Changeset - af328ac5eadf
[Not reviewed]
0 3 0
mh - 3 years ago 2022-01-26 15:06:00
contact@maxhenger.nl
WIP: Only trust getter port mapping in consensus
3 files changed with 206 insertions and 155 deletions:
0 comments (0 inline, 0 general)
src/runtime2/communication.rs
Show inline comments
 
@@ -27,30 +27,31 @@ pub struct Peer {
 
pub enum PortKind {
 
    Putter,
 
    Getter,
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
 
pub enum PortState {
 
    Open,
 
    Blocked,
 
    Closed,
 
}
 

	
 
#[derive(Debug)]
 
pub struct Port {
 
    pub self_id: PortId,
 
    pub peer_id: PortId,
 
    pub peer_id: PortId, // eventually consistent
 
    pub kind: PortKind,
 
    pub state: PortState,
 
    pub peer_comp_id: CompId,
 
    pub peer_comp_id: CompId, // eventually consistent
 
}
 

	
 
pub struct Channel {
 
    pub putter_id: PortId,
 
    pub getter_id: PortId,
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// Data messages
 
// -----------------------------------------------------------------------------
 

	
 
#[derive(Debug)]
 
@@ -113,33 +114,31 @@ pub struct SyncSolutionChannel {
 
}
 

	
 
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
 
pub enum SyncRoundDecision {
 
    None,
 
    Solution,
 
    Failure,
 
}
 

	
 
#[derive(Debug)]
 
pub struct SyncPartialSolution {
 
    pub channel_mapping: Vec<SyncSolutionChannel>,
 
    pub matched_channels: usize,
 
    pub decision: SyncRoundDecision,
 
}
 

	
 
impl Default for SyncPartialSolution {
 
    fn default() -> Self {
 
        return Self{
 
            channel_mapping: Vec::new(),
 
            matched_channels: 0,
 
            decision: SyncRoundDecision::None,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug)]
 
pub enum SyncMessageContent {
 
    NotificationOfLeader,
 
    LocalSolution(CompId, SyncLocalSolution), // local solution of the specified component
 
    PartialSolution(SyncPartialSolution), // partial solution of multiple components
 
    GlobalSolution,
 
    GlobalFailure,
src/runtime2/component/component_pdl.rs
Show inline comments
 
@@ -54,25 +54,25 @@ impl CompCtx {
 
        let getter_id = PortId(self.take_port_id());
 
        self.ports.push(Port{
 
            self_id: putter_id,
 
            peer_id: getter_id,
 
            kind: PortKind::Putter,
 
            state: PortState::Open,
 
            peer_comp_id: self.id,
 
        });
 
        self.ports.push(Port{
 
            self_id: getter_id,
 
            peer_id: putter_id,
 
            kind: PortKind::Getter,
 
            state: PortState::Closed,
 
            state: PortState::Open,
 
            peer_comp_id: self.id,
 
        });
 

	
 
        return Channel{ putter_id, getter_id };
 
    }
 

	
 
    /// Adopts a port transferred by another component. Essentially copies all
 
    /// port data but creates a new ID. Caller should ensure that the other
 
    /// endpoint becomes aware of this ID.
 
    fn adopt_port(&mut self, to_transfer: &Port) -> &mut Port {
 
        let port_id = PortId(self.take_port_id());
 
        let port_index = self.ports.len();
 
@@ -332,26 +332,26 @@ impl CompPDL {
 
        if !can_run {
 
            return Ok(CompScheduling::Sleep);
 
        }
 

	
 
        let run_result = self.execute_prompt(&sched_ctx)?;
 

	
 
        match run_result {
 
            EC::Stepping => unreachable!(), // execute_prompt runs until this is no longer returned
 
            EC::BranchInconsistent | EC::NewFork | EC::BlockFires(_) => todo!("remove these"),
 
            // Results that can be returned in sync mode
 
            EC::SyncBlockEnd => {
 
                debug_assert_eq!(self.mode, Mode::Sync);
 
                self.handle_sync_end(sched_ctx, comp_ctx);
 
                return Ok(CompScheduling::Immediate);
 
                let scheduling = self.handle_sync_end(sched_ctx, comp_ctx);
 
                return Ok(scheduling.unwrap_or(CompScheduling::Immediate));
 
            },
 
            EC::BlockGet(port_id) => {
 
                debug_assert_eq!(self.mode, Mode::Sync);
 
                debug_assert!(self.exec_ctx.stmt.is_none());
 

	
 
                let port_id = port_id_from_eval(port_id);
 
                let port_index = comp_ctx.get_port_index(port_id).unwrap();
 
                if let Some(message) = &self.inbox_main[port_index] {
 
                    // Check if we can actually receive the message
 
                    if self.consensus.try_receive_data_message(sched_ctx, comp_ctx, message) {
 
                        // Message was received. Make sure any blocked peers and
 
                        // pending messages are handled.
 
@@ -418,36 +418,62 @@ impl CompPDL {
 
        let mut step_result = EvalContinuation::Stepping;
 
        while let EvalContinuation::Stepping = step_result {
 
            step_result = self.prompt.step(
 
                &sched_ctx.runtime.protocol.types, &sched_ctx.runtime.protocol.heap,
 
                &sched_ctx.runtime.protocol.modules, &mut self.exec_ctx,
 
            )?;
 
        }
 

	
 
        return Ok(step_result)
 
    }
 

	
 
    fn handle_sync_start(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
 
        sched_ctx.log("Component starting sync mode");
 
        self.consensus.notify_sync_start(comp_ctx);
 
        debug_assert_eq!(self.mode, Mode::NonSync);
 
        self.mode = Mode::Sync;
 
    }
 

	
 
    fn handle_sync_end(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
 
        self.consensus.notify_sync_end(sched_ctx, comp_ctx);
 
    fn handle_sync_end(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) -> Option<CompScheduling> {
 
        sched_ctx.log("Component ending sync mode (now waiting for solution)");
 
        let decision = self.consensus.notify_sync_end(sched_ctx, comp_ctx);
 
        self.handle_sync_decision(sched_ctx, comp_ctx, decision)
 
    }
 

	
 
    fn handle_sync_decision(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, decision: SyncRoundDecision) -> Option<CompScheduling> {
 
        debug_assert_eq!(self.mode, Mode::Sync);
 
        self.mode = Mode::SyncEnd;
 
        let is_success = match decision {
 
            SyncRoundDecision::None => {
 
                // No decision yet
 
                return None;
 
            },
 
            SyncRoundDecision::Solution => true,
 
            SyncRoundDecision::Failure => false,
 
        };
 

	
 
        // If here then we've reached a decision
 
        if is_success {
 
            self.mode = Mode::NonSync;
 
            self.consensus.notify_sync_decision(decision);
 
            return None;
 
        } else {
 
            todo!("handle this better, show some kind of error");
 
            self.mode = Mode::Exit;
 
            self.handle_component_exit(sched_ctx, comp_ctx);
 
            return Some(CompScheduling::Exit);
 
        }
 
    }
 

	
 
    fn handle_component_exit(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
 
        sched_ctx.log("Component exiting");
 
        debug_assert_eq!(self.mode, Mode::NonSync); // not a perfect assert, but just to remind myself: cannot exit while in sync
 

	
 
        // Note: for now we have that the scheduler handles exiting. I don't
 
        // know if that is a good idea, we'll see
 
        self.mode = Mode::Exit;
 
    }
 

	
 
    // -------------------------------------------------------------------------
 
    // Handling messages
 
    // -------------------------------------------------------------------------
 

	
 
    fn send_data_message_and_wake_up(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, source_port_id: PortId, value: ValueGroup) {
 
@@ -628,55 +654,37 @@ impl CompPDL {
 
                debug_assert!(port_info.state == PortState::Open || port_info.state == PortState::Blocked);
 
                if port_info.state == PortState::Open {
 
                    port_info.state = PortState::Blocked;
 
                }
 

	
 
                let peer_port_id = port_info.peer_id;
 
                let peer_comp_id = port_info.peer_comp_id;
 
                send_control_ack_message(sched_ctx, comp_ctx, message.id, peer_port_id, peer_comp_id);
 
            },
 
            ControlMessageContent::PortPeerChangedUnblock(port_id, new_comp_id) => {
 
                debug_assert_eq!(message.target_port_id, Some(port_id));
 
                let port_info = comp_ctx.get_port_mut(port_id);
 
                let old_peer_comp_id = port_info.peer_comp_id;
 
                debug_assert!(port_info.state == PortState::Blocked);
 
                port_info.peer_comp_id = new_comp_id;
 
                comp_ctx.add_peer(sched_ctx, new_comp_id, None);
 
                comp_ctx.remove_peer(sched_ctx, old_peer_comp_id);
 
                self.unblock_local_port(sched_ctx, comp_ctx, port_id);
 
            }
 
        }
 
    }
 

	
 
    fn handle_incoming_sync_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: SyncMessage) -> Option<CompScheduling> {
 
        let decision = self.consensus.receive_sync_message(sched_ctx, comp_ctx, message);
 
        let is_success = match decision {
 
            SyncRoundDecision::None => {
 
                // No decision yet
 
                return None;
 
            },
 
            SyncRoundDecision::Solution => true,
 
            SyncRoundDecision::Failure => false,
 
        };
 

	
 
        // If here then we've reached a conclusion
 
        debug_assert_eq!(self.mode, Mode::SyncEnd);
 
        self.mode = Mode::NonSync;
 

	
 
        if is_success {
 
            // We can simply continue executing. So we do nothing extra!
 
        } else {
 
            todo!("handle this better, show some kind of error");
 
            self.handle_component_exit(sched_ctx, comp_ctx);
 
            return Some(CompScheduling::Exit);
 
        }
 

	
 
        return None;
 
        return self.handle_sync_decision(sched_ctx, comp_ctx, decision);
 
    }
 

	
 
    // -------------------------------------------------------------------------
 
    // Handling ports
 
    // -------------------------------------------------------------------------
 

	
 
    /// Marks the local port as being unblocked. If the execution was blocked on
 
    /// sending a message over this port, then execution will continue and the
 
    /// message will be sent.
 
    fn unblock_local_port(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, port_id: PortId) {
 
        let port_info = comp_ctx.get_port_mut(port_id);
 
        debug_assert_eq!(port_info.state, PortState::Blocked);
src/runtime2/component/consensus.rs
Show inline comments
 
use crate::protocol::eval::ValueGroup;
 
use crate::runtime2::scheduler::*;
 
use crate::runtime2::runtime::*;
 
use crate::runtime2::communication::*;
 

	
 
use super::component_pdl::*;
 

	
 
pub struct PortAnnotation {
 
    id: PortId,
 
    self_comp_id: CompId,
 
    self_port_id: PortId,
 
    peer_comp_id: CompId, // only valid for getter ports
 
    peer_port_id: PortId, // only valid for getter ports
 
    mapping: Option<u32>,
 
}
 

	
 
impl PortAnnotation {
 
    fn new(id: PortId) -> Self {
 
        return Self{ id, mapping: None }
 
    fn new(comp_id: CompId, port_id: PortId) -> Self {
 
        return Self{
 
            self_comp_id: comp_id,
 
            self_port_id: port_id,
 
            peer_comp_id: CompId::new_invalid(),
 
            peer_port_id: PortId::new_invalid(),
 
            mapping: None
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Eq, PartialEq)]
 
enum Mode {
 
    NonSync,
 
    SyncBusy,
 
    SyncAwaitingSolution,
 
}
 

	
 
struct SolutionCombiner {
 
    solution: SyncPartialSolution,
 
    all_present: bool, // set if the `submissions_by` only contains (_, true) entries.
 
    matched_channels: usize,
 
}
 

	
 
impl SolutionCombiner {
 
    fn new() -> Self {
 
        return Self {
 
            solution: SyncPartialSolution::default(),
 
            all_present: false,
 
            matched_channels: 0,
 
        }
 
    }
 

	
 
    #[inline]
 
    fn has_contributions(&self) -> bool {
 
        return !self.solution.channel_mapping.is_empty();
 
    }
 

	
 
    /// Returns a decision for the current round. If there is no decision (yet)
 
    /// then `RoundDecision::None` is returned.
 
    fn get_decision(&self) -> SyncRoundDecision {
 
        if self.all_present {
 
        if self.matched_channels == self.solution.channel_mapping.len() {
 
            debug_assert_ne!(self.solution.decision, SyncRoundDecision::None);
 
            return self.solution.decision;
 
        }
 

	
 
        return SyncRoundDecision::None; // even in case of failure: wait for everyone.
 
    }
 

	
 
    fn combine_with_partial_solution(&mut self, partial: SyncPartialSolution) {
 
        debug_assert_ne!(self.solution.decision, SyncRoundDecision::Solution);
 
        debug_assert_ne!(partial.decision, SyncRoundDecision::Solution);
 

	
 
        // Combine our partial solution with the provided partial solution.
 
        // This algorithm *could* allow overlap in the partial solutions, but
 
        // in practice this means something is going wrong (a component stored
 
        // a local solution *and* transmitted it to the leader, then later
 
        // submitted its partial solution), hence we will do some debug asserts
 
        // for now.
 
        for new_entry in partial.channel_mapping {
 
            let channel_index = if new_entry.putter.is_some() && new_entry.getter.is_some() {
 
                // Channel is completely specified
 
                debug_assert!(
 
                    self.find_channel_index_for_partial_entry(new_entry.putter.as_ref().unwrap()).is_none() &&
 
                    self.find_channel_index_for_partial_entry(new_entry.getter.as_ref().unwrap()).is_none()
 
                );
 
        if partial.decision == SyncRoundDecision::Failure {
 
            self.solution.decision = SyncRoundDecision::Failure;
 
        }
 

	
 
        for entry in partial.channel_mapping {
 
            let channel_index = if entry.getter.is_some() && entry.putter.is_some() {
 
                let channel_index = self.solution.channel_mapping.len();
 
                self.solution.channel_mapping.push(new_entry);
 
                self.solution.channel_mapping.push(entry);
 
                self.matched_channels += 1;
 

	
 
                channel_index
 
            } else if let Some(new_port) = new_entry.putter {
 
                // Only putter is present in new entry
 
                match self.find_channel_index_for_partial_entry(&new_port) {
 
                    Some(channel_index) => {
 
                        let entry = &mut self.solution.channel_mapping[channel_index];
 
                        debug_assert!(entry.putter.is_none());
 
                        entry.putter = Some(new_port);
 

	
 
                        channel_index
 
                    },
 
                    None => {
 
                        let channel_index = self.solution.channel_mapping.len();
 
                        self.solution.channel_mapping.push(SyncSolutionChannel{
 
                            putter: Some(new_port),
 
                            getter: None,
 
                        });
 

	
 
                        channel_index
 
                    }
 
                }
 
            } else if let Some(new_port) = new_entry.getter {
 
                // Only getter is present in new entry
 
                match self.find_channel_index_for_partial_entry(&new_port) {
 
                    Some(channel_index) => {
 
                        let entry = &mut self.solution.channel_mapping[channel_index];
 
                        debug_assert!(entry.getter.is_none());
 
                        entry.getter = Some(new_port);
 

	
 
                        channel_index
 
                    },
 
                    None => {
 
                        let channel_index = self.solution.channel_mapping.len();
 
                        self.solution.channel_mapping.push(SyncSolutionChannel{
 
                            putter: None,
 
                            getter: Some(new_port)
 
                        });
 

	
 
                        channel_index
 
                    }
 
                }
 
            } else if let Some(putter) = entry.putter {
 
                self.combine_with_putter_port(putter)
 
            } else if let Some(getter) = entry.getter {
 
                self.combine_with_getter_port(getter)
 
            } else {
 
                unreachable!()
 
                unreachable!(); // both putter and getter are None
 
            };
 

	
 
            // Make sure the new entry is consistent
 
            let channel = &self.solution.channel_mapping[channel_index];
 
            if !Self::channel_is_consistent(channel) {
 
                self.solution.decision = SyncRoundDecision::Failure;
 
            if let Some(consistent) = Self::channel_is_consistent(channel) {
 
                if !consistent {
 
                    self.solution.decision = SyncRoundDecision::Failure;
 
                }
 
                self.matched_channels += 1;
 
            }
 
        }
 

	
 
        // Check to see if we have a global solution already
 
        self.update_all_present();
 
        if self.all_present && self.solution.decision != SyncRoundDecision::Failure {
 
            debug_assert_eq!(self.solution.decision, SyncRoundDecision::None);
 
            dbg_code!(for entry in &self.solution.channel_mapping {
 
                    debug_assert!(entry.putter.is_some() && entry.getter.is_some());
 
                });
 
            self.solution.decision = SyncRoundDecision::Solution;
 
        }
 
        self.update_solution();
 
    }
 

	
 
    /// Combines the currently stored global solution (if any) with the newly
 
    /// provided local solution. Make sure to check the `has_decision` return
 
    /// value afterwards.
 
    fn combine_with_local_solution(&mut self, comp_id: CompId, solution: SyncLocalSolution) {
 
        debug_assert_ne!(self.solution.decision, SyncRoundDecision::Solution);
 

	
 
        // Combine partial solution with the local solution entries
 
        for entry in solution {
 
            match entry {
 
            // Match the current entry up with its peer endpoint, or add a new
 
            // entry.
 
            let channel_index = match entry {
 
                SyncLocalSolutionEntry::Putter(putter) => {
 

	
 
                    self.combine_with_putter_port(putter)
 
                },
 
                SyncLocalSolutionEntry::Getter(getter) => {
 
                    self.combine_with_getter_port(getter)
 
                }
 
            };
 

	
 
            // Check if channel is now consistent
 
            let channel = &self.solution.channel_mapping[channel_index];
 
            if let Some(consistent) = Self::channel_is_consistent(channel) {
 
                if !consistent {
 
                    self.solution.decision = SyncRoundDecision::Failure;
 
                }
 
                self.matched_channels += 1;
 
            }
 
        }
 

	
 
        if !had_new_entry {
 
            self.update_all_present();
 
            if self.all_present && self.solution.decision != SyncRoundDecision::Failure {
 
                // No new entries and every component is present. This implies that
 
                // every component successfully added their local solutions to the
 
                // global solution. Hence: we have a global solution
 
                debug_assert_eq!(self.solution.decision, SyncRoundDecision::None);
 
                dbg_code!(for entry in &self.solution.channel_mapping {
 
                    debug_assert!(entry.putter.is_some() && entry.getter.is_some());
 
                });
 
                self.solution.decision = SyncRoundDecision::Solution;
 
            }
 
        }
 
        self.update_solution();
 
    }
 

	
 
    /// Takes whatever partial solution is present in the solution combiner and
 
    /// returns it. The solution combiner's solution will end up being empty.
 
    /// This is used when a new leader is found and we need to pass along our
 
    /// partial results.
 
    fn take_partial_solution(&mut self) -> SyncPartialSolution {
 
        let mut partial_solution = SyncPartialSolution::default();
 
        std::mem::swap(&mut partial_solution, &mut self.solution);
 
        self.all_present = false;
 
        self.clear();
 

	
 
        return partial_solution;
 
    }
 

	
 
    fn clear(&mut self) {
 
        self.solution.submissions_by.clear();
 
        self.solution.channel_mapping.clear();
 
        self.solution.decision = SyncRoundDecision::None;
 
        self.matched_channels = 0;
 
    }
 

	
 
    // --- Small utilities for combining solutions
 

	
 
    fn update_all_present(&mut self) {
 
        debug_assert!(!self.all_present); // upheld by caller
 
        for (_, present) in self.solution.submissions_by.iter() {
 
            if !*present {
 
                return;
 
            }
 
    fn combine_with_putter_port(&mut self, putter: SyncSolutionPutterPort) -> usize {
 
        let channel_index = self.get_channel_index_for_putter(putter.self_comp_id, putter.self_port_id);
 
        if let Some(channel_index) = channel_index {
 
            let channel = &mut self.solution.channel_mapping[channel_index];
 
            debug_assert!(channel.putter.is_none());
 
            channel.putter = Some(putter);
 

	
 
            return channel_index;
 
        } else {
 
            let channel_index = self.solution.channel_mapping.len();
 
            self.solution.channel_mapping.push(SyncSolutionChannel{
 
                putter: Some(putter),
 
                getter: None,
 
            });
 

	
 
            return channel_index;
 
        }
 
    }
 

	
 
    fn combine_with_getter_port(&mut self, getter: SyncSolutionGetterPort) -> usize {
 
        let channel_index = self.get_channel_index_for_getter(getter.peer_comp_id, getter.peer_port_id);
 
        if let Some(channel_index) = channel_index {
 
            let channel = &mut self.solution.channel_mapping[channel_index];
 
            debug_assert!(channel.getter.is_none());
 
            channel.getter = Some(getter);
 

	
 
            return channel_index;
 
        } else {
 
            let channel_index = self.solution.channel_mapping.len();
 
            self.solution.channel_mapping.push(SyncSolutionChannel{
 
                putter: None,
 
                getter: Some(getter)
 
            });
 

	
 
        self.all_present = true;
 
            return channel_index;
 
        }
 
    }
 

	
 
    /// Retrieve channel index based on a putter port
 
    /// Retrieve index of the channel containing a getter port that has received
 
    /// from the specified putter port.
 
    fn get_channel_index_for_putter(&self, putter_comp_id: CompId, putter_port_id: PortId) -> Option<usize> {
 
        for entry in self.solution.channel_mapping.iter() {
 
        for (channel_index, channel) in self.solution.channel_mapping.iter().enumerate() {
 
            if let Some(getter) = &channel.getter {
 
                if getter.peer_comp_id == putter_comp_id && getter.peer_port_id == putter_port_id {
 
                    return Some(channel_index);
 
                }
 
            }
 
        }
 

	
 
        return None;
 
    }
 

	
 
    /// Retrieve index of the channel for a getter port. To find this channel
 
    /// the **peer** component/port IDs of the getter port are used.
 
    fn get_channel_index_for_getter(&self, peer_comp_id: CompId, peer_port_id: PortId) -> Option<usize> {
 
        for (channel_index, channel) in self.solution.channel_mapping.iter().enumerate() {
 
            if let Some(putter) = &channel.putter {
 
                if putter.self_comp_id == peer_comp_id && putter.self_port_id == peer_port_id {
 
                    return Some(channel_index);
 
                }
 
            }
 
        }
 

	
 
        return None;
 
    }
 

	
 
    fn channel_is_consistent(channel: &SyncSolutionChannel) -> Option<bool> {
 
        if channel.putter.is_none() || channel.getter.is_none() {
 
            return None;
 
        }
 

	
 
        let putter = channel.putter.as_ref().unwrap();
 
        let getter = channel.getter.as_ref().unwrap();
 
        return Some(putter.mapping == getter.mapping);
 
    }
 

	
 
    /// Determines the global solution if all components have contributed their
 
    /// local solutions.
 
    fn update_solution(&mut self) {
 
        if self.matched_channels == self.solution.channel_mapping.len() {
 
            if self.solution.decision != SyncRoundDecision::Failure {
 
                self.solution.decision = SyncRoundDecision::Solution;
 
            }
 
        }
 
    }
 
}
 

	
 
/// Tracking consensus state
 
pub struct Consensus {
 
    // General state of consensus manager
 
    mapping_counter: u32,
 
    mode: Mode,
 
    // State associated with sync round
 
    round_index: u32,
 
    highest_id: CompId,
 
@@ -249,32 +277,40 @@ impl Consensus {
 

	
 
    /// Notifies the consensus management that the PDL code has reached the end
 
    /// of a sync block. A local solution will be submitted, after which we wait
 
    /// until the participants in the round (hopefully) reach a conclusion.
 
    pub(crate) fn notify_sync_end(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx) -> SyncRoundDecision {
 
        debug_assert_eq!(self.mode, Mode::SyncBusy);
 
        self.mode = Mode::SyncAwaitingSolution;
 

	
 
        // Submit our port mapping as a solution
 
        let mut local_solution = Vec::with_capacity(self.ports.len());
 
        for port in &self.ports {
 
            if let Some(mapping) = port.mapping {
 
                let port_info = comp_ctx.get_port(port.id);
 
                local_solution.push(SyncLocalSolutionEntry {
 
                    self_port_id: port.id,
 
                    peer_comp_id: port_info.peer_comp_id,
 
                    peer_port_id: port_info.peer_id,
 
                    mapping,
 
                    port_kind: port_info.kind,
 
                });
 
                let port_info = comp_ctx.get_port(port.self_port_id);
 
                let new_entry = match port_info.kind {
 
                    PortKind::Putter => SyncLocalSolutionEntry::Putter(SyncSolutionPutterPort{
 
                        self_comp_id: comp_ctx.id,
 
                        self_port_id: port_info.self_id,
 
                        mapping
 
                    }),
 
                    PortKind::Getter => SyncLocalSolutionEntry::Getter(SyncSolutionGetterPort{
 
                        self_comp_id: comp_ctx.id,
 
                        self_port_id: port_info.self_id,
 
                        peer_comp_id: port.peer_comp_id,
 
                        peer_port_id: port.peer_port_id,
 
                        mapping
 
                    })
 
                };
 
                local_solution.push(new_entry);
 
            }
 
        }
 

	
 
        let decision = self.handle_local_solution(sched_ctx, comp_ctx, comp_ctx.id, local_solution);
 
        return decision;
 
    }
 

	
 
    /// Notifies that a decision has been reached. Note that the caller should
 
    /// still take the appropriate actions based on the decision it is supplying
 
    /// to the consensus layer.
 
    pub(crate) fn notify_sync_decision(&mut self, _decision: SyncRoundDecision) {
 
        // Reset everything for the next round
 
@@ -287,72 +323,72 @@ impl Consensus {
 
        }
 

	
 
        self.solution.clear();
 
    }
 

	
 
    fn make_ports_consistent_with_ctx(&mut self, comp_ctx: &CompCtx) {
 
        let mut needs_setting_ports = false;
 
        if comp_ctx.ports.len() != self.ports.len() {
 
            needs_setting_ports = true;
 
        } else {
 
            for idx in 0..comp_ctx.ports.len() {
 
                let comp_port_id = comp_ctx.ports[idx].self_id;
 
                let cons_port_id = self.ports[idx].id;
 
                let cons_port_id = self.ports[idx].self_port_id;
 
                if comp_port_id != cons_port_id {
 
                    needs_setting_ports = true;
 
                    break;
 
                }
 
            }
 
        }
 

	
 
        if needs_setting_ports {
 
            self.ports.clear();
 
            self.ports.reserve(comp_ctx.ports.len());
 
            for port in &comp_ctx.ports {
 
                self.ports.push(PortAnnotation::new(port.self_id))
 
                self.ports.push(PortAnnotation::new(comp_ctx.id, port.self_id))
 
            }
 
        }
 
    }
 

	
 
    // -------------------------------------------------------------------------
 
    // Handling inbound and outbound messages
 
    // -------------------------------------------------------------------------
 

	
 
    pub(crate) fn annotate_data_message(&mut self, comp_ctx: &CompCtx, port_info: &Port, content: ValueGroup) -> DataMessage {
 
        debug_assert_eq!(self.mode, Mode::SyncBusy); // can only send between sync start and sync end
 
        debug_assert!(self.ports.iter().any(|v| v.id == port_info.self_id));
 
        debug_assert!(self.ports.iter().any(|v| v.self_port_id == port_info.self_id));
 
        let data_header = self.create_data_header_and_update_mapping(port_info);
 
        let sync_header = self.create_sync_header(comp_ctx);
 

	
 
        return DataMessage{ data_header, sync_header, content };
 
    }
 

	
 
    /// Checks if the data message can be received (due to port annotations), if
 
    /// it can then `true` is returned and the caller is responsible for handing
 
    /// the message of to the PDL code. Otherwise the message cannot be
 
    /// received.
 
    pub(crate) fn try_receive_data_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: &DataMessage) -> bool {
 
        debug_assert_eq!(self.mode, Mode::SyncBusy);
 
        debug_assert!(self.ports.iter().any(|v| v.id == message.data_header.target_port));
 
        debug_assert!(self.ports.iter().any(|v| v.self_port_id == message.data_header.target_port));
 

	
 
        // Make sure the expected mapping matches the currently stored mapping
 
        for (expected_id, expected_annotation) in &message.data_header.expected_mapping {
 
            let got_annotation = self.get_annotation(*expected_id);
 
            if got_annotation != *expected_annotation {
 
                return false;
 
            }
 
        }
 

	
 
        // Expected mapping matches current mapping, so we will receive the message
 
        self.set_annotation(message.data_header.target_port, message.data_header.new_mapping);
 
        self.set_annotation(message.sync_header.sending_id, &message.data_header);
 

	
 
        // Handle the sync header embedded within the data message
 
        self.handle_sync_header(sched_ctx, comp_ctx, &message.sync_header);
 

	
 
        return true;
 
    }
 

	
 
    /// Receives the sync message and updates the consensus state appropriately.
 
    pub(crate) fn receive_sync_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: SyncMessage) -> SyncRoundDecision {
 
        // Whatever happens: handle the sync header (possibly changing the
 
        // currently registered leader)
 
        self.handle_sync_header(sched_ctx, comp_ctx, &message.sync_header);
 
@@ -360,25 +396,24 @@ impl Consensus {
 
        match message.content {
 
            SyncMessageContent::NotificationOfLeader => {
 
                return SyncRoundDecision::None;
 
            },
 
            SyncMessageContent::LocalSolution(solution_generator_id, local_solution) => {
 
                return self.handle_local_solution(sched_ctx, comp_ctx, solution_generator_id, local_solution);
 
            },
 
            SyncMessageContent::PartialSolution(partial_solution) => {
 
                return self.handle_partial_solution(sched_ctx, comp_ctx, partial_solution);
 
            },
 
            SyncMessageContent::GlobalSolution => {
 
                debug_assert_eq!(self.mode, Mode::SyncAwaitingSolution); // leader can only find global- if we submitted local solution
 
                todo!("clear port mapping or something");
 
                return SyncRoundDecision::Solution;
 
            },
 
            SyncMessageContent::GlobalFailure => {
 
                debug_assert_eq!(self.mode, Mode::SyncAwaitingSolution);
 
                return SyncRoundDecision::Failure;
 
            }
 
        }
 
    }
 

	
 
    fn handle_sync_header(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, header: &MessageSyncHeader) {
 
        if header.highest_id.0 > self.highest_id.0 {
 
            // Sender knows of someone with a higher ID. So store highest ID,
 
@@ -401,37 +436,39 @@ impl Consensus {
 
            // Sender has a lower ID, so notify it of our higher one
 
            let message = SyncMessage{
 
                sync_header: self.create_sync_header(comp_ctx),
 
                content: SyncMessageContent::NotificationOfLeader,
 
            };
 
            let peer_info = comp_ctx.get_peer(header.sending_id);
 
            peer_info.handle.send_message(sched_ctx, Message::Sync(message), true);
 
        } // else: exactly equal
 
    }
 

	
 
    fn get_annotation(&self, port_id: PortId) -> Option<u32> {
 
        for annotation in self.ports.iter() {
 
            if annotation.id == port_id {
 
            if annotation.self_port_id == port_id {
 
                return annotation.mapping;
 
            }
 
        }
 

	
 
        debug_assert!(false);
 
        return None;
 
    }
 

	
 
    fn set_annotation(&mut self, port_id: PortId, mapping: u32) {
 
    fn set_annotation(&mut self, source_comp_id: CompId, data_header: &MessageDataHeader) {
 
        for annotation in self.ports.iter_mut() {
 
            if annotation.id == port_id {
 
                annotation.mapping = Some(mapping);
 
            if annotation.self_port_id == data_header.target_port {
 
                annotation.peer_comp_id = source_comp_id;
 
                annotation.peer_port_id = data_header.source_port;
 
                annotation.mapping = Some(data_header.new_mapping);
 
            }
 
        }
 
    }
 

	
 
    // -------------------------------------------------------------------------
 
    // Leader-related methods
 
    // -------------------------------------------------------------------------
 

	
 
    fn forward_partial_solution(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
 
        debug_assert_ne!(self.highest_id, comp_ctx.id); // not leader
 

	
 
        // Make sure that we have something to send
 
@@ -487,30 +524,37 @@ impl Consensus {
 
        }
 
    }
 

	
 
    fn broadcast_decision(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, decision: SyncRoundDecision) {
 
        debug_assert_eq!(self.highest_id, comp_ctx.id);
 

	
 
        let is_success = match decision {
 
            SyncRoundDecision::None => unreachable!(),
 
            SyncRoundDecision::Solution => true,
 
            SyncRoundDecision::Failure => false,
 
        };
 

	
 
        for (peer, _) in self.solution.solution.submissions_by.iter().copied() {
 
            if peer == comp_ctx.id {
 
                // Do not send to ourselves
 
                continue;
 
        let mut peers = Vec::with_capacity(self.solution.solution.channel_mapping.len()); // TODO: @Performance
 

	
 
        for channel in self.solution.solution.channel_mapping.iter() {
 
            let getter = channel.getter.as_ref().unwrap();
 
            if getter.self_comp_id != comp_ctx.id && !peers.contains(&getter.self_comp_id) {
 
                peers.push(getter.self_comp_id);
 
            }
 
            if getter.peer_comp_id != comp_ctx.id && !peers.contains(&getter.peer_comp_id) {
 
                peers.push(getter.peer_comp_id);
 
            }
 
        }
 

	
 
        for peer in peers {
 
            let mut handle = sched_ctx.runtime.get_component_public(peer);
 
            let message = Message::Sync(SyncMessage{
 
                sync_header: self.create_sync_header(comp_ctx),
 
                content: if is_success { SyncMessageContent::GlobalSolution } else { SyncMessageContent::GlobalFailure },
 
            });
 
            handle.send_message(sched_ctx, message, true);
 
            let _should_remove = handle.decrement_users();
 
            debug_assert!(!_should_remove);
 
        }
 
    }
 

	
 
    fn send_to_leader(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, message: Message) {
 
@@ -523,28 +567,28 @@ impl Consensus {
 
            sched_ctx.runtime.destroy_component(key);
 
        }
 
    }
 

	
 
    // -------------------------------------------------------------------------
 
    // Creating message headers
 
    // -------------------------------------------------------------------------
 

	
 
    fn create_data_header_and_update_mapping(&mut self, port_info: &Port) -> MessageDataHeader {
 
        let mut expected_mapping = Vec::with_capacity(self.ports.len());
 
        let mut port_index = usize::MAX;
 
        for (index, port) in self.ports.iter().enumerate() {
 
            if port.id == port_info.self_id {
 
            if port.self_port_id == port_info.self_id {
 
                port_index = index;
 
            }
 
            expected_mapping.push((port.id, port.mapping));
 
            expected_mapping.push((port.self_port_id, port.mapping));
 
        }
 

	
 
        let new_mapping = self.take_mapping();
 
        self.ports[port_index].mapping = Some(new_mapping);
 
        debug_assert_eq!(port_info.kind, PortKind::Putter);
 
        return MessageDataHeader{
 
            expected_mapping,
 
            new_mapping,
 
            source_port: port_info.self_id,
 
            target_port: port_info.peer_id,
 
        };
 
    }
0 comments (0 inline, 0 general)