Changeset - b826e300c566
[Not reviewed]
0 6 0
Christopher Esterhuyse - 5 years ago 2020-07-28 09:58:50
christopher.esterhuyse@gmail.com
cleaned up warnings
6 files changed with 34 insertions and 41 deletions:
0 comments (0 inline, 0 general)
Cargo.toml
Show inline comments
 
@@ -20,29 +20,29 @@ getrandom = "0.1.14" # tiny crate. used to guess controller-id
 
# network
 
mio = { version = "0.7.0", package = "mio", features = ["udp", "tcp", "os-poll"] }
 
socket2 = { version = "0.3.12", optional = true }
 

	
 
# protocol
 
backtrace = "0.3"
 
lazy_static = "1.4.0"
 

	
 
# ffi
 

	
 
# socket ffi
 
libc = { version = "^0.2", optional = true }
 
os_socketaddr = { version = "0.1.0", optional = true }
 

	
 
[dev-dependencies]
 
# test-generator = "0.3.0"
 
crossbeam-utils = "0.7.2"
 
lazy_static = "1.4.0"
 

	
 
[lib]
 
# compile target: dynamically linked library using C ABI
 
crate-type = ["cdylib"]
 

	
 
[features]
 
default = ["ffi", "session_optimization", "ffi_pseudo_socket_api"]
 
default = ["ffi", "session_optimization"]
 
ffi = [] # see src/ffi/mod.rs
 
ffi_pseudo_socket_api = ["ffi", "libc", "os_socketaddr"]# see src/ffi/pseudo_socket_api.rs
 
endpoint_logging = [] # see src/macros.rs
 
session_optimization = [] # see src/runtime/setup.rs
 
\ No newline at end of file
reowolf.h
Show inline comments
 
@@ -26,51 +26,49 @@
 

	
 
#define RW_WRONG_STATE -2
 

	
 
typedef enum {
 
  EndpointPolarity_Active,
 
  EndpointPolarity_Passive,
 
} EndpointPolarity;
 

	
 
typedef enum {
 
  Polarity_Putter,
 
  Polarity_Getter,
 
} Polarity;
 

	
 
typedef struct Arc_ProtocolDescription Arc_ProtocolDescription;
 

	
 
typedef struct Connector Connector;
 

	
 
typedef uint32_t ConnectorId;
 

	
 
typedef uint32_t U32Suffix;
 

	
 
typedef struct {
 
  ConnectorId connector_id;
 
  U32Suffix u32_suffix;
 
} Id;
 

	
 
typedef Id PortId;
 
} PortId;
 

	
 
typedef struct {
 
  uint8_t ipv4[4];
 
  uint16_t port;
 
} FfiSocketAddr;
 

	
 
/**
 
 * Given
 
 * - an initialized connector in setup or connecting state,
 
 * - a string slice for the component's identifier in the connector's configured protocol description,
 
 * - a set of ports (represented as a slice; duplicates are ignored) in the native component's interface,
 
 * the connector creates a new (internal) protocol component C, such that the set of native ports are moved to C.
 
 * Usable in {setup, communication} states.
 
 */
 
int connector_add_component(Connector *connector,
 
                            const uint8_t *ident_ptr,
 
                            uintptr_t ident_len,
 
                            const PortId *ports_ptr,
 
                            uintptr_t ports_len);
 

	
 
/**
 
 * Given
 
 * - an initialized connector in setup or connecting state,
 
 * - a utf-8 encoded socket address,
src/protocol/ast.rs
Show inline comments
 
@@ -2078,69 +2078,69 @@ impl Statement {
 
            Statement::Goto(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `GotoStatement`"),
 
        }
 
    }
 
    pub fn as_new(&self) -> &NewStatement {
 
        match self {
 
            Statement::New(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `NewStatement`"),
 
        }
 
    }
 
    pub fn as_put(&self) -> &PutStatement {
 
        match self {
 
            Statement::Put(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `PutStatement`"),
 
        }
 
    }
 
    pub fn as_expression(&self) -> &ExpressionStatement {
 
        match self {
 
            Statement::Expression(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `ExpressionStatement`"),
 
        }
 
    }
 
    pub fn link_next(&mut self, next: StatementId) {
 
        match self {
 
            Statement::Block(stmt) => panic!(),
 
            Statement::Block(_) => todo!(),
 
            Statement::Local(stmt) => match stmt {
 
                LocalStatement::Channel(stmt) => stmt.next = Some(next),
 
                LocalStatement::Memory(stmt) => stmt.next = Some(next),
 
            },
 
            Statement::Skip(stmt) => stmt.next = Some(next),
 
            Statement::Labeled(stmt) => panic!(),
 
            Statement::If(stmt) => panic!(),
 
            Statement::EndIf(stmt) => stmt.next = Some(next),
 
            Statement::While(stmt) => panic!(), // although while has a next field, it is linked manually
 
            Statement::EndWhile(stmt) => stmt.next = Some(next),
 
            Statement::Break(stmt) => panic!(),
 
            Statement::Continue(stmt) => panic!(),
 
            Statement::Synchronous(stmt) => panic!(),
 
            Statement::EndSynchronous(stmt) => stmt.next = Some(next),
 
            Statement::Return(stmt) => panic!(),
 
            Statement::Assert(stmt) => stmt.next = Some(next),
 
            Statement::Goto(stmt) => panic!(),
 
            Statement::New(stmt) => stmt.next = Some(next),
 
            Statement::Put(stmt) => stmt.next = Some(next),
 
            Statement::Expression(stmt) => stmt.next = Some(next),
 
            Statement::Return(_)
 
            | Statement::Break(_)
 
            | Statement::Continue(_)
 
            | Statement::Synchronous(_)
 
            | Statement::Goto(_)
 
            | Statement::While(_)
 
            | Statement::Labeled(_)
 
            | Statement::If(_) => unreachable!(),
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for Statement {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            Statement::Block(stmt) => stmt.position(),
 
            Statement::Local(stmt) => stmt.position(),
 
            Statement::Skip(stmt) => stmt.position(),
 
            Statement::Labeled(stmt) => stmt.position(),
 
            Statement::If(stmt) => stmt.position(),
 
            Statement::EndIf(stmt) => stmt.position(),
 
            Statement::While(stmt) => stmt.position(),
 
            Statement::EndWhile(stmt) => stmt.position(),
 
            Statement::Break(stmt) => stmt.position(),
 
            Statement::Continue(stmt) => stmt.position(),
 
            Statement::Synchronous(stmt) => stmt.position(),
 
            Statement::EndSynchronous(stmt) => stmt.position(),
 
            Statement::Return(stmt) => stmt.position(),
 
            Statement::Assert(stmt) => stmt.position(),
 
            Statement::Goto(stmt) => stmt.position(),
 
            Statement::New(stmt) => stmt.position(),
 
            Statement::Put(stmt) => stmt.position(),
src/protocol/eval.rs
Show inline comments
 
@@ -1537,81 +1537,81 @@ impl Store {
 
                }
 
            }
 
            Expression::Unary(expr) => {
 
                let mut value = self.eval(h, ctx, expr.expression)?;
 
                match expr.operation {
 
                    UnaryOperation::PostIncrement => {
 
                        self.update(h, ctx, expr.expression, value.plus(&ONE))?;
 
                    }
 
                    UnaryOperation::PreIncrement => {
 
                        value = value.plus(&ONE);
 
                        self.update(h, ctx, expr.expression, value.clone())?;
 
                    }
 
                    UnaryOperation::PostDecrement => {
 
                        self.update(h, ctx, expr.expression, value.minus(&ONE))?;
 
                    }
 
                    UnaryOperation::PreDecrement => {
 
                        value = value.minus(&ONE);
 
                        self.update(h, ctx, expr.expression, value.clone())?;
 
                    }
 
                    _ => unimplemented!(),
 
                }
 
                Ok(value)
 
            }
 
            Expression::Indexing(expr) => self.get(h, ctx, expr.this.upcast()),
 
            Expression::Slicing(expr) => unimplemented!(),
 
            Expression::Slicing(_expr) => unimplemented!(),
 
            Expression::Select(expr) => self.get(h, ctx, expr.this.upcast()),
 
            Expression::Array(expr) => {
 
                let mut elements = Vec::new();
 
                for &elem in expr.elements.iter() {
 
                    elements.push(self.eval(h, ctx, elem)?);
 
                }
 
                todo!()
 
            }
 
            Expression::Constant(expr) => Ok(Value::from_constant(&expr.value)),
 
            Expression::Call(expr) => match expr.method {
 
                Method::Create => {
 
                    assert_eq!(1, expr.arguments.len());
 
                    let length = self.eval(h, ctx, expr.arguments[0])?;
 
                    Ok(Value::create_message(length))
 
                }
 
                Method::Fires => {
 
                    assert_eq!(1, expr.arguments.len());
 
                    let value = self.eval(h, ctx, expr.arguments[0])?;
 
                    match ctx.fires(value.clone()) {
 
                        None => Err(EvalContinuation::BlockFires(value)),
 
                        Some(result) => Ok(result),
 
                    }
 
                }
 
                Method::Get => {
 
                    assert_eq!(1, expr.arguments.len());
 
                    let value = self.eval(h, ctx, expr.arguments[0])?;
 
                    match ctx.get(value.clone()) {
 
                        None => Err(EvalContinuation::BlockGet(value)),
 
                        Some(result) => Ok(result),
 
                    }
 
                }
 
                Method::Symbolic(symbol) => unimplemented!(),
 
                Method::Symbolic(_symbol) => unimplemented!(),
 
            },
 
            Expression::Variable(expr) => self.get(h, ctx, expr.this.upcast()),
 
        }
 
    }
 
}
 

	
 
type EvalResult = Result<Value, EvalContinuation>;
 
pub enum EvalContinuation {
 
    Stepping,
 
    Inconsistent,
 
    Terminal,
 
    SyncBlockStart,
 
    SyncBlockEnd,
 
    NewComponent(DeclarationId, Vec<Value>),
 
    BlockFires(Value),
 
    BlockGet(Value),
 
    Put(Value, Value),
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub(crate) struct Prompt {
 
    definition: DefinitionId,
 
    store: Store,
 
    position: Option<StatementId>,
 
@@ -1750,79 +1750,78 @@ impl Prompt {
 
                self.position = stmt.target.map(|x| x.upcast());
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::New(stmt) => {
 
                let expr = &h[stmt.expression];
 
                let mut args = Vec::new();
 
                for &arg in expr.arguments.iter() {
 
                    let value = self.store.eval(h, ctx, arg)?;
 
                    args.push(value);
 
                }
 
                self.position = stmt.next;
 
                Err(EvalContinuation::NewComponent(expr.declaration.unwrap(), args))
 
            }
 
            Statement::Put(stmt) => {
 
                // Evaluate port and message
 
                let port = self.store.eval(h, ctx, stmt.port)?;
 
                let message = self.store.eval(h, ctx, stmt.message)?;
 
                // Continue to next statement
 
                self.position = stmt.next;
 
                // Signal the put upwards
 
                Err(EvalContinuation::Put(port, message))
 
            }
 
            Statement::Expression(stmt) => {
 
                // Evaluate expression
 
                let value = self.store.eval(h, ctx, stmt.expression)?;
 
                let _value = self.store.eval(h, ctx, stmt.expression)?;
 
                // Continue to next statement
 
                self.position = stmt.next;
 
                Err(EvalContinuation::Stepping)
 
            }
 
        }
 
    }
 
    fn compute_function(_h: &Heap, _fun: FunctionId, _args: &Vec<Value>) -> Option<Value> {
 
        todo!()
 
    // fn compute_function(_h: &Heap, _fun: FunctionId, _args: &Vec<Value>) -> Option<Value> {
 
    // let mut prompt = Self::new(h, fun.upcast(), args);
 
    // let mut context = EvalContext::None;
 
    // loop {
 
    //     let result = prompt.step(h, &mut context);
 
    //     match result {
 
    //         Ok(val) => return Some(val),
 
    //         Err(cont) => match cont {
 
    //             EvalContinuation::Stepping => continue,
 
    //             EvalContinuation::Inconsistent => return None,
 
    //             // Functions never terminate without returning
 
    //             EvalContinuation::Terminal => unreachable!(),
 
    //             // Functions never encounter any blocking behavior
 
    //             EvalContinuation::SyncBlockStart => unreachable!(),
 
    //             EvalContinuation::SyncBlockEnd => unreachable!(),
 
    //             EvalContinuation::NewComponent(_, _) => unreachable!(),
 
    //             EvalContinuation::BlockFires(val) => unreachable!(),
 
    //             EvalContinuation::BlockGet(val) => unreachable!(),
 
    //             EvalContinuation::Put(port, msg) => unreachable!(),
 
    //         },
 
    //     }
 
    // }
 
    }
 
    // }
 
}
 

	
 
// #[cfg(test)]
 
// mod tests {
 
//     extern crate test_generator;
 

	
 
//     use std::fs::File;
 
//     use std::io::Read;
 
//     use std::path::Path;
 
//     use test_generator::test_resources;
 

	
 
//     use super::*;
 

	
 
//     #[test_resources("testdata/eval/positive/*.pdl")]
 
//     fn batch1(resource: &str) {
 
//         let path = Path::new(resource);
 
//         let expect = path.with_extension("txt");
 
//         let mut heap = Heap::new();
 
//         let mut source = InputSource::from_file(&path).unwrap();
 
//         let mut parser = Parser::new(&mut source);
 
//         let pd = parser.parse(&mut heap).unwrap();
 
//         let def = heap[pd].get_definition_ident(&heap, b"test").unwrap();
 
//         let fun = heap[def].as_function().this;
 
//         let args = Vec::new();
src/protocol/parser.rs
Show inline comments
 
@@ -273,61 +273,61 @@ fn recursive_function_definition<T: Visitor>(
 
    for &param in h[def].parameters.clone().iter() {
 
        recursive_parameter_as_variable(this, h, param)?;
 
    }
 
    this.visit_statement(h, h[def].body)
 
}
 

	
 
fn recursive_variable_declaration<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    decl: VariableId,
 
) -> VisitorResult {
 
    match h[decl].clone() {
 
        Variable::Parameter(decl) => this.visit_parameter_declaration(h, decl.this),
 
        Variable::Local(decl) => this.visit_local_declaration(h, decl.this),
 
    }
 
}
 

	
 
fn recursive_statement<T: Visitor>(this: &mut T, h: &mut Heap, stmt: StatementId) -> VisitorResult {
 
    match h[stmt].clone() {
 
        Statement::Block(stmt) => this.visit_block_statement(h, stmt.this),
 
        Statement::Local(stmt) => this.visit_local_statement(h, stmt.this()),
 
        Statement::Skip(stmt) => this.visit_skip_statement(h, stmt.this),
 
        Statement::Labeled(stmt) => this.visit_labeled_statement(h, stmt.this),
 
        Statement::If(stmt) => this.visit_if_statement(h, stmt.this),
 
        Statement::EndIf(stmt) => unreachable!(), // pseudo-statement
 
        Statement::While(stmt) => this.visit_while_statement(h, stmt.this),
 
        Statement::EndWhile(stmt) => unreachable!(), // pseudo-statement
 
        Statement::Break(stmt) => this.visit_break_statement(h, stmt.this),
 
        Statement::Continue(stmt) => this.visit_continue_statement(h, stmt.this),
 
        Statement::Synchronous(stmt) => this.visit_synchronous_statement(h, stmt.this),
 
        Statement::EndSynchronous(stmt) => unreachable!(), // pseudo-statement
 
        Statement::Return(stmt) => this.visit_return_statement(h, stmt.this),
 
        Statement::Assert(stmt) => this.visit_assert_statement(h, stmt.this),
 
        Statement::Goto(stmt) => this.visit_goto_statement(h, stmt.this),
 
        Statement::New(stmt) => this.visit_new_statement(h, stmt.this),
 
        Statement::Put(stmt) => this.visit_put_statement(h, stmt.this),
 
        Statement::Expression(stmt) => this.visit_expression_statement(h, stmt.this),
 
        Statement::EndSynchronous(_) | Statement::EndWhile(_) | Statement::EndIf(_) => {
 
            unreachable!() // pseudo-statement
 
        }
 
    }
 
}
 

	
 
fn recursive_block_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    block: BlockStatementId,
 
) -> VisitorResult {
 
    for &local in h[block].locals.clone().iter() {
 
        recursive_local_as_variable(this, h, local)?;
 
    }
 
    for &stmt in h[block].statements.clone().iter() {
 
        this.visit_statement(h, stmt)?;
 
    }
 
    Ok(())
 
}
 

	
 
fn recursive_local_statement<T: Visitor>(
 
    this: &mut T,
 
    h: &mut Heap,
 
    stmt: LocalStatementId,
 
) -> VisitorResult {
 
    match h[stmt].clone() {
 
        LocalStatement::Channel(stmt) => this.visit_channel_statement(h, stmt.this),
 
@@ -775,49 +775,49 @@ impl BuildSymbolDeclarations {
 
                return match h[decl].clone() {
 
                    Declaration::Defined(defined) => Err(ParseError::new(
 
                        h[defined.definition].position(),
 
                        format!("Defined symbol clash: {}", h[id]),
 
                    )),
 
                    Declaration::Imported(imported) => Err(ParseError::new(
 
                        h[imported.import].position(),
 
                        format!("Imported symbol clash: {}", h[id]),
 
                    )),
 
                };
 
            }
 
        }
 
        self.declarations.push(decl);
 
        Ok(())
 
    }
 
}
 

	
 
impl Visitor for BuildSymbolDeclarations {
 
    fn visit_protocol_description(&mut self, h: &mut Heap, pd: RootId) -> VisitorResult {
 
        recursive_protocol_description(self, h, pd)?;
 
        // Move all collected declarations to the protocol description
 
        h[pd].declarations.append(&mut self.declarations);
 
        Ok(())
 
    }
 
    fn visit_import(&mut self, h: &mut Heap, import: ImportId) -> VisitorResult {
 
    fn visit_import(&mut self, _h: &mut Heap, _import: ImportId) -> VisitorResult {
 
        todo!()
 
        // let vec = library::get_declarations(h, import)?;
 
        // // Destructively iterate over the vector
 
        // for decl in vec {
 
        //     self.checked_add(h, decl)?;
 
        // }
 
        // Ok(())
 
    }
 
    fn visit_symbol_definition(&mut self, h: &mut Heap, definition: DefinitionId) -> VisitorResult {
 
        let signature = Signature::from_definition(h, definition);
 
        let decl = h
 
            .alloc_defined_declaration(|this| DefinedDeclaration { this, definition, signature })
 
            .upcast();
 
        self.checked_add(h, decl)?;
 
        Ok(())
 
    }
 
}
 

	
 
struct LinkCallExpressions {
 
    pd: Option<RootId>,
 
    composite: bool,
 
    new_statement: bool,
 
}
 

	
 
@@ -905,49 +905,49 @@ impl Visitor for BuildScope {
 
        h[stmt].parent_scope = self.scope;
 
        // Then move scope down to current block
 
        self.scope = Some(Scope::Block(stmt));
 
        recursive_block_statement(self, h, stmt)?;
 
        // Move scope back up
 
        self.scope = old;
 
        Ok(())
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let old = self.scope;
 
        // First store the current scope
 
        h[stmt].parent_scope = self.scope;
 
        // Then move scope down to current sync
 
        self.scope = Some(Scope::Synchronous(stmt));
 
        recursive_synchronous_statement(self, h, stmt)?;
 
        // Move scope back up
 
        self.scope = old;
 
        Ok(())
 
    }
 
    fn visit_expression(&mut self, h: &mut Heap, expr: ExpressionId) -> VisitorResult {
 
    fn visit_expression(&mut self, _h: &mut Heap, _expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
struct ResolveVariables {
 
    scope: Option<Scope>,
 
}
 

	
 
impl ResolveVariables {
 
    fn new() -> Self {
 
        ResolveVariables { scope: None }
 
    }
 
    fn get_variable(&self, h: &Heap, id: SourceIdentifierId) -> Result<VariableId, ParseError> {
 
        if let Some(var) = self.find_variable(h, id) {
 
            Ok(var)
 
        } else {
 
            Err(ParseError::new(h[id].position, "Unresolved variable"))
 
        }
 
    }
 
    fn find_variable(&self, h: &Heap, id: SourceIdentifierId) -> Option<VariableId> {
 
        ResolveVariables::find_variable_impl(h, self.scope, id)
 
    }
 
    fn find_variable_impl(
 
        h: &Heap,
 
@@ -986,75 +986,75 @@ impl Visitor for ResolveVariables {
 
        // otherwise, there is some variable defined in the parent scope. This check
 
        // imposes that the order in which find_variable looks is significant!
 
        let id = h[decl].identifier();
 
        let check_same = self.find_variable(h, id);
 
        if let Some(check_same) = check_same {
 
            if check_same != decl {
 
                return Err(ParseError::new(h[id].position, "Declared variable clash"));
 
            }
 
        }
 
        recursive_variable_declaration(self, h, decl)
 
    }
 
    fn visit_memory_statement(&mut self, h: &mut Heap, stmt: MemoryStatementId) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let var = h[stmt].variable;
 
        let id = h[var].identifier;
 
        // First check whether variable with same identifier is in scope
 
        let check_duplicate = self.find_variable(h, id);
 
        if check_duplicate.is_some() {
 
            return Err(ParseError::new(h[id].position, "Declared variable clash"));
 
        }
 
        // Then check the expression's variables (this should not refer to own variable)
 
        recursive_memory_statement(self, h, stmt)?;
 
        // Finally, we may add the variable to the scope, which is guaranteed to be a block
 
        {
 
            let mut block = &mut h[self.scope.unwrap().to_block()];
 
            let block = &mut h[self.scope.unwrap().to_block()];
 
            block.locals.push(var);
 
        }
 
        Ok(())
 
    }
 
    fn visit_channel_statement(&mut self, h: &mut Heap, stmt: ChannelStatementId) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        // First handle the from variable
 
        {
 
            let var = h[stmt].from;
 
            let id = h[var].identifier;
 
            let check_duplicate = self.find_variable(h, id);
 
            if check_duplicate.is_some() {
 
                return Err(ParseError::new(h[id].position, "Declared variable clash"));
 
            }
 
            let mut block = &mut h[self.scope.unwrap().to_block()];
 
            let block = &mut h[self.scope.unwrap().to_block()];
 
            block.locals.push(var);
 
        }
 
        // Then handle the to variable (which may not be the same as the from)
 
        {
 
            let var = h[stmt].to;
 
            let id = h[var].identifier;
 
            let check_duplicate = self.find_variable(h, id);
 
            if check_duplicate.is_some() {
 
                return Err(ParseError::new(h[id].position, "Declared variable clash"));
 
            }
 
            let mut block = &mut h[self.scope.unwrap().to_block()];
 
            let block = &mut h[self.scope.unwrap().to_block()];
 
            block.locals.push(var);
 
        }
 
        Ok(())
 
    }
 
    fn visit_block_statement(&mut self, h: &mut Heap, stmt: BlockStatementId) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let old = self.scope;
 
        self.scope = Some(Scope::Block(stmt));
 
        recursive_block_statement(self, h, stmt)?;
 
        self.scope = old;
 
        Ok(())
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let old = self.scope;
 
        self.scope = Some(Scope::Synchronous(stmt));
 
        recursive_synchronous_statement(self, h, stmt)?;
 
        self.scope = old;
 
        Ok(())
 
    }
 
@@ -1158,123 +1158,123 @@ impl Visitor for LinkStatements {
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        // Allocate a pseudo-statement, that is added for helping the evaluator to issue a command
 
        // that marks the end of the synchronous block. Every evaluation has to pause at this
 
        // point, only to resume later when the thread is selected as unique thread to continue.
 
        let position = h[stmt].position;
 
        let pseudo = h
 
            .alloc_end_synchronous_statement(|this| EndSynchronousStatement {
 
                this,
 
                position,
 
                next: None,
 
            })
 
            .upcast();
 
        assert!(self.prev.is_none());
 
        self.visit_statement(h, h[stmt].body)?;
 
        // The body's next statement points to the pseudo element
 
        if let Some(UniqueStatementId(prev)) = std::mem::replace(&mut self.prev, None) {
 
            h[prev].link_next(pseudo);
 
        }
 
        // Use the pseudo-statement as the statement where the next pointer is updated
 
        self.prev = Some(UniqueStatementId(pseudo));
 
        Ok(())
 
    }
 
    fn visit_return_statement(&mut self, h: &mut Heap, stmt: ReturnStatementId) -> VisitorResult {
 
    fn visit_return_statement(&mut self, _h: &mut Heap, _stmt: ReturnStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_assert_statement(&mut self, h: &mut Heap, stmt: AssertStatementId) -> VisitorResult {
 
    fn visit_assert_statement(&mut self, _h: &mut Heap, stmt: AssertStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_goto_statement(&mut self, _h: &mut Heap, _stmt: GotoStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_new_statement(&mut self, h: &mut Heap, stmt: NewStatementId) -> VisitorResult {
 
    fn visit_new_statement(&mut self, _h: &mut Heap, stmt: NewStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_put_statement(&mut self, h: &mut Heap, stmt: PutStatementId) -> VisitorResult {
 
    fn visit_put_statement(&mut self, _h: &mut Heap, stmt: PutStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_expression_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        _h: &mut Heap,
 
        stmt: ExpressionStatementId,
 
    ) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_expression(&mut self, h: &mut Heap, expr: ExpressionId) -> VisitorResult {
 
    fn visit_expression(&mut self, _h: &mut Heap, _expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
struct BuildLabels {
 
    block: Option<BlockStatementId>,
 
    sync_enclosure: Option<SynchronousStatementId>,
 
}
 

	
 
impl BuildLabels {
 
    fn new() -> Self {
 
        BuildLabels { block: None, sync_enclosure: None }
 
    }
 
}
 

	
 
impl Visitor for BuildLabels {
 
    fn visit_block_statement(&mut self, h: &mut Heap, stmt: BlockStatementId) -> VisitorResult {
 
        assert_eq!(self.block, h[stmt].parent_block(h));
 
        let old = self.block;
 
        self.block = Some(stmt);
 
        recursive_block_statement(self, h, stmt)?;
 
        self.block = old;
 
        Ok(())
 
    }
 
    fn visit_labeled_statement(&mut self, h: &mut Heap, stmt: LabeledStatementId) -> VisitorResult {
 
        assert!(!self.block.is_none());
 
        // Store label in current block (on the fly)
 
        h[self.block.unwrap()].labels.push(stmt);
 
        // Update synchronous scope of label
 
        h[stmt].in_sync = self.sync_enclosure;
 
        recursive_labeled_statement(self, h, stmt)
 
    }
 
    fn visit_while_statement(&mut self, h: &mut Heap, stmt: WhileStatementId) -> VisitorResult {
 
        h[stmt].in_sync = self.sync_enclosure;
 
        recursive_while_statement(self, h, stmt)
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        assert!(self.sync_enclosure.is_none());
 
        self.sync_enclosure = Some(stmt);
 
        recursive_synchronous_statement(self, h, stmt)?;
 
        self.sync_enclosure = None;
 
        Ok(())
 
    }
 
    fn visit_expression(&mut self, h: &mut Heap, expr: ExpressionId) -> VisitorResult {
 
    fn visit_expression(&mut self, _h: &mut Heap, _expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
struct ResolveLabels {
 
    block: Option<BlockStatementId>,
 
    while_enclosure: Option<WhileStatementId>,
 
    sync_enclosure: Option<SynchronousStatementId>,
 
}
 

	
 
impl ResolveLabels {
 
    fn new() -> Self {
 
        ResolveLabels { block: None, while_enclosure: None, sync_enclosure: None }
 
    }
 
    fn check_duplicate_impl(
 
        h: &Heap,
 
        block: Option<BlockStatementId>,
 
        stmt: LabeledStatementId,
 
    ) -> VisitorResult {
 
        if let Some(block) = block {
 
            // Checking the parent first is important. Otherwise, labels
 
            // overshadow previously defined labels: and this is illegal!
 
            ResolveLabels::check_duplicate_impl(h, h[block].parent_block(h), stmt)?;
 
            // For the current block, check for a duplicate.
 
@@ -1415,49 +1415,49 @@ impl Visitor for ResolveLabels {
 
        Ok(())
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        assert!(self.sync_enclosure.is_none());
 
        self.sync_enclosure = Some(stmt);
 
        recursive_synchronous_statement(self, h, stmt)?;
 
        self.sync_enclosure = None;
 
        Ok(())
 
    }
 
    fn visit_goto_statement(&mut self, h: &mut Heap, stmt: GotoStatementId) -> VisitorResult {
 
        let target = self.get_target(h, h[stmt].label)?;
 
        if h[target].in_sync != self.sync_enclosure {
 
            return Err(ParseError::new(
 
                h[stmt].position,
 
                "Illegal goto: synchronous statement escape",
 
            ));
 
        }
 
        h[stmt].target = Some(target);
 
        Ok(())
 
    }
 
    fn visit_expression(&mut self, h: &mut Heap, expr: ExpressionId) -> VisitorResult {
 
    fn visit_expression(&mut self, _h: &mut Heap, _expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
struct AssignableExpressions {
 
    assignable: bool,
 
}
 

	
 
impl AssignableExpressions {
 
    fn new() -> Self {
 
        AssignableExpressions { assignable: false }
 
    }
 
    fn error(&self, position: InputPosition) -> VisitorResult {
 
        Err(ParseError::new(position, "Unassignable expression"))
 
    }
 
}
 

	
 
impl Visitor for AssignableExpressions {
 
    fn visit_assignment_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: AssignmentExpressionId,
 
    ) -> VisitorResult {
 
        if self.assignable {
 
@@ -1543,50 +1543,50 @@ impl Visitor for AssignableExpressions {
 
        } else {
 
            recursive_array_expression(self, h, expr)
 
        }
 
    }
 
    fn visit_call_expression(&mut self, h: &mut Heap, expr: CallExpressionId) -> VisitorResult {
 
        if self.assignable {
 
            self.error(h[expr].position)
 
        } else {
 
            recursive_call_expression(self, h, expr)
 
        }
 
    }
 
    fn visit_constant_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: ConstantExpressionId,
 
    ) -> VisitorResult {
 
        if self.assignable {
 
            self.error(h[expr].position)
 
        } else {
 
            Ok(())
 
        }
 
    }
 
    fn visit_variable_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: VariableExpressionId,
 
        _h: &mut Heap,
 
        _expr: VariableExpressionId,
 
    ) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
struct IndexableExpressions {
 
    indexable: bool,
 
}
 

	
 
impl IndexableExpressions {
 
    fn new() -> Self {
 
        IndexableExpressions { indexable: false }
 
    }
 
    fn error(&self, position: InputPosition) -> VisitorResult {
 
        Err(ParseError::new(position, "Unindexable expression"))
 
    }
 
}
 

	
 
impl Visitor for IndexableExpressions {
 
    fn visit_assignment_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: AssignmentExpressionId,
 
    ) -> VisitorResult {
src/runtime/mod.rs
Show inline comments
 
@@ -604,52 +604,48 @@ impl<'de> serde::Deserialize<'de> for SerdeProtocolDescription {
 
        D: serde::Deserializer<'de>,
 
    {
 
        let inner: ProtocolDescription = ProtocolDescription::deserialize(deserializer)?;
 
        Ok(Self(Arc::new(inner)))
 
    }
 
}
 
impl IdParts for SpecVar {
 
    fn id_parts(self) -> (ConnectorId, U32Suffix) {
 
        self.0.id_parts()
 
    }
 
}
 
impl Debug for SpecVar {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        let (a, b) = self.id_parts();
 
        write!(f, "v{}_{}", a, b)
 
    }
 
}
 
impl SpecVal {
 
    const FIRING: Self = SpecVal(1);
 
    const SILENT: Self = SpecVal(0);
 
    fn is_firing(self) -> bool {
 
        self == Self::FIRING
 
        // all else treated as SILENT
 
    }
 
    fn nth_domain_element(n: usize) -> Self {
 
        let n: u16 = n.try_into().unwrap();
 
        SpecVal(n)
 
    }
 
    fn iter_domain() -> impl Iterator<Item = Self> {
 
        (0..).map(SpecVal)
 
    }
 
}
 
impl Debug for SpecVal {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        self.0.fmt(f)
 
    }
 
}
 
impl Default for UdpInBuffer {
 
    fn default() -> Self {
 
        let mut byte_vec = Vec::with_capacity(Self::CAPACITY);
 
        unsafe {
 
            // safe! this vector is guaranteed to have sufficient capacity
 
            byte_vec.set_len(Self::CAPACITY);
 
        }
 
        Self { byte_vec }
 
    }
 
}
 
impl UdpInBuffer {
 
    const CAPACITY: usize = u16::MAX as usize;
 
    fn as_mut_slice(&mut self) -> &mut [u8] {
 
        self.byte_vec.as_mut_slice()
 
    }
0 comments (0 inline, 0 general)