference node
 
                let poly_data_index = self.insert_initial_struct_polymorph_data(ctx, id);
 
                let node = &mut self.infer_nodes[self_index];
 
                node.poly_data_index = poly_data_index;
 
                node.inference_rule = InferenceRule::LiteralStruct(InferenceRuleLiteralStruct{
 
                    element_indices,
 
                });
 
            },
 
            Literal::Enum(_) => {
 
                // Enumerations do not carry any subexpressions, but may still
 
                // have a user-defined polymorphic marker variable. For this 
 
                // reason we may still have to apply inference to this 
 
                // polymorphic variable
 
                let poly_data_index = self.insert_initial_enum_polymorph_data(ctx, id);
 
                let node = &mut self.infer_nodes[self_index];
 
                node.poly_data_index = poly_data_index;
 
                node.inference_rule = InferenceRule::LiteralEnum;
 
            },
 
            Literal::Union(literal) => {
 
                // May carry subexpressions and polymorphic arguments
 
                let expr_ids = self.expr_buffer.start_section_initialized(literal.values.as_slice());
 
                let poly_data_index = self.insert_initial_union_polymorph_data(ctx, id);
 

	
 
                let mut expr_indices = self.index_buffer.start_section();
 
                for expr_id in expr_ids.iter_copied() {
 
                    let expr_index = self.visit_expr(ctx, expr_id)?;
 
                    expr_indices.push(expr_index);
 
                }
 
                expr_ids.forget();
 
                let element_indices = expr_indices.into_vec();
 

	
 
                let node = &mut self.infer_nodes[self_index];
 
                node.poly_data_index = poly_data_index;
 
                node.inference_rule = InferenceRule::LiteralUnion(InferenceRuleLiteralUnion{
 
                    element_indices,
 
                });
 
            },
 
            Literal::Array(expressions) => {
 
                let expr_ids = self.expr_buffer.start_section_initialized(expressions.as_slice());
 

	
 
                let mut expr_indices = self.index_buffer.start_section();
 
                for expr_id in expr_ids.iter_copied() {
 
                    let expr_index = self.visit_expr(ctx, expr_id)?;
 
                    expr_indices.push(expr_index);
 
                }
 
                expr_ids.forget();
 
                let element_indices = expr_indices.into_vec();
 

	
 
                let node = &mut self.infer_nodes[self_index];
 
                node.inference_rule = InferenceRule::LiteralArray(InferenceRuleLiteralArray{
 
                    element_indices,
 
                });
 
            },
 
            Literal::Tuple(expressions) => {
 
                let expr_ids = self.expr_buffer.start_section_initialized(expressions.as_slice());
 

	
 
                let mut expr_indices = self.index_buffer.start_section();
 
                for expr_id in expr_ids.iter_copied() {
 
                    let expr_index = self.visit_expr(ctx, expr_id)?;
 
                    expr_indices.push(expr_index);
 
                }
 
                expr_ids.forget();
 
                let element_indices = expr_indices.into_vec();
 

	
 
                let node = &mut self.infer_nodes[self_index];
 
                node.inference_rule = InferenceRule::LiteralTuple(InferenceRuleLiteralTuple{
 
                    element_indices,
 
                })
 
            }
 
        }
 

	
 
        self.parent_index = old_parent;
 
        self.progress_inference_rule(ctx, self_index)?;
 
        return Ok(self_index);
 
    }
 

	
 
    fn visit_cast_expr(&mut self, ctx: &mut Ctx, id: CastExpressionId) -> VisitExprResult {
 
        let upcast_id = id.upcast();
 
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;
 

	
 
        let cast_expr = &ctx.heap[id];
 
        let subject_expr_id = cast_expr.subject;
 

	
 
        let old_parent = self.parent_index.replace(self_index);
 
        let subject_index = self.visit_expr(ctx, subject_expr_id)?;
 

	
 
        let node = &mut self.infer_nodes[self_index];
 
        node.inference_rule = InferenceRule::CastExpr(InferenceRuleCastExpr{
 
            subject_index,
 
        });
 

	
 
        self.parent_index = old_parent;
 

	
 
        // The cast expression is a bit special at this point: the progression
 
        // function simply makes sure input/output types are compatible. But if
 
        // the programmer explicitly specified the output type, then we can
 
        // already perform that inference rule here.
 
        {
 
            let cast_expr = &ctx.heap[id];
 
            let specified_type = self.determine_inference_type_from_parser_type_elements(&cast_expr.to_type.elements, true);
 
            let _progress = self.apply_template_constraint(ctx, self_index, &specified_type.parts)?;
 
        }
 

	
 
        self.progress_inference_rule_cast_expr(ctx, self_index)?;
 
        return Ok(self_index);
 
    }
 

	
 
    fn visit_call_expr(&mut self, ctx: &mut Ctx, id: CallExpressionId) -> VisitExprResult {
 
        let upcast_id = id.upcast();
 
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;
 
        let extra_index = self.insert_initial_call_polymorph_data(ctx, id);
 

	
 
        // By default we set the polymorph idx for calls to 0. If the call
 
        // refers to a non-polymorphic function, then it will be "monomorphed"
 
        // once, hence we end up pointing to the correct instance.
 
        self.infer_nodes[self_index].field_or_monomorph_index = 0;
 

	
 
        // Visit all arguments
 
        let old_parent = self.parent_index.replace(self_index);
 

	
 
        let call_expr = &ctx.heap[id];
 
        let expr_ids = self.expr_buffer.start_section_initialized(call_expr.arguments.as_slice());
 
        let mut expr_indices = self.index_buffer.start_section();
 

	
 
        for arg_expr_id in expr_ids.iter_copied() {
 
            let expr_index = self.visit_expr(ctx, arg_expr_id)?;
 
            expr_indices.push(expr_index);
 
        }
 
        expr_ids.forget();
 
        let argument_indices = expr_indices.into_vec();
 

	
 
        let node = &mut self.infer_nodes[self_index];
 
        node.poly_data_index = extra_index;
 
        node.inference_rule = InferenceRule::CallExpr(InferenceRuleCallExpr{
 
            argument_indices,
 
        });
 

	
 
        self.parent_index = old_parent;
 
        self.progress_inference_rule_call_expr(ctx, self_index)?;
 
        return Ok(self_index);
 
    }
 

	
 
    fn visit_variable_expr(&mut self, ctx: &mut Ctx, id: VariableExpressionId) -> VisitExprResult {
 
        let upcast_id = id.upcast();
 
        let self_index = self.insert_initial_inference_node(ctx, upcast_id)?;
 

	
 
        let var_expr = &ctx.heap[id];
 
        debug_assert!(var_expr.declaration.is_some());
 
        let old_parent = self.parent_index.replace(self_index);
 

	
 
        let declaration = &ctx.heap[var_expr.declaration.unwrap()];
 
        let mut var_data_index = None;
 
        for (index, var_data) in self.var_data.iter().enumerate() {
 
            if var_data.var_id == declaration.this {
 
                var_data_index = Some(index);
 
                break;
 
            }
 
        }
 

	
 
        let var_data_index = if let Some(var_data_index) = var_data_index {
 
            let var_data = &mut self.var_data[var_data_index];
 
            var_data.used_at.push(self_index);
 

	
 
            var_data_index
 
        } else {
 
            // If we're in a binding expression then it might the first time we
 
            // encounter the variable, so add a `VarData` entry.
 
            debug_assert_eq!(declaration.kind, VariableKind::Binding);
 
            let var_type = self.determine_inference_type_from_parser_type_elements(
 
                &declaration.parser_type.elements, true
 
            );
 
            let var_data_index = self.var_data.len();
 
            self.var_data.push(VarData{
 
                var_id: declaration.this,
 
                var_type,
 
                used_at: vec![self_index],
 
                linked_var: None,
 
            });
 

	
 
            var_data_index
 
        };
 

	
 
        let node = &mut self.infer_nodes[self_index];
 
        node.inference_rule = InferenceRule::VariableExpr(InferenceRuleVariableExpr{
 
            var_data_index,
 
        });
 

	
 
        self.parent_index = old_parent;
 
        self.progress_inference_rule_variable_expr(ctx, self_index)?;
 
        return Ok(self_index);
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// PassTyping - Type-inference progression
 
// -----------------------------------------------------------------------------
 

	
 
impl PassTyping {
 
    #[allow(dead_code)] // used when debug flag at the top of this file is true.
 
    fn debug_get_display_name(&self, ctx: &Ctx, expr_id: ExpressionId) -> String {
 
        let expr_idx = ctx.heap[expr_id].get_unique_id_in_definition();
 
        let expr_type = &self.infer_nodes[expr_idx as usize].expr_type;
 
        expr_type.display_name(&ctx.heap)
 
    }
 

	
 
    fn resolve_types(&mut self, ctx: &mut Ctx, queue: &mut ResolveQueue) -> Result<(), ParseError> {
 
        // Keep inferring until we can no longer make any progress
 
        while !self.node_queued.is_empty() {
 
            while !self.node_queued.is_empty() {
 
                let node_index = self.node_queued.pop_front().unwrap();
 
                self.progress_inference_rule(ctx, node_index)?;
 
            }
 

	
 
            // Nothing is queued anymore. However we might have integer literals
 
            // whose type cannot be inferred. For convenience's sake we'll
 
            // infer these to be s32.
 
            for (infer_node_index, infer_node) in self.infer_nodes.iter_mut().enumerate() {
 
                let expr_type = &mut infer_node.expr_type;
 
                if !expr_type.is_done && expr_type.parts.len() == 1 && expr_type.parts[0] == InferenceTypePart::IntegerLike {
 
                    // Force integer type to s32
 
                    expr_type.parts[0] = InferenceTypePart::SInt32;
 
                    expr_type.is_done = true;
 

	
 
                    // Requeue expression (and its parent, if it exists)
 
                    self.node_queued.push_back(infer_node_index);
 
                    if let Some(node_parent_index) = infer_node.parent_index {
 
                        self.node_queued.push_back(node_parent_index);
 
                    }
 
                }
 
            }
 
        }
 

	
 
        // Helper for transferring polymorphic variables to concrete types and
 
        // checking if they're completely specified
 
        fn inference_type_to_concrete_type(
 
            ctx: &Ctx, expr_id: ExpressionId, inference: &Vec<InferenceType>,
 
            first_concrete_part: ConcreteTypePart,
 
        ) -> Result<ConcreteType, ParseError> {
 
            // Prepare storage vector
 
            let mut num_inference_parts = 0;
 
            for inference_type in inference {
 
                num_inference_parts += inference_type.parts.len();
 
            }
 

	
 
            let mut concrete_type = ConcreteType{
 
                parts: Vec::with_capacity(1 + num_inference_parts),
 
            };
 
            concrete_type.parts.push(first_concrete_part);
 

	
 
            // Go through all polymorphic arguments and add them to the concrete
 
            // types.
 
            for (poly_idx, poly_type) in inference.iter().enumerate() {
 
                if !poly_type.is_done {
 
                    let expr = &ctx.heap[expr_id];
 
                    let definition = match expr {
 
                        Expression::Call(expr) => expr.procedure.upcast(),
 
                        Expression::Literal(expr) => match &expr.value {
 
                            Literal::Enum(lit) => lit.definition,
 
                            Literal::Union(lit) => lit.definition,
 
                            Literal::Struct(lit) => lit.definition,
 
                            _ => unreachable!()
 
                        },
 
                        _ => unreachable!(),
 
                    };
 
                    let poly_vars = ctx.heap[definition].poly_vars();
 
                    return Err(ParseError::new_error_at_span(
 
                        &ctx.module().source, expr.operation_span(), format!(
 
                            "could not fully infer the type of polymorphic variable '{}' of this expression (got '{}')",
 
                            poly_vars[poly_idx].value.as_str(), poly_type.display_name(&ctx.heap)
 
                        )
 
                    ));
 
                }
 

	
 
                poly_type.write_concrete_type(&mut concrete_type);
 
            }
 

	
 
            Ok(concrete_type)
 
        }
 

	
 
        // Inference is now done. But we may still have uninferred types. So we
 
        // check for these.
 
        // Inference is now done. But we may still have polymorphic data that is
 
        // not fully inferred, while the associated expression is. An example
 
        // being a polymorphic function call: we need to instantiate a
 
        // monomorph, so need all of its polymorphic variables, but the call
 
        // expression was only interested in the return value.
 
        for infer_expr in self.infer_nodes.iter_mut() {
 
            if !infer_expr.expr_type.is_done {
 
                let expr = &ctx.heap[infer_expr.expr_id];
 
                return Err(ParseError::new_error_at_span(
 
                    &ctx.module().source, expr.full_span(), format!(
 
                        "could not fully infer the type of this expression (got '{}')",
 
                        infer_expr.expr_type.display_name(&ctx.heap)
 
                    )
 
                ));
 
            }
 

	
 
            // Expression is fine, check if any extra data is attached
 
            if infer_expr.poly_data_index < 0 { continue; }
 

	
 
            // Extra data is attached, perform typechecking and transfer
 
            // resolved information to the expression
 
            let poly_data = &self.poly_data[infer_expr.poly_data_index as usize];
 

	
 
            // Note that only call and literal expressions need full inference.
 
            // Select expressions also use `extra_data`, but only for temporary
 
            // storage of the struct type whose field it is selecting.
 
            match &ctx.heap[infer_expr.expr_id] {
 
                Expression::Call(expr) => {
 
                    // Check if it is not a builtin function. If not, then
 
                    // construct the first part of the concrete type.
 
                    let first_concrete_part = if expr.method == Method::UserProcedure {
 
                        ConcreteTypePart::Function(expr.procedure, poly_data.poly_vars.len() as u32)
 
                    } else if expr.method == Method::UserComponent {
 
                        ConcreteTypePart::Component(expr.procedure, poly_data.poly_vars.len() as u32)
 
                    } else {
 
                        // Builtin function
 
                        continue;
 
                    };
 

	
 
                    let definition_id = expr.procedure.upcast();
 
                    let concrete_type = inference_type_to_concrete_type(
 
                        ctx, infer_expr.expr_id, &poly_data.poly_vars, first_concrete_part
 
                    )?;
 

	
 
                    match ctx.types.get_procedure_monomorph_type_id(&definition_id, &concrete_type.parts) {
 
                        Some(type_id) => {
 
                            // Already typechecked, or already put into the resolve queue
 
                            infer_expr.type_id = type_id;
 
                        },
 
                        None => {
 
                            // Not typechecked yet, so add an entry in the queue
 
                            let reserved_type_id = ctx.types.reserve_procedure_monomorph_type_id(&definition_id, concrete_type);
 
                            infer_expr.type_id = reserved_type_id;
 
                            queue.push(ResolveQueueElement {
 
                                root_id: ctx.heap[definition_id].defined_in(),
 
                                definition_id,
 
                                reserved_type_id,
 
                            });
 
                        }
 
                    }
 
                },
 
                Expression::Literal(expr) => {
 
                    let definition_id = match &expr.value {
 
                        Literal::Enum(lit) => lit.definition,
 
                        Literal::Union(lit) => lit.definition,
 
                        Literal::Struct(lit) => lit.definition,
 
                        _ => unreachable!(),
 
                    };
 
                    let first_concrete_part = ConcreteTypePart::Instance(definition_id, poly_data.poly_vars.len() as u32);
 
                    let concrete_type = inference_type_to_concrete_type(
 
                        ctx, infer_expr.expr_id, &poly_data.poly_vars, first_concrete_part
 
                    )?;
 
                    let type_id = ctx.types.add_monomorphed_type(ctx.modules, ctx.heap, ctx.arch, definition_id, concrete_type)?;
 
                    let type_id = ctx.types.add_monomorphed_type(ctx.modules, ctx.heap, ctx.arch, concrete_type)?;
 
                    infer_expr.type_id = type_id;
 
                },
 
                Expression::Select(_) => {
 
                    debug_assert!(infer_expr.field_or_monomorph_index >= 0);
 
                },
 
                _ => {
 
                    unreachable!("handling extra data for expression {:?}", &ctx.heap[infer_expr.expr_id]);
 
                }
 
            }
 
        }
 

	
 
        // Every expression checked, and new monomorphs are queued. Transfer the
 
        // expression information to the type table.
 
        let procedure_arguments = &ctx.heap[self.procedure_id].parameters;
 

	
 
        let target = ctx.types.get_procedure_monomorph_mut(self.reserved_type_id);
 
        debug_assert!(target.arg_types.is_empty()); // makes sure we never queue a procedure's type inferencing twice
 
        debug_assert!(target.expr_data.is_empty());
 
        // expression information to the AST. If this is the first time we're
 
        // visiting this procedure then we assign expression indices as well.
 
        let procedure = &mut ctx.heap[self.procedure_id];
 
        let mut monomorph = ProcedureDefinitionMonomorph{
 
            argument_types: Vec::with_capacity(procedure.parameters.len()),
 
            expr_info: Vec::with_capacity(self.infer_nodes().len()), // TODO: Initial reservation
 
        };
 

	
 
        // - Write the arguments to the procedure
 
        target.arg_types.reserve(procedure_arguments.len());
 
        for argument_id in procedure_arguments {
 
        // - Write the arguments
 
        for parameter_id in procedure.parameters.iter().copied() {
 
            let mut concrete = ConcreteType::default();
 
            let var_data = self.var_data.iter().find(|v| v.var_id == *argument_id).unwrap();
 
            let var_data = self.var_data.iter().find(|v| v.var_id == parameter_id).unwrap();
 
            var_data.var_type.write_concrete_type(&mut concrete);
 
            target.arg_types.push(concrete);
 
            let type_id = ctx.types.add_monomorphed_type(ctx.modules, ctx.heap, ctx.arch, concrete)?;
 
            monomorph.argument_types.push(type_id)
 
        }
 

	
 
        for infer_node in self.infer_nodes.iter() {
 
            let expr = &ctx.heap[infer_node.expr_id];
 
        }
 

	
 
        // - Write the expression data
 
        target.expr_data.reserve(self.infer_nodes.len());
 
        for infer_expr in self.infer_nodes.iter() {
 
            let mut concrete = ConcreteType::default();
 
            infer_expr.expr_type.write_concrete_type(&mut concrete);
 
            target.expr_data.push(MonomorphExpression{
 
                expr_type: concrete,
 
                field_or_monomorph_idx: infer_expr.field_or_monomorph_index,
 
                type_id: infer_expr.type_id,
 
            });
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_inference_rule(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        use InferenceRule as IR;
 

	
 
        let node = &self.infer_nodes[node_index];
 
        match &node.inference_rule {
 
            IR::Noop =>
 
                unreachable!(),
 
            IR::MonoTemplate(_) =>
 
                self.progress_inference_rule_mono_template(ctx, node_index),
 
            IR::BiEqual(_) =>
 
                self.progress_inference_rule_bi_equal(ctx, node_index),
 
            IR::TriEqualArgs(_) =>
 
                self.progress_inference_rule_tri_equal_args(ctx, node_index),
 
            IR::TriEqualAll(_) =>
 
                self.progress_inference_rule_tri_equal_all(ctx, node_index),
 
            IR::Concatenate(_) =>
 
                self.progress_inference_rule_concatenate(ctx, node_index),
 
            IR::IndexingExpr(_) =>
 
                self.progress_inference_rule_indexing_expr(ctx, node_index),
 
            IR::SlicingExpr(_) =>
 
                self.progress_inference_rule_slicing_expr(ctx, node_index),
 
            IR::SelectStructField(_) =>
 
                self.progress_inference_rule_select_struct_field(ctx, node_index),
 
            IR::SelectTupleMember(_) =>
 
                self.progress_inference_rule_select_tuple_member(ctx, node_index),
 
            IR::LiteralStruct(_) =>
 
                self.progress_inference_rule_literal_struct(ctx, node_index),
 
            IR::LiteralEnum =>
 
                self.progress_inference_rule_literal_enum(ctx, node_index),
 
            IR::LiteralUnion(_) =>
 
                self.progress_inference_rule_literal_union(ctx, node_index),
 
            IR::LiteralArray(_) =>
 
                self.progress_inference_rule_literal_array(ctx, node_index),
 
            IR::LiteralTuple(_) =>
 
                self.progress_inference_rule_literal_tuple(ctx, node_index),
 
            IR::CastExpr(_) =>
 
                self.progress_inference_rule_cast_expr(ctx, node_index),
 
            IR::CallExpr(_) =>
 
                self.progress_inference_rule_call_expr(ctx, node_index),
 
            IR::VariableExpr(_) =>
 
                self.progress_inference_rule_variable_expr(ctx, node_index),
 
        }
 
    }
 

	
 
    fn progress_inference_rule_mono_template(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = *node.inference_rule.as_mono_template();
 

	
 
        let progress = self.progress_template(ctx, node_index, rule.application, rule.template)?;
 
        if progress { self.queue_node_parent(node_index); }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_bi_equal(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_bi_equal();
 
        let template = rule.template;
 
        let arg_index = rule.argument_index;
 

	
 
        let base_progress = self.progress_template(ctx, node_index, template.application, template.template)?;
 
        let (node_progress, arg_progress) = self.apply_equal2_constraint(ctx, node_index, node_index, 0, arg_index, 0)?;
 

	
 
        if base_progress || node_progress { self.queue_node_parent(node_index); }
 
        if arg_progress { self.queue_node(arg_index); }
 

	
 
        return Ok(())
 
    }
 

	
 
    fn progress_inference_rule_tri_equal_args(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_tri_equal_args();
 

	
 
        let result_template = rule.result_template;
 
        let argument_template = rule.argument_template;
 
        let arg1_index = rule.argument1_index;
 
        let arg2_index = rule.argument2_index;
 

	
 
        let self_template_progress = self.progress_template(ctx, node_index, result_template.application, result_template.template)?;
 
        let arg1_template_progress = self.progress_template(ctx, arg1_index, argument_template.application, argument_template.template)?;
 
        let (arg1_progress, arg2_progress) = self.apply_equal2_constraint(ctx, node_index, arg1_index, 0, arg2_index, 0)?;
 

	
 
        if self_template_progress { self.queue_node_parent(node_index); }
 
        if arg1_template_progress || arg1_progress { self.queue_node(arg1_index); }
 
        if arg2_progress { self.queue_node(arg2_index); }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_tri_equal_all(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_tri_equal_all();
 

	
 
        let template = rule.template;
 
        let arg1_index = rule.argument1_index;
 
        let arg2_index = rule.argument2_index;
 

	
 
        let template_progress = self.progress_template(ctx, node_index, template.application, template.template)?;
 
        let (node_progress, arg1_progress, arg2_progress) =
 
            self.apply_equal3_constraint(ctx, node_index, arg1_index, arg2_index, 0)?;
 

	
 
        if template_progress || node_progress { self.queue_node_parent(node_index); }
 
        if arg1_progress { self.queue_node(arg1_index); }
 
        if arg2_progress { self.queue_node(arg2_index); }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_concatenate(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_concatenate();
 
        let arg1_index = rule.argument1_index;
 
        let arg2_index = rule.argument2_index;
 

	
 
        // Two cases: one of the arguments is a string (then all must be), or
 
        // one of the arguments is an array (and all must be arrays).
 
        let (expr_is_str, expr_is_not_str) = self.type_is_certainly_or_certainly_not_string(node_index);
 
        let (arg1_is_str, arg1_is_not_str) = self.type_is_certainly_or_certainly_not_string(arg1_index);
 
        let (arg2_is_str, arg2_is_not_str) = self.type_is_certainly_or_certainly_not_string(arg2_index);
 

	
 
        let someone_is_str = expr_is_str || arg1_is_str || arg2_is_str;
 
        let someone_is_not_str = expr_is_not_str || arg1_is_not_str || arg2_is_not_str;
 
        println!("DEBUG: Running concat, is_str = {}, is_not_str = {}", someone_is_str, someone_is_not_str);
 
        // Note: this statement is an expression returning the progression bools
 
        let (node_progress, arg1_progress, arg2_progress) = if someone_is_str {
 
            // One of the arguments is a string, then all must be strings
 
            self.apply_equal3_constraint(ctx, node_index, arg1_index, arg2_index, 0)?
 
        } else {
 
            let progress_expr = if someone_is_not_str {
 
                // Output must be a normal array
 
                self.apply_template_constraint(ctx, node_index, &ARRAY_TEMPLATE)?
 
            } else {
 
                // Output may still be anything
 
                self.apply_template_constraint(ctx, node_index, &ARRAYLIKE_TEMPLATE)?
 
            };
 

	
 
            let progress_arg1 = self.apply_template_constraint(ctx, arg1_index, &ARRAYLIKE_TEMPLATE)?;
 
            let progress_arg2 = self.apply_template_constraint(ctx, arg2_index, &ARRAYLIKE_TEMPLATE)?;
 

	
 
            // If they're all arraylike, then we want the subtype to match
 
            let (subtype_expr, subtype_arg1, subtype_arg2) =
 
                self.apply_equal3_constraint(ctx, node_index, arg1_index, arg2_index, 1)?;
 

	
 
            (progress_expr || subtype_expr, progress_arg1 || subtype_arg1, progress_arg2 || subtype_arg2)
 
        };
 

	
 
        if node_progress { self.queue_node_parent(node_index); }
 
        if arg1_progress { self.queue_node(arg1_index); }
 
        if arg2_progress { self.queue_node(arg2_index); }
 

	
 
        return Ok(())
 
    }
 

	
 
    fn progress_inference_rule_indexing_expr(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_indexing_expr();
 
        let subject_index = rule.subject_index;
 
        let index_index = rule.index_index; // which one?
 

	
 
        // Subject is arraylike, index in integerlike
 
        let subject_template_progress = self.apply_template_constraint(ctx, subject_index, &ARRAYLIKE_TEMPLATE)?;
 
        let index_template_progress = self.apply_template_constraint(ctx, index_index, &INTEGERLIKE_TEMPLATE)?;
 

	
 
        // If subject is type `Array<T>`, then expr type is `T`
 
        let (node_progress, subject_progress) =
 
            self.apply_equal2_constraint(ctx, node_index, node_index, 0, subject_index, 1)?;
 

	
 
        if node_progress { self.queue_node_parent(node_index); }
 
        if subject_template_progress || subject_progress { self.queue_node(subject_index); }
 
        if index_template_progress { self.queue_node(index_index); }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_slicing_expr(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_slicing_expr();
 
        let subject_index = rule.subject_index;
 
        let from_index_index = rule.from_index;
 
        let to_index_index = rule.to_index;
 

	
 
        debug_log!("Rule slicing [node: {}, expr: {}]", node_index, node.expr_id.index);
 

	
 
        // Subject is arraylike, indices are integerlike
 
        let subject_template_progress = self.apply_template_constraint(ctx, subject_index, &ARRAYLIKE_TEMPLATE)?;
 
        let from_template_progress = self.apply_template_constraint(ctx, from_index_index, &INTEGERLIKE_TEMPLATE)?;
 
        let to_template_progress = self.apply_template_constraint(ctx, to_index_index, &INTEGERLIKE_TEMPLATE)?;
 
        let (from_index_progress, to_index_progress) =
 
            self.apply_equal2_constraint(ctx, node_index, from_index_index, 0, to_index_index, 0)?;
 

	
 
        // Same as array indexing: result depends on whether subject is string
 
        // or array
 
        let (is_string, is_not_string) = self.type_is_certainly_or_certainly_not_string(node_index);
 
        println!("DEBUG: Running slicing, is_str = {}, is_not_str = {}", is_string, is_not_string);
 
        let (node_progress, subject_progress) = if is_string {
 
            // Certainly a string
 
            (
 
                self.apply_forced_constraint(ctx, node_index, &STRING_TEMPLATE)?,
 
                false
 
            )
 
        } else if is_not_string {
 
            // Certainly not a string, apply template constraint. Then make sure
 
            // that if we have an `Array<T>`, that the slice produces `Slice<T>`
 
            let node_template_progress = self.apply_template_constraint(ctx, node_index, &SLICE_TEMPLATE)?;
 
            let (node_progress, subject_progress) =
 
                self.apply_equal2_constraint(ctx, node_index, node_index, 1, subject_index, 1)?;
 

	
 
            (
 
                node_template_progress || node_progress,
 
                subject_progress
 
            )
 
        } else {
 
            // Not sure yet
 
            let node_template_progress = self.apply_template_constraint(ctx, node_index, &ARRAYLIKE_TEMPLATE)?;
 
            let (node_progress, subject_progress) =
 
                self.apply_equal2_constraint(ctx, node_index, node_index, 1, subject_index, 1)?;
 

	
 
            (
 
                node_template_progress || node_progress,
 
                subject_progress
 
            )
 
        };
 

	
 
        if node_progress { self.queue_node_parent(node_index); }
 
        if subject_template_progress || subject_progress { self.queue_node(subject_index); }
 
        if from_template_progress || from_index_progress { self.queue_node(from_index_index); }
 
        if to_template_progress || to_index_progress { self.queue_node(to_index_index); }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_select_struct_field(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_select_struct_field();
 

	
 
        let subject_index = rule.subject_index;
 
        let selected_field = rule.selected_field.clone();
 

	
 
        fn get_definition_id_from_inference_type(inference_type: &InferenceType) -> Result<Option<DefinitionId>, ()> {
 
            for part in inference_type.parts.iter() {
 
                if part.is_marker() { continue; }
 
                if !part.is_concrete() { break; }
 

	
 
                if let InferenceTypePart::Instance(definition_id, _) = part {
 
                    return Ok(Some(*definition_id));
 
                } else {
 
                    return Err(())
 
                }
 
            }
 

	
 
            // Nothing is known yet
 
            return Ok(None);
 
        }
 

	
 
        if node.field_or_monomorph_index < 0 {
 
            // Don't know the subject definition, hence the field yet. Try to
 
            // determine it.
 
            let subject_node = &self.infer_nodes[subject_index];
 
            match get_definition_id_from_inference_type(&subject_node.expr_type) {
 
                Ok(Some(definition_id)) => {
 
                    // Determined definition of subject for the first time.
 
                    let base_definition = ctx.types.get_base_definition(&definition_id).unwrap();
 
                    let struct_definition = if let DefinedTypeVariant::Struct(struct_definition) = &base_definition.definition {
 
                        struct_definition
 
                    } else {
 
                        return Err(ParseError::new_error_at_span(
 
                            &ctx.module().source, selected_field.span, format!(
 
                                "Can only apply field access to structs, got a subject of type '{}'",
 
                                subject_node.expr_type.display_name(&ctx.heap)
 
                            )
 
                        ));
 
                    };
 

	
 
                    // Seek the field that is referenced by the select
 
                    // expression
 
                    let mut field_found = false;
 
                    for (field_index, field) in struct_definition.fields.iter().enumerate() {
 
                        if field.identifier.value == selected_field.value {
 
                            // Found the field of interest
 
                            field_found = true;
 
                            let node = &mut self.infer_nodes[node_index];
 
                            node.field_or_monomorph_index = field_index as i32;
 
                            break;
 
                        }
 
                    }
 

	
 
                    if !field_found {
 
                        let struct_definition = ctx.heap[definition_id].as_struct();
 
                        return Err(ParseError::new_error_at_span(
 
                            &ctx.module().source, selected_field.span, format!(
 
                                "this field does not exist on the struct '{}'",
 
                                struct_definition.identifier.value.as_str()
 
                            )
 
                        ));
 
                    }
 

	
 
                    // Insert the initial data needed to infer polymorphic
 
                    // fields
 
                    let extra_index = self.insert_initial_select_polymorph_data(ctx, node_index, definition_id);
 
                    let node = &mut self.infer_nodes[node_index];
 
                    node.poly_data_index = extra_index;
 
                },
 
                Ok(None) => {
 
                    // We don't know what to do yet, because we don't know the
 
                    // subject type yet.
 
                    return Ok(())
 
                },
 
                Err(()) => {
 
                    return Err(ParseError::new_error_at_span(
 
                        &ctx.module().source, rule.selected_field.span, format!(
 
                            "Can only apply field access to structs, got a subject of type '{}'",
 
                            subject_node.expr_type.display_name(&ctx.heap)
 
                        )
 
                    ));
 
                },
 
            }
 
        }
 

	
 
        // If here then the field index is known, hence we can start inferring
 
        // the type of the selected field
 
        let field_expr_id = self.infer_nodes[node_index].expr_id;
 
        let subject_expr_id = self.infer_nodes[subject_index].expr_id;
 
        let mut poly_progress_section = self.poly_progress_buffer.start_section();
 

	
 
        let (_, progress_subject_1) = self.apply_polydata_equal2_constraint(
 
            ctx, node_index, subject_expr_id, "selected struct's",
 
            PolyDataTypeIndex::Associated(0), 0, subject_index, 0, &mut poly_progress_section
 
        )?;
 
        let (_, progress_field_1) = self.apply_polydata_equal2_constraint(
 
            ctx, node_index, field_expr_id, "selected field's",
 
            PolyDataTypeIndex::Returned, 0, node_index, 0, &mut poly_progress_section
 
        )?;
 

	
 
        // Maybe make progress on types due to inferred polymorphic variables
 
        let progress_subject_2 = self.apply_polydata_polyvar_constraint(
 
            ctx, node_index, PolyDataTypeIndex::Associated(0), subject_index, &poly_progress_section
 
        );
 
        let progress_field_2 = self.apply_polydata_polyvar_constraint(
 
            ctx, node_index, PolyDataTypeIndex::Returned, node_index, &poly_progress_section
 
        );
 

	
 
        if progress_subject_1 || progress_subject_2 { self.queue_node(subject_index); }
 
        if progress_field_1 || progress_field_2 { self.queue_node_parent(node_index); }
 

	
 
        poly_progress_section.forget();
 
        self.finish_polydata_constraint(node_index);
 
        return Ok(())
 
    }
 

	
 
    fn progress_inference_rule_select_tuple_member(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_select_tuple_member();
 
        let subject_index = rule.subject_index;
 
        let tuple_member_index = rule.selected_index;
 

	
 
        if node.field_or_monomorph_index < 0 {
 
            let subject_type = &self.infer_nodes[subject_index].expr_type;
 
            let tuple_size = get_tuple_size_from_inference_type(subject_type);
 
            let tuple_size = match tuple_size {
 
                Ok(Some(tuple_size)) => {
 
                    tuple_size
 
                },
 
                Ok(None) => {
 
                    // We can't infer anything yet
 
                    return Ok(())
 
                },
 
                Err(()) => {
 
                    let select_expr_span = ctx.heap[node.expr_id].full_span();
 
                    return Err(ParseError::new_error_at_span(
 
                        &ctx.module().source, select_expr_span, format!(
 
                            "tuple element select cannot be applied to a subject of type '{}'",
 
                            subject_type.display_name(&ctx.heap)
 
                        )
 
                    ));
 
                }
 
            };
 

	
 
            // If here then we at least have the tuple size. Now check if the
 
            // index doesn't exceed that size.
 
            if tuple_member_index >= tuple_size as u64 {
 
                let select_expr_span = ctx.heap[node.expr_id].full_span();
 
                return Err(ParseError::new_error_at_span(
 
                    &ctx.module().source, select_expr_span, format!(
 
                        "element index {} is out of bounds, tuple has {} elements",
 
                        tuple_member_index, tuple_size
 
                    )
 
                ));
 
            }
 

	
 
            // Within bounds, set index on the type inference node
 
            let node = &mut self.infer_nodes[node_index];
 
            node.field_or_monomorph_index = tuple_member_index as i32;
 
        }
 

	
 
        // If here then we know we can use `tuple_member_index`. We need to keep
 
        // computing the offset to the subtype, as its value changes during
 
        // inference
 
        let subject_type = &self.infer_nodes[subject_index].expr_type;
 
        let mut selected_member_start_index = 1; // start just after the InferenceTypeElement::Tuple
 
        for _ in 0..tuple_member_index {
 
            selected_member_start_index = InferenceType::find_subtree_end_idx(&subject_type.parts, selected_member_start_index);
 
        }
 

	
 
        let (progress_member, progress_subject) = self.apply_equal2_constraint(
 
            ctx, node_index, node_index, 0, subject_index, selected_member_start_index
 
        )?;
 

	
 
        if progress_member { self.queue_node_parent(node_index); }
 
        if progress_subject { self.queue_node(subject_index); }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_literal_struct(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let node_expr_id = node.expr_id;
 
        let rule = node.inference_rule.as_literal_struct();
 

	
 
        // For each of the fields in the literal struct, apply the type equality
 
        // constraint. If the literal is polymorphic, then we try to progress
 
        // their types during this process
 
        let element_indices_section = self.index_buffer.start_section_initialized(&rule.element_indices);
 
        let mut poly_progress_section = self.poly_progress_buffer.start_section();
 
        for (field_index, field_node_index) in element_indices_section.iter_copied().enumerate() {
 
            let field_expr_id = self.infer_nodes[field_node_index].expr_id;
 
            let (_, progress_field) = self.apply_polydata_equal2_constraint(
 
                ctx, node_index, field_expr_id, "struct field's",
 
                PolyDataTypeIndex::Associated(field_index), 0,
 
                field_node_index, 0, &mut poly_progress_section
 
            )?;
 

	
 
            if progress_field { self.queue_node(field_node_index); }
 
        }
 

	
 
        // Now we do the same thing for the struct literal expression (the type
 
        // of the struct itself).
 
        let (_, progress_literal_1) = self.apply_polydata_equal2_constraint(
 
            ctx, node_index, node_expr_id, "struct literal's",
 
            PolyDataTypeIndex::Returned, 0, node_index, 0, &mut poly_progress_section
 
        )?;
 

	
 
        // And the other way around: if any of our polymorphic variables are
 
        // more specific then they were before, then we forward that information
 
        // back to our struct/fields.
 
        for (field_index, field_node_index) in element_indices_section.iter_copied().enumerate() {
 
            let progress_field = self.apply_polydata_polyvar_constraint(
 
                ctx, node_index, PolyDataTypeIndex::Associated(field_index),
 
                field_node_index, &poly_progress_section
 
            );
 

	
 
            if progress_field { self.queue_node(field_node_index); }
 
        }
 

	
 
        let progress_literal_2 = self.apply_polydata_polyvar_constraint(
 
            ctx, node_index, PolyDataTypeIndex::Returned,
 
            node_index, &poly_progress_section
 
        );
 

	
 
        if progress_literal_1 || progress_literal_2 { self.queue_node_parent(node_index); }
 

	
 
        poly_progress_section.forget();
 
        element_indices_section.forget();
 

	
 
        self.finish_polydata_constraint(node_index);
 
        return Ok(())
 
    }
 

	
 
    fn progress_inference_rule_literal_enum(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let node_expr_id = node.expr_id;
 
        let mut poly_progress_section = self.poly_progress_buffer.start_section();
 

	
 
        // An enum literal type is simply, well, the enum's type. However, it
 
        // might still have polymorphic variables, hence the use of `PolyData`.
 
        let (_, progress_literal_1) = self.apply_polydata_equal2_constraint(
 
            ctx, node_index, node_expr_id, "enum literal's",
 
            PolyDataTypeIndex::Returned, 0, node_index, 0, &mut poly_progress_section
 
        )?;
 

	
 
        let progress_literal_2 = self.apply_polydata_polyvar_constraint(
 
            ctx, node_index, PolyDataTypeIndex::Returned, node_index, &poly_progress_section
 
        );
 

	
 
        if progress_literal_1 || progress_literal_2 { self.queue_node_parent(node_index); }
 

	
 
        poly_progress_section.forget();
 
        self.finish_polydata_constraint(node_index);
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_literal_union(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let node_expr_id = node.expr_id;
 
        let rule = node.inference_rule.as_literal_union();
 

	
 
        // Infer type of any embedded values in the union variant. At the same
 
        // time progress the polymorphic variables associated with the union.
 
        let element_indices_section = self.index_buffer.start_section_initialized(&rule.element_indices);
 
        let mut poly_progress_section = self.poly_progress_buffer.start_section();
 

	
 
        for (embedded_index, embedded_node_index) in element_indices_section.iter_copied().enumerate() {
 
            let embedded_node_expr_id = self.infer_nodes[embedded_node_index].expr_id;
 
            let (_, progress_embedded) = self.apply_polydata_equal2_constraint(
 
                ctx, node_index, embedded_node_expr_id, "embedded value's",
 
                PolyDataTypeIndex::Associated(embedded_index), 0,
 
                embedded_node_index, 0, &mut poly_progress_section
 
            )?;
 

	
 
            if progress_embedded { self.queue_node(embedded_node_index); }
 
        }
 

	
 
        let (_, progress_literal_1) = self.apply_polydata_equal2_constraint(
 
            ctx, node_index, node_expr_id, "union's",
 
            PolyDataTypeIndex::Returned, 0, node_index, 0, &mut poly_progress_section
 
        )?;
 

	
 
        // Propagate progress in the polymorphic variables to the expressions
 
        // that constitute the union literal.
 
        for (embedded_index, embedded_node_index) in element_indices_section.iter_copied().enumerate() {
 
            let progress_embedded = self.apply_polydata_polyvar_constraint(
 
                ctx, node_index, PolyDataTypeIndex::Associated(embedded_index),
 
                embedded_node_index, &poly_progress_section
 
            );
 

	
 
            if progress_embedded { self.queue_node(embedded_node_index); }
 
        }
 

	
 
        let progress_literal_2 = self.apply_polydata_polyvar_constraint(
 
            ctx, node_index, PolyDataTypeIndex::Returned, node_index, &poly_progress_section
 
        );
 

	
 
        if progress_literal_1 || progress_literal_2 { self.queue_node_parent(node_index); }
 

	
 
        poly_progress_section.forget();
 
        self.finish_polydata_constraint(node_index);
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_literal_array(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_literal_array();
 

	
 
        // Apply equality rule to all of the elements that form the array
 
        let argument_node_indices = self.index_buffer.start_section_initialized(&rule.element_indices);
 
        let mut argument_progress_section = self.bool_buffer.start_section();
 
        self.apply_equal_n_constraint(ctx, node_index, &argument_node_indices, &mut argument_progress_section)?;
 

	
 
        debug_assert_eq!(argument_node_indices.len(), argument_progress_section.len());
 
        for argument_index in 0..argument_node_indices.len() {
 
            let argument_node_index = argument_node_indices[argument_index];
 
            let progress = argument_progress_section[argument_index];
 

	
 
            if progress { self.queue_node(argument_node_index); }
 
        }
 

	
 
        // If elements are of type `T`, then the array is of type `Array<T>`, so:
 
        let mut progress_literal = self.apply_template_constraint(ctx, node_index, &ARRAY_TEMPLATE)?;
 
        if argument_node_indices.len() != 0 {
 
            let argument_node_index = argument_node_indices[0];
 
            let (progress_literal_inner, progress_argument) = self.apply_equal2_constraint(
 
                ctx, node_index, node_index, 1, argument_node_index, 0
 
            )?;
 

	
 
            progress_literal = progress_literal || progress_literal_inner;
 

	
 
            // It is possible that the `Array<T>` has a more progress `T` then
 
            // the arguments. So in the case we progress our argument type we
 
            // simply queue this rule again
 
            if progress_argument { self.queue_node(node_index); }
 
        }
 

	
 
        argument_node_indices.forget();
 
        argument_progress_section.forget();
 

	
 
        if progress_literal { self.queue_node_parent(node_index); }
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_literal_tuple(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_literal_tuple();
 

	
 
        let element_indices = self.index_buffer.start_section_initialized(&rule.element_indices);
 

	
 
        // Check if we need to apply the initial tuple template type. Note that
 
        // this is a hacky check.
 
        let num_tuple_elements = rule.element_indices.len();
 
        let mut template_type = Vec::with_capacity(num_tuple_elements + 1); // TODO: @performance
 
        template_type.push(InferenceTypePart::Tuple(num_tuple_elements as u32));
 
        for _ in 0..num_tuple_elements {
 
            template_type.push(InferenceTypePart::Unknown);
 
        }
 

	
 
        let mut progress_literal = self.apply_template_constraint(ctx, node_index, &template_type)?;
 

	
 
        // Because of the (early returning error) check above, we're certain
 
        // that the tuple has the correct number of elements. Now match each
 
        // element expression type to the tuple subtype.
 
        let mut element_subtree_start_index = 1; // first element is InferenceTypePart::Tuple
 
        for element_node_index in element_indices.iter_copied() {
 
            let (progress_literal_element, progress_element) = self.apply_equal2_constraint(
 
                ctx, node_index, node_index, element_subtree_start_index, element_node_index, 0
 
            )?;
 

	
 
            progress_literal = progress_literal || progress_literal_element;
 
            if progress_element {
 
                self.queue_node(element_node_index);
 
            }
 

	
 
            // Prepare for next element
 
            let node = &self.infer_nodes[node_index];
 
            let subtree_end_index = InferenceType::find_subtree_end_idx(&node.expr_type.parts, element_subtree_start_index);
 
            element_subtree_start_index = subtree_end_index;
 
        }
 
        debug_assert_eq!(element_subtree_start_index, self.infer_nodes[node_index].expr_type.parts.len());
 

	
 
        if progress_literal { self.queue_node_parent(node_index); }
 

	
 
        element_indices.forget();
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_cast_expr(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_cast_expr();
 
        let subject_index = rule.subject_index;
 
        let subject = &self.infer_nodes[subject_index];
 

	
 
        // Make sure that both types are completely done. Note: a cast
 
        // expression cannot really infer anything between the subject and the
 
        // output type, we can only make sure that, at the end, the cast is
 
        // correct.
 
        if !node.expr_type.is_done || !subject.expr_type.is_done {
 
            return Ok(());
 
        }
 

	
 
        // Both types are known, currently the only valid casts are bool,
 
        // integer and character casts.
 
        fn is_bool_int_or_char(parts: &[InferenceTypePart]) -> bool {
 
            let mut index = 0;
 
            while index < parts.len() {
 
                let part = &parts[index];
 
                if !part.is_marker() { break; }
 
                index += 1;
 
            }
 

	
 
            debug_assert!(index != parts.len());
 
            let part = &parts[index];
 
            if *part == InferenceTypePart::Bool || *part == InferenceTypePart::Character || part.is_concrete_integer() {
 
                debug_assert!(index + 1 == parts.len()); // type is done, first part does not have children -> must be at end
 
                return true;
 
            } else {
 
                return false;
 
            }
 
        }
 

	
 
        let is_valid = if is_bool_int_or_char(&node.expr_type.parts) && is_bool_int_or_char(&subject.expr_type.parts) {
 
            true
 
        } else if InferenceType::check_subtrees(&node.expr_type.parts, 0, &subject.expr_type.parts, 0) {
 
            // again: check_subtrees is sufficient since both types are done
 
            true
 
        } else {
 
            false
 
        };
 

	
 
        if !is_valid {
 
            let cast_expr = &ctx.heap[node.expr_id];
 
            let subject_expr = &ctx.heap[subject.expr_id];
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, cast_expr.full_span(), "invalid casting operation"
 
            ).with_info_at_span(
 
                &ctx.module().source, subject_expr.full_span(), format!(
 
                    "cannot cast the argument type '{}' to the type '{}'",
 
                    subject.expr_type.display_name(&ctx.heap),
 
                    node.expr_type.display_name(&ctx.heap)
 
                )
 
            ));
 
        }
 

	
 
        return Ok(())
 
    }
 

	
 
    fn progress_inference_rule_call_expr(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let node_expr_id = node.expr_id;
 
        let rule = node.inference_rule.as_call_expr();
 

	
 
        let mut poly_progress_section = self.poly_progress_buffer.start_section();
 
        let argument_node_indices = self.index_buffer.start_section_initialized(&rule.argument_indices);
 

	
 
        // Perform inference on arguments to function, while trying to figure
 
        // out the polymorphic variables
 
        for (argument_index, argument_node_index) in argument_node_indices.iter_copied().enumerate() {
 
            let argument_expr_id = self.infer_nodes[argument_node_index].expr_id;
 
            let (_, progress_argument) = self.apply_polydata_equal2_constraint(
 
                ctx, node_index, argument_expr_id, "argument's",
 
                PolyDataTypeIndex::Associated(argument_index), 0,
 
                argument_node_index, 0, &mut poly_progress_section
 
            )?;
 

	
 
            if progress_argument { self.queue_node(argument_node_index); }
 
        }
 

	
 
        // Same for the return type.
 
        let (_, progress_call_1) = self.apply_polydata_equal2_constraint(
 
            ctx, node_index, node_expr_id, "return",
 
            PolyDataTypeIndex::Returned, 0,
 
            node_index, 0, &mut poly_progress_section
 
        )?;
 

	
 
        // We will now apply any progression in the polymorphic variable type
 
        // back to the arguments.
 
        for (argument_index, argument_node_index) in argument_node_indices.iter_copied().enumerate() {
 
            let progress_argument = self.apply_polydata_polyvar_constraint(
 
                ctx, node_index, PolyDataTypeIndex::Associated(argument_index),
 
                argument_node_index, &poly_progress_section
 
            );
 

	
 
            if progress_argument { self.queue_node(argument_node_index); }
 
        }
 

	
 
        // And back to the return type.
 
        let progress_call_2 = self.apply_polydata_polyvar_constraint(
 
            ctx, node_index, PolyDataTypeIndex::Returned,
 
            node_index, &poly_progress_section
 
        );
 

	
 
        if progress_call_1 || progress_call_2 { self.queue_node_parent(node_index); }
 

	
 
        poly_progress_section.forget();
 
        argument_node_indices.forget();
 

	
 
        self.finish_polydata_constraint(node_index);
 
        return Ok(())
 
    }
 

	
 
    fn progress_inference_rule_variable_expr(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &mut self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_variable_expr();
 
        let var_data_index = rule.var_data_index;
 

	
 
        let var_data = &mut self.var_data[var_data_index];
 
        // Apply inference to the shared variable type and the expression type
 
        let shared_type: *mut _ = &mut var_data.var_type;
 
        let expr_type: *mut _ = &mut node.expr_type;
 

	
 
        let inference_result = unsafe {
 
            // safety: vectors exist in different storage vectors, so cannot alias
 
            InferenceType::infer_subtrees_for_both_types(shared_type, 0, expr_type, 0)
 
        };
 

	
 
        if inference_result == DualInferenceResult::Incompatible {
 
            return Err(self.construct_variable_type_error(ctx, node_index));
 
        }
 

	
 
        let progress_var_data = inference_result.modified_lhs();
 
        let progress_expr = inference_result.modified_rhs();
 

	
 
        if progress_var_data {
 
            // We progressed the type of the shared variable, so propagate this
 
            // to all associated variable expressions (and relatived variables).
 
            for other_node_index in var_data.used_at.iter().copied() {
 
                if other_node_index != node_index {
 
                    self.node_queued.push_back(other_node_index);
 
                }
 
            }
 

	
 
            if let Some(linked_var_data_index) = var_data.linked_var {
 
                // Only perform one-way inference, progressing the linked
 
                // variable.
 
                // note: because this "linking" is used only for channels, we
 
                // will start inference one level below the top-level in the
 
                // type tree (i.e. ensure `T` in `in<T>` and `out<T>` is equal).
 
                debug_assert!(
 
                    var_data.var_type.parts[0] == InferenceTypePart::Input ||
 
                    var_data.var_type.parts[0] == InferenceTypePart::Output
 
                );
 
                let this_var_type: *const _ = &var_data.var_type;
 
                let linked_var_data = &mut self.var_data[linked_var_data_index];
 
                debug_assert!(
 
                    linked_var_data.var_type.parts[0] == InferenceTypePart::Input ||
 
                    linked_var_data.var_type.parts[0] == InferenceTypePart::Output
 
                );
 

	
 
                // safety: by construction var_data_index and linked_var_data_index cannot be the
 
                // same, hence we're not aliasing here.
 
                let inference_result = InferenceType::infer_subtree_for_single_type(
 
                    &mut linked_var_data.var_type, 1,
 
                    unsafe{ &(*this_var_type).parts }, 1, false
 
                );
 
                match inference_result {
 
                    SingleInferenceResult::Modified => {
 
                        for used_at in linked_var_data.used_at.iter().copied() {
 
                            self.node_queued.push_back(used_at);
 
                        }
 
                    },
 
                    SingleInferenceResult::Unmodified => {},
 
                    SingleInferenceResult::Incompatible => {
 
                        let var_data_this = &self.var_data[var_data_index];
 
                        let var_decl_this = &ctx.heap[var_data_this.var_id];
 
                        let var_data_linked = &self.var_data[linked_var_data_index];
 
                        let var_decl_linked = &ctx.heap[var_data_linked.var_id];
 

	
 
                        return Err(ParseError::new_error_at_span(
 
                            &ctx.module().source, var_decl_this.identifier.span, format!(
 
                                "conflicting types for this channel, this port has type '{}'",
 
                                var_data_this.var_type.display_name(&ctx.heap)
 
                            )
 
                        ).with_info_at_span(
 
                            &ctx.module().source, var_decl_linked.identifier.span, format!(
 
                                "while this port has type '{}'",
 
                                var_data_linked.var_type.display_name(&ctx.heap)
 
                            )
 
                        ));
 
                    }
 
                }
 
            }
 
        }
 

	
 
        if progress_expr { self.queue_node_parent(node_index); }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn progress_template(&mut self, ctx: &Ctx, node_index: InferNodeIndex, application: InferenceRuleTemplateApplication, template: &[InferenceTypePart]) -> Result<bool, ParseError> {
 
        use InferenceRuleTemplateApplication as TA;
 

	
 
        match application {
 
            TA::None => Ok(false),
 
            TA::Template => self.apply_template_constraint(ctx, node_index, template),
 
            TA::Forced => self.apply_forced_constraint(ctx, node_index, template),
 
        }
 
    }
 

	
 
    fn queue_node_parent(&mut self, node_index: InferNodeIndex) {
 
        let node = &self.infer_nodes[node_index];
 
        if let Some(parent_node_index) = node.parent_index {
 
            self.node_queued.push_back(parent_node_index);
 
        }
 
    }
 

	
 
    #[inline]
 
    fn queue_node(&mut self, node_index: InferNodeIndex) {
 
        self.node_queued.push_back(node_index);
 
    }
 

	
 
    /// Returns whether the type is certainly a string (true, false), certainly
 
    /// not a string (false, true), or still unknown (false, false).
 
    fn type_is_certainly_or_certainly_not_string(&self, node_index: InferNodeIndex) -> (bool, bool) {
 
        let expr_type = &self.infer_nodes[node_index].expr_type;
 
        println!("DEBUG: Running test on {:?}", expr_type.parts);
 
        let mut part_index = 0;
 
        while part_index < expr_type.parts.len() {
 
            let part = &expr_type.parts[part_index];
 

	
 
            if part.is_marker() {
 
                part_index += 1;
 
                continue;
 
            }
 
            if !part.is_concrete() { break; }
 

	
 
            if *part == InferenceTypePart::String {
 
                // First part is a string
 
                return (true, false);
 
            } else {
 
                return (false, true);
 
            }
 
        }
 

	
 
        // If here then first non-marker type is not concrete
 
        if part_index == expr_type.parts.len() {
 
            // nothing known at all
 
            return (false, false);
 
        }
 

	
 
        // Special case: array-like where its argument is not a character
 
        if part_index + 1 < expr_type.parts.len() {
 
            if expr_type.parts[part_index] == InferenceTypePart::ArrayLike && expr_type.parts[part_index + 1] != InferenceTypePart::Character {
 
                return (false, true);
 
            }
 
        }
 

	
 

	
 
        (false, false)
 
    }
 

	
 
    /// Applies a template type constraint: the type associated with the
 
    /// supplied expression will be molded into the provided `template`. But
 
    /// will be considered valid if the template could've been molded into the
 
    /// expression type as well. Hence the template may be fully specified (e.g.
 
    /// a bool) or contain "inference" variables (e.g. an array of T)
 
    fn apply_template_constraint(
 
        &mut self, ctx: &Ctx, node_index: InferNodeIndex, template: &[InferenceTypePart]
 
    ) -> Result<bool, ParseError> {
 
        let expr_type = &mut self.infer_nodes[node_index].expr_type;
 
        match InferenceType::infer_subtree_for_single_type(expr_type, 0, template, 0, false) {
 
            SingleInferenceResult::Modified => Ok(true),
 
            SingleInferenceResult::Unmodified => Ok(false),
 
            SingleInferenceResult::Incompatible => Err(
 
                self.construct_template_type_error(ctx, node_index, template)
 
            )
 
        }
 
    }
 

	
 
    /// Applies a forced constraint: the supplied expression's type MUST be
 
    /// inferred from the template, the other way around is considered invalid.
 
    fn apply_forced_constraint(
 
        &mut self, ctx: &Ctx, node_index: InferNodeIndex, template: &[InferenceTypePart]
 
    ) -> Result<bool, ParseError> {
 
        let expr_type = &mut self.infer_nodes[node_index].expr_type;
 

	
 
        match InferenceType::infer_subtree_for_single_type(expr_type, 0, template, 0, true) {
 
            SingleInferenceResult::Modified => Ok(true),
 
            SingleInferenceResult::Unmodified => Ok(false),
 
            SingleInferenceResult::Incompatible => Err(
 
                self.construct_template_type_error(ctx, node_index, template)
 
            )
 
        }
 
    }
 

	
 
    /// Applies a type constraint that expects the two provided types to be
 
    /// equal. We attempt to make progress in inferring the types. If the call
 
    /// is successful then the composition of all types are made equal.
 
    /// The "parent" `expr_id` is provided to construct errors.
 
    fn apply_equal2_constraint(
 
        &mut self, ctx: &Ctx, node_index: InferNodeIndex,
 
        arg1_index: InferNodeIndex, arg1_start_idx: usize,
 
        arg2_index: InferNodeIndex, arg2_start_idx: usize
 
    ) -> Result<(bool, bool), ParseError> {
 
        let arg1_type: *mut _ = &mut self.infer_nodes[arg1_index].expr_type;
 
        let arg2_type: *mut _ = &mut self.infer_nodes[arg2_index].expr_type;
 

	
 
        let infer_res = unsafe{ InferenceType::infer_subtrees_for_both_types(
 
            arg1_type, arg1_start_idx,
 
            arg2_type, arg2_start_idx
 
        ) };
 
        if infer_res == DualInferenceResult::Incompatible {
 
            return Err(self.construct_arg_type_error(ctx, node_index, arg1_index, arg2_index));
 
        }
 

	
 
        Ok((infer_res.modified_lhs(), infer_res.modified_rhs()))
 
    }
 

	
 
    /// Applies an equal2 constraint between a member of the `PolyData` struct,
 
    /// and another inferred type. If any progress is made in the `PolyData`
 
    /// struct then the affected polymorphic variables are updated as well.
 
    ///
 
    /// Because a lot of types/expressions are involved in polymorphic typFe
 
    /// inference, some explanation: "outer_node" refers to the main expression
 
    /// that is the root cause of type inference (e.g. a struct literal
 
    /// expression, or a tuple member select expression). Associated with that
 
    /// outer node is `PolyData`, so that is what the "poly_data" variables
 
    /// are referring to. We are applying equality between a "poly_data" type
 
    /// and an associated expression (not necessarily the "outer_node", e.g.
 
    /// the expression that constructs the value of a struct field). Hence the
 
    /// "associated" variables.
 
    ///
 
    /// Finally, when an error occurs we'll first show the outer node's
 
    /// location. As info, the `error_location_expr_id` span is shown,
 
    /// indicating that the "`error_type_name` type has been resolved to
 
    /// `outer_node_type`, but this expression has been resolved to
 
    /// `associated_node_type`".
 
    fn apply_polydata_equal2_constraint(
 
        &mut self, ctx: &Ctx,
 
        outer_node_index: InferNodeIndex, error_location_expr_id: ExpressionId, error_type_name: &str,
 
        poly_data_type_index: PolyDataTypeIndex, poly_data_start_index: usize,
 
        associated_node_index: InferNodeIndex, associated_node_start_index: usize,
 
        poly_progress_section: &mut ScopedSection<u32>,
 
    ) -> Result<(bool, bool), ParseError> {
 
        let poly_data_index = self.infer_nodes[outer_node_index].poly_data_index;
 
        let poly_data = &mut self.poly_data[poly_data_index as usize];
 
        let poly_data_type = poly_data.expr_types.get_type_mut(poly_data_type_index);
 
        let associated_type: *mut _ = &mut self.infer_nodes[associated_node_index].expr_type;
 

	
 
        let inference_result = unsafe{
 
            // Safety: pointers originate from different vectors, so cannot
 
            // alias.
 
            let poly_data_type: *mut _ = poly_data_type;
 
            InferenceType::infer_subtrees_for_both_types(
 
                poly_data_type, poly_data_start_index,
 
                associated_type, associated_node_start_index
 
            )
 
        };
 

	
 
        let modified_poly_data = inference_result.modified_lhs();
 
        let modified_associated = inference_result.modified_rhs();
 
        if inference_result == DualInferenceResult::Incompatible {
 
            let outer_node_expr_id = self.infer_nodes[outer_node_index].expr_id;
 
            let outer_node_span = ctx.heap[outer_node_expr_id].full_span();
 
            let detailed_span = ctx.heap[error_location_expr_id].full_span();
 

	
 
            let outer_node_type = poly_data_type.display_name(&ctx.heap);
 
            let associated_type = self.infer_nodes[associated_node_index].expr_type.display_name(&ctx.heap);
 

	
 
            let source = &ctx.module().source;
 
            return Err(ParseError::new_error_str_at_span(
 
                source, outer_node_span, "failed to resolve the types of this expression"
 
            ).with_info_str_at_span(
 
                source, detailed_span, &format!(
 
                    "because the {} type has been resolved to '{}', but this expression has been resolved to '{}'",
 
                    error_type_name, outer_node_type, associated_type
 
                )
 
            ));
 
        }
 

	
 
        if modified_poly_data {
 
            debug_assert!(poly_data_type.has_marker);
 

	
 
            // Go through markers for polymorphic variables and use the
 
            // (hopefully) more specific types to update their representation
 
            // in the PolyData struct
 
            for (poly_var_index, poly_var_section) in poly_data_type.marker_iter() {
 
                let poly_var_type = &mut poly_data.poly_vars[poly_var_index as usize];
 
                match InferenceType::infer_subtree_for_single_type(poly_var_type, 0, poly_var_section, 0, false) {
 
                    SingleInferenceResult::Modified => {
 
                        poly_progress_section.push_unique(poly_var_index);
 
                    },
 
                    SingleInferenceResult::Unmodified => {
 
                        // nothing to do
 
                    },
 
                    SingleInferenceResult::Incompatible => {
 
                        return Err(Self::construct_poly_arg_error(
 
                            ctx, &self.poly_data[poly_data_index as usize],
 
                            self.infer_nodes[outer_node_index].expr_id
 
                        ));
 
                    }
 
                }
 
            }
 
        }
 

	
 
        return Ok((modified_poly_data, modified_associated));
 
    }
 

	
 
    /// After calling `apply_polydata_equal2_constraint` on several expressions
 
    /// that are associated with some kind of polymorphic expression, several of
 
    /// the polymorphic variables might have been inferred to more specific
 
    /// types than before.
 
    ///
 
    /// At this point one should call this function to apply the progress in
 
    /// these polymorphic variables back onto the types that are functions of
 
    /// these polymorphic variables.
 
    ///
 
    /// An example: a struct literal with a polymorphic variable `T` may have
 
    /// two fields `foo` and `bar` each with different types that are a function
 
    /// of the polymorhic variable `T`. If the expressions constructing the
 
    /// value for the field `foo` causes the type `T` to progress, then we can
 
    /// also progress the type of the expression that constructs `bar`.
 
    ///
 
    /// And so we have `outer_node_index` + `poly_data_type_index` pointing to
 
    /// the appropriate type in the `PolyData` struct. Which will be updated
 
    /// first using the polymorphic variables. If we happen to have updated that
 
    /// type, then we should also progress the associated expression, hence the
 
    /// `associated_node_index`.
 
    fn apply_polydata_polyvar_constraint(
 
        &mut self, _ctx: &Ctx,
 
        outer_node_index: InferNodeIndex, poly_data_type_index: PolyDataTypeIndex,
 
        associated_node_index: InferNodeIndex, poly_progress_section: &ScopedSection<u32>
 
    ) -> bool {
 
        let poly_data_index = self.infer_nodes[outer_node_index].poly_data_index;
 
        let poly_data = &mut self.poly_data[poly_data_index as usize];
 

	
 
        // Early exit, most common case (literals or functions calls which are
 
        // actually not polymorphic)
 
        if !poly_data.first_rule_application && poly_progress_section.len() == 0 {
 
            return false;
 
        }
 

	
 
        // safety: we're borrowing from two distinct fields, so should be fine
 
        let poly_data_type = poly_data.expr_types.get_type_mut(poly_data_type_index);
 
        let mut last_start_index = 0;
 
        let mut modified_poly_type = false;
 

	
 
        while let Some((poly_var_index, poly_var_start_index)) = poly_data_type.find_marker(last_start_index) {
 
            let poly_var_end_index = InferenceType::find_subtree_end_idx(&poly_data_type.parts, poly_var_start_index);
 

	
 
            if poly_data.first_rule_application || poly_progress_section.contains(&poly_var_index) {
 
                // We have updated this polymorphic variable, so try updating it
 
                // in the PolyData type
 
                let modified_in_poly_data = match InferenceType::infer_subtree_for_single_type(
 
                    poly_data_type, poly_var_start_index, &poly_data.poly_vars[poly_var_index as usize].parts, 0, false
 
                ) {
 
                    SingleInferenceResult::Modified => true,
 
                    SingleInferenceResult::Unmodified => false,
 
                    SingleInferenceResult::Incompatible => {
 
                        // practically impossible: before calling this function we gather all the
 
                        // data on the polymorphic variables from the associated expressions. So if
 
                        // the polymorphic variables in those expressions were not mutually
 
                        // compatible, we must have encountered that error already.
 
                        unreachable!()
 
                    },
 
                };
 

	
 
                modified_poly_type = modified_poly_type || modified_in_poly_data;
 
            }
 

	
 
            last_start_index = poly_var_end_index;
 
        }
 

	
 
        if modified_poly_type {
 
            let associated_type = &mut self.infer_nodes[associated_node_index].expr_type;
 
            match InferenceType::infer_subtree_for_single_type(
 
                associated_type, 0, &poly_data_type.parts, 0, true
 
            ) {
 
                SingleInferenceResult::Modified => return true,
 
                SingleInferenceResult::Unmodified => return false,
 
                SingleInferenceResult::Incompatible => unreachable!(), // same as above
 
            }
 
        } else {
 
            // Did not update associated type
 
            return false;
 
        }
 
    }
 

	
 
    /// Should be called after completing one full round of applying polydata
 
    /// constraints.
 
    fn finish_polydata_constraint(&mut self, outer_node_index: InferNodeIndex) {
 
        let poly_data_index = self.infer_nodes[outer_node_index].poly_data_index;
 
        let poly_data = &mut self.poly_data[poly_data_index as usize];
 
        poly_data.first_rule_application = false;
 
    }
 

	
 
    /// Applies a type constraint that expects all three provided types to be
 
    /// equal. In case we can make progress in inferring the types then we
 
    /// attempt to do so. If the call is successful then the composition of all
 
    /// types is made equal.
 
    fn apply_equal3_constraint(
 
        &mut self, ctx: &Ctx, node_index: InferNodeIndex,
 
        arg1_index: InferNodeIndex, arg2_index: InferNodeIndex,
 
        start_idx: usize
 
    ) -> Result<(bool, bool, bool), ParseError> {
 
        // Safety: all indices are unique
 
        //         containers may not be modified
 
        let expr_type: *mut _ = &mut self.infer_nodes[node_index].expr_type;
 
        let arg1_type: *mut _ = &mut self.infer_nodes[arg1_index].expr_type;
 
        let arg2_type: *mut _ = &mut self.infer_nodes[arg2_index].expr_type;
 

	
 
        let expr_res = unsafe{
 
            InferenceType::infer_subtrees_for_both_types(expr_type, start_idx, arg1_type, start_idx)
 
        };
 
        if expr_res == DualInferenceResult::Incompatible {
 
            return Err(self.construct_expr_type_error(ctx, node_index, arg1_index));
 
        }
 

	
 
        let args_res = unsafe{
 
            InferenceType::infer_subtrees_for_both_types(arg1_type, start_idx, arg2_type, start_idx) };
 
        if args_res == DualInferenceResult::Incompatible {
 
            return Err(self.construct_arg_type_error(ctx, node_index, arg1_index, arg2_index));
 
        }
 

	
 
        // If all types are compatible, but the second call caused the arg1_type
 
        // to be expanded, then we must also assign this to expr_type.
 
        let mut progress_expr = expr_res.modified_lhs();
 
        let mut progress_arg1 = expr_res.modified_rhs();
 
        let progress_arg2 = args_res.modified_rhs();
 

	
 
        if args_res.modified_lhs() { 
 
            unsafe {
 
                let end_idx = InferenceType::find_subtree_end_idx(&(*arg2_type).parts, start_idx);
 
                let subtree = &((*arg2_type).parts[start_idx..end_idx]);
 
                (*expr_type).replace_subtree(start_idx, subtree);
 
            }
 
            progress_expr = true;
 
            progress_arg1 = true;
 
        }
 

	
 
        Ok((progress_expr, progress_arg1, progress_arg2))
 
    }
 

	
 
    /// Applies equal constraint to N consecutive expressions. The returned
 
    /// `progress` vec will contain which expressions were progressed and will
 
    /// have length N.
 
    fn apply_equal_n_constraint(
 
        &mut self, ctx: &Ctx, outer_node_index: InferNodeIndex,
 
        arguments: &ScopedSection<InferNodeIndex>, progress: &mut ScopedSection<bool>
 
    ) -> Result<(), ParseError> {
 
        // Depending on the argument perform an early exit. This simplifies
 
        // later logic
 
        debug_assert_eq!(progress.len(), 0);
 
        match arguments.len() {
 
            0 => {
 
                // nothing to progress
 
                return Ok(())
 
            },
 
            1 => {
 
                // only one type, so nothing to infer
 
                progress.push(false);
 
                return Ok(())
 
            },
 
            n => {
 
                for _ in 0..n {
 
                    progress.push(false);
 
                }
 
            }
 
        }
 

	
 
        // We'll start doing pairwise inference for all of the inference nodes
 
        // (node[0] with node[1], then node[1] with node[2], then node[2] ...,
 
        // etc.), so when we're at the end we have `node[N-1]` as the most
 
        // progressed type.
 
        let mut last_index_requiring_inference = 0;
 

	
 
        for prev_argument_index in 0..arguments.len() - 1 {
 
            let next_argument_index = prev_argument_index + 1;
 

	
 
            let prev_node_index = arguments[prev_argument_index];
 
            let next_node_index = arguments[next_argument_index];
 
            let (prev_progress, next_progress) = self.apply_equal2_constraint(
 
                ctx, outer_node_index, prev_node_index, 0, next_node_index, 0
 
            )?;
 

	
 
            if prev_progress {
 
                // Previous node is progress, so every type in front of it needs
 
                // to be reinferred.
 
                progress[prev_argument_index] = true;
 
                last_index_requiring_inference = prev_argument_index;
 
            }
 
            progress[next_argument_index] = next_progress;
 
        }
 

	
 
        // Apply inference using the most progressed type (the last one) to the
 
        // ones that did not obtain this information during the inference
 
        // process.
 
        let last_argument_node_index = arguments[arguments.len() - 1];
 
        let last_argument_type: *mut _ = &mut self.infer_nodes[last_argument_node_index].expr_type;
 

	
 
        for argument_index in 0..last_index_requiring_inference {
 
            // We can cheat, we know the LHS is less specific than the right
 
            // hand side, so:
 
            let argument_node_index = arguments[argument_index];
 
            let argument_type = &mut self.infer_nodes[argument_node_index].expr_type;
 
            unsafe {
 
                // safety: we're dealing with different vectors, so cannot alias
 
                argument_type.replace_subtree(0, &(*last_argument_type).parts);
 
            }
 
            progress[argument_index] = true;
 
        }
 

	
 
        return Ok(());
 
    }
 

	
 
    /// Determines the `InferenceType` for the expression based on the
 
    /// expression parent (this is not done if the parent is a regular 'ol
 
    /// expression). Expects `parent_index` to be set to the parent of the
 
    /// inference node that is created here.
 
    fn insert_initial_inference_node(
 
        &mut self, ctx: &mut Ctx, expr_id: ExpressionId
 
    ) -> Result<InferNodeIndex, ParseError> {
 
        use ExpressionParent as EP;
 
        use InferenceTypePart as ITP;
 

	
 
        // Set the initial inference type based on the expression parent.
 
        let expr = &ctx.heap[expr_id];
 
        let inference_type = match expr.parent() {
 
            EP::None =>
 
                // Should have been set by linker
 
                unreachable!(),
 
            EP::Memory(_) | EP::ExpressionStmt(_) =>
 
                // Determined during type inference
 
                InferenceType::new(false, false, vec![ITP::Unknown]),
 
            EP::Expression(parent_id, idx_in_parent) => {
 
                // If we are the test expression of a conditional expression,
 
                // then we must resolve to a boolean
 
                let is_conditional = if let Expression::Conditional(_) = &ctx.heap[*parent_id] {
 
                    true
 
                } else {
 
                    false
 
                };
 

	
 
                if is_conditional && *idx_in_parent == 0 {
 
                    InferenceType::new(false, true, vec![ITP::Bool])
 
                } else {
 
                    InferenceType::new(false, false, vec![ITP::Unknown])
 
                }
 
            },
 
            EP::If(_) | EP::While(_) =>
 
                // Must be a boolean
 
                InferenceType::new(false, true, vec![ITP::Bool]),
 
            EP::Return(_) => {
 
                // Must match the return type of the function
 
                debug_assert_eq!(self.procedure_kind, ProcedureKind::Function);
 
                let returned = &ctx.heap[self.procedure_id].return_type.as_ref().unwrap();
 
                self.determine_inference_type_from_parser_type_elements(&returned.elements, true)
 
            },
 
            EP::New(_) =>
 
                // Must be a component call, which we assign a "Void" return
 
                // type
 
                InferenceType::new(false, true, vec![ITP::Void]),
 
        };
 

	
 
        let infer_index = self.infer_nodes.len() as InferNodeIndex;
 
        self.infer_nodes.push(InferenceNode {
 
            expr_type: inference_type,
 
            expr_id,
 
            inference_rule: InferenceRule::Noop,
 
            parent_index: self.parent_index,
 
            field_or_monomorph_index: -1,
 
            poly_data_index: -1,
 
            type_id: TypeId::new_invalid(),
 
        });
 

	
 
        return Ok(infer_index);
 
    }
 

	
 
    fn insert_initial_call_polymorph_data(
 
        &mut self, ctx: &mut Ctx, call_id: CallExpressionId
 
    ) -> PolyDataIndex {
 
        // Note: the polymorph variables may be partially specified and may
 
        // contain references to the wrapping definition's (i.e. the proctype
 
        // we are currently visiting) polymorphic arguments.
 
        //
 
        // The arguments of the call may refer to polymorphic variables in the
 
        // definition of the function we're calling, not of the wrapping
 
        // definition. We insert markers in these inferred types to be able to
 
        // map them back and forth to the polymorphic arguments of the function
 
        // we are calling.
 
        let call = &ctx.heap[call_id];
 

	
 
        // Handle the polymorphic arguments (if there are any)
 
        let num_poly_args = call.parser_type.elements[0].variant.num_embedded();
 
        let mut poly_args = Vec::with_capacity(num_poly_args);
 
        for embedded_elements in call.parser_type.iter_embedded(0) {
 
            poly_args.push(self.determine_inference_type_from_parser_type_elements(embedded_elements, true));
 
        }
 

	
 
        // Handle the arguments and return types
 
        let definition = &ctx.heap[call.procedure];
 
        debug_assert_eq!(poly_args.len(), definition.poly_vars.len());
 

	
 
        let mut parameter_types = Vec::with_capacity(definition.parameters.len());
 
        let parameter_section = self.var_buffer.start_section_initialized(&definition.parameters);
 
        for parameter_id in parameter_section.iter_copied() {
 
            let param = &ctx.heap[parameter_id];
 
            parameter_types.push(self.determine_inference_type_from_parser_type_elements(&param.parser_type.elements, false));
 
        }
 
        parameter_section.forget();
 

	
 
        let return_type = match &definition.return_type {
 
            None => {
 
                // Component, so returns a "Void"
 
                debug_assert_ne!(definition.kind, ProcedureKind::Function);
 
                InferenceType::new(false, true, vec![InferenceTypePart::Void])
 
            },
 
            Some(returned) => {
 
                debug_assert_eq!(definition.kind, ProcedureKind::Function);
 
                self.determine_inference_type_from_parser_type_elements(&returned.elements, false)
 
            }
 
        };
 

	
 
        let extra_data_idx = self.poly_data.len() as PolyDataIndex;
 
        self.poly_data.push(PolyData {
 
            first_rule_application: true,
 
            definition_id: call.procedure.upcast(),
 
            poly_vars: poly_args,
 
            expr_types: PolyDataTypes {
 
                associated: parameter_types,
 
                returned: return_type
 
            }
 
        });
 
        return extra_data_idx
 
    }
 

	
 
    fn insert_initial_struct_polymorph_data(
 
        &mut self, ctx: &mut Ctx, lit_id: LiteralExpressionId,
 
    ) -> PolyDataIndex {
 
        use InferenceTypePart as ITP;
 
        let literal = ctx.heap[lit_id].value.as_struct();
 

	
 
        // Handle polymorphic arguments
 
        let num_embedded = literal.parser_type.elements[0].variant.num_embedded();
 
        let mut total_num_poly_parts = 0;
 
        let mut poly_args = Vec::with_capacity(num_embedded);
 

	
 
        for embedded_elements in literal.parser_type.iter_embedded(0) {
 
            let poly_type = self.determine_inference_type_from_parser_type_elements(embedded_elements, true);
 
            total_num_poly_parts += poly_type.parts.len();
 
            poly_args.push(poly_type);
 
        }
 

	
 
        // Handle parser types on struct definition
 
        let defined_type = ctx.types.get_base_definition(&literal.definition).unwrap();
 
        let struct_type = defined_type.definition.as_struct();
 
        debug_assert_eq!(poly_args.len(), defined_type.poly_vars.len());
 

	
 
        // Note: programmer is capable of specifying fields in a struct literal
 
        // in a different order than on the definition. We take the literal-
 
        // specified order to be leading.
 
        let mut embedded_types = Vec::with_capacity(struct_type.fields.len());
 
        for lit_field in literal.fields.iter() {
 
            let def_field = &struct_type.fields[lit_field.field_idx];
 
            let inference_type = self.determine_inference_type_from_parser_type_elements(&def_field.parser_type.elements, false);
 
            embedded_types.push(inference_type);
 
        }
 

	
 
        // Return type is the struct type itself, with the appropriate 
 
        // polymorphic variables. So:
 
        // - 1 part for definition
 
        // - N_poly_arg marker parts for each polymorphic argument
 
        // - all the parts for the currently known polymorphic arguments 
 
        let parts_reserved = 1 + poly_args.len() + total_num_poly_parts;
 
        let mut parts = Vec::with_capacity(parts_reserved);
 
        parts.push(ITP::Instance(literal.definition, poly_args.len() as u32));
 
        let mut return_type_done = true;
 
        for (poly_var_idx, poly_var) in poly_args.iter().enumerate() {
 
            if !poly_var.is_done { return_type_done = false; }
 

	
 
            parts.push(ITP::Marker(poly_var_idx as u32));
 
            parts.extend(poly_var.parts.iter().cloned());
 
        }
 

	
 
        debug_assert_eq!(parts.len(), parts_reserved);
 
        let return_type = InferenceType::new(!poly_args.is_empty(), return_type_done, parts);
 

	
 
        let extra_data_index = self.poly_data.len() as PolyDataIndex;
 
        self.poly_data.push(PolyData {
 
            first_rule_application: true,
 
            definition_id: literal.definition,
 
            poly_vars: poly_args,
 
            expr_types: PolyDataTypes {
 
                associated: embedded_types,
 
                returned: return_type,
 
            },
 
        });
 

	
 
        return extra_data_index
 
    }
 

	
 
    /// Inserts the extra polymorphic data struct for enum expressions. These
 
    /// can never be determined from the enum itself, but may be inferred from
 
    /// the use of the enum.
 
    fn insert_initial_enum_polymorph_data(
 
        &mut self, ctx: &Ctx, lit_id: LiteralExpressionId
 
    ) -> PolyDataIndex {
 
        use InferenceTypePart as ITP;
 
        let literal = ctx.heap[lit_id].value.as_enum();
 

	
 
        // Handle polymorphic arguments to the enum
 
        let num_poly_args = literal.parser_type.elements[0].variant.num_embedded();
 
        let mut total_num_poly_parts = 0;
 
        let mut poly_args = Vec::with_capacity(num_poly_args);
 

	
 
        for embedded_elements in literal.parser_type.iter_embedded(0) {
 
            let poly_type = self.determine_inference_type_from_parser_type_elements(embedded_elements, true);
 
            total_num_poly_parts += poly_type.parts.len();
 
            poly_args.push(poly_type);
 
        }
 

	
 
        // Handle enum type itself
 
        let parts_reserved = 1 + poly_args.len() + total_num_poly_parts;
 
        let mut parts = Vec::with_capacity(parts_reserved);
 
        parts.push(ITP::Instance(literal.definition, poly_args.len() as u32));
 
        let mut enum_type_done = true;
 
        for (poly_var_idx, poly_var) in poly_args.iter().enumerate() {
 
            if !poly_var.is_done { enum_type_done = false; }
 

	
 
            parts.push(ITP::Marker(poly_var_idx as u32));
 
            parts.extend(poly_var.parts.iter().cloned());
 
        }
 

	
 
        debug_assert_eq!(parts.len(), parts_reserved);
 
        let enum_type = InferenceType::new(!poly_args.is_empty(), enum_type_done, parts);
 

	
 
        let extra_data_index = self.poly_data.len() as PolyDataIndex;
 
        self.poly_data.push(PolyData {
 
            first_rule_application: true,
 
            definition_id: literal.definition,
 
            poly_vars: poly_args,
 
            expr_types: PolyDataTypes {
 
                associated: Vec::new(),
 
                returned: enum_type,
 
            },
 
        });
 

	
 
        return extra_data_index;
 
    }
 

	
 
    /// Inserts the extra polymorphic data struct for unions. The polymorphic
 
    /// arguments may be partially determined from embedded values in the union.
 
    fn insert_initial_union_polymorph_data(
 
        &mut self, ctx: &Ctx, lit_id: LiteralExpressionId
 
    ) -> PolyDataIndex {
 
        use InferenceTypePart as ITP;
 
        let literal = ctx.heap[lit_id].value.as_union();
 

	
 
        // Construct the polymorphic variables
 
        let num_poly_args = literal.parser_type.elements[0].variant.num_embedded();
 
        let mut total_num_poly_parts = 0;
 
        let mut poly_args = Vec::with_capacity(num_poly_args);
 

	
 
        for embedded_elements in literal.parser_type.iter_embedded(0) {
 
            let poly_type = self.determine_inference_type_from_parser_type_elements(embedded_elements, true);
 
            total_num_poly_parts += poly_type.parts.len();
 
            poly_args.push(poly_type);
 
        }
 

	
 
        // Handle any of the embedded values in the variant, if specified
 
        let definition_id = literal.definition;
 
        let type_definition = ctx.types.get_base_definition(&definition_id).unwrap();
 
        let union_definition = type_definition.definition.as_union();
 
        debug_assert_eq!(poly_args.len(), type_definition.poly_vars.len());
 

	
 
        let variant_definition = &union_definition.variants[literal.variant_idx];
 
        debug_assert_eq!(variant_definition.embedded.len(), literal.values.len());
 

	
 
        let mut embedded = Vec::with_capacity(variant_definition.embedded.len());
 
        for embedded_parser_type in &variant_definition.embedded {
 
            let inference_type = self.determine_inference_type_from_parser_type_elements(&embedded_parser_type.elements, false);
 
            embedded.push(inference_type);
 
        }
 

	
 
        // Handle the type of the union itself
 
        let parts_reserved = 1 + poly_args.len() + total_num_poly_parts;
 
        let mut parts = Vec::with_capacity(parts_reserved);
 
        parts.push(ITP::Instance(definition_id, poly_args.len() as u32));
 
        let mut union_type_done = true;
 
        for (poly_var_idx, poly_var) in poly_args.iter().enumerate() {
 
            if !poly_var.is_done { union_type_done = false; }
 

	
 
            parts.push(ITP::Marker(poly_var_idx as u32));
 
            parts.extend(poly_var.parts.iter().cloned());
src/protocol/parser/type_table.rs
Show inline comments
 
/**
 
 * type_table.rs
 
 *
 
 * The type table is a lookup from AST definition (which contains just what the
 
 * programmer typed) to a type with additional information computed (e.g. the
 
 * byte size and offsets of struct members). The type table should be considered
 
 * the authoritative source of information on types by the compiler (not the
 
 * AST itself!).
 
 *
 
 * The type table operates in two modes: one is where we just look up the type,
 
 * check its fields for correctness and mark whether it is polymorphic or not.
 
 * The second one is where we compute byte sizes, alignment and offsets.
 
 *
 
 * The basic algorithm for type resolving and computing byte sizes is to
 
 * recursively try to lay out each member type of a particular type. This is
 
 * done in a stack-like fashion, where each embedded type pushes a breadcrumb
 
 * unto the stack. We may discover a cycle in embedded types (we call this a
 
 * "type loop"). After which the type table attempts to break the type loop by
 
 * making specific types heap-allocated. Upon doing so we know their size
 
 * because their stack-size is now based on pointers. Hence breaking the type
 
 * loop required for computing the byte size of types.
 
 *
 
 * The reason for these type shenanigans is because PDL is a value-based
 
 * language, but we would still like to be able to express recursively defined
 
 * types like trees or linked lists. Hence we need to insert pointers somewhere
 
 * to break these cycles.
 
 *
 
 * We will insert these pointers into the variants of unions. However note that
 
 * we can only compute the stack size of a union until we've looked at *all*
 
 * variants. Hence we perform an initial pass where we detect type loops, a
 
 * second pass where we compute the stack sizes of everything, and a third pass
 
 * where we actually compute the size of the heap allocations for unions.
 
 *
 
 * As a final bit of global documentation: non-polymorphic types will always
 
 * have one "monomorph" entry. This contains the non-polymorphic type's memory
 
 * layout.
 
 */
 

	
 
use std::collections::HashMap;
 
use std::hash::{Hash, Hasher};
 

	
 
use crate::protocol::ast::*;
 
use crate::protocol::parser::symbol_table::SymbolScope;
 
use crate::protocol::input_source::ParseError;
 
use crate::protocol::parser::*;
 

	
 
//------------------------------------------------------------------------------
 
// Defined Types
 
//------------------------------------------------------------------------------
 

	
 
/// Struct wrapping around a potentially polymorphic type. If the type does not
 
/// have any polymorphic arguments then it will not have any monomorphs and
 
/// `is_polymorph` will be set to `false`. A type with polymorphic arguments
 
/// only has `is_polymorph` set to `true` if the polymorphic arguments actually
 
/// appear in the types associated types (function return argument, struct
 
/// field, enum variant, etc.). Otherwise the polymorphic argument is just a
 
/// marker and does not influence the bytesize of the type.
 
pub struct DefinedType {
 
    pub(crate) ast_root: RootId,
 
    pub(crate) ast_definition: DefinitionId,
 
    pub(crate) definition: DefinedTypeVariant,
 
    pub(crate) poly_vars: Vec<PolymorphicVariable>,
 
    pub(crate) is_polymorph: bool,
 
}
 

	
 
pub enum DefinedTypeVariant {
 
    Enum(EnumType),
 
    Union(UnionType),
 
    Struct(StructType),
 
    Procedure(ProcedureType),
 
}
 

	
 
impl DefinedTypeVariant {
 
    pub(crate) fn is_data_type(&self) -> bool {
 
        use DefinedTypeVariant as DTV;
 

	
 
        match self {
 
            DTV::Struct(_) | DTV::Enum(_) | DTV::Union(_) => return true,
 
            DTV::Procedure(_) => return false,
 
        }
 
    }
 

	
 
    pub(crate) fn as_struct(&self) -> &StructType {
 
        match self {
 
            DefinedTypeVariant::Struct(v) => v,
 
            _ => unreachable!()
 
        }
 
    }
 

	
 
    pub(crate) fn as_enum(&self) -> &EnumType {
 
        match self {
 
            DefinedTypeVariant::Enum(v) => v,
 
            _ => unreachable!()
 
        }
 
    }
 

	
 
    pub(crate) fn as_union(&self) -> &UnionType {
 
        match self {
 
            DefinedTypeVariant::Union(v) => v,
 
            _ => unreachable!()
 
        }
 
    }
 
}
 

	
 
pub struct PolymorphicVariable {
 
    pub(crate) identifier: Identifier,
 
    pub(crate) is_in_use: bool, // a polymorphic argument may be defined, but not used by the type definition
 
}
 

	
 
/// `EnumType` is the classical C/C++ enum type. It has various variants with
 
/// an assigned integer value. The integer values may be user-defined,
 
/// compiler-defined, or a mix of the two. If a user assigns the same enum
 
/// value multiple times, we assume the user is an expert and we consider both
 
/// variants to be equal to one another.
 
pub struct EnumType {
 
    pub variants: Vec<EnumVariant>,
 
    pub minimum_tag_value: i64,
 
    pub maximum_tag_value: i64,
 
    pub tag_type: ConcreteType,
 
    pub size: usize,
 
    pub alignment: usize,
 
}
 

	
 
// TODO: Also support maximum u64 value
 
pub struct EnumVariant {
 
    pub identifier: Identifier,
 
    pub value: i64,
 
}
 

	
 
/// `UnionType` is the algebraic datatype (or sum type, or discriminated union).
 
/// A value is an element of the union, identified by its tag, and may contain
 
/// a single subtype.
 
/// For potentially infinite types (i.e. a tree, or a linked list) only unions
 
/// can break the infinite cycle. So when we lay out these unions in memory we
 
/// will reserve enough space on the stack for all union variants that do not
 
/// cause "type loops" (i.e. a union `A` with a variant containing a struct
 
/// `B`). And we will reserve enough space on the heap (and store a pointer in
 
/// the union) for all variants which do cause type loops (i.e. a union `A`
 
/// with a variant to a struct `B` that contains the union `A` again).
 
pub struct UnionType {
 
    pub variants: Vec<UnionVariant>,
 
    pub tag_type: ConcreteType,
 
    pub tag_size: usize,
 
}
 

	
 
pub struct UnionVariant {
 
    pub identifier: Identifier,
 
    pub embedded: Vec<ParserType>, // zero-length does not have embedded values
 
    pub tag_value: i64,
 
}
 

	
 
/// `StructType` is a generic C-like struct type (or record type, or product
 
/// type) type.
 
pub struct StructType {
 
    pub fields: Vec<StructField>,
 
}
 

	
 
pub struct StructField {
 
    pub identifier: Identifier,
 
    pub parser_type: ParserType,
 
}
 

	
 
/// `ProcedureType` is the signature of a procedure/component
 
pub struct ProcedureType {
 
    pub kind: ProcedureKind,
 
    pub return_type: Option<ParserType>,
 
    pub arguments: Vec<ProcedureArgument>,
 
}
 

	
 
pub struct ProcedureArgument {
 
    identifier: Identifier,
 
    parser_type: ParserType,
 
}
 

	
 
/// Represents the data associated with a single expression after type inference
 
/// for a monomorph (or just the normal expression types, if dealing with a
 
/// non-polymorphic function/component).
 
pub struct MonomorphExpression {
 
    // The output type of the expression. Note that for a function it is not the
 
    // function's signature but its return type
 
    pub(crate) expr_type: ConcreteType,
 
    // Has multiple meanings: the field index for select expressions, the
 
    // monomorph index for polymorphic function calls or literals. Negative
 
    // values are never used, but used to catch programming errors.
 
    pub(crate) field_or_monomorph_idx: i32,
 
    pub(crate) type_id: TypeId,
 
}
 

	
 
//------------------------------------------------------------------------------
 
// Type monomorph storage
 
//------------------------------------------------------------------------------
 

	
 
pub(crate) enum MonoTypeVariant {
 
    Builtin, // no extra data, added manually in compiler initialization code
 
    Enum, // no extra data
 
    Struct(StructMonomorph),
 
    Union(UnionMonomorph),
 
    Procedure(ProcedureMonomorph), // functions, components
 
    Tuple(TupleMonomorph),
 
}
 

	
 
impl MonoTypeVariant {
 
    fn as_struct_mut(&mut self) -> &mut StructMonomorph {
 
        match self {
 
            MonoTypeVariant::Struct(v) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    pub(crate) fn as_union(&self) -> &UnionMonomorph {
 
        match self {
 
            MonoTypeVariant::Union(v) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    fn as_union_mut(&mut self) -> &mut UnionMonomorph {
 
        match self {
 
            MonoTypeVariant::Union(v) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    fn as_tuple_mut(&mut self) -> &mut TupleMonomorph {
 
        match self {
 
            MonoTypeVariant::Tuple(v) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    fn as_procedure(&self) -> &ProcedureMonomorph {
 
        match self {
 
            MonoTypeVariant::Procedure(v) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    fn as_procedure_mut(&mut self) -> &mut ProcedureMonomorph {
 
        match self {
 
            MonoTypeVariant::Procedure(v) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 
}
 

	
 
/// Struct monomorph
 
pub struct StructMonomorph {
 
    pub fields: Vec<StructMonomorphField>,
 
}
 

	
 
pub struct StructMonomorphField {
 
    pub type_id: TypeId,
 
    concrete_type: ConcreteType,
 
    pub size: usize,
 
    pub alignment: usize,
 
    pub offset: usize,
 
}
 

	
 
/// Union monomorph
 
pub struct UnionMonomorph {
 
    pub variants: Vec<UnionMonomorphVariant>,
 
    pub tag_size: usize, // copied from `UnionType` upon monomorph construction.
 
    // note that the stack size is in the `TypeMonomorph` struct. This size and
 
    // alignment will include the size of the union tag.
 
    //
 
    // heap_size contains the allocated size of the union in the case it
 
    // is used to break a type loop. If it is 0, then it doesn't require
 
    // allocation and lives entirely on the stack.
 
    pub heap_size: usize,
 
    pub heap_alignment: usize,
 
}
 

	
 
pub struct UnionMonomorphVariant {
 
    pub lives_on_heap: bool,
 
    pub embedded: Vec<UnionMonomorphEmbedded>,
 
}
 

	
 
pub struct UnionMonomorphEmbedded {
 
    pub type_id: TypeId,
 
    concrete_type: ConcreteType,
 
    // Note that the meaning of the offset (and alignment) depend on whether or
 
    // not the variant lives on the stack/heap. If it lives on the stack then
 
    // they refer to the offset from the start of the union value (so the first
 
    // embedded type lives at a non-zero offset, because the union tag sits in
 
    // the front). If it lives on the heap then it refers to the offset from the
 
    // allocated memory region (so the first embedded type lives at a 0 offset).
 
    pub size: usize,
 
    pub alignment: usize,
 
    pub offset: usize,
 
}
 

	
 
/// Procedure (functions and components of all possible types) monomorph. Also
 
/// stores the expression type data from the typechecking/inferencing pass.
 
pub struct ProcedureMonomorph {
 
    // Expression data for one particular monomorph
 
    pub arg_types: Vec<ConcreteType>,
 
    pub expr_data: Vec<MonomorphExpression>,
 
}
 

	
 
/// Tuple monomorph. Again a kind of exception because one cannot define a named
 
/// tuple type containing explicit polymorphic variables. But again: we need to
 
/// store size/offset/alignment information, so we do it here.
 
pub struct TupleMonomorph {
 
    pub members: Vec<TupleMonomorphMember>
 
}
 

	
 
pub struct TupleMonomorphMember {
 
    pub type_id: TypeId,
 
    concrete_type: ConcreteType,
 
    pub size: usize,
 
    pub alignment: usize,
 
    pub offset: usize,
 
}
 

	
 
/// Generic unique type ID. Every monomorphed type and every non-polymorphic
 
/// type will have one of these associated with it.
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct TypeId(i64);
 

	
 
impl TypeId {
 
    pub(crate) fn new_invalid() -> Self {
 
        return Self(-1);
 
    }
 
}
 

	
 
/// A monomorphed type (or non-polymorphic type's) memory layout and information
 
/// regarding associated types (like a struct's field type).
 
pub struct MonoType {
 
    pub type_id: TypeId,
 
    pub concrete_type: ConcreteType,
 
    pub size: usize,
 
    pub alignment: usize,
 
    pub(crate) variant: MonoTypeVariant
 
}
 

	
 
impl MonoType {
 
    #[inline]
 
    fn new_empty(type_id: TypeId, concrete_type: ConcreteType, variant: MonoTypeVariant) -> Self {
 
        return Self {
 
            type_id, concrete_type,
 
            size: 0,
 
            alignment: 0,
 
            variant,
 
        }
 
    }
 

	
 
    /// Little internal helper function as a reminder: if alignment is 0, then
 
    /// the size/alignment are not actually computed yet!
 
    #[inline]
 
    fn get_size_alignment(&self) -> Option<(usize, usize)> {
 
        if self.alignment == 0 {
 
            return None
 
        } else {
 
            return Some((self.size, self.alignment));
 
        }
 
    }
 
}
 

	
 
/// Special structure that acts like the lookup key for `ConcreteType` instances
 
/// that have already been added to the type table before.
 
#[derive(Clone)]
 
struct MonoSearchKey {
 
    // Uses bitflags to denote when parts between search keys should match and
 
    // whether they should be checked. Needs to have a system like this to
 
    // accommodate tuples.
 
    parts: Vec<(u8, ConcreteTypePart)>,
 
    change_bit: u8,
 
}
 

	
 
impl MonoSearchKey {
 
    const KEY_IN_USE: u8 = 0x01;
 
    const KEY_CHANGE_BIT: u8 = 0x02;
 

	
 
    fn with_capacity(capacity: usize) -> Self {
 
        return MonoSearchKey{
 
            parts: Vec::with_capacity(capacity),
 
            change_bit: 0,
 
        };
 
    }
 

	
 
    /// Sets the search key based on a single concrete type and its polymorphic
 
    /// variables.
 
    fn set(&mut self, concrete_type_parts: &[ConcreteTypePart], poly_var_in_use: &[PolymorphicVariable]) {
 
        self.set_top_type(concrete_type_parts[0]);
 

	
 
        let mut poly_var_index = 0;
 
        for subtype in ConcreteTypeIter::new(concrete_type_parts, 0) {
 
            let in_use = poly_var_in_use[poly_var_index].is_in_use;
 
            poly_var_index += 1;
 
            self.push_subtype(subtype, in_use);
 
        }
 

	
 
        debug_assert_eq!(poly_var_index, poly_var_in_use.len());
 
    }
 

	
 
    /// Starts setting the search key based on an initial top-level type,
 
    /// programmer must call `push_subtype` the appropriate number of times
 
    /// after calling this function
 
    fn set_top_type(&mut self, type_part: ConcreteTypePart) {
 
        self.parts.clear();
 
        self.parts.push((Self::KEY_IN_USE, type_part));
 
        self.change_bit = Self::KEY_CHANGE_BIT;
 
    }
 

	
 
    fn push_subtype(&mut self, concrete_type: &[ConcreteTypePart], in_use: bool) {
 
        let flag = self.change_bit | (if in_use { Self::KEY_IN_USE } else { 0 });
 

	
 
        for part in concrete_type {
 
            self.parts.push((flag, *part));
 
        }
 
        self.change_bit ^= Self::KEY_CHANGE_BIT;
 
    }
 

	
 
    fn push_subtree(&mut self, concrete_type: &[ConcreteTypePart], poly_var_in_use: &[PolymorphicVariable]) {
 
        self.parts.push((self.change_bit | Self::KEY_IN_USE, concrete_type[0]));
 
        self.change_bit ^= Self::KEY_CHANGE_BIT;
 

	
 
        let mut poly_var_index = 0;
 
        for subtype in ConcreteTypeIter::new(concrete_type, 0) {
 
            let in_use = poly_var_in_use[poly_var_index].is_in_use;
 
            poly_var_index += 1;
 
            self.push_subtype(subtype, in_use);
 
        }
 

	
 
        debug_assert_eq!(poly_var_index, poly_var_in_use.len());
 
    }
 

	
 
    // Utilities for hashing and comparison
 
    fn find_end_index(&self, start_index: usize) -> usize {
 
        // Check if we're already at the end
 
        let mut index = start_index;
 
        if index >= self.parts.len() {
 
            return index;
 
        }
 

	
 
        // Iterate until bit flips, or until at end
 
        let expected_bit = self.parts[index].0 & Self::KEY_CHANGE_BIT;
 

	
 
        index += 1;
 
        while index < self.parts.len() {
 
            let current_bit = self.parts[index].0 & Self::KEY_CHANGE_BIT;
 
            if current_bit != expected_bit {
 
                return index;
 
            }
 

	
 
            index += 1;
 
        }
 

	
 
        return index;
 
    }
 
}
 

	
 
impl Hash for MonoSearchKey {
 
    fn hash<H: Hasher>(&self, state: &mut H) {
 
        for index in 0..self.parts.len() {
 
            let (flags, part) = self.parts[index];
 
            if flags & Self::KEY_IN_USE != 0 {
 
                part.hash(state);
 
            }
 
        }
 
    }
 
}
 

	
 
impl PartialEq for MonoSearchKey {
 
    fn eq(&self, other: &Self) -> bool {
 
        let mut self_index = 0;
 
        let mut other_index = 0;
 

	
 
        while self_index < self.parts.len() && other_index < other.parts.len() {
 
            // Retrieve part and flags
 
            let (self_bits, _) = self.parts[self_index];
 
            let (other_bits, _) = other.parts[other_index];
 
            let self_in_use = (self_bits & Self::KEY_IN_USE) != 0;
 
            let other_in_use = (other_bits & Self::KEY_IN_USE) != 0;
 

	
 
            // Determine ending indices
 
            let self_end_index = self.find_end_index(self_index);
 
            let other_end_index = other.find_end_index(other_index);
 

	
 

	
 
            if self_in_use == other_in_use {
 
                if self_in_use {
 
                    // Both are in use, so both parts should be equal
 
                    let delta_self = self_end_index - self_index;
 
                    let delta_other = other_end_index - other_index;
 
                    if delta_self != delta_other {
 
                        // Both in use, but not of equal length, so the types
 
                        // cannot match
 
                        return false;
 
                    }
 

	
 
                    for _ in 0..delta_self {
 
                        let (_, self_part) = self.parts[self_index];
 
                        let (_, other_part) = other.parts[other_index];
 

	
 
                        if self_part != other_part {
 
                            return false;
 
                        }
 

	
 
                        self_index += 1;
 
                        other_index += 1;
 
                    }
 
                } else {
 
                    // Both not in use, so skip associated parts
 
                    self_index = self_end_index;
 
                    other_index = other_end_index;
 
                }
 
            } else {
 
                // No agreement on importance of parts. This is practically
 
                // impossible
 
                unreachable!();
 
            }
 
        }
 

	
 
        // Everything matched, so if we're at the end of both arrays then we're
 
        // certain that the two keys are equal.
 
        return self_index == self.parts.len() && other_index == other.parts.len();
 
    }
 
}
 

	
 
impl Eq for MonoSearchKey{}
 

	
 
//------------------------------------------------------------------------------
 
// Type table
 
//------------------------------------------------------------------------------
 

	
 
// Programmer note: keep this struct free of dynamically allocated memory
 
#[derive(Clone)]
 
struct TypeLoopBreadcrumb {
 
    type_id: TypeId,
 
    next_member: u32,
 
    next_embedded: u32, // for unions, the index into the variant's embedded types
 
}
 

	
 
// Programmer note: keep this struct free of dynamically allocated memory
 
#[derive(Clone)]
 
struct MemoryBreadcrumb {
 
    type_id: TypeId,
 
    next_member: u32,
 
    next_embedded: u32,
 
    first_size_alignment_idx: u32,
 
}
 

	
 
#[derive(Debug, PartialEq, Eq)]
 
enum TypeLoopResult {
 
    TypeExists,
 
    PushBreadcrumb(DefinitionId, ConcreteType),
 
    TypeLoop(usize), // index into vec of breadcrumbs at which the type matched
 
}
 

	
 
enum MemoryLayoutResult {
 
    TypeExists(usize, usize), // (size, alignment)
 
    PushBreadcrumb(MemoryBreadcrumb),
 
}
 

	
 
// TODO: @Optimize, initial memory-unoptimized implementation
 
struct TypeLoopEntry {
 
    type_id: TypeId,
 
    is_union: bool,
 
}
 

	
 
struct TypeLoop {
 
    members: Vec<TypeLoopEntry>,
 
}
 

	
 
type DefinitionMap = HashMap<DefinitionId, DefinedType>;
 
type MonoTypeMap = HashMap<MonoSearchKey, TypeId>;
 
type MonoTypeArray = Vec<MonoType>;
 

	
 
pub struct TypeTable {
 
    // Lookup from AST DefinitionId to a defined type. Also lookups for
 
    // concrete type to monomorphs
 
    pub(crate) definition_lookup: DefinitionMap,
 
    mono_type_lookup: MonoTypeMap,
 
    pub(crate) mono_types: MonoTypeArray,
 
    mono_search_key: MonoSearchKey,
 
    // Breadcrumbs left behind while trying to find type loops. Also used to
 
    // determine sizes of types when all type loops are detected.
 
    type_loop_breadcrumbs: Vec<TypeLoopBreadcrumb>,
 
    type_loops: Vec<TypeLoop>,
 
    // Stores all encountered types during type loop detection. Used afterwards
 
    // to iterate over all types in order to compute size/alignment.
 
    encountered_types: Vec<TypeLoopEntry>,
 
    // Breadcrumbs and temporary storage during memory layout computation.
 
    memory_layout_breadcrumbs: Vec<MemoryBreadcrumb>,
 
    size_alignment_stack: Vec<(usize, usize)>,
 
}
 

	
 
impl TypeTable {
 
    /// Construct a new type table without any resolved types.
 
    pub(crate) fn new() -> Self {
 
        Self{ 
 
            definition_lookup: HashMap::with_capacity(128),
 
            mono_type_lookup: HashMap::with_capacity(128),
 
            mono_types: Vec::with_capacity(128),
 
            mono_search_key: MonoSearchKey::with_capacity(32),
 
            type_loop_breadcrumbs: Vec::with_capacity(32),
 
            type_loops: Vec::with_capacity(8),
 
            encountered_types: Vec::with_capacity(32),
 
            memory_layout_breadcrumbs: Vec::with_capacity(32),
 
            size_alignment_stack: Vec::with_capacity(64),
 
        }
 
    }
 

	
 
    /// Iterates over all defined types (polymorphic and non-polymorphic) and
 
    /// add their types in two passes. In the first pass we will just add the
 
    /// base types (we will not consider monomorphs, and we will not compute
 
    /// byte sizes). In the second pass we will compute byte sizes of
 
    /// non-polymorphic types, and potentially the monomorphs that are embedded
 
    /// in those types.
 
    pub(crate) fn build_base_types(&mut self, modules: &mut [Module], ctx: &mut PassCtx) -> Result<(), ParseError> {
 
        // Make sure we're allowed to cast root_id to index into ctx.modules
 
        debug_assert!(modules.iter().all(|m| m.phase >= ModuleCompilationPhase::DefinitionsParsed));
 
        debug_assert!(self.definition_lookup.is_empty());
 

	
 
        dbg_code!({
 
            for (index, module) in modules.iter().enumerate() {
 
                debug_assert_eq!(index, module.root_id.index as usize);
 
            }
 
        });
 

	
 
        // Use context to guess hashmap size of the base types
 
        let reserve_size = ctx.heap.definitions.len();
 
        self.definition_lookup.reserve(reserve_size);
 

	
 
        // Resolve all base types
 
        for definition_idx in 0..ctx.heap.definitions.len() {
 
            let definition_id = ctx.heap.definitions.get_id(definition_idx);
 
            let definition = &ctx.heap[definition_id];
 

	
 
            match definition {
 
                Definition::Enum(_) => self.build_base_enum_definition(modules, ctx, definition_id)?,
 
                Definition::Union(_) => self.build_base_union_definition(modules, ctx, definition_id)?,
 
                Definition::Struct(_) => self.build_base_struct_definition(modules, ctx, definition_id)?,
 
                Definition::Procedure(_) => self.build_base_procedure_definition(modules, ctx, definition_id)?,
 
            }
 
        }
 

	
 
        debug_assert_eq!(self.definition_lookup.len(), reserve_size, "mismatch in reserved size of type table");
 
        for module in modules.iter_mut() {
 
            module.phase = ModuleCompilationPhase::TypesAddedToTable;
 
        }
 

	
 
        // Go through all types again, lay out all types that are not
 
        // polymorphic. This might cause us to lay out monomorphized polymorphs
 
        // if these were member types of non-polymorphic types.
 
        for definition_idx in 0..ctx.heap.definitions.len() {
 
            let definition_id = ctx.heap.definitions.get_id(definition_idx);
 
            let poly_type = self.definition_lookup.get(&definition_id).unwrap();
 

	
 
            if !poly_type.definition.is_data_type() || !poly_type.poly_vars.is_empty() {
 
                continue;
 
            }
 

	
 
            // If here then the type is a data type without polymorphic
 
            // variables, but we might have instantiated it already, so:
 
            let concrete_parts = [ConcreteTypePart::Instance(definition_id, 0)];
 
            self.mono_search_key.set(&concrete_parts, &[]);
 
            let type_id = self.mono_type_lookup.get(&self.mono_search_key);
 
            if type_id.is_none() {
 
                self.detect_and_resolve_type_loops_for(
 
                    modules, ctx.heap,
 
                    ConcreteType{
 
                        parts: vec![ConcreteTypePart::Instance(definition_id, 0)]
 
                    },
 
                )?;
 
                self.lay_out_memory_for_encountered_types(ctx.arch);
 
            }
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    /// Retrieves base definition from type table. We must be able to retrieve
 
    /// it as we resolve all base types upon type table construction (for now).
 
    /// However, in the future we might do on-demand type resolving, so return
 
    /// an option anyway
 
    #[inline]
 
    pub(crate) fn get_base_definition(&self, definition_id: &DefinitionId) -> Option<&DefinedType> {
 
        self.definition_lookup.get(&definition_id)
 
    }
 

	
 
    /// Returns the index into the monomorph type array if the procedure type
 
    /// already has a (reserved) monomorph.
 
    #[inline]
 
    pub(crate) fn get_procedure_monomorph_type_id(&self, definition_id: &DefinitionId, type_parts: &[ConcreteTypePart]) -> Option<TypeId> {
 
        // Cannot use internal search key due to mutability issues. But this
 
        // method should end up being deprecated at some point anyway.
 
        debug_assert_eq!(get_concrete_type_definition(type_parts).unwrap(), *definition_id);
 
        let base_type = self.definition_lookup.get(definition_id).unwrap();
 
        let mut search_key = MonoSearchKey::with_capacity(type_parts.len());
 
        search_key.set(type_parts, &base_type.poly_vars);
 

	
 
        return self.mono_type_lookup.get(&search_key).copied();
 
    }
 

	
 
    #[inline]
 
    pub(crate) fn get_monomorph(&self, type_id: TypeId) -> &MonoType {
 
        return &self.mono_types[type_id.0 as usize];
 
    }
 

	
 
    /// Returns a mutable reference to a procedure's monomorph expression data.
 
    /// Used by typechecker to fill in previously reserved type information
 
    #[inline]
 
    pub(crate) fn get_procedure_monomorph_mut(&mut self, type_id: TypeId) -> &mut ProcedureMonomorph {
 
        let mono_type = &mut self.mono_types[type_id.0 as usize];
 
        return mono_type.variant.as_procedure_mut();
 
    }
 

	
 
    #[inline]
 
    pub(crate) fn get_procedure_monomorph(&self, type_id: TypeId) -> &ProcedureMonomorph {
 
        let mono_type = &self.mono_types[type_id.0 as usize];
 
        return mono_type.variant.as_procedure();
 
    }
 

	
 
    /// Reserves space for a monomorph of a polymorphic procedure. The index
 
    /// will point into a (reserved) slot of the array of expression types. The
 
    /// monomorph may NOT exist yet (because the reservation implies that we're
 
    /// going to be performing typechecking on it, and we don't want to
 
    /// check the same monomorph twice)
 
    pub(crate) fn reserve_procedure_monomorph_type_id(&mut self, definition_id: &DefinitionId, concrete_type: ConcreteType) -> TypeId {
 
        debug_assert_eq!(get_concrete_type_definition(&concrete_type.parts).unwrap(), *definition_id);
 
        let type_id = TypeId(self.mono_types.len() as i64);
 
        let base_type = self.definition_lookup.get_mut(definition_id).unwrap();
 
        self.mono_search_key.set(&concrete_type.parts, &base_type.poly_vars);
 

	
 
        debug_assert!(!self.mono_type_lookup.contains_key(&self.mono_search_key));
 
        self.mono_type_lookup.insert(self.mono_search_key.clone(), type_id);
 
        self.mono_types.push(MonoType::new_empty(type_id, concrete_type, MonoTypeVariant::Procedure(ProcedureMonomorph{
 
            arg_types: Vec::new(),
 
            expr_data: Vec::new(),
 
        })));
 

	
 
        return type_id;
 
    }
 

	
 
    /// Adds a builtin type to the type table. As this is only called by the
 
    /// compiler during setup we assume it cannot fail.
 
    // TODO: Finish this train of thought, requires a little bit of design work
 
    pub(crate) fn add_builtin_type(&mut self, concrete_type: ConcreteType, poly_vars: &[PolymorphicVariable], size: usize, alignment: usize) -> TypeId {
 
        self.mono_search_key.set(&concrete_type.parts, poly_vars);
 
        debug_assert!(!self.mono_type_lookup.contains_key(&self.mono_search_key));
 
        debug_assert_ne!(alignment, 0);
 
        let type_id = TypeId(self.mono_types.len() as i64);
 
        self.mono_type_lookup.insert(self.mono_search_key.clone(), type_id);
 
        self.mono_types.push(MonoType{
 
            type_id,
 
            concrete_type,
 
            size,
 
            alignment,
 
            variant: MonoTypeVariant::Builtin,
 
        });
 

	
 
        return type_id;
 
    }
 

	
 
    /// Adds a monomorphed type to the type table. If it already exists then the
 
    /// previous entry will be used.
 
    pub(crate) fn add_monomorphed_type(
 
        &mut self, modules: &[Module], heap: &Heap, arch: &TargetArch,
 
        definition_id: DefinitionId, concrete_type: ConcreteType
 
        &mut self, modules: &[Module], heap: &Heap, arch: &TargetArch, concrete_type: ConcreteType
 
    ) -> Result<TypeId, ParseError> {
 
        debug_assert_eq!(definition_id, get_concrete_type_definition(&concrete_type.parts).unwrap());
 
        let poly_vars = match get_concrete_type_definition(&concrete_type.parts) {
 
            Some(definition_id) => {
 
                let definition = self.definition_lookup.get(&definition_id).unwrap();
 
                definition.poly_vars.as_slice()
 
            },
 
            None => {
 
                &[]
 
            }
 
        };
 

	
 
        // Check if the concrete type was already added
 
        let definition = self.definition_lookup.get(&definition_id).unwrap();
 
        let poly_var_in_use = &definition.poly_vars;
 
        self.mono_search_key.set(&concrete_type.parts, poly_var_in_use.as_slice());
 
        self.mono_search_key.set(&concrete_type.parts, poly_vars);
 
        if let Some(type_id) = self.mono_type_lookup.get(&self.mono_search_key) {
 
            return Ok(*type_id);
 
        }
 

	
 
        // Concrete type needs to be added
 
        self.detect_and_resolve_type_loops_for(modules, heap, concrete_type)?;
 
        let type_id = self.encountered_types[0].type_id;
 
        self.lay_out_memory_for_encountered_types(arch);
 

	
 
        return Ok(type_id);
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Building base types
 
    //--------------------------------------------------------------------------
 

	
 
    /// Builds the base type for an enum. Will not compute byte sizes
 
    fn build_base_enum_definition(&mut self, modules: &[Module], ctx: &mut PassCtx, definition_id: DefinitionId) -> Result<(), ParseError> {
 
        debug_assert!(!self.definition_lookup.contains_key(&definition_id), "base enum already built");
 
        let definition = ctx.heap[definition_id].as_enum();
 
        let root_id = definition.defined_in;
 

	
 
        // Determine enum variants
 
        let mut enum_value = -1;
 
        let mut variants = Vec::with_capacity(definition.variants.len());
 

	
 
        for variant in &definition.variants {
 
            if enum_value == i64::MAX {
 
                let source = &modules[definition.defined_in.index as usize].source;
 
                return Err(ParseError::new_error_str_at_span(
 
                    source, variant.identifier.span,
 
                    "this enum variant has an integer value that is too large"
 
                ));
 
            }
 

	
 
            enum_value += 1;
 
            if let EnumVariantValue::Integer(explicit_value) = variant.value {
 
                enum_value = explicit_value;
 
            }
 

	
 
            variants.push(EnumVariant{
 
                identifier: variant.identifier.clone(),
 
                value: enum_value,
 
            });
 
        }
 

	
 
        // Determine tag size
 
        let mut min_enum_value = 0;
 
        let mut max_enum_value = 0;
 
        if !variants.is_empty() {
 
            min_enum_value = variants[0].value;
 
            max_enum_value = variants[0].value;
 
            for variant in variants.iter().skip(1) {
 
                min_enum_value = min_enum_value.min(variant.value);
 
                max_enum_value = max_enum_value.max(variant.value);
 
            }
 
        }
 

	
 
        let (tag_type, size_and_alignment) = Self::variant_tag_type_from_values(min_enum_value, max_enum_value);
 

	
 
        // Enum names and polymorphic args do not conflict
 
        Self::check_identifier_collision(
 
            modules, root_id, &variants, |variant| &variant.identifier, "enum variant"
 
        )?;
 

	
 
        // Polymorphic arguments cannot appear as embedded types, because
 
        // they can only consist of integer variants.
 
        Self::check_poly_args_collision(modules, ctx, root_id, &definition.poly_vars)?;
 
        let poly_vars = Self::create_polymorphic_variables(&definition.poly_vars);
 

	
 
        self.definition_lookup.insert(definition_id, DefinedType {
 
            ast_root: root_id,
 
            ast_definition: definition_id,
 
            definition: DefinedTypeVariant::Enum(EnumType{
 
                variants,
 
                minimum_tag_value: min_enum_value,
 
                maximum_tag_value: max_enum_value,
 
                tag_type,
 
                size: size_and_alignment,
 
                alignment: size_and_alignment
 
            }),
 
            poly_vars,
 
            is_polymorph: false,
 
        });
 

	
 
        return Ok(());
 
    }
 

	
 
    /// Builds the base type for a union. Will compute byte sizes.
 
    fn build_base_union_definition(&mut self, modules: &[Module], ctx: &mut PassCtx, definition_id: DefinitionId) -> Result<(), ParseError> {
 
        debug_assert!(!self.definition_lookup.contains_key(&definition_id), "base union already built");
 
        let definition = ctx.heap[definition_id].as_union();
 
        let root_id = definition.defined_in;
 

	
 
        // Check all variants and their embedded types
 
        let mut variants = Vec::with_capacity(definition.variants.len());
 
        let mut tag_counter = 0;
 
        for variant in &definition.variants {
 
            for embedded in &variant.value {
 
                Self::check_member_parser_type(
 
                    modules, ctx, root_id, embedded, false
 
                )?;
 
            }
 

	
 
            variants.push(UnionVariant{
 
                identifier: variant.identifier.clone(),
 
                embedded: variant.value.clone(),
 
                tag_value: tag_counter,
 
            });
 
            tag_counter += 1;
 
        }
 

	
 
        let mut max_tag_value = 0;
 
        if tag_counter != 0 {
 
            max_tag_value = tag_counter - 1
 
        }
 

	
 
        let (tag_type, tag_size) = Self::variant_tag_type_from_values(0, max_tag_value);
 

	
 
        // Make sure there are no conflicts in identifiers
 
        Self::check_identifier_collision(
 
            modules, root_id, &variants, |variant| &variant.identifier, "union variant"
 
        )?;
 
        Self::check_poly_args_collision(modules, ctx, root_id, &definition.poly_vars)?;
 

	
 
        // Construct internal representation of union
 
        let mut poly_vars = Self::create_polymorphic_variables(&definition.poly_vars);
 
        for variant in &definition.variants {
 
            for embedded in &variant.value {
 
                Self::mark_used_polymorphic_variables(&mut poly_vars, embedded);
 
            }
 
        }
 

	
 
        let is_polymorph = poly_vars.iter().any(|arg| arg.is_in_use);
 

	
 
        self.definition_lookup.insert(definition_id, DefinedType{
 
            ast_root: root_id,
 
            ast_definition: definition_id,
 
            definition: DefinedTypeVariant::Union(UnionType{ variants, tag_type, tag_size }),
 
            poly_vars,
 
            is_polymorph
 
        });
 

	
 
        return Ok(());
 
    }
 

	
 
    /// Builds base struct type. Will not compute byte sizes.
 
    fn build_base_struct_definition(&mut self, modules: &[Module], ctx: &mut PassCtx, definition_id: DefinitionId) -> Result<(), ParseError> {
 
        debug_assert!(!self.definition_lookup.contains_key(&definition_id), "base struct already built");
 
        let definition = ctx.heap[definition_id].as_struct();
 
        let root_id = definition.defined_in;
 

	
 
        // Check all struct fields and construct internal representation
 
        let mut fields = Vec::with_capacity(definition.fields.len());
 

	
 
        for field in &definition.fields {
 
            Self::check_member_parser_type(
 
                modules, ctx, root_id, &field.parser_type, false
 
            )?;
 

	
 
            fields.push(StructField{
 
                identifier: field.field.clone(),
 
                parser_type: field.parser_type.clone(),
 
            });
 
        }
 

	
 
        // Make sure there are no conflicting variables
 
        Self::check_identifier_collision(
 
            modules, root_id, &fields, |field| &field.identifier, "struct field"
 
        )?;
 
        Self::check_poly_args_collision(modules, ctx, root_id, &definition.poly_vars)?;
 

	
 
        // Construct base type in table
 
        let mut poly_vars = Self::create_polymorphic_variables(&definition.poly_vars);
 
        for field in &fields {
 
            Self::mark_used_polymorphic_variables(&mut poly_vars, &field.parser_type);
 
        }
 

	
 
        let is_polymorph = poly_vars.iter().any(|arg| arg.is_in_use);
 

	
 
        self.definition_lookup.insert(definition_id, DefinedType{
 
            ast_root: root_id,
 
            ast_definition: definition_id,
 
            definition: DefinedTypeVariant::Struct(StructType{ fields }),
 
            poly_vars,
 
            is_polymorph
 
        });
 

	
 
        return Ok(())
 
    }
 

	
 
    /// Builds base procedure type.
 
    fn build_base_procedure_definition(&mut self, modules: &[Module], ctx: &mut PassCtx, definition_id: DefinitionId) -> Result<(), ParseError> {
 
        debug_assert!(!self.definition_lookup.contains_key(&definition_id), "base function already built");
 
        let definition = ctx.heap[definition_id].as_procedure();
 
        let root_id = definition.defined_in;
 

	
 
        // Check and construct return types and argument types.
 
        if let Some(return_type) = &definition.return_type {
 
            Self::check_member_parser_type(
 
                modules, ctx, root_id, return_type, definition.builtin
 
            )?;
 
        }
 

	
 
        let mut arguments = Vec::with_capacity(definition.parameters.len());
 
        for parameter_id in &definition.parameters {
 
            let parameter = &ctx.heap[*parameter_id];
 
            Self::check_member_parser_type(
 
                modules, ctx, root_id, &parameter.parser_type, definition.builtin
 
            )?;
 

	
 
            arguments.push(ProcedureArgument{
 
                identifier: parameter.identifier.clone(),
 
                parser_type: parameter.parser_type.clone(),
 
            });
 
        }
 

	
 
        // Check conflict of identifiers
 
        Self::check_identifier_collision(
 
            modules, root_id, &arguments, |arg| &arg.identifier, "procedure argument"
 
        )?;
 
        Self::check_poly_args_collision(modules, ctx, root_id, &definition.poly_vars)?;
 

	
 
        // Construct internal representation of function type
 
        // TODO: Marking used polymorphic variables should take statements in
 
        //  the body into account. But currently we don't. Hence mark them all
 
        //  as being in-use. Note to self: true condition should be that the
 
        //  polymorphic variables are used in places where the resulting types
 
        //  are themselves truly polymorphic types (e.g. not a phantom type).
 
        let mut poly_vars = Self::create_polymorphic_variables(&definition.poly_vars);
 
        for poly_var in &mut poly_vars {
 
            poly_var.is_in_use = true;
 
        }
 

	
 
        let is_polymorph = poly_vars.iter().any(|arg| arg.is_in_use);
 

	
 
        self.definition_lookup.insert(definition_id, DefinedType{
 
            ast_root: root_id,
 
            ast_definition: definition_id,
 
            definition: DefinedTypeVariant::Procedure(ProcedureType{
 
                kind: definition.kind,
 
                return_type: definition.return_type.clone(),
 
                arguments
 
            }),
 
            poly_vars,
 
            is_polymorph
 
        });
 

	
 
        return Ok(());
 
    }
 

	
 
    /// Will check if the member type (field of a struct, embedded type in a
 
    /// union variant) is valid.
 
    fn check_member_parser_type(
 
        modules: &[Module], ctx: &PassCtx, base_definition_root_id: RootId,
 
        member_parser_type: &ParserType, allow_special_compiler_types: bool
 
    ) -> Result<(), ParseError> {
 
        use ParserTypeVariant as PTV;
 

	
 
        for element in &member_parser_type.elements {
 
            match element.variant {
 
                // Special cases
 
                PTV::Void | PTV::InputOrOutput | PTV::ArrayLike | PTV::IntegerLike => {
 
                    if !allow_special_compiler_types {
 
                        unreachable!("compiler-only ParserTypeVariant in member type");
 
                    }
 
                },
 
                // Builtin types, always valid
 
                PTV::Message | PTV::Bool |
 
                PTV::UInt8 | PTV::UInt16 | PTV::UInt32 | PTV::UInt64 |
 
                PTV::SInt8 | PTV::SInt16 | PTV::SInt32 | PTV::SInt64 |
 
                PTV::Character | PTV::String |
 
                PTV::Array | PTV::Input | PTV::Output | PTV::Tuple(_) |
 
                // Likewise, polymorphic variables are always valid
 
                PTV::PolymorphicArgument(_, _) => {},
 
                // Types that are not constructable, or types that are not
 
                // allowed (and checked earlier)
 
                PTV::IntegerLiteral | PTV::Inferred => {
 
                    unreachable!("illegal ParserTypeVariant within type definition");
 
                },
 
                // Finally, user-defined types
 
                PTV::Definition(definition_id, _) => {
 
                    let definition = &ctx.heap[definition_id];
 
                    if !(definition.is_struct() || definition.is_enum() || definition.is_union()) {
 
                        let source = &modules[base_definition_root_id.index as usize].source;
 
                        return Err(ParseError::new_error_str_at_span(
 
                            source, element.element_span, "expected a datatype (a struct, enum or union)"
 
                        ));
 
                    }
 

	
 
                    // Otherwise, we're fine
 
                }
 
            }
 
        }
 

	
 
        // If here, then all elements check out
 
        return Ok(());
 
    }
 

	
 
    /// Go through a list of identifiers and ensure that all identifiers have
 
    /// unique names
 
    fn check_identifier_collision<T: Sized, F: Fn(&T) -> &Identifier>(
 
        modules: &[Module], root_id: RootId, items: &[T], getter: F, item_name: &'static str
 
    ) -> Result<(), ParseError> {
 
        for (item_idx, item) in items.iter().enumerate() {
 
            let item_ident = getter(item);
 
            for other_item in &items[0..item_idx] {
 
                let other_item_ident = getter(other_item);
 
                if item_ident == other_item_ident {
 
                    let module_source = &modules[root_id.index as usize].source;
 
                    return Err(ParseError::new_error_at_span(
 
                        module_source, item_ident.span, format!("This {} is defined more than once", item_name)
 
                    ).with_info_at_span(
 
                        module_source, other_item_ident.span, format!("The other {} is defined here", item_name)
 
                    ));
 
                }
 
            }
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    /// Go through a list of polymorphic arguments and make sure that the
 
    /// arguments all have unique names, and the arguments do not conflict with
 
    /// any symbols defined at the module scope.
 
    fn check_poly_args_collision(
 
        modules: &[Module], ctx: &PassCtx, root_id: RootId, poly_args: &[Identifier]
 
    ) -> Result<(), ParseError> {
 
        // Make sure polymorphic arguments are unique and none of the
 
        // identifiers conflict with any imported scopes
 
        for (arg_idx, poly_arg) in poly_args.iter().enumerate() {
 
            for other_poly_arg in &poly_args[..arg_idx] {
 
                if poly_arg == other_poly_arg {
 
                    let module_source = &modules[root_id.index as usize].source;
 
                    return Err(ParseError::new_error_str_at_span(
 
                        module_source, poly_arg.span,
 
                        "This polymorphic argument is defined more than once"
 
                    ).with_info_str_at_span(
 
                        module_source, other_poly_arg.span,
 
                        "It conflicts with this polymorphic argument"
 
                    ));
 
                }
 
            }
 

	
 
            // Check if identifier conflicts with a symbol defined or imported
 
            // in the current module
 
            if let Some(symbol) = ctx.symbols.get_symbol_by_name(SymbolScope::Module(root_id), poly_arg.value.as_bytes()) {
 
                // We have a conflict
 
                let module_source = &modules[root_id.index as usize].source;
 
                let introduction_span = symbol.variant.span_of_introduction(ctx.heap);
 
                return Err(ParseError::new_error_str_at_span(
 
                    module_source, poly_arg.span,
 
                    "This polymorphic argument conflicts with another symbol"
 
                ).with_info_str_at_span(
 
                    module_source, introduction_span,
 
                    "It conflicts due to this symbol"
 
                ));
 
            }
 
        }
 

	
 
        // All arguments are fine
 
        Ok(())
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Detecting type loops
 
    //--------------------------------------------------------------------------
 

	
 
    /// Internal function that will detect type loops and check if they're
 
    /// resolvable. If so then the appropriate union variants will be marked as
 
    /// "living on heap". If not then a `ParseError` will be returned
 
    fn detect_and_resolve_type_loops_for(&mut self, modules: &[Module], heap: &Heap, concrete_type: ConcreteType) -> Result<(), ParseError> {
 
        // Programmer notes: what happens here is the we call
 
        // `check_member_for_type_loops` for a particular type's member, and
 
        // then take action using the return value:
 
        // 1. It might already be resolved: in this case it implies we don't
 
        //  have type loops, or they have been resolved.
 
        // 2. A new type is encountered. If so then it is added to the type loop
 
        //  breadcrumbs.
 
        // 3. A type loop is detected (implying the type is already resolved, or
 
        //  already exists in the type loop breadcrumbs).
 
        //
 
        // Using the breadcrumbs we incrementally check every member type of a
 
        // particular considered type (e.g. a struct field, tuple member), and
 
        // do the same as above. Note that when a breadcrumb is added we reserve
 
        // space in the monomorph storage, initialized to zero-values (i.e.
 
        // wrong values). The breadcrumbs keep track of how far and along we are
 
        // with resolving the member types.
 
        //
 
        // At the end we may have some type loops. If they're unresolvable then
 
        // we throw an error). If there are no type loops or they are all
 
        // resolvable then we end up with a list of `encountered_types`. These
 
        // are then used by `lay_out_memory_for_encountered_types`.
 
        debug_assert!(self.type_loop_breadcrumbs.is_empty());
 
        debug_assert!(self.type_loops.is_empty());
 
        debug_assert!(self.encountered_types.is_empty());
 

	
 
        // Push the initial breadcrumb
 
        let initial_breadcrumb = Self::check_member_for_type_loops(
 
            &self.type_loop_breadcrumbs, &self.definition_lookup, &self.mono_type_lookup,
 
            &mut self.mono_search_key, &concrete_type
 
        );
 
        if let TypeLoopResult::PushBreadcrumb(definition_id, concrete_type) = initial_breadcrumb {
 
            self.handle_new_breadcrumb_for_type_loops(definition_id, concrete_type);
 
        } else {
 
            unreachable!();
 
        }
 

	
 
        // Enter into the main resolving loop
 
        while !self.type_loop_breadcrumbs.is_empty() {
 
            // Because we might be modifying the breadcrumb array we need to
 
            let breadcrumb_idx = self.type_loop_breadcrumbs.len() - 1;
 
            let mut breadcrumb = self.type_loop_breadcrumbs[breadcrumb_idx].clone();
 

	
 
            let mono_type = &self.mono_types[breadcrumb.type_id.0 as usize];
 
            let resolve_result = match &mono_type.variant {
 
                MonoTypeVariant::Builtin => {
 
                    TypeLoopResult::TypeExists
 
                }
 
                MonoTypeVariant::Enum => {
 
                    TypeLoopResult::TypeExists
 
                },
 
                MonoTypeVariant::Union(monomorph) => {
 
                    let num_variants = monomorph.variants.len() as u32;
 
                    let mut union_result = TypeLoopResult::TypeExists;
 

	
 
                    'member_loop: while breadcrumb.next_member < num_variants {
 
                        let mono_variant = &monomorph.variants[breadcrumb.next_member as usize];
 
                        let num_embedded = mono_variant.embedded.len() as u32;
 

	
 
                        while breadcrumb.next_embedded < num_embedded {
 
                            let mono_embedded = &mono_variant.embedded[breadcrumb.next_embedded as usize];
 
                            union_result = Self::check_member_for_type_loops(
 
                                &self.type_loop_breadcrumbs, &self.definition_lookup, &self.mono_type_lookup,
 
                                &mut self.mono_search_key, &mono_embedded.concrete_type
 
                            );
 

	
 
                            if union_result != TypeLoopResult::TypeExists {
 
                                // In type loop or new breadcrumb pushed, so
 
                                // break out of the resolving loop
 
                                break 'member_loop;
 
                            }
 

	
 
                            breadcrumb.next_embedded += 1;
 
                        }
 

	
 
                        breadcrumb.next_embedded = 0;
 
                        breadcrumb.next_member += 1
 
                    }
 

	
 
                    union_result
 
                },
 
                MonoTypeVariant::Struct(monomorph) => {
 
                    let num_fields = monomorph.fields.len() as u32;
 

	
 
                    let mut struct_result = TypeLoopResult::TypeExists;
 
                    while breadcrumb.next_member < num_fields {
 
                        let mono_field = &monomorph.fields[breadcrumb.next_member as usize];
 
                        struct_result = Self::check_member_for_type_loops(
 
                            &self.type_loop_breadcrumbs, &self.definition_lookup, &self.mono_type_lookup,
 
                            &mut self.mono_search_key, &mono_field.concrete_type
 
                        );
 

	
 
                        if struct_result != TypeLoopResult::TypeExists {
 
                            // Type loop or breadcrumb pushed, so break out of
 
                            // the resolving loop
 
                            break;
 
                        }
 

	
 
                        breadcrumb.next_member += 1;
 
                    }
 

	
 
                    struct_result
 
                },
 
                MonoTypeVariant::Procedure(_) => unreachable!(),
 
                MonoTypeVariant::Tuple(monomorph) => {
 
                    let num_members = monomorph.members.len() as u32;
 
                    let mut tuple_result = TypeLoopResult::TypeExists;
 

	
 
                    while breadcrumb.next_member < num_members {
 
                        let tuple_member = &monomorph.members[breadcrumb.next_member as usize];
 
                        tuple_result = Self::check_member_for_type_loops(
 
                            &self.type_loop_breadcrumbs, &self.definition_lookup, &self.mono_type_lookup,
 
                            &mut self.mono_search_key, &tuple_member.concrete_type
 
                        );
 

	
 
                        if tuple_result != TypeLoopResult::TypeExists {
 
                            break;
 
                        }
 

	
 
                        breadcrumb.next_member += 1;
 
                    }
 

	
 
                    tuple_result
 
                }
 
            };
 

	
 
            // Handle the result of attempting to resolve the current breadcrumb
 
            match resolve_result {
 
                TypeLoopResult::TypeExists => {
 
                    // We finished parsing the type
 
                    self.type_loop_breadcrumbs.pop();
 
                },
 
                TypeLoopResult::PushBreadcrumb(definition_id, concrete_type) => {
 
                    // We recurse into the member type.
 
                    self.type_loop_breadcrumbs[breadcrumb_idx] = breadcrumb;
 
                    self.handle_new_breadcrumb_for_type_loops(definition_id, concrete_type);
 
                },
 
                TypeLoopResult::TypeLoop(first_idx) => {
 
                    // Because we will be modifying breadcrumbs within the
 
                    // type-loop handling code, put back the modified breadcrumb
 
                    self.type_loop_breadcrumbs[breadcrumb_idx] = breadcrumb;
 

	
 
                    // We're in a type loop. Add the type loop
 
                    let mut loop_members = Vec::with_capacity(self.type_loop_breadcrumbs.len() - first_idx);
 
                    let mut contains_union = false;
 

	
 
                    for breadcrumb_idx in first_idx..self.type_loop_breadcrumbs.len() {
 
                        let breadcrumb = &mut self.type_loop_breadcrumbs[breadcrumb_idx];
 
                        let mut is_union = false;
 

	
 
                        // Check if type loop member is a union that may be
 
                        // broken up by moving some of its members to the heap.
 
                        let mono_type = &mut self.mono_types[breadcrumb.type_id.0 as usize];
 
                        if let MonoTypeVariant::Union(union_type) = &mut mono_type.variant {
 
                            // Mark the variant that caused the loop as heap
 
                            // allocated to break the type loop.
 
                            let variant = &mut union_type.variants[breadcrumb.next_member as usize];
 
                            variant.lives_on_heap = true;
 
                            breadcrumb.next_embedded += 1;
 

	
 
                            is_union = true;
 
                            contains_union = true;
 
                        } // else: we don't care about the type for now
 

	
 
                        loop_members.push(TypeLoopEntry{
 
                            type_id: breadcrumb.type_id,
 
                            is_union
 
                        });
 
                    }
 

	
 
                    let new_type_loop = TypeLoop{ members: loop_members };
 
                    if !contains_union {
 
                        // No way to (potentially) break the union. So return a
 
                        // type loop error. This is because otherwise our
 
                        // breadcrumb resolver ends up in an infinite loop.
 
                        return Err(construct_type_loop_error(
 
                            &self.mono_types, &new_type_loop, modules, heap
 
                        ));
 
                    }
 

	
 
                    self.type_loops.push(new_type_loop);
 
                }
 
            }
 
        }
 

	
 
        // All breadcrumbs have been cleared. So now `type_loops` contains all
 
        // of the encountered type loops, and `encountered_types` contains a
 
        // list of all unique monomorphs we encountered.
 

	
 
        // The next step is to figure out if all of the type loops can be
 
        // broken. A type loop can be broken if at least one union exists in the
 
        // loop and that union ended up having variants that are not part of
 
        // a type loop.
 
        fn type_loop_source_span_and_message<'a>(
 
            modules: &'a [Module], heap: &Heap, mono_types: &MonoTypeArray,
 
            definition_id: DefinitionId, mono_type_id: TypeId, index_in_loop: usize
 
        ) -> (&'a InputSource, InputSpan, String) {
 
            // Note: because we will discover the type loop the *first* time we
 
            // instantiate a monomorph with the provided polymorphic arguments
 
            // (not all arguments are actually used in the type). We don't have
 
            // to care about a second instantiation where certain unused
 
            // polymorphic arguments are different.
 
            let mono_type = &mono_types[mono_type_id.0 as usize];
 
            let type_name = mono_type.concrete_type.display_name(heap);
 

	
 
            let message = if index_in_loop == 0 {
 
                format!(
 
                    "encountered an infinitely large type for '{}' (which can be fixed by \
 
                    introducing a union type that has a variant whose embedded types are \
 
                    not part of a type loop, or do not have embedded types)",
 
                    type_name
 
                )
 
            } else if index_in_loop == 1 {
 
                format!("because it depends on the type '{}'", type_name)
 
            } else {
 
                format!("which depends on the type '{}'", type_name)
 
            };
 

	
 
            let ast_definition = &heap[definition_id];
 
            let ast_root_id = ast_definition.defined_in();
 

	
 
            return (
 
                &modules[ast_root_id.index as usize].source,
 
                ast_definition.identifier().span,
 
                message
 
            );
 
        }
 

	
 
        fn construct_type_loop_error(mono_types: &MonoTypeArray, type_loop: &TypeLoop, modules: &[Module], heap: &Heap) -> ParseError {
 
            // Seek first entry to produce parse error. Then continue builder
 
            // pattern. This is the error case so efficiency can go home.
 
            let mut parse_error = None;
 
            let mut next_member_index = 0;
 
            while next_member_index < type_loop.members.len() {
 
                let first_entry = &type_loop.members[next_member_index];
 
                next_member_index += 1;
 

	
 
                // Retrieve definition of first type in loop
 
                let first_mono_type = &mono_types[first_entry.type_id.0 as usize];
 
                let first_definition_id = get_concrete_type_definition(&first_mono_type.concrete_type.parts);
 
                if first_definition_id.is_none() {
 
                    continue;
 
                }
 
                let first_definition_id = first_definition_id.unwrap();
 

	
 
                // Produce error message for first type in loop
 
                let (first_module, first_span, first_message) = type_loop_source_span_and_message(
 
                    modules, heap, mono_types, first_definition_id, first_entry.type_id, 0
 
                );
 
                parse_error = Some(ParseError::new_error_at_span(first_module, first_span, first_message));
 
                break;
 
            }
 

	
 
            let mut parse_error = parse_error.unwrap(); // Loop above cannot have failed, because we must have a type loop, type loops cannot contain only unnamed types
 

	
 
            let mut error_counter = 1;
 
            for member_idx in next_member_index..type_loop.members.len() {
 
                let entry = &type_loop.members[member_idx];
 
                let mono_type = &mono_types[entry.type_id.0 as usize];
 
                let definition_id = get_concrete_type_definition(&mono_type.concrete_type.parts);
 
                if definition_id.is_none() {
 
                    continue;
 
                }
 
                let definition_id = definition_id.unwrap();
 

	
 
                let (module, span, message) = type_loop_source_span_and_message(
 
                    modules, heap, mono_types, definition_id, entry.type_id, error_counter
 
                );
 
                parse_error = parse_error.with_info_at_span(module, span, message);
 
                error_counter += 1;
 
            }
 

	
 
            parse_error
 
        }
 

	
 
        for type_loop in &self.type_loops {
 
            let mut can_be_broken = false;
 
            debug_assert!(!type_loop.members.is_empty());
 

	
 
            for entry in &type_loop.members {
 
                if entry.is_union {
 
                    let mono_type = self.mono_types[entry.type_id.0 as usize].variant.as_union();
 
                    debug_assert!(!mono_type.variants.is_empty()); // otherwise it couldn't be part of the type loop
 
                    let has_stack_variant = mono_type.variants.iter().any(|variant| !variant.lives_on_heap);
 
                    if has_stack_variant {
 
                        can_be_broken = true;
 
                        break;
 
                    }
 
                }
 
            }
 

	
 
            if !can_be_broken {
 
                // Construct a type loop error
 
                return Err(construct_type_loop_error(&self.mono_types, type_loop, modules, heap));
 
            }
 
        }
 

	
 
        // If here, then all type loops have been resolved and we can lay out
 
        // all of the members
 
        self.type_loops.clear();
 

	
 
        return Ok(());
 
    }
 

	
 
    /// Checks if the specified type needs to be resolved (i.e. we need to push
 
    /// a breadcrumb), is already resolved (i.e. we can continue with the next
 
    /// member of the currently considered type) or is in the process of being
 
    /// resolved (i.e. we're in a type loop). Because of borrowing rules we
 
    /// don't do any modifications of internal types here. Hence: if we
 
    /// return `PushBreadcrumb` then call `handle_new_breadcrumb_for_type_loops`
 
    /// to take care of storing the appropriate types.
 
    fn check_member_for_type_loops(
 
        breadcrumbs: &[TypeLoopBreadcrumb], definition_map: &DefinitionMap, mono_type_map: &MonoTypeMap,
 
        mono_key: &mut MonoSearchKey, concrete_type: &ConcreteType
 
    ) -> TypeLoopResult {
 
        use ConcreteTypePart as CTP;
 

	
 
        // Depending on the type, lookup if the type has already been visited
 
        // (i.e. either already has its memory layed out, or is part of a type
 
        // loop because we've already visited the type)
 
        debug_assert!(!concrete_type.parts.is_empty());
 
        let (definition_id, type_id) = match &concrete_type.parts[0] {
 
            CTP::Tuple(_) => {
 
                Self::set_search_key_to_tuple(mono_key, definition_map, &concrete_type.parts);
 
                let type_id = mono_type_map.get(&mono_key).copied();
 
                (DefinitionId::new_invalid(), type_id)
 
            },
 
            CTP::Instance(definition_id, _) => {
 
                let definition_type = definition_map.get(definition_id).unwrap();
 
                mono_key.set(&concrete_type.parts, &definition_type.poly_vars);
 
                let type_id = mono_type_map.get(&mono_key).copied();
 

	
 
                (*definition_id, type_id)
 
            },
 
            CTP::Function(_, _) |
 
            CTP::Component(_, _) => {
 
                todo!("function pointers")
 
            },
 
            _ => {
 
                return TypeLoopResult::TypeExists
 
            },
 
        };
 

	
 
        if let Some(type_id) = type_id {
 
            for (breadcrumb_idx, breadcrumb) in breadcrumbs.iter().enumerate() {
 
                if breadcrumb.type_id == type_id {
 
                    return TypeLoopResult::TypeLoop(breadcrumb_idx);
 
                }
 
            }
 

	
 
            return TypeLoopResult::TypeExists;
 
        }
 

	
 
        // Type is not yet known, so we need to insert it into the lookup and
 
        // push a new breadcrumb.
 
        return TypeLoopResult::PushBreadcrumb(definition_id, concrete_type.clone());
 
    }
 

	
 
    /// Handles the `PushBreadcrumb` result for a `check_member_for_type_loops`
 
    /// call. Will preallocate entries in the monomorphed type storage (with
 
    /// all memory properties zeroed).
 
    fn handle_new_breadcrumb_for_type_loops(&mut self, definition_id: DefinitionId, concrete_type: ConcreteType) {
 
        use DefinedTypeVariant as DTV;
 
        use ConcreteTypePart as CTP;
 

	
 
        let mut is_union = false;
 

	
 
        let type_id = match &concrete_type.parts[0] {
 
            CTP::Tuple(num_embedded) => {
 
                debug_assert!(definition_id.is_invalid()); // because tuples do not have an associated `DefinitionId`
 
                let mut members = Vec::with_capacity(*num_embedded as usize);
 
                for section in ConcreteTypeIter::new(&concrete_type.parts, 0) {
 
                    members.push(TupleMonomorphMember{
 
                        type_id: TypeId::new_invalid(),
 
                        concrete_type: ConcreteType{ parts: Vec::from(section) },
 
                        size: 0,
 
                        alignment: 0,
 
                        offset: 0
 
                    });
 
                }
 

	
 
                let type_id = TypeId(self.mono_types.len() as i64);
 
                Self::set_search_key_to_tuple(&mut self.mono_search_key, &self.definition_lookup, &concrete_type.parts);
 
                self.mono_type_lookup.insert(self.mono_search_key.clone(), type_id);
 
                self.mono_types.push(MonoType::new_empty(type_id, concrete_type, MonoTypeVariant::Tuple(TupleMonomorph{ members })));
 

	
 
                type_id
 
            },
 
            CTP::Instance(_check_definition_id, _) => {
 
                debug_assert_eq!(definition_id, *_check_definition_id); // because this is how `definition_id` was determined
 

	
 
                Self::set_search_key_to_type(&mut self.mono_search_key, &self.definition_lookup, &concrete_type.parts);
 
                let base_type = self.definition_lookup.get(&definition_id).unwrap();
 
                let type_id = match &base_type.definition {
 
                    DTV::Enum(definition) => {
 
                        // The enum is a bit exceptional in that when we insert
 
                        // it we we will immediately set its size/alignment:
 
                        // there is nothing to compute here.
 
                        debug_assert!(definition.size != 0 && definition.alignment != 0);
 
                        let type_id = TypeId(self.mono_types.len() as i64);
 
                        self.mono_type_lookup.insert(self.mono_search_key.clone(), type_id);
 
                        self.mono_types.push(MonoType::new_empty(type_id, concrete_type, MonoTypeVariant::Enum));
 

	
 
                        let mono_type = &mut self.mono_types[type_id.0 as usize];
 
                        mono_type.size = definition.size;
 
                        mono_type.alignment = definition.alignment;
 

	
 
                        type_id
 
                    },
 
                    DTV::Union(definition) => {
 
                        // Create all the variants with their concrete types
 
                        let mut mono_variants = Vec::with_capacity(definition.variants.len());
 
                        for poly_variant in &definition.variants {
 
                            let mut mono_embedded = Vec::with_capacity(poly_variant.embedded.len());
 
                            for poly_embedded in &poly_variant.embedded {
 
                                let mono_concrete = Self::construct_concrete_type(poly_embedded, &concrete_type);
 
                                mono_embedded.push(UnionMonomorphEmbedded{
 
                                    type_id: TypeId::new_invalid(),
 
                                    concrete_type: mono_concrete,
 
                                    size: 0,
 
                                    alignment: 0,
 
                                    offset: 0
 
                                });
 
                            }
 

	
 
                            mono_variants.push(UnionMonomorphVariant{
 
                                lives_on_heap: false,
 
                                embedded: mono_embedded,
 
                            })
 
                        }
 

	
 
                        let type_id = TypeId(self.mono_types.len() as i64);
 
                        let tag_size = definition.tag_size;
 
                        Self::set_search_key_to_type(&mut self.mono_search_key, &self.definition_lookup, &concrete_type.parts);
 
                        self.mono_type_lookup.insert(self.mono_search_key.clone(), type_id);
 
                        self.mono_types.push(MonoType::new_empty(type_id, concrete_type, MonoTypeVariant::Union(UnionMonomorph{
 
                            variants: mono_variants,
 
                            tag_size,
 
                            heap_size: 0,
 
                            heap_alignment: 0,
 
                        })));
 

	
 
                        is_union = true;
 
                        type_id
 
                    },
 
                    DTV::Struct(definition) => {
 
                        // Create fields
 
                        let mut mono_fields = Vec::with_capacity(definition.fields.len());
 
                        for poly_field in &definition.fields {
 
                            let mono_concrete = Self::construct_concrete_type(&poly_field.parser_type, &concrete_type);
 
                            mono_fields.push(StructMonomorphField{
 
                                type_id: TypeId::new_invalid(),
 
                                concrete_type: mono_concrete,
 
                                size: 0,
 
                                alignment: 0,
 
                                offset: 0
 
                            })
 
                        }
 

	
 
                        let type_id = TypeId(self.mono_types.len() as i64);
 
                        Self::set_search_key_to_type(&mut self.mono_search_key, &self.definition_lookup, &concrete_type.parts);
 
                        self.mono_type_lookup.insert(self.mono_search_key.clone(), type_id);
 
                        self.mono_types.push(MonoType::new_empty(type_id, concrete_type, MonoTypeVariant::Struct(StructMonomorph{
 
                            fields: mono_fields,
 
                        })));
 

	
 
                        type_id
 
                    },
 
                    DTV::Procedure(_) => {
 
                        unreachable!("pushing type resolving breadcrumb for procedure type")
 
                    },
 
                };
 

	
 
                type_id
 
            },
 
            _ => unreachable!(),
 
        };
 

	
 
        self.encountered_types.push(TypeLoopEntry{ type_id, is_union });
 
        self.type_loop_breadcrumbs.push(TypeLoopBreadcrumb{
 
            type_id,
 
            next_member: 0,
 
            next_embedded: 0,
 
        });
 
    }
 

	
 
    /// Constructs a concrete type out of a parser type for a struct field or
 
    /// union embedded type. It will do this by looking up the polymorphic
 
    /// variables in the supplied concrete type. The assumption is that the
 
    /// polymorphic variable's indices correspond to the subtrees in the
 
    /// concrete type.
 
    fn construct_concrete_type(member_type: &ParserType, container_type: &ConcreteType) -> ConcreteType {
 
        use ParserTypeVariant as PTV;
 
        use ConcreteTypePart as CTP;
 

	
 
        // TODO: Combine with code in pass_typing.rs
 
        fn parser_to_concrete_part(part: &ParserTypeVariant) -> Option<ConcreteTypePart> {
 
            match part {
 
                PTV::Void      => Some(CTP::Void),
 
                PTV::Message   => Some(CTP::Message),
 
                PTV::Bool      => Some(CTP::Bool),
 
                PTV::UInt8     => Some(CTP::UInt8),
 
                PTV::UInt16    => Some(CTP::UInt16),
 
                PTV::UInt32    => Some(CTP::UInt32),
 
                PTV::UInt64    => Some(CTP::UInt64),
 
                PTV::SInt8     => Some(CTP::SInt8),
 
                PTV::SInt16    => Some(CTP::SInt16),
 
                PTV::SInt32    => Some(CTP::SInt32),
 
                PTV::SInt64    => Some(CTP::SInt64),
 
                PTV::Character => Some(CTP::Character),
 
                PTV::String    => Some(CTP::String),
 
                PTV::Array     => Some(CTP::Array),
 
                PTV::Input     => Some(CTP::Input),
 
                PTV::Output    => Some(CTP::Output),
 
                PTV::Tuple(num) => Some(CTP::Tuple(*num)),
 
                PTV::Definition(definition_id, num) => Some(CTP::Instance(*definition_id, *num)),
 
                _              => None
 
            }
 
        }
 

	
 
        let mut parts = Vec::with_capacity(member_type.elements.len()); // usually a correct estimation, might not be
 
        for member_part in &member_type.elements {
 
            // Check if we have a regular builtin type
 
            if let Some(part) = parser_to_concrete_part(&member_part.variant) {
 
                parts.push(part);
 
                continue;
 
            }
 

	
 
            // Not builtin, but if all code is working correctly, we only care
 
            // about the polymorphic argument at this point.
 
            if let PTV::PolymorphicArgument(_container_definition_id, poly_arg_idx) = member_part.variant {
 
                debug_assert_eq!(_container_definition_id, get_concrete_type_definition(&container_type.parts).unwrap());
 

	
 
                let mut container_iter = container_type.embedded_iter(0);
 
                for _ in 0..poly_arg_idx {
 
                    container_iter.next();
 
                }
 

	
 
                let poly_section = container_iter.next().unwrap();
 
                parts.extend(poly_section);
 

	
 
                continue;
 
            }
 

	
 
            unreachable!("unexpected type part {:?} from {:?}", member_part, member_type);
 
        }
 

	
 
        return ConcreteType{ parts };
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Determining memory layout for types
 
    //--------------------------------------------------------------------------
 

	
 
    /// Should be called after type loops are detected (and resolved
 
    /// successfully). As a result of this call we expect the
 
    /// `encountered_types` array to be filled. We'll calculate size/alignment/
 
    /// offset values for those types in this routine.
 
    fn lay_out_memory_for_encountered_types(&mut self, arch: &TargetArch) {
 
        // Programmers note: this works like a little stack machine. We have
 
        // memory layout breadcrumbs which, like the type loop breadcrumbs, keep
 
        // track of the currently considered member type. This breadcrumb also
 
        // stores an index into the `size_alignment_stack`, which will be used
 
        // to store intermediate size/alignment pairs until all members are
 
        // resolved. Note that this `size_alignment_stack` is NOT an
 
        // optimization, we're working around borrowing rules here.
 

	
 
        // Just finished type loop detection, so we're left with the encountered
 
        // types only
 
        debug_assert!(self.type_loops.is_empty());
 
        debug_assert!(!self.encountered_types.is_empty());
 
        debug_assert!(self.memory_layout_breadcrumbs.is_empty());
 
        debug_assert!(self.size_alignment_stack.is_empty());
 

	
 
        let (ptr_size, ptr_align) = self.mono_types[arch.pointer_type_id.0 as usize].get_size_alignment().unwrap();
 

	
 
        // Push the first entry (the type we originally started with when we
 
        // were detecting type loops)
 
        let first_entry = &self.encountered_types[0];
 
        self.memory_layout_breadcrumbs.push(MemoryBreadcrumb{
 
            type_id: first_entry.type_id,
 
            next_member: 0,
 
            next_embedded: 0,
 
            first_size_alignment_idx: 0,
 
        });
 

	
 
        // Enter the main resolving loop
 
        'breadcrumb_loop: while !self.memory_layout_breadcrumbs.is_empty() {
 
            let cur_breadcrumb_idx = self.memory_layout_breadcrumbs.len() - 1;
 
            let mut breadcrumb = self.memory_layout_breadcrumbs[cur_breadcrumb_idx].clone();
 

	
 
            let mono_type = &self.mono_types[breadcrumb.type_id.0 as usize];
 
            match &mono_type.variant {
 
                MonoTypeVariant::Builtin | MonoTypeVariant::Enum => {
 
                    // Size should already be computed
 
                    dbg_code!({
 
                        let mono_type = &self.mono_types[breadcrumb.type_id.0 as usize];
 
                        debug_assert!(mono_type.size != 0 && mono_type.alignment != 0);
 
                    });
 
                },
 
                MonoTypeVariant::Union(mono_type) => {
 
                    // Retrieve size/alignment of each embedded type. We do not
 
                    // compute the offsets or total type sizes yet.
 
                    let num_variants = mono_type.variants.len() as u32;
 
                    while breadcrumb.next_member < num_variants {
 
                        let mono_variant = &mono_type.variants[breadcrumb.next_member as usize];
 

	
 
                        if mono_variant.lives_on_heap {
 
                            // To prevent type loops we made this a heap-
 
                            // allocated variant. This implies we cannot
 
                            // compute sizes of members at this point.
 
                        } else {
 
                            let num_embedded = mono_variant.embedded.len() as u32;
 
                            while breadcrumb.next_embedded < num_embedded {
 
                                let mono_embedded = &mono_variant.embedded[breadcrumb.next_embedded as usize];
 
                                let layout_result = Self::get_memory_layout_or_breadcrumb(
 
                                    &self.definition_lookup, &self.mono_type_lookup, &self.mono_types,
 
                                    &mut self.mono_search_key, arch, &mono_embedded.concrete_type.parts,
 
                                    self.size_alignment_stack.len()
 
                                );
 
                                match layout_result {
 
                                    MemoryLayoutResult::TypeExists(size, alignment) => {
 
                                        self.size_alignment_stack.push((size, alignment));
 
                                    },
 
                                    MemoryLayoutResult::PushBreadcrumb(new_breadcrumb) => {
 
                                        self.memory_layout_breadcrumbs[cur_breadcrumb_idx] = breadcrumb;
 
                                        self.memory_layout_breadcrumbs.push(new_breadcrumb);
 
                                        continue 'breadcrumb_loop;
 
                                    }
 
                                }
 

	
 
                                breadcrumb.next_embedded += 1;
 
                            }
 
                        }
 

	
 
                        breadcrumb.next_member += 1;
 
                        breadcrumb.next_embedded = 0;
 
                    }
 

	
 
                    // If here then we can at least compute the stack size of
 
                    // the type, we'll have to come back at the very end to
 
                    // fill in the heap size/alignment/offset of each heap-
 
                    // allocated variant.
 
                    let mut max_size = mono_type.tag_size;
 
                    let mut max_alignment = mono_type.tag_size;
 

	
 
                    let mono_type = &mut self.mono_types[breadcrumb.type_id.0 as usize];
 
                    let union_type = mono_type.variant.as_union_mut();
 
                    let mut size_alignment_idx = breadcrumb.first_size_alignment_idx as usize;
 

	
 
                    for variant in &mut union_type.variants {
 
                        // We're doing stack computations, so always start with
 
                        // the tag size/alignment.
 
                        let mut variant_offset = union_type.tag_size;
 
                        let mut variant_alignment = union_type.tag_size;
 

	
 
                        if variant.lives_on_heap {
 
                            // Variant lives on heap, so just a pointer
 
                            align_offset_to(&mut variant_offset, ptr_align);
 

	
 
                            variant_offset += ptr_size;
 
                            variant_alignment = variant_alignment.max(ptr_align);
 
                        } else {
 
                            // Variant lives on stack, so walk all embedded
 
                            // types.
 
                            for embedded in &mut variant.embedded {
 
                                let (size, alignment) = self.size_alignment_stack[size_alignment_idx];
 
                                embedded.size = size;
 
                                embedded.alignment = alignment;
 
                                size_alignment_idx += 1;
 

	
 
                                align_offset_to(&mut variant_offset, alignment);
 
                                embedded.offset = variant_offset;
 

	
 
                                variant_offset += size;
 
                                variant_alignment = variant_alignment.max(alignment);
 
                            }
 
                        };
 

	
 
                        max_size = max_size.max(variant_offset);
 
                        max_alignment = max_alignment.max(variant_alignment);
 
                    }
 

	
 
                    mono_type.size = max_size;
 
                    mono_type.alignment = max_alignment;
 
                    self.size_alignment_stack.truncate(breadcrumb.first_size_alignment_idx as usize);
 
                },
 
                MonoTypeVariant::Struct(mono_type) => {
 
                    // Retrieve size and alignment of each struct member. We'll
 
                    // compute the offsets once all of those are known
 
                    let num_fields = mono_type.fields.len() as u32;
 
                    while breadcrumb.next_member < num_fields {
 
                        let mono_field = &mono_type.fields[breadcrumb.next_member as usize];
 

	
 
                        let layout_result = Self::get_memory_layout_or_breadcrumb(
 
                            &self.definition_lookup, &self.mono_type_lookup, &self.mono_types,
 
                            &mut self.mono_search_key, arch, &mono_field.concrete_type.parts,
 
                            self.size_alignment_stack.len()
 
                        );
 
                        match layout_result {
 
                            MemoryLayoutResult::TypeExists(size, alignment) => {
 
                                self.size_alignment_stack.push((size, alignment))
 
                            },
 
                            MemoryLayoutResult::PushBreadcrumb(new_breadcrumb) => {
 
                                self.memory_layout_breadcrumbs[cur_breadcrumb_idx] = breadcrumb;
 
                                self.memory_layout_breadcrumbs.push(new_breadcrumb);
 
                                continue 'breadcrumb_loop;
 
                            },
 
                        }
 

	
 
                        breadcrumb.next_member += 1;
 
                    }
 

	
 
                    // Compute offsets and size of total type
 
                    let mut cur_offset = 0;
 
                    let mut max_alignment = 1;
 

	
 
                    let mono_type = &mut self.mono_types[breadcrumb.type_id.0 as usize];
 
                    let struct_type = mono_type.variant.as_struct_mut();
 
                    let mut size_alignment_idx = breadcrumb.first_size_alignment_idx as usize;
 

	
 
                    for field in &mut struct_type.fields {
 
                        let (size, alignment) = self.size_alignment_stack[size_alignment_idx];
 
                        field.size = size;
 
                        field.alignment = alignment;
 
                        size_alignment_idx += 1;
 

	
 
                        align_offset_to(&mut cur_offset, alignment);
 
                        field.offset = cur_offset;
 

	
 
                        cur_offset += size;
 
                        max_alignment = max_alignment.max(alignment);
 
                    }
 

	
 
                    mono_type.size = cur_offset;
 
                    mono_type.alignment = max_alignment;
 
                    self.size_alignment_stack.truncate(breadcrumb.first_size_alignment_idx as usize);
 
                },
 
                MonoTypeVariant::Procedure(_) => {
 
                    unreachable!();
 
                },
 
                MonoTypeVariant::Tuple(mono_type) => {
 
                    let num_members = mono_type.members.len() as u32;
 
                    while breadcrumb.next_member < num_members {
 
                        let mono_member = &mono_type.members[breadcrumb.next_member as usize];
 
                        let layout_result = Self::get_memory_layout_or_breadcrumb(
 
                            &self.definition_lookup, &self.mono_type_lookup, &self.mono_types,
 
                            &mut self.mono_search_key, arch, &mono_member.concrete_type.parts,
 
                            self.size_alignment_stack.len()
 
                        );
 
                        match layout_result {
 
                            MemoryLayoutResult::TypeExists(size, alignment) => {
 
                                self.size_alignment_stack.push((size, alignment));
 
                            },
 
                            MemoryLayoutResult::PushBreadcrumb(new_breadcrumb) => {
 
                                self.memory_layout_breadcrumbs[cur_breadcrumb_idx] = breadcrumb;
 
                                self.memory_layout_breadcrumbs.push(new_breadcrumb);
 
                                continue 'breadcrumb_loop;
 
                            },
 
                        }
 

	
 
                        breadcrumb.next_member += 1;
 
                    }
 

	
 
                    // If here then we can compute the memory layout of the tuple.
 
                    let mut cur_offset = 0;
 
                    let mut max_alignment = 1;
 

	
 
                    let mono_type = &mut self.mono_types[breadcrumb.type_id.0 as usize];
 
                    let mono_tuple = mono_type.variant.as_tuple_mut();
 
                    let mut size_alignment_index = breadcrumb.first_size_alignment_idx as usize;
 
                    for member_index in 0..num_members {
 
                        let (member_size, member_alignment) = self.size_alignment_stack[size_alignment_index];
 
                        align_offset_to(&mut cur_offset, member_alignment);
 
                        size_alignment_index += 1;
 

	
 
                        let member = &mut mono_tuple.members[member_index as usize];
 
                        member.size = member_size;
 
                        member.alignment = member_alignment;
 
                        member.offset = cur_offset;
 

	
 
                        cur_offset += member_size;
 
                        max_alignment = max_alignment.max(member_alignment);
 
                    }
 

	
 
                    mono_type.size = cur_offset;
 
                    mono_type.alignment = max_alignment;
 
                    self.size_alignment_stack.truncate(breadcrumb.first_size_alignment_idx as usize);
 
                },
 
            }
 

	
 
            // If here, then we completely layed out the current type. So move
 
            // to the next breadcrumb
 
            self.memory_layout_breadcrumbs.pop();
 
        }
 

	
 
        debug_assert!(self.size_alignment_stack.is_empty());
 

	
 
        // If here then all types have been layed out. What remains is to
 
        // compute the sizes/alignment/offsets of the heap variants of the
 
        // unions we have encountered.
 
        for entry in &self.encountered_types {
 
            if !entry.is_union {
 
                continue;
 
            }
 

	
 
            // First pass, use buffer to store size/alignment to prevent
 
            // borrowing issues.
 
            let mono_type = self.mono_types[entry.type_id.0 as usize].variant.as_union();
 
            for variant in &mono_type.variants {
 
                if !variant.lives_on_heap {
 
                    continue;
 
                }
 

	
 
                debug_assert!(!variant.embedded.is_empty());
 

	
 
                for embedded in &variant.embedded {
 
                    let layout_result = Self::get_memory_layout_or_breadcrumb(
 
                        &self.definition_lookup, &self.mono_type_lookup, &self.mono_types,
 
                        &mut self.mono_search_key, arch, &embedded.concrete_type.parts,
 
                        self.size_alignment_stack.len()
 
                    );
 
                    match layout_result {
 
                        MemoryLayoutResult::TypeExists(size, alignment) => {
 
                            self.size_alignment_stack.push((size, alignment));
 
                        },
 
                        _ => unreachable!(), // type was not truly infinite, so type must have been found
 
                    }
 
                }
 
            }
 

	
 
            // Second pass, apply the size/alignment values in our buffer
 
            let mono_type = self.mono_types[entry.type_id.0 as usize].variant.as_union_mut();
 

	
 
            let mut max_size = 0;
 
            let mut max_alignment = 1;
 
            let mut size_alignment_idx = 0;
 

	
 
            for variant in &mut mono_type.variants {
 
                if !variant.lives_on_heap {
 
                    continue;
 
                }
 

	
 
                let mut variant_offset = 0;
 
                let mut variant_alignment = 1;
 

	
 
                for embedded in &mut variant.embedded {
 
                    let (size, alignment) = self.size_alignment_stack[size_alignment_idx];
 
                    embedded.size = size;
 
                    embedded.alignment = alignment;
 
                    size_alignment_idx += 1;
 

	
 
                    align_offset_to(&mut variant_offset, alignment);
 
                    embedded.alignment = variant_offset;
 

	
 
                    variant_offset += size;
 
                    variant_alignment = variant_alignment.max(alignment);
 
                }
 

	
 
                max_size = max_size.max(variant_offset);
 
                max_alignment = max_alignment.max(variant_alignment);
 
            }
 

	
 
            if max_size != 0 {
 
                // At least one entry lives on the heap
 
                mono_type.heap_size = max_size;
 
                mono_type.heap_alignment = max_alignment;
 
            }
 
        }
 

	
 
        // And now, we're actually, properly, done
 
        self.encountered_types.clear();
 
    }
 

	
 
    /// Attempts to compute size/alignment for the provided type. Note that this
 
    /// is called *after* type loops have been succesfully resolved. Hence we
 
    /// may assume that all monomorph entries exist, but we may not assume that
 
    /// those entries already have their size/alignment computed.
 
    // Passed parameters are messy. But need to strike balance between borrowing
 
    // and allocations in hot loops. So it is what it is.
 
    fn get_memory_layout_or_breadcrumb(
 
        definition_map: &DefinitionMap, mono_type_map: &MonoTypeMap, mono_types: &MonoTypeArray,
 
        search_key: &mut MonoSearchKey, arch: &TargetArch, parts: &[ConcreteTypePart],
 
        size_alignment_stack_len: usize,
 
    ) -> MemoryLayoutResult {
 
        use ConcreteTypePart as CTP;
 

	
 
        debug_assert!(!parts.is_empty());
 
        let type_id = match parts[0] {
 
            CTP::Void      => arch.void_type_id,
 
            CTP::Message   => arch.message_type_id,
 
            CTP::Bool      => arch.bool_type_id,
 
            CTP::UInt8     => arch.uint8_type_id,
 
            CTP::UInt16    => arch.uint16_type_id,
 
            CTP::UInt32    => arch.uint32_type_id,
 
            CTP::UInt64    => arch.uint64_type_id,
 
            CTP::SInt8     => arch.sint8_type_id,
 
            CTP::SInt16    => arch.sint16_type_id,
 
            CTP::SInt32    => arch.sint32_type_id,
 
            CTP::SInt64    => arch.sint64_type_id,
 
            CTP::Character => arch.char_type_id,
 
            CTP::String    => arch.string_type_id,
 
            CTP::Array     => arch.array_type_id,
 
            CTP::Slice     => arch.slice_type_id,
 
            CTP::Input     => arch.input_type_id,
 
            CTP::Output    => arch.output_type_id,
 
            CTP::Pointer   => arch.pointer_type_id,
 
            CTP::Tuple(_) => {
 
                Self::set_search_key_to_tuple(search_key, definition_map, parts);
 
                let type_id = mono_type_map.get(&search_key).copied().unwrap();
 

	
 
                type_id
 
            },
 
            CTP::Instance(definition_id, _) => {
 
                // Retrieve entry and the specific monomorph index by applying
 
                // the full concrete type.
 
                let definition_type = definition_map.get(&definition_id).unwrap();
 
                search_key.set(parts, &definition_type.poly_vars);
 
                let type_id = mono_type_map.get(&search_key).copied().unwrap();
 

	
 
                type_id
 
            },
 
            CTP::Function(_, _) | CTP::Component(_, _) => {
 
                todo!("storage for 'function pointers'");
 
            }
 
        };
 

	
 
        let mono_type = &mono_types[type_id.0 as usize];
 
        if let Some((size, alignment)) = mono_type.get_size_alignment() {
 
            return MemoryLayoutResult::TypeExists(size, alignment);
 
        } else {
 
            return MemoryLayoutResult::PushBreadcrumb(MemoryBreadcrumb{
 
                type_id,
 
                next_member: 0,
 
                next_embedded: 0,
 
                first_size_alignment_idx: size_alignment_stack_len as u32,
 
            });
 
        }
 
    }
 

	
 
    /// Returns tag concrete type (always a builtin integer type), the size of
 
    /// that type in bytes (and implicitly, its alignment)
 
    fn variant_tag_type_from_values(min_val: i64, max_val: i64) -> (ConcreteType, usize) {
 
        debug_assert!(min_val <= max_val);
 

	
 
        let (part, size) = if min_val >= 0 {
 
            // Can be an unsigned integer
 
            if max_val <= (u8::MAX as i64) {
 
                (ConcreteTypePart::UInt8, 1)
 
            } else if max_val <= (u16::MAX as i64) {
 
                (ConcreteTypePart::UInt16, 2)
 
            } else if max_val <= (u32::MAX as i64) {
 
                (ConcreteTypePart::UInt32, 4)
 
            } else {
 
                (ConcreteTypePart::UInt64, 8)
 
            }
 
        } else {
 
            // Must be a signed integer
 
            if min_val >= (i8::MIN as i64) && max_val <= (i8::MAX as i64) {
 
                (ConcreteTypePart::SInt8, 1)
 
            } else if min_val >= (i16::MIN as i64) && max_val <= (i16::MAX as i64) {
 
                (ConcreteTypePart::SInt16, 2)
 
            } else if min_val >= (i32::MIN as i64) && max_val <= (i32::MAX as i64) {
 
                (ConcreteTypePart::SInt32, 4)
 
            } else {
 
                (ConcreteTypePart::SInt64, 8)
 
            }
 
        };
 

	
 
        return (ConcreteType{ parts: vec![part] }, size);
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Small utilities
 
    //--------------------------------------------------------------------------
 

	
 
    fn create_polymorphic_variables(variables: &[Identifier]) -> Vec<PolymorphicVariable> {
 
        let mut result = Vec::with_capacity(variables.len());
 
        for variable in variables.iter() {
 
            result.push(PolymorphicVariable{ identifier: variable.clone(), is_in_use: false });
 
        }
 

	
 
        result
 
    }
 

	
 
    fn mark_used_polymorphic_variables(poly_vars: &mut Vec<PolymorphicVariable>, parser_type: &ParserType) {
 
        for element in &parser_type.elements {
 
            if let ParserTypeVariant::PolymorphicArgument(_, idx) = &element.variant {
 
                poly_vars[*idx as usize].is_in_use = true;
 
            }
 
        }
 
    }
 

	
 
    /// Sets the search key. If `false` is returned then the provided type is a
 
    /// builtin type. If `true` is returned then we're dealing with a user-
 
    /// defined type.
 
    fn set_search_key_to_type(search_key: &mut MonoSearchKey, definition_map: &DefinitionMap, type_parts: &[ConcreteTypePart]) -> bool {
 
        match type_parts[0] {
 
            ConcreteTypePart::Tuple(_) => {
 
                Self::set_search_key_to_tuple(search_key, definition_map, type_parts);
 
                return true;
 
            },
 
            ConcreteTypePart::Instance(definition_id, _) => {
 
                let definition_type = definition_map.get(&definition_id).unwrap();
 
                search_key.set(type_parts, &definition_type.poly_vars);
 
                return true;
 
            },
 
            ConcreteTypePart::Function(_, _) | ConcreteTypePart::Component(_, _) => {
 
                todo!("implement function pointers")
 
            },
 
            _ => return false,
 
        }
 
    }
 

	
 
    fn set_search_key_to_tuple(search_key: &mut MonoSearchKey, definition_map: &DefinitionMap, type_parts: &[ConcreteTypePart]) {
 
        dbg_code!({
 
            let is_tuple = if let ConcreteTypePart::Tuple(_) = type_parts[0] { true } else { false };
 
            assert!(is_tuple);
 
        });
 
        search_key.set_top_type(type_parts[0]);
 
        for subtree in ConcreteTypeIter::new(type_parts, 0) {
 
            if let Some(definition_id) = get_concrete_type_definition(subtree) {
 
                // A definition, so retrieve poly var usage info
 
                let definition_type = definition_map.get(&definition_id).unwrap();
 
                search_key.push_subtree(subtree, &definition_type.poly_vars);
 
            } else {
 
                // Not a definition, so all type information is important
 
                search_key.push_subtype(subtree, true);
 
            }
 
        }
 
    }
 
}
 

	
 
#[inline]
 
fn align_offset_to(offset: &mut usize, alignment: usize) {
 
    debug_assert!(alignment > 0);
 
    let alignment_min_1 = alignment - 1;
 
    *offset += alignment_min_1;
 
    *offset &= !(alignment_min_1);
 
}
 

	
 
#[inline]
 
fn get_concrete_type_definition(concrete_parts: &[ConcreteTypePart]) -> Option<DefinitionId> {
 
    match concrete_parts[0] {
 
        ConcreteTypePart::Instance(definition_id, _) => {
 
            return Some(definition_id)
 
        },
 
        ConcreteTypePart::Function(definition_id, _) |
 
        ConcreteTypePart::Component(definition_id, _) => {
 
            return Some(definition_id.upcast());
 
        },
 
        _ => {
 
            return None;
 
        },
 
    }
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)