Changeset - b4a9c41d70da
[Not reviewed]
0 5 1
MH - 4 years ago 2021-05-24 18:28:25
contact@maxhenger.nl
Initial casting implementation

Explicit casts can be performed with the syntax 'cast<type>(input)'
and implicit casts can be performed with the syntax 'cast(input)'
where the output type is determined by inference.

To prevent casting shenanigans we only allow casting of primitive
types and of types to themselves (essentially creating a copy).
6 files changed with 276 insertions and 23 deletions:
0 comments (0 inline, 0 general)
src/protocol/eval/executor.rs
Show inline comments
 
@@ -405,193 +405,201 @@ impl Prompt {
 
                            // Dropping the original subject, because we don't
 
                            // want to drop something on the stack
 
                            self.store.drop_value(subject.get_heap_pos());
 
                        },
 
                        Expression::Select(expr) => {
 
                            let subject= cur_frame.expr_values.pop_back().unwrap();
 
                            let mono_data = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
 
                            let field_idx = mono_data.expr_data[expr.unique_id_in_definition as usize].field_or_monomorph_idx as u32;
 

	
 
                            // Note: same as above: clone if value lives on expr stack, simply
 
                            // refer to it if it already lives on the stack/heap.
 
                            let (deallocate_heap_pos, value_to_push) = match subject {
 
                                Value::Ref(value_ref) => {
 
                                    let subject = self.store.read_ref(value_ref);
 
                                    let subject_heap_pos = subject.as_struct();
 

	
 
                                    (None, Value::Ref(ValueId::Heap(subject_heap_pos, field_idx)))
 
                                },
 
                                _ => {
 
                                    let subject_heap_pos = subject.as_struct();
 
                                    let subject_indexed = Value::Ref(ValueId::Heap(subject_heap_pos, field_idx));
 
                                    (Some(subject_heap_pos), self.store.clone_value(subject_indexed))
 
                                },
 
                            };
 

	
 
                            cur_frame.expr_values.push_back(value_to_push);
 
                            self.store.drop_value(deallocate_heap_pos);
 
                        },
 
                        Expression::Literal(expr) => {
 
                            let value = match &expr.value {
 
                                Literal::Null => Value::Null,
 
                                Literal::True => Value::Bool(true),
 
                                Literal::False => Value::Bool(false),
 
                                Literal::Character(lit_value) => Value::Char(*lit_value),
 
                                Literal::String(lit_value) => {
 
                                    let heap_pos = self.store.alloc_heap();
 
                                    let values = &mut self.store.heap_regions[heap_pos as usize].values;
 
                                    let value = lit_value.as_str();
 
                                    debug_assert!(values.is_empty());
 
                                    values.reserve(value.len());
 
                                    for character in value.as_bytes() {
 
                                        debug_assert!(character.is_ascii());
 
                                        values.push(Value::Char(*character as char));
 
                                    }
 
                                    Value::String(heap_pos)
 
                                }
 
                                Literal::Integer(lit_value) => {
 
                                    use ConcreteTypePart as CTP;
 
                                    let def_types = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
 
                                    let concrete_type = &def_types.expr_data[expr.unique_id_in_definition as usize].expr_type;
 

	
 
                                    debug_assert_eq!(concrete_type.parts.len(), 1);
 
                                    match concrete_type.parts[0] {
 
                                        CTP::UInt8  => Value::UInt8(lit_value.unsigned_value as u8),
 
                                        CTP::UInt16 => Value::UInt16(lit_value.unsigned_value as u16),
 
                                        CTP::UInt32 => Value::UInt32(lit_value.unsigned_value as u32),
 
                                        CTP::UInt64 => Value::UInt64(lit_value.unsigned_value as u64),
 
                                        CTP::SInt8  => Value::SInt8(lit_value.unsigned_value as i8),
 
                                        CTP::SInt16 => Value::SInt16(lit_value.unsigned_value as i16),
 
                                        CTP::SInt32 => Value::SInt32(lit_value.unsigned_value as i32),
 
                                        CTP::SInt64 => Value::SInt64(lit_value.unsigned_value as i64),
 
                                        _ => unreachable!("got concrete type {:?} for integer literal at expr {:?}", concrete_type, expr_id),
 
                                    }
 
                                }
 
                                Literal::Struct(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.fields.len()
 
                                    );
 
                                    Value::Struct(heap_pos)
 
                                }
 
                                Literal::Enum(lit_value) => {
 
                                    Value::Enum(lit_value.variant_idx as i64)
 
                                }
 
                                Literal::Union(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.values.len()
 
                                    );
 
                                    Value::Union(lit_value.variant_idx as i64, heap_pos)
 
                                }
 
                                Literal::Array(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.len()
 
                                    );
 
                                    Value::Array(heap_pos)
 
                                }
 
                            };
 

	
 
                            cur_frame.expr_values.push_back(value);
 
                        },
 
                        Expression::Cast(expr) => {
 
                            let mono_data = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
 
                            let output_type = &mono_data.expr_data[expr.unique_id_in_definition as usize].expr_type;
 

	
 
                            // Typechecking reduced this to two cases: either we
 
                            // have casting noop (same types), or we're casting
 
                            // between integer/bool/char types.
 
                            let subject = cur_frame.expr_values.pop_back().unwrap();
 
                            match apply_casting(&mut self.store, output_type, &subject) {
 
                                Ok(value) => cur_frame.expr_values.push_back(value),
 
                                Err(msg) => {
 
                                    return Err(EvalError::new_error_at_expr(self, modules, heap, expr.this.upcast(), msg));
 
                                }
 
                            }
 

	
 
                            self.store.drop_value(subject.get_heap_pos());
 
                        }
 
                        Expression::Call(expr) => {
 
                            // Push a new frame. Note that all expressions have
 
                            // been pushed to the front, so they're in the order
 
                            // of the definition.
 
                            let num_args = expr.arguments.len();
 

	
 
                            // Determine stack boundaries
 
                            let cur_stack_boundary = self.store.cur_stack_boundary;
 
                            let new_stack_boundary = self.store.stack.len();
 

	
 
                            // Push new boundary and function arguments for new frame
 
                            self.store.stack.push(Value::PrevStackBoundary(cur_stack_boundary as isize));
 
                            for _ in 0..num_args {
 
                                let argument = self.store.read_take_ownership(cur_frame.expr_values.pop_front().unwrap());
 
                                self.store.stack.push(argument);
 
                            }
 

	
 
                            // Determine the monomorph index of the function we're calling
 
                            let mono_data = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
 
                            let call_data = &mono_data.expr_data[expr.unique_id_in_definition as usize];
 

	
 
                            // Push the new frame
 
                            self.frames.push(Frame::new(heap, expr.definition, call_data.field_or_monomorph_idx));
 
                            self.store.cur_stack_boundary = new_stack_boundary;
 

	
 
                            // To simplify the logic a little bit we will now
 
                            // return and ask our caller to call us again
 
                            return Ok(EvalContinuation::Stepping);
 
                        },
 
                        Expression::Variable(expr) => {
 
                            let variable = &heap[expr.declaration.unwrap()];
 
                            cur_frame.expr_values.push_back(Value::Ref(ValueId::Stack(variable.unique_id_in_scope as StackPos)));
 
                        }
 
                    }
 
                }
 
            }
 
        }
 

	
 
        debug_log!("Frame [{:?}] at {:?}, stack size = {}", cur_frame.definition, cur_frame.position, self.store.stack.len());
 
        if debug_enabled!() {
 
            debug_log!("Stack:");
 
            for (stack_idx, stack_val) in self.store.stack.iter().enumerate() {
 
                debug_log!("  [{:03}] {:?}", stack_idx, stack_val);
 
            }
 

	
 
            debug_log!("Heap:");
 
            for (heap_idx, heap_region) in self.store.heap_regions.iter().enumerate() {
 
                let is_free = self.store.free_regions.iter().any(|idx| *idx as usize == heap_idx);
 
                debug_log!("  [{:03}] in_use: {}, len: {}, vals: {:?}", heap_idx, !is_free, heap_region.values.len(), &heap_region.values);
 
            }
 
        }
 
        // No (more) expressions to evaluate. So evaluate statement (that may
 
        // depend on the result on the last evaluated expression(s))
 
        let stmt = &heap[cur_frame.position];
 
        let return_value = match stmt {
 
            Statement::Block(stmt) => {
 
                // Reserve space on stack, but also make sure excess stack space
 
                // is cleared
 
                self.store.clear_stack(stmt.first_unique_id_in_scope as usize);
 
                self.store.reserve_stack(stmt.next_unique_id_in_scope as usize);
 
                cur_frame.position = stmt.statements[0];
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndBlock(stmt) => {
 
                let block = &heap[stmt.start_block];
 
                self.store.clear_stack(block.first_unique_id_in_scope as usize);
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Local(stmt) => {
 
                match stmt {
 
                    LocalStatement::Memory(stmt) => {
 
                        let variable = &heap[stmt.variable];
 
                        self.store.write(ValueId::Stack(variable.unique_id_in_scope as u32), Value::Unassigned);
 

	
 
                        cur_frame.position = stmt.next;
 
                    },
 
                    LocalStatement::Channel(stmt) => {
 
                        let [from_value, to_value] = ctx.new_channel();
 
                        self.store.write(ValueId::Stack(heap[stmt.from].unique_id_in_scope as u32), from_value);
 
                        self.store.write(ValueId::Stack(heap[stmt.to].unique_id_in_scope as u32), to_value);
 

	
 
                        cur_frame.position = stmt.next;
 
                    }
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Labeled(stmt) => {
 
                cur_frame.position = stmt.body;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
src/protocol/eval/value.rs
Show inline comments
 

	
 
use super::store::*;
 
use crate::PortId;
 
use crate::protocol::ast::{
 
    AssignmentOperator,
 
    BinaryOperator,
 
    UnaryOperator,
 
    ConcreteType,
 
    ConcreteTypePart,
 
};
 
use crate::protocol::parser::token_parsing::*;
 

	
 
pub type StackPos = u32;
 
pub type HeapPos = u32;
 

	
 
#[derive(Debug, Copy, Clone)]
 
pub enum ValueId {
 
    Stack(StackPos), // place on stack
 
    Heap(HeapPos, u32), // allocated region + values within that region
 
}
 

	
 
/// Represents a value stored on the stack or on the heap. Some values contain
 
/// a `HeapPos`, implying that they're stored in the store's `Heap`. Clearing
 
/// a `Value` with a `HeapPos` from a stack must also clear the associated
 
/// region from the `Heap`.
 
#[derive(Debug, Clone)]
 
pub enum Value {
 
    // Special types, never encountered during evaluation if the compiler works correctly
 
    Unassigned,                 // Marker when variables are first declared, immediately followed by assignment
 
    PrevStackBoundary(isize),   // Marker for stack frame beginning, so we can pop stack values
 
    Ref(ValueId),               // Reference to a value, used by expressions producing references
 
    // Builtin types
 
    Input(PortId),
 
    Output(PortId),
 
    Message(HeapPos),
 
    Null,
 
    Bool(bool),
 
    Char(char),
 
    String(HeapPos),
 
    UInt8(u8),
 
    UInt16(u16),
 
    UInt32(u32),
 
    UInt64(u64),
 
    SInt8(i8),
 
    SInt16(i16),
 
    SInt32(i32),
 
    SInt64(i64),
 
    Array(HeapPos),
 
    // Instances of user-defined types
 
    Enum(i64),
 
    Union(i64, HeapPos),
 
    Struct(HeapPos),
 
}
 

	
 
macro_rules! impl_union_unpack_as_value {
 
    ($func_name:ident, $variant_name:path, $return_type:ty) => {
 
        impl Value {
 
            pub(crate) fn $func_name(&self) -> $return_type {
 
                match self {
 
                    $variant_name(v) => *v,
 
                    _ => panic!(concat!("called ", stringify!($func_name()), " on {:?}"), self),
 
                }
 
            }
 
        }
 
    }
 
}
 

	
 
impl_union_unpack_as_value!(as_stack_boundary, Value::PrevStackBoundary, isize);
 
impl_union_unpack_as_value!(as_ref,     Value::Ref,     ValueId);
 
impl_union_unpack_as_value!(as_input,   Value::Input,   PortId);
 
impl_union_unpack_as_value!(as_output,  Value::Output,  PortId);
 
impl_union_unpack_as_value!(as_message, Value::Message, HeapPos);
 
impl_union_unpack_as_value!(as_bool,    Value::Bool,    bool);
 
impl_union_unpack_as_value!(as_char,    Value::Char,    char);
 
impl_union_unpack_as_value!(as_string,  Value::String,  HeapPos);
 
impl_union_unpack_as_value!(as_uint8,   Value::UInt8,   u8);
 
impl_union_unpack_as_value!(as_uint16,  Value::UInt16,  u16);
 
impl_union_unpack_as_value!(as_uint32,  Value::UInt32,  u32);
 
impl_union_unpack_as_value!(as_uint64,  Value::UInt64,  u64);
 
impl_union_unpack_as_value!(as_sint8,   Value::SInt8,   i8);
 
impl_union_unpack_as_value!(as_sint16,  Value::SInt16,  i16);
 
impl_union_unpack_as_value!(as_sint32,  Value::SInt32,  i32);
 
impl_union_unpack_as_value!(as_sint64,  Value::SInt64,  i64);
 
impl_union_unpack_as_value!(as_array,   Value::Array,   HeapPos);
 
impl_union_unpack_as_value!(as_enum,    Value::Enum,    i64);
 
impl_union_unpack_as_value!(as_struct,  Value::Struct,  HeapPos);
 

	
 
impl Value {
 
    pub(crate) fn as_union(&self) -> (i64, HeapPos) {
 
        match self {
 
            Value::Union(tag, v) => (*tag, *v),
 
            _ => panic!("called as_union on {:?}", self),
 
        }
 
    }
 

	
 
    pub(crate) fn is_integer(&self) -> bool {
 
        match self {
 
            Value::UInt8(_) | Value::UInt16(_) | Value::UInt32(_) | Value::UInt64(_) |
 
            Value::SInt8(_) | Value::SInt16(_) | Value::SInt32(_) | Value::SInt64(_) => true,
 
            _ => false
 
        }
 
    }
 

	
 
    pub(crate) fn is_unsigned_integer(&self) -> bool {
 
        match self {
 
            Value::UInt8(_) | Value::UInt16(_) | Value::UInt32(_) | Value::UInt64(_) => true,
 
            _ => false
 
@@ -404,240 +405,397 @@ pub(crate) fn apply_binary_operator(store: &mut Store, lhs: &Value, op: BinaryOp
 
        let rhs_len = store.heap_regions[rhs_heap_pos].values.len();
 
        concatenated.reserve(lhs_len + rhs_len);
 
        for idx in 0..lhs_len {
 
            concatenated.push(store.clone_value(store.heap_regions[lhs_heap_pos].values[idx].clone()));
 
        }
 
        for idx in 0..rhs_len {
 
            concatenated.push(store.clone_value(store.heap_regions[rhs_heap_pos].values[idx].clone()));
 
        }
 

	
 
        store.heap_regions[target_heap_pos as usize].values = concatenated;
 

	
 
        return match value_kind{
 
            ValueKind::Message => Value::Message(target_heap_pos),
 
            ValueKind::String => Value::String(target_heap_pos),
 
            ValueKind::Array => Value::Array(target_heap_pos),
 
        };
 
    }
 

	
 
    // If any of the values are references, retrieve the thing they're referring
 
    // to.
 
    let lhs = store.maybe_read_ref(lhs);
 
    let rhs = store.maybe_read_ref(rhs);
 

	
 
    match op {
 
        BO::Concatenate => unreachable!(),
 
        BO::LogicalOr => {
 
            return Value::Bool(lhs.as_bool() || rhs.as_bool());
 
        },
 
        BO::LogicalAnd => {
 
            return Value::Bool(lhs.as_bool() && rhs.as_bool());
 
        },
 
        BO::BitwiseOr        => { apply_int_op_and_return_self!(lhs, |,  op, rhs); },
 
        BO::BitwiseXor       => { apply_int_op_and_return_self!(lhs, ^,  op, rhs); },
 
        BO::BitwiseAnd       => { apply_int_op_and_return_self!(lhs, &,  op, rhs); },
 
        BO::Equality         => { Value::Bool(apply_equality_operator(store, lhs, rhs)) },
 
        BO::Inequality       => { Value::Bool(apply_inequality_operator(store, lhs, rhs)) },
 
        BO::LessThan         => { apply_int_op_and_return_bool!(lhs, <,  op, rhs); },
 
        BO::GreaterThan      => { apply_int_op_and_return_bool!(lhs, >,  op, rhs); },
 
        BO::LessThanEqual    => { apply_int_op_and_return_bool!(lhs, <=, op, rhs); },
 
        BO::GreaterThanEqual => { apply_int_op_and_return_bool!(lhs, >=, op, rhs); },
 
        BO::ShiftLeft        => { apply_int_op_and_return_self!(lhs, <<, op, rhs); },
 
        BO::ShiftRight       => { apply_int_op_and_return_self!(lhs, >>, op, rhs); },
 
        BO::Add              => { apply_int_op_and_return_self!(lhs, +,  op, rhs); },
 
        BO::Subtract         => { apply_int_op_and_return_self!(lhs, -,  op, rhs); },
 
        BO::Multiply         => { apply_int_op_and_return_self!(lhs, *,  op, rhs); },
 
        BO::Divide           => { apply_int_op_and_return_self!(lhs, /,  op, rhs); },
 
        BO::Remainder        => { apply_int_op_and_return_self!(lhs, %,  op, rhs); }
 
    }
 
}
 

	
 
pub(crate) fn apply_unary_operator(store: &mut Store, op: UnaryOperator, value: &Value) -> Value {
 
    use UnaryOperator as UO;
 

	
 
    macro_rules! apply_int_expr_and_return {
 
        ($value:ident, $apply:tt, $op:ident) => {
 
            return match $value {
 
                Value::UInt8(v)  => Value::UInt8($apply *v),
 
                Value::UInt16(v) => Value::UInt16($apply *v),
 
                Value::UInt32(v) => Value::UInt32($apply *v),
 
                Value::UInt64(v) => Value::UInt64($apply *v),
 
                Value::SInt8(v)  => Value::SInt8($apply *v),
 
                Value::SInt16(v) => Value::SInt16($apply *v),
 
                Value::SInt32(v) => Value::SInt32($apply *v),
 
                Value::SInt64(v) => Value::SInt64($apply *v),
 
                _ => unreachable!("apply_unary_operator {:?} on value {:?}", $op, $value),
 
            };
 
        }
 
    }
 

	
 
    // If the value is a reference, retrieve the thing it is referring to
 
    let value = store.maybe_read_ref(value);
 

	
 
    match op {
 
        UO::Positive => {
 
            debug_assert!(value.is_integer());
 
            return value.clone();
 
        },
 
        UO::Negative => {
 
            // TODO: Error on negating unsigned integers
 
            return match value {
 
                Value::SInt8(v) => Value::SInt8(-*v),
 
                Value::SInt16(v) => Value::SInt16(-*v),
 
                Value::SInt32(v) => Value::SInt32(-*v),
 
                Value::SInt64(v) => Value::SInt64(-*v),
 
                _ => unreachable!("apply_unary_operator {:?} on value {:?}", op, value),
 
            }
 
        },
 
        UO::BitwiseNot => { apply_int_expr_and_return!(value, !, op)},
 
        UO::LogicalNot => { return Value::Bool(!value.as_bool()); },
 
        UO::PreIncrement => { todo!("implement") },
 
        UO::PreDecrement => { todo!("implement") },
 
        UO::PostIncrement => { todo!("implement") },
 
        UO::PostDecrement => { todo!("implement") },
 
    }
 
}
 

	
 
pub(crate) fn apply_casting(store: &mut Store, output_type: &ConcreteType, subject: &Value) -> Value {
 
pub(crate) fn apply_casting(store: &mut Store, output_type: &ConcreteType, subject: &Value) -> Result<Value, String> {
 
    // To simplify the casting logic: if the output type is not a simple
 
    // integer/boolean/character, then the type checker made sure that the two
 
    // types must be equal, hence we can do a simple clone.
 
    use ConcreteTypePart as CTP;
 
    let part = &output_type.parts[0];
 
    if output_type.parts.len() > 1 || (
 
        part != CTP::Bool &&
 
        part != CTP::Character &&
 
        part != CTP::UInt8 && part != CTP::UInt16 && part != CTP::UInt32 && part != CTP::UInt64 &&
 
        part != CTP::SInt8 && part != CTP::SInt16 && part != CTP::SInt32 && part != CTP::SInt64
 
    ) {
 
        // Complex thingamajig
 
        return store.clone_value(subject.clone());
 
    match part {
 
        CTP::Bool | CTP::Character |
 
        CTP::UInt8 | CTP::UInt16 | CTP::UInt32 | CTP::UInt64 |
 
        CTP::SInt8 | CTP::SInt16 | CTP::SInt32 | CTP::SInt64 => {
 
            // Do the checking of these below
 
            debug_assert_eq!(output_type.parts.len(), 1);
 
        },
 
        _ => {
 
            return Ok(store.clone_value(subject.clone()));
 
        },
 
    }
 

	
 
    // Note: character is not included, needs per-type checking
 
    macro_rules! unchecked_cast {
 
        ($input: expr, $output_part: expr) => {
 
            match $output_part {
 
                CTP::Bool => Value::Bool($input as bool),
 
                CTP::Character => Value::Char($input as char),
 
            return Ok(match $output_part {
 
                CTP::UInt8 => Value::UInt8($input as u8),
 
                CTP::UInt16 => Value::UInt16($input as u16),
 
                CTP::UInt32 => Value::UInt32($input as u32),
 
                CTP::UInt64 => Value::UInt64($input as u64),
 
                CTP::SInt8 => Value::SInt8($input as i8),
 
                CTP::SInt16 => Value::SInt16($input as i16),
 
                CTP::SInt32 => Value::SInt32($input as i32),
 
                CTP::SInt64 => Value::SInt64($input as i64),
 
                _ => unreachable!()
 
            }
 
            })
 
        }
 
    };
 

	
 
    macro_rules! from_unsigned_cast {
 
        ($input:expr, $input_type:ty, $output_part:expr) => {
 
            {
 
                let target_type_name = match $output_part {
 
                    CTP::Bool => return Ok(Value::Bool($input != 0)),
 
                    CTP::Character => if $input <= u8::MAX as $input_type {
 
                        return Ok(Value::Char(($input as u8) as char))
 
                    } else {
 
                        KW_TYPE_CHAR_STR
 
                    },
 
                    CTP::UInt8 => if $input <= u8::MAX as $input_type {
 
                        return Ok(Value::UInt8($input as u8))
 
                    } else {
 
                        KW_TYPE_UINT8_STR
 
                    },
 
                    CTP::UInt16 => if $input <= u16::MAX as $input_type {
 
                        return Ok(Value::UInt16($input as u16))
 
                    } else {
 
                        KW_TYPE_UINT16_STR
 
                    },
 
                    CTP::UInt32 => if $input <= u32::MAX as $input_type {
 
                        return Ok(Value::UInt32($input as u32))
 
                    } else {
 
                        KW_TYPE_UINT32_STR
 
                    },
 
                    CTP::UInt64 => return Ok(Value::UInt64($input as u64)), // any unsigned int to u64 is fine
 
                    CTP::SInt8 => if $input <= i8::MAX as $input_type {
 
                        return Ok(Value::SInt8($input as i8))
 
                    } else {
 
                        KW_TYPE_SINT8_STR
 
                    },
 
                    CTP::SInt16 => if $input <= i16::MAX as $input_type {
 
                        return Ok(Value::SInt16($input as i16))
 
                    } else {
 
                        KW_TYPE_SINT16_STR
 
                    },
 
                    CTP::SInt32 => if $input <= i32::MAX as $input_type {
 
                        return Ok(Value::SInt32($input as i32))
 
                    } else {
 
                        KW_TYPE_SINT32_STR
 
                    },
 
                    CTP::SInt64 => if $input <= i64::MAX as $input_type {
 
                        return Ok(Value::SInt64($input as i64))
 
                    } else {
 
                        KW_TYPE_SINT64_STR
 
                    },
 
                    _ => unreachable!(),
 
                };
 

	
 
                return Err(format!("value is '{}' which doesn't fit in a type '{}'", $input, target_type_name));
 
            }
 
        }
 
    }
 

	
 
    macro_rules! from_signed_cast {
 
        // Programmer note: for signed checking we cannot do
 
        //  output_type::MAX as input_type,
 
        //
 
        // because if the output type's width is larger than the input type,
 
        // then the cast results in a negative number. So we mask with the
 
        // maximum possible value the input type can become. As in:
 
        //  (output_type::MAX as input_type) & input_type::MAX
 
        //
 
        // This way:
 
        // 1. output width is larger than input width: fine in all cases, we
 
        //  simply compare against the max input value, which is always true.
 
        // 2. output width is equal to input width: by masking we "remove the
 
        //  signed bit from the unsigned number" and again compare against the
 
        //  maximum input value.
 
        // 3. output width is smaller than the input width: masking does nothing
 
        //  because the signed bit is never set, and we simply compare against
 
        //  the maximum possible output value.
 
        //
 
        // A similar kind of mechanism for the minimum value, but here we do
 
        // a binary OR. We do a:
 
        //  (output_type::MIN as input_type) & input_type::MIN
 
        //
 
        // This way:
 
        // 1. output width is larger than input width: initial cast truncates to
 
        //  0, then we OR with the actual minimum value, so we attain the
 
        //  minimum value of the input type.
 
        // 2. output width is equal to input width: we OR the minimum value with
 
        //  itself.
 
        // 3. output width is smaller than input width: the cast produces the
 
        //  min value of the output type, the subsequent OR does nothing, as it
 
        //  essentially just sets the signed bit (which must already be set,
 
        //  since we're dealing with a signed minimum value)
 
        //
 
        // After all of this expanding, we simply hope the compiler does a best
 
        // effort constant expression evaluation, and presto!
 
        ($input:expr, $input_type:ty, $output_type:expr) => {
 
            {
 
                let target_type_name = match $output_type {
 
                    CTP::Bool => return Ok(Value::Bool($input != 0)),
 
                    CTP::Character => if $input >= 0 && $input <= (u8::max as $input_type & <$input_type>::MAX) {
 
                        return Ok(Value::Char(($input as u8) as char))
 
                    } else {
 
                        KW_TYPE_CHAR_STR
 
                    },
 
                    CTP::UInt8 => if $input >= 0 && $input <= ((u8::MAX as $input_type) & <$input_type>::MAX) {
 
                        return Ok(Value::UInt8($input as u8));
 
                    } else {
 
                        KW_TYPE_UINT8_STR
 
                    },
 
                    CTP::UInt16 => if $input >= 0 && $input <= ((u16::MAX as $input_type) & <$input_type>::MAX) {
 
                        return Ok(Value::UInt16($input as u16));
 
                    } else {
 
                        KW_TYPE_UINT16_STR
 
                    },
 
                    CTP::UInt32 => if $input >= 0 && $input <= ((u32::MAX as $input_type) & <$input_type>::MAX) {
 
                        return Ok(Value::UInt32($input as u32));
 
                    } else {
 
                        KW_TYPE_UINT32_STR
 
                    },
 
                    CTP::UInt64 => if $input >= 0 && $input <= ((u64::MAX as $input_type) & <$input_type>::MAX) {
 
                        return Ok(Value::UInt64($input as u64));
 
                    } else {
 
                        KW_TYPE_UINT64_STR
 
                    },
 
                    CTP::SInt8 => if $input >= ((i8::MIN as $input_type) | <$input_type>::MIN) && $input <= ((i8::MAX as $input_type) & <$input_type>::MAX) {
 
                        return Ok(Value::SInt8($input as i8));
 
                    } else {
 
                        KW_TYPE_SINT8_STR
 
                    },
 
                    CTP::SInt16 => if $input >= ((i16::MIN as $input_type | <$input_type>::MIN)) && $input <= ((i16::MAX as $input_type) & <$input_type>::MAX) {
 
                        return Ok(Value::SInt16($input as i16));
 
                    } else {
 
                        KW_TYPE_SINT16_STR
 
                    },
 
                    CTP::SInt32 => if $input >= ((i32::MIN as $input_type | <$input_type>::MIN)) && $input <= ((i32::MAX as $input_type) & <$input_type>::MAX) {
 
                        return Ok(Value::SInt32($input as i32));
 
                    } else {
 
                        KW_TYPE_SINT32_STR
 
                    },
 
                    CTP::SInt64 => return Ok(Value::SInt64($input as i64)),
 
                    _ => unreachable!(),
 
                };
 

	
 
                return Err(format!("value is '{}' which doesn't fit in a type '{}'", $input, target_type_name));
 
            }
 
        }
 
    }
 

	
 
    // If here, then the types might still be equal, but at least we're dealing
 
    // with a simple integer/boolean/character input and output type.
 
    let subject = store.maybe_read_ref(subject);
 
    match subject {
 
        Value::Bool(val) => unchecked_cast!(*val, part),
 
        Value::Char(val) => unchecked_cast!(*val, part),
 
        Value::UInt8(val) => {},
 
        Value::UInt16(val) => {},
 
        Value::UInt32(val) => {},
 
        Value::UInt64(val) => {},
 
        Value::SInt8(val) => {},
 
        Value::SInt16(val) => {},
 
        Value::SInt32(val) => {},
 
        Value::SInt64(val) => {},
 
        Value::Bool(val) => {
 
            match part {
 
                CTP::Bool => return Ok(Value::Bool(*val)),
 
                CTP::Character => return Ok(Value::Char(1 as char)),
 
                _ => unchecked_cast!(*val, part),
 
            }
 
        },
 
        Value::Char(val) => {
 
            match part {
 
                CTP::Bool => return Ok(Value::Bool(*val != 0 as char)),
 
                CTP::Character => return Ok(Value::Char(*val)),
 
                _ => unchecked_cast!(*val, part),
 
            }
 
        },
 
        Value::UInt8(val) => from_unsigned_cast!(*val, u8, part),
 
        Value::UInt16(val) => from_unsigned_cast!(*val, u16, part),
 
        Value::UInt32(val) => from_unsigned_cast!(*val, u32, part),
 
        Value::UInt64(val) => from_unsigned_cast!(*val, u64, part),
 
        Value::SInt8(val) => from_signed_cast!(*val, i8, part),
 
        Value::SInt16(val) => from_signed_cast!(*val, i16, part),
 
        Value::SInt32(val) => from_signed_cast!(*val, i32, part),
 
        Value::SInt64(val) => from_signed_cast!(*val, i64, part),
 
        _ => unreachable!("mismatch between 'cast' type checking and 'cast' evaluation"),
 
    }
 
}
 

	
 
pub(crate) fn apply_equality_operator(store: &Store, lhs: &Value, rhs: &Value) -> bool {
 
    let lhs = store.maybe_read_ref(lhs);
 
    let rhs = store.maybe_read_ref(rhs);
 

	
 
    fn eval_equality_heap(store: &Store, lhs_pos: HeapPos, rhs_pos: HeapPos) -> bool {
 
        let lhs_vals = &store.heap_regions[lhs_pos as usize].values;
 
        let rhs_vals = &store.heap_regions[rhs_pos as usize].values;
 
        let lhs_len = lhs_vals.len();
 
        if lhs_len != rhs_vals.len() {
 
            return false;
 
        }
 

	
 
        for idx in 0..lhs_len {
 
            let lhs_val = &lhs_vals[idx];
 
            let rhs_val = &rhs_vals[idx];
 
            if !apply_equality_operator(store, lhs_val, rhs_val) {
 
                return false;
 
            }
 
        }
 

	
 
        return true;
 
    }
 

	
 
    match lhs {
 
        Value::Input(v) => *v == rhs.as_input(),
 
        Value::Output(v) => *v == rhs.as_output(),
 
        Value::Message(lhs_pos) => eval_equality_heap(store, *lhs_pos, rhs.as_message()),
 
        Value::Null => todo!("remove null"),
 
        Value::Bool(v) => *v == rhs.as_bool(),
 
        Value::Char(v) => *v == rhs.as_char(),
 
        Value::String(lhs_pos) => eval_equality_heap(store, *lhs_pos, rhs.as_string()),
 
        Value::UInt8(v) => *v == rhs.as_uint8(),
 
        Value::UInt16(v) => *v == rhs.as_uint16(),
 
        Value::UInt32(v) => *v == rhs.as_uint32(),
 
        Value::UInt64(v) => *v == rhs.as_uint64(),
 
        Value::SInt8(v) => *v == rhs.as_sint8(),
 
        Value::SInt16(v) => *v == rhs.as_sint16(),
 
        Value::SInt32(v) => *v == rhs.as_sint32(),
 
        Value::SInt64(v) => *v == rhs.as_sint64(),
 
        Value::Array(lhs_pos) => eval_equality_heap(store, *lhs_pos, rhs.as_array()),
 
        Value::Enum(v) => *v == rhs.as_enum(),
 
        Value::Union(lhs_tag, lhs_pos) => {
 
            let (rhs_tag, rhs_pos) = rhs.as_union();
 
            if *lhs_tag != rhs_tag {
 
                return false;
 
            }
 
            eval_equality_heap(store, *lhs_pos, rhs_pos)
 
        },
 
        Value::Struct(lhs_pos) => eval_equality_heap(store, *lhs_pos, rhs.as_struct()),
 
        _ => unreachable!("apply_equality_operator to lhs {:?}", lhs),
 
    }
 
}
 

	
 
pub(crate) fn apply_inequality_operator(store: &Store, lhs: &Value, rhs: &Value) -> bool {
 
    let lhs = store.maybe_read_ref(lhs);
 
    let rhs = store.maybe_read_ref(rhs);
 

	
 
    fn eval_inequality_heap(store: &Store, lhs_pos: HeapPos, rhs_pos: HeapPos) -> bool {
 
        let lhs_vals = &store.heap_regions[lhs_pos as usize].values;
 
        let rhs_vals = &store.heap_regions[rhs_pos as usize].values;
 
        let lhs_len = lhs_vals.len();
 
        if lhs_len != rhs_vals.len() {
 
            return true;
 
        }
 

	
 
        for idx in 0..lhs_len {
 
            let lhs_val = &lhs_vals[idx];
 
            let rhs_val = &rhs_vals[idx];
 
            if apply_inequality_operator(store, lhs_val, rhs_val) {
 
                return true;
 
            }
 
        }
 

	
 
        return false;
 
    }
 

	
 
    match lhs {
 
        Value::Input(v) => *v != rhs.as_input(),
 
        Value::Output(v) => *v != rhs.as_output(),
 
        Value::Message(lhs_pos) => eval_inequality_heap(store, *lhs_pos, rhs.as_message()),
 
        Value::Null => todo!("remove null"),
 
        Value::Bool(v) => *v != rhs.as_bool(),
 
        Value::Char(v) => *v != rhs.as_char(),
 
        Value::String(lhs_pos) => eval_inequality_heap(store, *lhs_pos, rhs.as_string()),
 
        Value::UInt8(v) => *v != rhs.as_uint8(),
 
        Value::UInt16(v) => *v != rhs.as_uint16(),
 
        Value::UInt32(v) => *v != rhs.as_uint32(),
 
        Value::UInt64(v) => *v != rhs.as_uint64(),
 
        Value::SInt8(v) => *v != rhs.as_sint8(),
 
        Value::SInt16(v) => *v != rhs.as_sint16(),
 
        Value::SInt32(v) => *v != rhs.as_sint32(),
 
        Value::SInt64(v) => *v != rhs.as_sint64(),
 
        Value::Enum(v) => *v != rhs.as_enum(),
src/protocol/parser/pass_definitions.rs
Show inline comments
 
@@ -1542,192 +1542,196 @@ impl PassDefinitions {
 
    #[inline]
 
    fn consume_generic_binary_expression<
 
        M: Fn(Option<TokenKind>) -> Option<BinaryOperator>,
 
        F: Fn(&mut PassDefinitions, &Module, &mut TokenIter, &mut PassCtx) -> Result<ExpressionId, ParseError>
 
    >(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx, match_fn: M, higher_precedence_fn: F
 
    ) -> Result<ExpressionId, ParseError> {
 
        let mut result = higher_precedence_fn(self, module, iter, ctx)?;
 
        while let Some(operation) = match_fn(iter.next()) {
 
            let span = iter.next_span();
 
            iter.consume();
 

	
 
            let left = result;
 
            let right = higher_precedence_fn(self, module, iter, ctx)?;
 

	
 
            result = ctx.heap.alloc_binary_expression(|this| BinaryExpression{
 
                this, span, left, operation, right,
 
                parent: ExpressionParent::None,
 
                unique_id_in_definition: -1,
 
            }).upcast();
 
        }
 

	
 
        Ok(result)
 
    }
 

	
 
    #[inline]
 
    fn consume_expression_list(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx, end_pos: Option<&mut InputPosition>
 
    ) -> Result<Vec<ExpressionId>, ParseError> {
 
        let mut section = self.expressions.start_section();
 
        consume_comma_separated(
 
            TokenKind::OpenParen, TokenKind::CloseParen, &module.source, iter, ctx,
 
            |_source, iter, ctx| self.consume_expression(module, iter, ctx),
 
            &mut section, "an expression", "a list of expressions", end_pos
 
        )?;
 
        Ok(section.into_vec())
 
    }
 
}
 

	
 
/// Consumes a type. A type always starts with an identifier which may indicate
 
/// a builtin type or a user-defined type. The fact that it may contain
 
/// polymorphic arguments makes it a tree-like structure. Because we cannot rely
 
/// on knowing the exact number of polymorphic arguments we do not check for
 
/// these.
 
///
 
/// Note that the first depth index is used as a hack.
 
// TODO: @Optimize, @Span fix, @Cleanup
 
fn consume_parser_type(
 
    source: &InputSource, iter: &mut TokenIter, symbols: &SymbolTable, heap: &Heap, poly_vars: &[Identifier],
 
    cur_scope: SymbolScope, wrapping_definition: DefinitionId, allow_inference: bool, first_angle_depth: i32,
 
) -> Result<ParserType, ParseError> {
 
    struct Entry{
 
        element: ParserTypeElement,
 
        depth: i32,
 
    }
 

	
 
    // After parsing the array modified "[]", we need to insert an array type
 
    // before the most recently parsed type.
 
    fn insert_array_before(elements: &mut Vec<Entry>, depth: i32, span: InputSpan) {
 
        let index = elements.iter().rposition(|e| e.depth == depth).unwrap();
 
        elements.insert(index, Entry{
 
            element: ParserTypeElement{ full_span: span, variant: ParserTypeVariant::Array },
 
            depth,
 
        });
 
    }
 

	
 
    // Most common case we just have one type, perhaps with some array
 
    // annotations. This is both the hot-path, and simplifies the state machine
 
    // that follows and is responsible for parsing more complicated types.
 
    let element = consume_parser_type_ident(source, iter, symbols, heap, poly_vars, cur_scope, wrapping_definition, allow_inference)?;
 
    if iter.next() != Some(TokenKind::OpenAngle) {
 
        let num_embedded = element.variant.num_embedded();
 
        let mut num_array = 0;
 
        while iter.next() == Some(TokenKind::OpenSquare) {
 
            iter.consume();
 
            consume_token(source, iter, TokenKind::CloseSquare)?;
 
            num_array += 1;
 
        }
 

	
 
        let array_span = element.full_span;
 
        let mut elements = Vec::with_capacity(num_array + num_embedded + 1);
 
        for _ in 0..num_array {
 
            elements.push(ParserTypeElement{ full_span: array_span, variant: ParserTypeVariant::Array });
 
        }
 
        elements.push(element);
 

	
 
        if num_embedded != 0 {
 
            if !allow_inference {
 
                return Err(ParseError::new_error_str_at_span(source, array_span, "type inference is not allowed here"));
 
            }
 

	
 
            for _ in 0..num_embedded {
 
                elements.push(ParserTypeElement { full_span: array_span, variant: ParserTypeVariant::Inferred });
 
            }
 
        }
 

	
 
        for _ in 0..first_angle_depth {
 
            consume_token(source, iter, TokenKind::CloseAngle);
 
        }
 

	
 
        return Ok(ParserType{ elements });
 
    };
 

	
 
    // We have a polymorphic specification. So we start by pushing the item onto
 
    // our stack, then start adding entries together with the angle-brace depth
 
    // at which they're found.
 
    let mut elements = Vec::new();
 
    elements.push(Entry{ element, depth: 0 });
 

	
 
    // Start out with the first '<' consumed.
 
    iter.consume();
 
    enum State { Ident, Open, Close, Comma }
 
    let mut state = State::Open;
 
    let mut angle_depth = first_angle_depth + 1;
 

	
 
    loop {
 
        let next = iter.next();
 

	
 
        match state {
 
            State::Ident => {
 
                // Just parsed an identifier, may expect comma, angled braces,
 
                // or the tokens indicating an array
 
                if Some(TokenKind::OpenAngle) == next {
 
                    angle_depth += 1;
 
                    state = State::Open;
 
                } else if Some(TokenKind::CloseAngle) == next {
 
                    angle_depth -= 1;
 
                    state = State::Close;
 
                } else if Some(TokenKind::ShiftRight) == next {
 
                    angle_depth -= 2;
 
                    state = State::Close;
 
                } else if Some(TokenKind::Comma) == next {
 
                    state = State::Comma;
 
                } else if Some(TokenKind::OpenSquare) == next {
 
                    let (start_pos, _) = iter.next_positions();
 
                    iter.consume(); // consume opening square
 
                    if iter.next() != Some(TokenKind::CloseSquare) {
 
                        return Err(ParseError::new_error_str_at_pos(
 
                            source, iter.last_valid_pos(),
 
                            "unexpected token: expected ']'"
 
                        ));
 
                    }
 
                    let (_, end_pos) = iter.next_positions();
 
                    let array_span = InputSpan::from_positions(start_pos, end_pos);
 
                    insert_array_before(&mut elements, angle_depth, array_span);
 
                } else {
 
                    return Err(ParseError::new_error_str_at_pos(
 
                        source, iter.last_valid_pos(),
 
                        "unexpected token: expected '<', '>', ',' or '['")
 
                    );
 
                }
 

	
 
                iter.consume();
 
            },
 
            State::Open => {
 
                // Just parsed an opening angle bracket, expecting an identifier
 
                let element = consume_parser_type_ident(source, iter, symbols, heap, poly_vars, cur_scope, wrapping_definition, allow_inference)?;
 
                elements.push(Entry{ element, depth: angle_depth });
 
                state = State::Ident;
 
            },
 
            State::Close => {
 
                // Just parsed 1 or 2 closing angle brackets, expecting comma,
 
                // more closing brackets or the tokens indicating an array
 
                if Some(TokenKind::Comma) == next {
 
                    state = State::Comma;
 
                } else if Some(TokenKind::CloseAngle) == next {
 
                    angle_depth -= 1;
 
                    state = State::Close;
 
                } else if Some(TokenKind::ShiftRight) == next {
 
                    angle_depth -= 2;
 
                    state = State::Close;
 
                } else if Some(TokenKind::OpenSquare) == next {
 
                    let (start_pos, _) = iter.next_positions();
 
                    iter.consume();
 
                    if iter.next() != Some(TokenKind::CloseSquare) {
 
                        return Err(ParseError::new_error_str_at_pos(
 
                            source, iter.last_valid_pos(),
 
                            "unexpected token: expected ']'"
 
                        ));
 
                    }
 
                    let (_, end_pos) = iter.next_positions();
 
                    let array_span = InputSpan::from_positions(start_pos, end_pos);
 
                    insert_array_before(&mut elements, angle_depth, array_span);
 
                } else {
 
                    return Err(ParseError::new_error_str_at_pos(
 
                        source, iter.last_valid_pos(),
 
                        "unexpected token: expected ',', '>', or '['")
 
                    );
 
                }
 

	
 
                iter.consume();
 
            },
 
            State::Comma => {
 
                // Just parsed a comma, expecting an identifier or more closing
 
                // braces
 
                if Some(TokenKind::Ident) == next {
src/protocol/tests/eval_casting.rs
Show inline comments
 
new file 100644
 
use super::*;
 

	
 
#[test]
 
fn test_valid_unsigned_casting() {
 
    Tester::new_single_source_expect_ok("cast u8", "
 
        func foo() -> bool {
 
            u64 large_width = 255;
 
            u8 small_width = 255;
 

	
 
            // Explicit casting
 
            auto large_exp_to_08 = cast<u8> (large_width);
 
            auto large_exp_to_16 = cast<u16>(large_width);
 
            auto large_exp_to_32 = cast<u32>(large_width);
 
            auto large_exp_to_64 = cast<u64>(large_width);
 

	
 
            auto small_exp_to_08 = cast<u8> (small_width);
 
            auto small_exp_to_16 = cast<u16>(small_width);
 
            auto small_exp_to_32 = cast<u32>(small_width);
 
            auto small_exp_to_64 = cast<u64>(small_width);
 

	
 
            // Implicit casting
 
            u8  large_imp_to_08 = cast(large_width);
 
            u16 large_imp_to_16 = cast(large_width);
 
            u32 large_imp_to_32 = cast(large_width);
 
            u64 large_imp_to_64 = cast(large_width);
 

	
 
            u8  small_imp_to_08 = cast(small_width);
 
            u16 small_imp_to_16 = cast(small_width);
 
            u32 small_imp_to_32 = cast(small_width);
 
            u64 small_imp_to_64 = cast(small_width);
 

	
 
            return
 
                large_exp_to_08 == 255 && large_exp_to_16 == 255 && large_exp_to_32 == 255 && large_exp_to_64 == 255 &&
 
                small_exp_to_08 == 255 && small_exp_to_16 == 255 && small_exp_to_32 == 255 && small_exp_to_64 == 255 &&
 
                large_imp_to_08 == 255 && large_imp_to_16 == 255 && large_imp_to_32 == 255 && large_imp_to_64 == 255 &&
 
                small_imp_to_08 == 255 && small_imp_to_16 == 255 && small_imp_to_32 == 255 && small_imp_to_64 == 255;
 
        }
 
    ").for_function("foo", |f| { f
 
        .call_ok(Some(Value::Bool(true)));
 
    });
 
}
 

	
 
#[test]
 
fn test_invalid_casting() {
 
    fn generate_source(input_type: &str, input_value: &str, output_type: &str) -> String {
 
        return format!("
 
        func foo() -> u32 {{
 
            {} value = {};
 
            {} result = cast(value);
 
            return 0;
 
        }}
 
        ", input_type, input_value, output_type);
 
    }
 

	
 
    fn perform_test(input_type: &str, input_value: &str, output_type: &str) {
 
        Tester::new_single_source_expect_ok(
 
            format!("invalid cast {} to {}", input_type, output_type),
 
            generate_source(input_type, input_value, output_type)
 
        ).for_function("foo", |f| {
 
            f.call_err(&format!("'{}' which doesn't fit in a type '{}'", input_value, output_type));
 
        });
 
    }
 

	
 
    // Not exhaustive, good enough
 
    let tests = [
 
        ("u16", "256", "u8"),
 
        ("u32", "256", "u8"),
 
        ("u64", "256", "u8"),
 
        ("u32", "65536", "u16"),
 
        ("u64", "65536", "u16"),
 
        ("s8", "-1", "u8"),
 
        ("s32", "-1", "u16"),
 
        ("s32", "65536", "u16"),
 
        ("s16", "-129", "s8"),
 
        ("s16", "128", "s8")
 
    ];
 

	
 
    for (input_type, input_value, output_type) in &tests {
 
        perform_test(input_type, input_value, output_type);
 
    }
 
}
 
\ No newline at end of file
src/protocol/tests/mod.rs
Show inline comments
 
/**
 
 * protocol/tests.rs
 
 *
 
 * Contains tests for various parts of the lexer/parser and the evaluator of the
 
 * code. These are intended to be temporary tests such that we're sure that we
 
 * don't break existing functionality.
 
 *
 
 * In the future these should be replaced by proper testing protocols.
 
 */
 

	
 
mod utils;
 
mod lexer;
 
mod parser_validation;
 
mod parser_inference;
 
mod parser_monomorphs;
 
mod parser_imports;
 
mod eval_operators;
 
mod eval_calls;
 
mod eval_casting;
 
mod eval_silly;
 

	
 
pub(crate) use utils::{Tester}; // the testing harness
 
pub(crate) use crate::protocol::eval::value::*; // to test functions
 
\ No newline at end of file
src/protocol/tests/utils.rs
Show inline comments
 
@@ -499,192 +499,193 @@ impl<'a> FunctionTester<'a> {
 
                    if let Expression::Variable(variable_expr) = &self.ctx.heap[assign_expr.left] {
 
                        if variable_expr.identifier.span.begin.offset == local.identifier.span.begin.offset {
 
                            return true;
 
                        }
 
                    }
 
                }
 

	
 
                false
 
            }
 
        );
 

	
 
        assert!(
 
            assignment_id.is_some(), "[{}] Failed to find assignment to variable '{}' in {}",
 
            self.ctx.test_name, name, self.assert_postfix()
 
        );
 

	
 
        let assignment = &self.ctx.heap[assignment_id.unwrap()];
 

	
 
        // Construct tester and pass to tester function
 
        let tester = VariableTester::new(
 
            self.ctx, self.def.this.upcast(), local, 
 
            assignment.as_assignment()
 
        );
 
        f(tester);
 

	
 
        self
 
    }
 

	
 
    /// Finds a specific expression within a function. There are two matchers:
 
    /// one outer matcher (to find a rough indication of the expression) and an
 
    /// inner matcher to find the exact expression. 
 
    ///
 
    /// The reason being that, for example, a function's body might be littered
 
    /// with addition symbols, so we first match on "some_var + some_other_var",
 
    /// and then match exactly on "+".
 
    pub(crate) fn for_expression_by_source<F: Fn(ExpressionTester)>(self, outer_match: &str, inner_match: &str, f: F) -> Self {
 
        // Seek the expression in the source code
 
        assert!(outer_match.contains(inner_match), "improper testing code");
 

	
 
        let module = seek_def_in_modules(
 
            &self.ctx.heap, &self.ctx.modules, self.def.this.upcast()
 
        ).unwrap();
 

	
 
        // Find the first occurrence of the expression after the definition of
 
        // the function, we'll check that it is included in the body later.
 
        let mut outer_match_idx = self.def.span.begin.offset as usize;
 
        while outer_match_idx < module.source.input.len() {
 
            if module.source.input[outer_match_idx..].starts_with(outer_match.as_bytes()) {
 
                break;
 
            }
 
            outer_match_idx += 1
 
        }
 

	
 
        assert!(
 
            outer_match_idx < module.source.input.len(),
 
            "[{}] Failed to find '{}' within the source that contains {}",
 
            self.ctx.test_name, outer_match, self.assert_postfix()
 
        );
 
        let inner_match_idx = outer_match_idx + outer_match.find(inner_match).unwrap();
 

	
 
        // Use the inner match index to find the expression
 
        let expr_id = seek_expr_in_stmt(
 
            &self.ctx.heap, self.def.body.upcast(),
 
            &|expr| expr.span().begin.offset as usize == inner_match_idx
 
        );
 
        assert!(
 
            expr_id.is_some(),
 
            "[{}] Failed to find '{}' within the source that contains {} \
 
            (note: expression was found, but not within the specified function",
 
            self.ctx.test_name, outer_match, self.assert_postfix()
 
        );
 
        let expr_id = expr_id.unwrap();
 

	
 
        // We have the expression, call the testing function
 
        let tester = ExpressionTester::new(
 
            self.ctx, self.def.this.upcast(), &self.ctx.heap[expr_id]
 
        );
 
        f(tester);
 

	
 
        self
 
    }
 

	
 
    pub(crate) fn call_ok(self, expected_result: Option<Value>) -> Self {
 
        use crate::protocol::*;
 
        use crate::runtime::*;
 

	
 
        let (prompt, result) = self.eval_until_end();
 
        match result {
 
            Ok(_) => {
 
                assert!(
 
                    prompt.store.stack.len() > 0, // note: stack never shrinks
 
                    "[{}] No value on stack after calling function for {}",
 
                    self.ctx.test_name, self.assert_postfix()
 
                );
 
            },
 
            Err(err) => {
 
                println!("DEBUG: Formatted error:\n{}", err);
 
                assert!(
 
                    false,
 
                    "[{}] Expected call to succeed, but got {:?} for {}",
 
                    self.ctx.test_name, err, self.assert_postfix()
 
                )
 
            }
 
        }
 

	
 
        if let Some(expected_result) = expected_result {
 
            debug_assert!(expected_result.get_heap_pos().is_none(), "comparing against heap thingamajigs is not yet implemented");
 
            assert!(
 
                value::apply_equality_operator(&prompt.store, &prompt.store.stack[0], &expected_result),
 
                "[{}] Result from call was {:?}, but expected {:?} for {}",
 
                self.ctx.test_name, &prompt.store.stack[0], &expected_result, self.assert_postfix()
 
            )
 
        }
 

	
 
        self
 
    }
 

	
 
    // Keeping this simple for now, will likely change
 
    pub(crate) fn call_err(self, expected_result: &str) -> Self {
 
        use crate::protocol::*;
 
        use crate::runtime::*;
 

	
 
        let (_, result) = self.eval_until_end();
 
        match result {
 
            Ok(_) => {
 
                assert!(
 
                    false,
 
                    "[{}] Expected an error, but evaluation finished successfully for {}",
 
                    self.ctx.test_name, self.assert_postfix()
 
                );
 
            },
 
            Err(err) => {
 
                println!("DEBUG: Got evaluation error:\n{}", err);
 
                debug_assert_eq!(err.statements.len(), 1);
 
                assert!(
 
                    err.statements[0].message.contains(&expected_result),
 
                    "[{}] Expected error message to contain '{}', but it was '{}' for {}",
 
                    self.ctx.test_name, expected_result, err.statements[0].message, self.assert_postfix()
 
                );
 
            }
 
        }
 

	
 
        self
 
    }
 

	
 
    fn eval_until_end(&self) -> (Prompt, Result<EvalContinuation, EvalError>) {
 
        use crate::protocol::*;
 
        use crate::runtime::*;
 

	
 
        let mut prompt = Prompt::new(&self.ctx.types, &self.ctx.heap, self.def.this.upcast(), 0, ValueGroup::new_stack(Vec::new()));
 
        let mut call_context = EvalContext::None;
 
        loop {
 
            let result = prompt.step(&self.ctx.types, &self.ctx.heap, &self.ctx.modules, &mut call_context);
 
            match result {
 
                Ok(EvalContinuation::Stepping) => {},
 
                _ => return (prompt, result),
 
            }
 
        }
 
    }
 

	
 
    fn assert_postfix(&self) -> String {
 
        format!("Function{{ name: {} }}", self.def.identifier.value.as_str())
 
    }
 
}
 

	
 
pub(crate) struct VariableTester<'a> {
 
    ctx: TestCtx<'a>,
 
    definition_id: DefinitionId,
 
    variable: &'a Variable,
 
    assignment: &'a AssignmentExpression,
 
}
 

	
 
impl<'a> VariableTester<'a> {
 
    fn new(
 
        ctx: TestCtx<'a>, definition_id: DefinitionId, variable: &'a Variable, assignment: &'a AssignmentExpression
 
    ) -> Self {
 
        Self{ ctx, definition_id, variable, assignment }
 
    }
 

	
 
    pub(crate) fn assert_parser_type(self, expected: &str) -> Self {
 
        let mut serialized = String::new();
 
        serialize_parser_type(&mut serialized, self.ctx.heap, &self.variable.parser_type);
 

	
 
        assert_eq!(
 
            expected, &serialized,
 
            "[{}] Expected parser type '{}', but got '{}' for {}",
 
            self.ctx.test_name, expected, &serialized, self.assert_postfix()
 
        );
 
        self
 
    }
 

	
 
    pub(crate) fn assert_concrete_type(self, expected: &str) -> Self {
 
        // Lookup concrete type in type table
0 comments (0 inline, 0 general)