Changeset - bc4fc1729942
[Not reviewed]
0 11 0
MH - 3 years ago 2022-02-28 13:26:09
contact@maxhenger.nl
WIP: Handling interaction between PDL/runtime for select stmt
11 files changed with 204 insertions and 81 deletions:
0 comments (0 inline, 0 general)
src/macros.rs
Show inline comments
 
// Utility for performing debug printing within a particular module. Still
 
// requires some extra macros to be defined to be ergonomic.
 
macro_rules! enabled_debug_print {
 
    (false, $name:literal, $format:literal) => {};
 
    (false, $name:literal, $format:literal, $($args:expr),*) => {};
 
    (true, $name:literal, $format:literal) => {
 
        println!("[{}] {}", $name, $format)
 
    };
 
    (true, $name:literal, $format:literal, $($args:expr),*) => {
 
        println!("[{}] {}", $name, format!($format, $($args),*))
 
    };
 
}
 

	
 
// Utility for inserting code only executed in debug mode. Because writing the
 
// conditional cfg is tedious and looks ugly. Still doesn't work for struct
 
// fields, though.
 
macro_rules! dbg_code {
 
    ($code:stmt) => {
 
        #[cfg(debug_assertions)] $code
 
    }
 
}
 

	
 
// Given a function name, return type and variant, will generate the all-so
 
// common `union_value.as_variant()` method.
 
macro_rules! union_cast_method_impl {
 
// common `union_value.as_variant()` method. The return value is the reference
 
// to the embedded union type.
 
macro_rules! union_cast_to_ref_method_impl {
 
    ($func_name:ident, $ret_type:ty, $variant:path) => {
 
        fn $func_name(&self) -> &$ret_type {
 
            match self {
 
                $variant(content) => return content,
 
                _ => unreachable!(),
 
            }
 
        }
 
    }
 
}
 

	
 
// Another union cast, but now returning a copy of the value
 
macro_rules! union_cast_to_value_method_impl {
 
    ($func_name:ident, $ret_type:ty, $variant:path) => {
 
        impl Value {
 
            pub(crate) fn $func_name(&self) -> $ret_type {
 
                match self {
 
                    $variant(v) => *v,
 
                    _ => unreachable!(),
 
                }
 
            }
 
        }
 
    }
 
}
 
\ No newline at end of file
src/protocol/eval/executor.rs
Show inline comments
 
@@ -162,96 +162,99 @@ impl Frame {
 
                        for value_expr_id in &literal.values {
 
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                            self.serialize_expression(heap, *value_expr_id);
 
                        }
 
                    },
 
                    Literal::Array(value_expr_ids) => {
 
                        for value_expr_id in value_expr_ids {
 
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                            self.serialize_expression(heap, *value_expr_id);
 
                        }
 
                    },
 
                    Literal::Tuple(value_expr_ids) => {
 
                        for value_expr_id in value_expr_ids {
 
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                            self.serialize_expression(heap, *value_expr_id);
 
                        }
 
                    }
 
                }
 
            },
 
            Expression::Cast(expr) => {
 
                self.serialize_expression(heap, expr.subject);
 
            }
 
            Expression::Call(expr) => {
 
                for arg_expr_id in &expr.arguments {
 
                    self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                    self.serialize_expression(heap, *arg_expr_id);
 
                }
 
            },
 
            Expression::Variable(_expr) => {
 
                // No subexpressions
 
            }
 
        }
 
    }
 
}
 

	
 
pub type EvalResult = Result<EvalContinuation, EvalError>;
 

	
 
#[derive(Debug)]
 
pub enum EvalContinuation {
 
    // Returned in both sync and non-sync modes
 
    Stepping,
 
    // Returned only in sync mode
 
    BranchInconsistent,
 
    SyncBlockEnd,
 
    NewFork,
 
    BlockFires(PortId),
 
    BlockGet(PortId),
 
    Put(PortId, ValueGroup),
 
    SelectStart(u32, u32), // (num_cases, num_ports_total)
 
    SelectRegisterPort(u32, u32, PortId), // (case_index, port_index_in_case, port_id)
 
    SelectWait, // wait until select can continue
 
    // Returned only in non-sync mode
 
    ComponentTerminated,
 
    SyncBlockStart,
 
    NewComponent(ProcedureDefinitionId, TypeId, ValueGroup),
 
    NewChannel,
 
}
 

	
 
// Note: cloning is fine, methinks. cloning all values and the heap regions then
 
// we end up with valid "pointers" to heap regions.
 
#[derive(Debug, Clone)]
 
pub struct Prompt {
 
    pub(crate) frames: Vec<Frame>,
 
    pub(crate) store: Store,
 
}
 

	
 
impl Prompt {
 
    pub fn new(types: &TypeTable, heap: &Heap, def: ProcedureDefinitionId, type_id: TypeId, args: ValueGroup) -> Self {
 
        let mut prompt = Self{
 
            frames: Vec::new(),
 
            store: Store::new(),
 
        };
 

	
 
        // Maybe do typechecking in the future?
 
        let monomorph_index = types.get_monomorph(type_id).variant.as_procedure().monomorph_index;
 
        let new_frame = Frame::new(heap, def, type_id, monomorph_index);
 
        let max_stack_size = new_frame.max_stack_size;
 
        prompt.frames.push(new_frame);
 
        args.into_store(&mut prompt.store);
 
        prompt.store.reserve_stack(max_stack_size);
 

	
 
        prompt
 
    }
 

	
 
    /// Big 'ol function right here. Didn't want to break it up unnecessarily.
 
    /// It consists of, in sequence: executing any expressions that should be
 
    /// executed before the next statement can be evaluated, then a section that
 
    /// performs debug printing, and finally a section that takes the next
 
    /// statement and executes it. If the statement requires any expressions to
 
    /// be evaluated, then they will be added such that the next time `step` is
 
    /// called, all of these expressions are indeed evaluated.
 
    pub(crate) fn step(&mut self, types: &TypeTable, heap: &Heap, modules: &[Module], ctx: &mut impl RunContext) -> EvalResult {
 
        // Helper function to transfer multiple values from the expression value
 
        // array into a heap region (e.g. constructing arrays or structs).
 
        fn transfer_expression_values_front_into_heap(cur_frame: &mut Frame, store: &mut Store, num_values: usize) -> HeapPos {
 
            let heap_pos = store.alloc_heap();
 

	
 
            // Do the transformation first (because Rust...)
 
            for val_idx in 0..num_values {
 
@@ -607,187 +610,197 @@ impl Prompt {
 
                                        unreachable!("executor calling 'get' on value {:?}", value)
 
                                    };
 

	
 
                                    match ctx.performed_get(port_id) {
 
                                        Some(result) => {
 
                                            // We have the result. Merge the `ValueGroup` with the
 
                                            // stack/heap storage.
 
                                            debug_assert_eq!(result.values.len(), 1);
 
                                            result.into_stack(&mut cur_frame.expr_values, &mut self.store);
 
                                        },
 
                                        None => {
 
                                            // Don't have the result yet, prepare the expression to
 
                                            // get run again after we've received a message.
 
                                            cur_frame.expr_values.push_front(value.clone());
 
                                            cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                            return Ok(EvalContinuation::BlockGet(port_id));
 
                                        }
 
                                    }
 
                                },
 
                                Method::Put => {
 
                                    let port_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let deref_port_value = self.store.maybe_read_ref(&port_value).clone();
 

	
 
                                    let port_id = if let Value::Output(port_id) = deref_port_value {
 
                                        port_id
 
                                    } else {
 
                                        unreachable!("executor calling 'put' on value {:?}", deref_port_value)
 
                                    };
 

	
 
                                    let msg_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let deref_msg_value = self.store.maybe_read_ref(&msg_value).clone();
 

	
 
                                    if ctx.performed_put(port_id) {
 
                                        // We're fine, deallocate in case the expression value stack
 
                                        // held an owned value
 
                                        self.store.drop_value(msg_value.get_heap_pos());
 
                                    } else {
 
                                        // Prepare to execute again
 
                                        cur_frame.expr_values.push_front(msg_value);
 
                                        cur_frame.expr_values.push_front(port_value);
 
                                        cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                        let value_group = ValueGroup::from_store(&self.store, &[deref_msg_value]);
 
                                        return Ok(EvalContinuation::Put(port_id, value_group));
 
                                    }
 
                                },
 
                                Method::Fires => {
 
                                    let port_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let port_value_deref = self.store.maybe_read_ref(&port_value).clone();
 

	
 
                                    let port_id = match port_value_deref {
 
                                        Value::Input(port_id) => port_id,
 
                                        Value::Output(port_id) => port_id,
 
                                        _ => unreachable!("executor calling 'fires' on value {:?}", port_value_deref),
 
                                    };
 
                                    let port_id = port_value_deref.as_port_id();
 

	
 
                                    match ctx.fires(port_id) {
 
                                        None => {
 
                                            cur_frame.expr_values.push_front(port_value);
 
                                            cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                            return Ok(EvalContinuation::BlockFires(port_id));
 
                                        },
 
                                        Some(value) => {
 
                                            cur_frame.expr_values.push_back(value);
 
                                        }
 
                                    }
 
                                },
 
                                Method::Create => {
 
                                    let length_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let length_value = self.store.maybe_read_ref(&length_value);
 
                                    let length = if length_value.is_signed_integer() {
 
                                        let length_value = length_value.as_signed_integer();
 
                                        if length_value < 0 {
 
                                            return Err(EvalError::new_error_at_expr(
 
                                                self, modules, heap, expr_id,
 
                                                format!("got length '{}', can only create a message with a non-negative length", length_value)
 
                                            ));
 
                                        }
 

	
 
                                        length_value as u64
 
                                    } else {
 
                                        debug_assert!(length_value.is_unsigned_integer());
 
                                        length_value.as_unsigned_integer()
 
                                    };
 

	
 
                                    let heap_pos = self.store.alloc_heap();
 
                                    let values = &mut self.store.heap_regions[heap_pos as usize].values;
 
                                    debug_assert!(values.is_empty());
 
                                    values.resize(length as usize, Value::UInt8(0));
 
                                    cur_frame.expr_values.push_back(Value::Message(heap_pos));
 
                                },
 
                                Method::Length => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value_heap_pos = value.get_heap_pos();
 
                                    let value = self.store.maybe_read_ref(&value);
 

	
 
                                    let heap_pos = match value {
 
                                        Value::Array(pos) => *pos,
 
                                        Value::String(pos) => *pos,
 
                                        _ => unreachable!("length(...) on {:?}", value),
 
                                    };
 

	
 
                                    let len = self.store.heap_regions[heap_pos as usize].values.len();
 

	
 
                                    // TODO: @PtrInt
 
                                    cur_frame.expr_values.push_back(Value::UInt32(len as u32));
 
                                    self.store.drop_value(value_heap_pos);
 
                                },
 
                                Method::Assert => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value = self.store.maybe_read_ref(&value).clone();
 
                                    if !value.as_bool() {
 
                                        return Ok(EvalContinuation::BranchInconsistent)
 
                                    }
 
                                },
 
                                Method::Print => {
 
                                    // Convert the runtime-variant of a string
 
                                    // into an actual string.
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value_heap_pos = value.as_string();
 
                                    let elements = &self.store.heap_regions[value_heap_pos as usize].values;
 

	
 
                                    let mut message = String::with_capacity(elements.len());
 
                                    for element in elements {
 
                                        message.push(element.as_char());
 
                                    }
 

	
 
                                    // Drop the heap-allocated value from the
 
                                    // store
 
                                    self.store.drop_heap_pos(value_heap_pos);
 
                                    println!("{}", message);
 
                                },
 
                                Method::SelectStart => {
 
                                    todo!("select start");
 
                                    let num_cases = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 
                                    let num_ports = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 
                                    if !ctx.select_start(num_cases, num_ports) {
 
                                        return Ok(EvalContinuation::SelectStart(num_cases, num_ports))
 
                                    }
 
                                },
 
                                Method::SelectRegisterCasePort => {
 
                                    todo!("select register");
 
                                    let case_index = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 
                                    let port_index = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 
                                    let port_value = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_port_id();
 

	
 
                                    if !ctx.performed_select_start() {
 
                                        return Ok(EvalContinuation::SelectRegisterPort(case_index, port_index, port_value));
 
                                    }
 
                                },
 
                                Method::SelectWait => {
 
                                    todo!("select wait");
 
                                    match ctx.performed_select_wait() {
 
                                        Some(select_index) => {
 
                                            cur_frame.expr_values.push_back(Value::UInt32(select_index));
 
                                        },
 
                                        None => return Ok(EvalContinuation::SelectWait),
 
                                    }
 
                                },
 
                                Method::UserComponent => {
 
                                    // This is actually handled by the evaluation
 
                                    // of the statement.
 
                                    debug_assert_eq!(heap[expr.procedure].parameters.len(), cur_frame.expr_values.len());
 
                                    debug_assert_eq!(heap[cur_frame.position].as_new().expression, expr.this)
 
                                },
 
                                Method::UserFunction => {
 
                                    // Push a new frame. Note that all expressions have
 
                                    // been pushed to the front, so they're in the order
 
                                    // of the definition.
 
                                    let num_args = expr.arguments.len();
 

	
 
                                    // Determine stack boundaries
 
                                    let cur_stack_boundary = self.store.cur_stack_boundary;
 
                                    let new_stack_boundary = self.store.stack.len();
 

	
 
                                    // Push new boundary and function arguments for new frame
 
                                    self.store.stack.push(Value::PrevStackBoundary(cur_stack_boundary as isize));
 
                                    for _ in 0..num_args {
 
                                        let argument = self.store.read_take_ownership(cur_frame.expr_values.pop_front().unwrap());
 
                                        self.store.stack.push(argument);
 
                                    }
 

	
 
                                    // Determine the monomorph index of the function we're calling
 
                                    let mono_data = &heap[cur_frame.definition].monomorphs[cur_frame.monomorph_index];
 
                                    let (type_id, monomorph_index) = mono_data.expr_info[expr.type_index as usize].variant.as_procedure();
 

	
 
                                    // Push the new frame and reserve its stack size
 
                                    let new_frame = Frame::new(heap, expr.procedure, type_id, monomorph_index);
 
                                    let new_stack_size = new_frame.max_stack_size;
 
                                    self.frames.push(new_frame);
 
                                    self.store.cur_stack_boundary = new_stack_boundary;
 
                                    self.store.reserve_stack(new_stack_size);
 

	
 
                                    // To simplify the logic a little bit we will now
 
                                    // return and ask our caller to call us again
 
                                    return Ok(EvalContinuation::Stepping);
 
                                }
 
                            }
 
                        },
 
                        Expression::Variable(expr) => {
 
                            let variable = &heap[expr.declaration.unwrap()];
 
                            let ref_value = if expr.used_as_binding_target {
 
                                Value::Binding(variable.unique_id_in_scope as StackPos)
 
                            } else {
 
                                Value::Ref(ValueId::Stack(variable.unique_id_in_scope as StackPos))
 
                            };
 
@@ -920,98 +933,102 @@ impl Prompt {
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Continue(stmt) => {
 
                cur_frame.position = stmt.target.upcast();
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Synchronous(stmt) => {
 
                cur_frame.position = stmt.body;
 

	
 
                Ok(EvalContinuation::SyncBlockStart)
 
            },
 
            Statement::EndSynchronous(stmt) => {
 
                cur_frame.position = stmt.next;
 
                let start_synchronous = &heap[stmt.start_sync];
 
                let scope = &heap[start_synchronous.scope];
 
                self.store.clear_stack(scope.first_unique_id_in_scope as usize);
 

	
 
                Ok(EvalContinuation::SyncBlockEnd)
 
            },
 
            Statement::Fork(stmt) => {
 
                if stmt.right_body.is_none() {
 
                    // No reason to fork
 
                    cur_frame.position = stmt.left_body;
 
                } else {
 
                    // Need to fork
 
                    if let Some(go_left) = ctx.performed_fork() {
 
                        // Runtime has created a fork
 
                        if go_left {
 
                            cur_frame.position = stmt.left_body;
 
                        } else {
 
                            cur_frame.position = stmt.right_body.unwrap();
 
                        }
 
                    } else {
 
                        // Request the runtime to create a fork of the current
 
                        // branch
 
                        return Ok(EvalContinuation::NewFork);
 
                    }
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndFork(stmt) => {
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Select(_stmt) => {
 
                todo!("implement select evaluation")
 
            Statement::Select(stmt) => {
 
                // This is a trampoline for the statements that were placed by
 
                // the AST transformation pass
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndSelect(stmt) => {
 
                cur_frame.position = stmt.next;
 
                let start_select = &heap[stmt.start_select];
 
                if let Some(select_case) = start_select.cases.first() {
 
                    let scope = &heap[select_case.scope];
 
                    self.store.clear_stack(scope.first_unique_id_in_scope as usize);
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Return(_stmt) => {
 
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for return statement");
 

	
 
                // The preceding frame has executed a call, so is expecting the
 
                // return expression on its expression value stack. Note that
 
                // we may be returning a reference to something on our stack,
 
                // so we need to read that value and clone it.
 
                let return_value = cur_frame.expr_values.pop_back().unwrap();
 
                let return_value = match return_value {
 
                    Value::Ref(value_id) => self.store.read_copy(value_id),
 
                    _ => return_value,
 
                };
 

	
 
                // Pre-emptively pop our stack frame
 
                self.frames.pop();
 

	
 
                // Clean up our section of the stack
 
                self.store.clear_stack(0);
 
                self.store.stack.truncate(self.store.cur_stack_boundary + 1);
 
                let prev_stack_idx = self.store.stack.pop().unwrap().as_stack_boundary();
 

	
 
                // TODO: Temporary hack for testing, remove at some point
 
                if self.frames.is_empty() {
 
                    debug_assert!(prev_stack_idx == -1);
 
                    debug_assert!(self.store.stack.len() == 0);
 
                    self.store.stack.push(return_value);
 
                    return Ok(EvalContinuation::ComponentTerminated);
 
                }
 

	
 
                debug_assert!(prev_stack_idx >= 0);
 
                // Return to original state of stack frame
 
                self.store.cur_stack_boundary = prev_stack_idx as usize;
 
                let cur_frame = self.frames.last_mut().unwrap();
 
                cur_frame.expr_values.push_back(return_value);
 

	
 
                // We just returned to the previous frame, which might be in
 
                // the middle of evaluating expressions for a particular
src/protocol/eval/value.rs
Show inline comments
 
@@ -20,138 +20,133 @@ pub enum ValueId {
 
}
 

	
 
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
 
pub struct PortId{
 
    pub(crate) id: u32
 
}
 

	
 
impl PortId {
 
    pub fn new(id: u32) -> Self {
 
        return Self{ id };
 
    }
 
}
 

	
 
/// Represents a value stored on the stack or on the heap. Some values contain
 
/// a `HeapPos`, implying that they're stored in the store's `Heap`. Clearing
 
/// a `Value` with a `HeapPos` from a stack must also clear the associated
 
/// region from the `Heap`.
 
#[derive(Debug, Clone)]
 
pub enum Value {
 
    // Special types, never encountered during evaluation if the compiler works correctly
 
    Unassigned,                 // Marker when variables are first declared, immediately followed by assignment
 
    PrevStackBoundary(isize),   // Marker for stack frame beginning, so we can pop stack values
 
    Ref(ValueId),               // Reference to a value, used by expressions producing references
 
    Binding(StackPos),          // Reference to a binding variable (reserved on the stack)
 
    // Builtin types
 
    Input(PortId),
 
    Output(PortId),
 
    Message(HeapPos),
 
    Null,
 
    Bool(bool),
 
    Char(char),
 
    String(HeapPos),
 
    UInt8(u8),
 
    UInt16(u16),
 
    UInt32(u32),
 
    UInt64(u64),
 
    SInt8(i8),
 
    SInt16(i16),
 
    SInt32(i32),
 
    SInt64(i64),
 
    Array(HeapPos),
 
    Tuple(HeapPos),
 
    // Instances of user-defined types
 
    Enum(i64),
 
    Union(i64, HeapPos),
 
    Struct(HeapPos),
 
}
 

	
 
macro_rules! impl_union_unpack_as_value {
 
    ($func_name:ident, $variant_name:path, $return_type:ty) => {
 
        impl Value {
 
            pub(crate) fn $func_name(&self) -> $return_type {
 
                match self {
 
                    $variant_name(v) => *v,
 
                    _ => panic!(concat!("called ", stringify!($func_name()), " on {:?}"), self),
 
                }
 
            }
 
        }
 
    }
 
}
 

	
 
impl_union_unpack_as_value!(as_stack_boundary, Value::PrevStackBoundary, isize);
 
impl_union_unpack_as_value!(as_ref,     Value::Ref,     ValueId);
 
impl_union_unpack_as_value!(as_input,   Value::Input,   PortId);
 
impl_union_unpack_as_value!(as_output,  Value::Output,  PortId);
 
impl_union_unpack_as_value!(as_message, Value::Message, HeapPos);
 
impl_union_unpack_as_value!(as_bool,    Value::Bool,    bool);
 
impl_union_unpack_as_value!(as_char,    Value::Char,    char);
 
impl_union_unpack_as_value!(as_string,  Value::String,  HeapPos);
 
impl_union_unpack_as_value!(as_uint8,   Value::UInt8,   u8);
 
impl_union_unpack_as_value!(as_uint16,  Value::UInt16,  u16);
 
impl_union_unpack_as_value!(as_uint32,  Value::UInt32,  u32);
 
impl_union_unpack_as_value!(as_uint64,  Value::UInt64,  u64);
 
impl_union_unpack_as_value!(as_sint8,   Value::SInt8,   i8);
 
impl_union_unpack_as_value!(as_sint16,  Value::SInt16,  i16);
 
impl_union_unpack_as_value!(as_sint32,  Value::SInt32,  i32);
 
impl_union_unpack_as_value!(as_sint64,  Value::SInt64,  i64);
 
impl_union_unpack_as_value!(as_array,   Value::Array,   HeapPos);
 
impl_union_unpack_as_value!(as_tuple,   Value::Tuple,   HeapPos);
 
impl_union_unpack_as_value!(as_enum,    Value::Enum,    i64);
 
impl_union_unpack_as_value!(as_struct,  Value::Struct,  HeapPos);
 
union_cast_to_value_method_impl!(as_stack_boundary, isize, Value::PrevStackBoundary);
 
union_cast_to_value_method_impl!(as_ref, ValueId, Value::Ref);
 
union_cast_to_value_method_impl!(as_input, PortId, Value::Input);
 
union_cast_to_value_method_impl!(as_output, PortId, Value::Output);
 
union_cast_to_value_method_impl!(as_message, HeapPos, Value::Message);
 
union_cast_to_value_method_impl!(as_bool, bool, Value::Bool);
 
union_cast_to_value_method_impl!(as_char, char, Value::Char);
 
union_cast_to_value_method_impl!(as_string, HeapPos, Value::String);
 
union_cast_to_value_method_impl!(as_uint8, u8, Value::UInt8);
 
union_cast_to_value_method_impl!(as_uint16, u16, Value::UInt16);
 
union_cast_to_value_method_impl!(as_uint32, u32, Value::UInt32);
 
union_cast_to_value_method_impl!(as_uint64, u64, Value::UInt64);
 
union_cast_to_value_method_impl!(as_sint8, i8, Value::SInt8);
 
union_cast_to_value_method_impl!(as_sint16, i16, Value::SInt16);
 
union_cast_to_value_method_impl!(as_sint32, i32, Value::SInt32);
 
union_cast_to_value_method_impl!(as_sint64, i64, Value::SInt64);
 
union_cast_to_value_method_impl!(as_array, HeapPos, Value::Array);
 
union_cast_to_value_method_impl!(as_tuple, HeapPos, Value::Tuple);
 
union_cast_to_value_method_impl!(as_enum, i64, Value::Enum);
 
union_cast_to_value_method_impl!(as_struct, HeapPos, Value::Struct);
 

	
 
impl Value {
 
    pub(crate) fn as_union(&self) -> (i64, HeapPos) {
 
        match self {
 
            Value::Union(tag, v) => (*tag, *v),
 
            _ => panic!("called as_union on {:?}", self),
 
        }
 
    }
 

	
 
    pub(crate) fn as_port_id(&self) -> PortId {
 
        match self {
 
            Value::Input(v) => *v,
 
            Value::Output(v) => *v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    pub(crate) fn is_integer(&self) -> bool {
 
        match self {
 
            Value::UInt8(_) | Value::UInt16(_) | Value::UInt32(_) | Value::UInt64(_) |
 
            Value::SInt8(_) | Value::SInt16(_) | Value::SInt32(_) | Value::SInt64(_) => true,
 
            _ => false
 
        }
 
    }
 

	
 
    pub(crate) fn is_unsigned_integer(&self) -> bool {
 
        match self {
 
            Value::UInt8(_) | Value::UInt16(_) | Value::UInt32(_) | Value::UInt64(_) => true,
 
            _ => false
 
        }
 
    }
 

	
 
    pub(crate) fn is_signed_integer(&self) -> bool {
 
        match self {
 
            Value::SInt8(_) | Value::SInt16(_) | Value::SInt32(_) | Value::SInt64(_) => true,
 
            _ => false
 
        }
 
    }
 

	
 
    pub(crate) fn as_unsigned_integer(&self) -> u64 {
 
        match self {
 
            Value::UInt8(v)  => *v as u64,
 
            Value::UInt16(v) => *v as u64,
 
            Value::UInt32(v) => *v as u64,
 
            Value::UInt64(v) => *v as u64,
 
            _ => unreachable!("called as_unsigned_integer on {:?}", self),
 
        }
 
    }
 

	
 
    pub(crate) fn as_signed_integer(&self) -> i64 {
 
        match self {
 
            Value::SInt8(v)  => *v as i64,
 
            Value::SInt16(v) => *v as i64,
 
            Value::SInt32(v) => *v as i64,
 
            Value::SInt64(v) => *v as i64,
 
            _ => unreachable!("called as_signed_integer on {:?}", self)
 
        }
 
    }
 

	
 
    /// Returns the heap position associated with the value. If the value
 
    /// doesn't store anything in the heap then we return `None`.
 
    pub(crate) fn get_heap_pos(&self) -> Option<HeapPos> {
 
        match self {
 
            Value::Message(v) => Some(*v),
 
            Value::String(v) => Some(*v),
src/protocol/mod.rs
Show inline comments
 
@@ -170,87 +170,90 @@ impl ProtocolDescription {
 
                    }
 
                } else {
 
                    return false;
 
                }
 

	
 
                return true;
 
            },
 
            CTP::Array => {
 
                if let Value::Array(heap_pos) = argument {
 
                    let heap_pos = *heap_pos;
 
                    for element in &arguments.regions[heap_pos as usize] {
 
                        if !self.verify_same_type(expected, expected_idx + 1, arguments, element) {
 
                            return false;
 
                        }
 
                    }
 
                    return true;
 
                } else {
 
                    return false;
 
                }
 
            },
 
            CTP::Input => if let Value::Input(_) = argument { true } else { false },
 
            CTP::Output => if let Value::Output(_) = argument { true } else { false },
 
            CTP::Tuple(_) => todo!("implement full type checking on user-supplied arguments"),
 
            CTP::Instance(definition_id, _num_embedded) => {
 
                let definition = self.types.get_base_definition(definition_id).unwrap();
 
                match &definition.definition {
 
                    DefinedTypeVariant::Enum(definition) => {
 
                        if let Value::Enum(variant_value) = argument {
 
                            let is_valid = definition.variants.iter()
 
                                .any(|v| v.value == *variant_value);
 
                            return is_valid;
 
                        }
 
                    },
 
                    _ => todo!("implement full type checking on user-supplied arguments"),
 
                }
 

	
 
                return false;
 
            },
 
        }
 
    }
 
}
 

	
 
pub trait RunContext {
 
    fn performed_put(&mut self, port: PortId) -> bool;
 
    fn performed_get(&mut self, port: PortId) -> Option<ValueGroup>; // None if still waiting on message
 
    fn fires(&mut self, port: PortId) -> Option<Value>; // None if not yet branched
 
    fn performed_fork(&mut self) -> Option<bool>; // None if not yet forked
 
    fn created_channel(&mut self) -> Option<(Value, Value)>; // None if not yet prepared
 
    fn performed_select_start(&mut self) -> bool; // true if performed
 
    fn performed_select_register_port(&mut self) -> bool; // true if registered
 
    fn performed_select_wait(&mut self) -> Option<u32>; // None if not yet notified runtime of select blocker
 
}
 

	
 
pub struct ProtocolDescriptionBuilder {
 
    parser: Parser,
 
}
 

	
 
impl ProtocolDescriptionBuilder {
 
    pub fn new() -> Self {
 
        return Self{
 
            parser: Parser::new(),
 
        }
 
    }
 

	
 
    pub fn add(&mut self, filename: String, buffer: Vec<u8>) -> Result<(), ParseError> {
 
        let input = InputSource::new(filename, buffer);
 
        self.parser.feed(input)?;
 

	
 
        return Ok(())
 
    }
 

	
 
    pub fn compile(mut self) -> Result<ProtocolDescription, ParseError> {
 
        self.parser.parse()?;
 

	
 
        let modules: Vec<Module> = self.parser.modules.into_iter()
 
            .map(|module| Module{
 
                source: module.source,
 
                root_id: module.root_id,
 
                name: module.name.map(|(_, name)| name)
 
            })
 
            .collect();
 

	
 
        return Ok(ProtocolDescription {
 
            modules,
 
            heap: self.parser.heap,
 
            types: self.parser.type_table,
 
            pool: Mutex::new(self.parser.string_pool),
 
        });
 
    }
 
}
src/protocol/parser/pass_rewriting.rs
Show inline comments
 
@@ -246,103 +246,105 @@ impl Visitor for PassRewriting {
 
                    transformed_stmts.push(runtime_call_stmt_id.upcast());
 

	
 
                    total_port_index += 1;
 
                }
 
            }
 
        }
 

	
 
        // Create the variable that will hold the result of a completed select
 
        // block. Then create the runtime call that will produce this result
 
        let select_variable_id = create_ast_variable(ctx, outer_scope_id);
 
        let select_variable_type = TypeIdReference::DirectTypeId(ctx.arch.uint32_type_id);
 
        locals.push((select_variable_id, select_variable_type));
 

	
 
        {
 
            let runtime_call_expr_id = create_ast_call_expr(ctx, self.current_procedure_id, Method::SelectWait, &mut self.expression_buffer, Vec::new());
 
            let variable_stmt_id = create_ast_variable_declaration_stmt(ctx, self.current_procedure_id, select_variable_id, select_variable_type, runtime_call_expr_id.upcast());
 
            transformed_stmts.push(variable_stmt_id.upcast().upcast());
 
        }
 

	
 
        call_id_section.forget();
 
        expr_id_section.forget();
 

	
 
        // Now we transform each of the select block case's guard and code into
 
        // a chained if-else statement.
 
        if total_num_cases > 0 {
 
            let (if_stmt_id, end_if_stmt_id) = transform_select_case_code(ctx, self.current_procedure_id, id, 0, select_variable_id, select_variable_type);
 
            let first_end_if_stmt = &mut ctx.heap[end_if_stmt_id];
 
            first_end_if_stmt.next = outer_end_block_id.upcast();
 

	
 
            let mut last_if_stmt_id = if_stmt_id;
 
            let mut last_end_if_stmt_id = end_if_stmt_id;
 
            transformed_stmts.push(last_if_stmt_id.upcast());
 

	
 
            for case_index in 1..total_num_cases {
 
                let (if_stmt_id, end_if_stmt_id) = transform_select_case_code(ctx, self.current_procedure_id, id, case_index, select_variable_id, select_variable_type);
 
                let false_case_scope_id = ctx.heap.alloc_scope(|this| Scope::new(this, ScopeAssociation::If(last_if_stmt_id, false)));
 
                set_ast_if_statement_false_body(ctx, last_if_stmt_id, last_end_if_stmt_id, IfStatementCase{ body: if_stmt_id.upcast(), scope: false_case_scope_id });
 

	
 
                let end_if_stmt = &mut ctx.heap[end_if_stmt_id];
 
                end_if_stmt.next = last_end_if_stmt_id.upcast();
 

	
 
                last_if_stmt_id = if_stmt_id;
 
                last_end_if_stmt_id = end_if_stmt_id;
 
            }
 
        }
 

	
 
        // Final steps: set the statements of the replacement block statement,
 
        // and link all of those statements together
 
        let first_stmt_id = transformed_stmts[0];
 
        let mut last_stmt_id = transformed_stmts[0];
 
        for stmt_id in transformed_stmts.iter().skip(1).copied() {
 
            set_ast_statement_next(ctx, last_stmt_id, stmt_id);
 
            last_stmt_id = stmt_id;
 
        }
 

	
 
        let outer_block_stmt = &mut ctx.heap[outer_block_id];
 
        outer_block_stmt.next = first_stmt_id;
 
        outer_block_stmt.statements = transformed_stmts;
 

	
 
        return Ok(())
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// Utilities to create compiler-generated AST nodes
 
// -----------------------------------------------------------------------------
 

	
 
#[derive(Clone, Copy)]
 
enum TypeIdReference {
 
    DirectTypeId(TypeId),
 
    IndirectSameAsExpr(i32), // by type index
 
}
 

	
 
fn create_ast_variable(ctx: &mut Ctx, scope_id: ScopeId) -> VariableId {
 
    let variable_id = ctx.heap.alloc_variable(|this| Variable{
 
        this,
 
        kind: VariableKind::Local,
 
        parser_type: ParserType{
 
            elements: Vec::new(),
 
            full_span: InputSpan::new(),
 
        },
 
        identifier: Identifier::new_empty(InputSpan::new()),
 
        relative_pos_in_parent: -1,
 
        unique_id_in_scope: -1,
 
    });
 
    let scope = &mut ctx.heap[scope_id];
 
    scope.variables.push(variable_id);
 

	
 
    return variable_id;
 
}
 

	
 
fn create_ast_variable_expr(ctx: &mut Ctx, containing_procedure_id: ProcedureDefinitionId, variable_id: VariableId, variable_type_id: TypeIdReference) -> VariableExpressionId {
 
    let variable_type_index = add_new_procedure_expression_type(ctx, containing_procedure_id, variable_type_id);
 
    return ctx.heap.alloc_variable_expression(|this| VariableExpression{
 
        this,
 
        identifier: Identifier::new_empty(InputSpan::new()),
 
        declaration: Some(variable_id),
 
        used_as_binding_target: false,
 
        parent: ExpressionParent::None,
 
        type_index: variable_type_index,
 
    });
 
}
 

	
 
fn create_ast_call_expr(ctx: &mut Ctx, containing_procedure_id: ProcedureDefinitionId, method: Method, buffer: &mut ScopedBuffer<ExpressionId>, arguments: Vec<ExpressionId>) -> CallExpressionId {
 
    let call_type_id = match method {
src/protocol/parser/pass_typing.rs
Show inline comments
 
@@ -827,112 +827,112 @@ pub(crate) type ResolveQueue = VecDeque<ResolveQueueElement>;
 
struct InferenceNode {
 
    // filled in during type inference
 
    expr_type: InferenceType,               // result type from expression
 
    expr_id: ExpressionId,                  // expression that is evaluated
 
    inference_rule: InferenceRule,          // rule used to infer node type
 
    parent_index: Option<InferNodeIndex>,   // parent of inference node
 
    field_index: i32,                       // index of struct field or tuple member
 
    poly_data_index: PolyDataIndex,         // index to inference data for polymorphic types
 
    // filled in once type inference is done
 
    info_type_id: TypeId,
 
    info_variant: ExpressionInfoVariant,
 
}
 

	
 
impl InferenceNode {
 
    #[inline]
 
    fn as_expression_info(&self) -> ExpressionInfo {
 
        return ExpressionInfo {
 
            type_id: self.info_type_id,
 
            variant: self.info_variant
 
        }
 
    }
 
}
 

	
 
/// Inferencing rule to apply. Some of these are reasonably generic. Other ones
 
/// require so much custom logic that we'll not try to come up with an
 
/// abstraction.
 
enum InferenceRule {
 
    Noop,
 
    MonoTemplate(InferenceRuleTemplate),
 
    BiEqual(InferenceRuleBiEqual),
 
    TriEqualArgs(InferenceRuleTriEqualArgs),
 
    TriEqualAll(InferenceRuleTriEqualAll),
 
    Concatenate(InferenceRuleTwoArgs),
 
    IndexingExpr(InferenceRuleIndexingExpr),
 
    SlicingExpr(InferenceRuleSlicingExpr),
 
    SelectStructField(InferenceRuleSelectStructField),
 
    SelectTupleMember(InferenceRuleSelectTupleMember),
 
    LiteralStruct(InferenceRuleLiteralStruct),
 
    LiteralEnum,
 
    LiteralUnion(InferenceRuleLiteralUnion),
 
    LiteralArray(InferenceRuleLiteralArray),
 
    LiteralTuple(InferenceRuleLiteralTuple),
 
    CastExpr(InferenceRuleCastExpr),
 
    CallExpr(InferenceRuleCallExpr),
 
    VariableExpr(InferenceRuleVariableExpr),
 
}
 

	
 
impl InferenceRule {
 
    union_cast_method_impl!(as_mono_template, InferenceRuleTemplate, InferenceRule::MonoTemplate);
 
    union_cast_method_impl!(as_bi_equal, InferenceRuleBiEqual, InferenceRule::BiEqual);
 
    union_cast_method_impl!(as_tri_equal_args, InferenceRuleTriEqualArgs, InferenceRule::TriEqualArgs);
 
    union_cast_method_impl!(as_tri_equal_all, InferenceRuleTriEqualAll, InferenceRule::TriEqualAll);
 
    union_cast_method_impl!(as_concatenate, InferenceRuleTwoArgs, InferenceRule::Concatenate);
 
    union_cast_method_impl!(as_indexing_expr, InferenceRuleIndexingExpr, InferenceRule::IndexingExpr);
 
    union_cast_method_impl!(as_slicing_expr, InferenceRuleSlicingExpr, InferenceRule::SlicingExpr);
 
    union_cast_method_impl!(as_select_struct_field, InferenceRuleSelectStructField, InferenceRule::SelectStructField);
 
    union_cast_method_impl!(as_select_tuple_member, InferenceRuleSelectTupleMember, InferenceRule::SelectTupleMember);
 
    union_cast_method_impl!(as_literal_struct, InferenceRuleLiteralStruct, InferenceRule::LiteralStruct);
 
    union_cast_method_impl!(as_literal_union, InferenceRuleLiteralUnion, InferenceRule::LiteralUnion);
 
    union_cast_method_impl!(as_literal_array, InferenceRuleLiteralArray, InferenceRule::LiteralArray);
 
    union_cast_method_impl!(as_literal_tuple, InferenceRuleLiteralTuple, InferenceRule::LiteralTuple);
 
    union_cast_method_impl!(as_cast_expr, InferenceRuleCastExpr, InferenceRule::CastExpr);
 
    union_cast_method_impl!(as_call_expr, InferenceRuleCallExpr, InferenceRule::CallExpr);
 
    union_cast_method_impl!(as_variable_expr, InferenceRuleVariableExpr, InferenceRule::VariableExpr);
 
    union_cast_to_ref_method_impl!(as_mono_template, InferenceRuleTemplate, InferenceRule::MonoTemplate);
 
    union_cast_to_ref_method_impl!(as_bi_equal, InferenceRuleBiEqual, InferenceRule::BiEqual);
 
    union_cast_to_ref_method_impl!(as_tri_equal_args, InferenceRuleTriEqualArgs, InferenceRule::TriEqualArgs);
 
    union_cast_to_ref_method_impl!(as_tri_equal_all, InferenceRuleTriEqualAll, InferenceRule::TriEqualAll);
 
    union_cast_to_ref_method_impl!(as_concatenate, InferenceRuleTwoArgs, InferenceRule::Concatenate);
 
    union_cast_to_ref_method_impl!(as_indexing_expr, InferenceRuleIndexingExpr, InferenceRule::IndexingExpr);
 
    union_cast_to_ref_method_impl!(as_slicing_expr, InferenceRuleSlicingExpr, InferenceRule::SlicingExpr);
 
    union_cast_to_ref_method_impl!(as_select_struct_field, InferenceRuleSelectStructField, InferenceRule::SelectStructField);
 
    union_cast_to_ref_method_impl!(as_select_tuple_member, InferenceRuleSelectTupleMember, InferenceRule::SelectTupleMember);
 
    union_cast_to_ref_method_impl!(as_literal_struct, InferenceRuleLiteralStruct, InferenceRule::LiteralStruct);
 
    union_cast_to_ref_method_impl!(as_literal_union, InferenceRuleLiteralUnion, InferenceRule::LiteralUnion);
 
    union_cast_to_ref_method_impl!(as_literal_array, InferenceRuleLiteralArray, InferenceRule::LiteralArray);
 
    union_cast_to_ref_method_impl!(as_literal_tuple, InferenceRuleLiteralTuple, InferenceRule::LiteralTuple);
 
    union_cast_to_ref_method_impl!(as_cast_expr, InferenceRuleCastExpr, InferenceRule::CastExpr);
 
    union_cast_to_ref_method_impl!(as_call_expr, InferenceRuleCallExpr, InferenceRule::CallExpr);
 
    union_cast_to_ref_method_impl!(as_variable_expr, InferenceRuleVariableExpr, InferenceRule::VariableExpr);
 
}
 

	
 
// Note: InferenceRuleTemplate is `Copy`, so don't add dynamically allocated
 
// members in the future (or review places where this struct is copied)
 
#[derive(Clone, Copy)]
 
struct InferenceRuleTemplate {
 
    template: &'static [InferenceTypePart],
 
    application: InferenceRuleTemplateApplication,
 
}
 

	
 
impl InferenceRuleTemplate {
 
    fn new_none() -> Self {
 
        return Self{
 
            template: &[],
 
            application: InferenceRuleTemplateApplication::None,
 
        };
 
    }
 

	
 
    fn new_forced(template: &'static [InferenceTypePart]) -> Self {
 
        return Self{
 
            template,
 
            application: InferenceRuleTemplateApplication::Forced,
 
        };
 
    }
 

	
 
    fn new_template(template: &'static [InferenceTypePart]) -> Self {
 
        return Self{
 
            template,
 
            application: InferenceRuleTemplateApplication::Template,
 
        }
 
    }
 
}
 

	
 
#[derive(Clone, Copy)]
 
enum InferenceRuleTemplateApplication {
 
    None, // do not apply template, silly, but saves some bytes
 
    Forced,
 
    Template,
 
}
 

	
 
/// Type equality applied to 'self' and the argument. An optional template will
 
/// be applied to 'self' first. Example: "bitwise not"
 
struct InferenceRuleBiEqual {
 
    template: InferenceRuleTemplate,
 
    argument_index: InferNodeIndex,
 
}
 

	
 
/// Type equality applied to two arguments. Template can be applied to 'self'
src/protocol/tests/utils.rs
Show inline comments
 
@@ -1222,68 +1222,57 @@ fn seek_expr_in_stmt<F: Fn(&Expression) -> bool>(heap: &Heap, start: StatementId
 
            for stmt_id in &stmt.statements {
 
                if let Some(id) = seek_expr_in_stmt(heap, *stmt_id, f) {
 
                    return Some(id)
 
                }
 
            }
 
            None
 
        },
 
        Statement::Labeled(stmt) => {
 
            seek_expr_in_stmt(heap, stmt.body, f)
 
        },
 
        Statement::If(stmt) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, stmt.test, f))
 
            .or_else(|| seek_expr_in_stmt(heap, stmt.true_case.body, f))
 
            .or_else(|| if let Some(false_body) = stmt.false_case {
 
                seek_expr_in_stmt(heap, false_body.body, f)
 
            } else {
 
                None
 
            })
 
        },
 
        Statement::While(stmt) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, stmt.test, f))
 
            .or_else(|| seek_expr_in_stmt(heap, stmt.body, f))
 
        },
 
        Statement::Synchronous(stmt) => {
 
            seek_expr_in_stmt(heap, stmt.body, f)
 
        },
 
        Statement::Return(stmt) => {
 
            for expr_id in &stmt.expressions {
 
                if let Some(id) = seek_expr_in_expr(heap, *expr_id, f) {
 
                    return Some(id);
 
                }
 
            }
 
            None
 
        },
 
        Statement::New(stmt) => {
 
            seek_expr_in_expr(heap, stmt.expression.upcast(), f)
 
        },
 
        Statement::Expression(stmt) => {
 
            seek_expr_in_expr(heap, stmt.expression, f)
 
        },
 
        _ => None
 
    }
 
}
 

	
 
struct FakeRunContext{}
 
impl RunContext for FakeRunContext {
 
    fn performed_put(&mut self, _port: PortId) -> bool {
 
        unreachable!("'put' called in compiler testing code")
 
    }
 

	
 
    fn performed_get(&mut self, _port: PortId) -> Option<ValueGroup> {
 
        unreachable!("'get' called in compiler testing code")
 
    }
 

	
 
    fn fires(&mut self, _port: PortId) -> Option<Value> {
 
        unreachable!("'fires' called in compiler testing code")
 
    }
 

	
 
    fn performed_fork(&mut self) -> Option<bool> {
 
        unreachable!("'fork' called in compiler testing code")
 
    }
 

	
 
    fn created_channel(&mut self) -> Option<(Value, Value)> {
 
        unreachable!("channel created in compiler testing code")
 
    }
 
    fn performed_put(&mut self, _port: PortId) -> bool { unreachable!() }
 
    fn performed_get(&mut self, _port: PortId) -> Option<ValueGroup> { unreachable!() }
 
    fn fires(&mut self, _port: PortId) -> Option<Value> { unreachable!() }
 
    fn performed_fork(&mut self) -> Option<bool> { unreachable!() }
 
    fn created_channel(&mut self) -> Option<(Value, Value)> { unreachable!() }
 
    fn performed_select_start(&mut self) -> bool { unreachable!() }
 
    fn performed_select_register_port(&mut self) -> bool { unreachable!() }
 
    fn performed_select_wait(&mut self) -> Option<u32> { unreachable!() }
 
}
 
\ No newline at end of file
src/runtime/connector.rs
Show inline comments
 
@@ -77,96 +77,100 @@ pub(crate) struct ConnectorPDL {
 
    last_finished_handled: Option<BranchId>,
 
}
 

	
 
struct ConnectorRunContext<'a> {
 
    branch_id: BranchId,
 
    consensus: &'a Consensus,
 
    prepared: PreparedStatement,
 
}
 

	
 
impl<'a> RunContext for ConnectorRunContext<'a>{
 
    fn performed_put(&mut self, _port: PortId) -> bool {
 
        return match self.prepared.take() {
 
            PreparedStatement::None => false,
 
            PreparedStatement::PerformedPut => true,
 
            taken => unreachable!("prepared statement is '{:?}' during 'performed_put()'", taken)
 
        };
 
    }
 

	
 
    fn performed_get(&mut self, _port: PortId) -> Option<ValueGroup> {
 
        return match self.prepared.take() {
 
            PreparedStatement::None => None,
 
            PreparedStatement::PerformedGet(value) => Some(value),
 
            taken => unreachable!("prepared statement is '{:?}' during 'performed_get()'", taken),
 
        };
 
    }
 

	
 
    fn fires(&mut self, _port: PortId) -> Option<Value> {
 
        todo!("Remove fires() now")
 
        // let port_id = PortIdLocal::new(port.id);
 
        // let annotation = self.consensus.get_annotation(self.branch_id, port_id);
 
        // return annotation.expected_firing.map(|v| Value::Bool(v));
 
    }
 

	
 
    fn created_channel(&mut self) -> Option<(Value, Value)> {
 
        return match self.prepared.take() {
 
            PreparedStatement::None => None,
 
            PreparedStatement::CreatedChannel(ports) => Some(ports),
 
            taken => unreachable!("prepared statement is '{:?}' during 'created_channel()'", taken),
 
        };
 
    }
 

	
 
    fn performed_fork(&mut self) -> Option<bool> {
 
        return match self.prepared.take() {
 
            PreparedStatement::None => None,
 
            PreparedStatement::ForkedExecution(path) => Some(path),
 
            taken => unreachable!("prepared statement is '{:?}' during 'performed_fork()'", taken),
 
        };
 
    }
 

	
 
    fn performed_select_start(&mut self) -> bool { unreachable!() }
 
    fn performed_select_register_port(&mut self) -> bool { unreachable!() }
 
    fn performed_select_wait(&mut self) -> Option<u32> { unreachable!() }
 
}
 

	
 
impl Connector for ConnectorPDL {
 
    fn run(&mut self, sched_ctx: SchedulerCtx, comp_ctx: &mut ComponentCtx) -> ConnectorScheduling {
 
        if let Some(scheduling) = self.handle_new_messages(comp_ctx) {
 
            return scheduling;
 
        }
 

	
 
        match self.mode {
 
            Mode::Sync => {
 
                // Run in sync mode
 
                let scheduling = self.run_in_sync_mode(sched_ctx, comp_ctx);
 

	
 
                // Handle any new finished branches
 
                let mut iter_id = self.last_finished_handled.or(self.tree.get_queue_first(QueueKind::FinishedSync));
 
                while let Some(branch_id) = iter_id {
 
                    iter_id = self.tree.get_queue_next(branch_id);
 
                    self.last_finished_handled = Some(branch_id);
 

	
 
                    if let Some(round_conclusion) = self.consensus.handle_new_finished_sync_branch(branch_id, comp_ctx) {
 
                        // Actually found a solution
 
                        return self.enter_non_sync_mode(round_conclusion, comp_ctx);
 
                    }
 

	
 
                    self.last_finished_handled = Some(branch_id);
 
                }
 

	
 
                return scheduling;
 
            },
 
            Mode::NonSync => {
 
                let scheduling = self.run_in_deterministic_mode(sched_ctx, comp_ctx);
 
                return scheduling;
 
            },
 
            Mode::SyncError => {
 
                let scheduling = self.run_in_sync_mode(sched_ctx, comp_ctx);
 
                return scheduling;
 
            },
 
            Mode::Error => {
 
                // This shouldn't really be called. Because when we reach exit
 
                // mode the scheduler should not run the component anymore
 
                unreachable!("called component run() during error-mode");
 
            },
 
        }
 
    }
 
}
 

	
 
impl ConnectorPDL {
 
    pub fn new(initial: Prompt) -> Self {
src/runtime2/component/component_pdl.rs
Show inline comments
 
use crate::protocol::*;
 
use crate::protocol::ast::ProcedureDefinitionId;
 
use crate::protocol::eval::{
 
    PortId as EvalPortId, Prompt,
 
    ValueGroup, Value,
 
    EvalContinuation, EvalResult, EvalError
 
};
 

	
 
use crate::runtime2::scheduler::SchedulerCtx;
 
use crate::runtime2::communication::*;
 

	
 
use super::component_context::*;
 
use super::control_layer::*;
 
use super::consensus::Consensus;
 

	
 
pub enum CompScheduling {
 
    Immediate,
 
    Requeue,
 
    Sleep,
 
    Exit,
 
}
 

	
 
pub enum ExecStmt {
 
    CreatedChannel((Value, Value)),
 
    PerformedPut,
 
    PerformedGet(ValueGroup),
 
    PerformedSelectStart,
 
    PerformedSelectRegister,
 
    PerformedSelectWait(u32),
 
    None,
 
}
 

	
 
impl ExecStmt {
 
    fn take(&mut self) -> ExecStmt {
 
        let mut value = ExecStmt::None;
 
        std::mem::swap(self, &mut value);
 
        return value;
 
    }
 

	
 
    fn is_none(&self) -> bool {
 
        match self {
 
            ExecStmt::None => return true,
 
            _ => return false,
 
        }
 
    }
 
}
 

	
 
pub struct ExecCtx {
 
    stmt: ExecStmt,
 
}
 

	
 
impl RunContext for ExecCtx {
 
    fn performed_put(&mut self, _port: EvalPortId) -> bool {
 
        match self.stmt.take() {
 
            ExecStmt::None => return false,
 
            ExecStmt::PerformedPut => return true,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    fn performed_get(&mut self, _port: EvalPortId) -> Option<ValueGroup> {
 
        match self.stmt.take() {
 
            ExecStmt::None => return None,
 
            ExecStmt::PerformedGet(value) => return Some(value),
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    fn fires(&mut self, _port: EvalPortId) -> Option<Value> {
 
        todo!("remove fires")
 
    }
 

	
 
    fn performed_fork(&mut self) -> Option<bool> {
 
        todo!("remove fork")
 
    }
 

	
 
    fn created_channel(&mut self) -> Option<(Value, Value)> {
 
        match self.stmt.take() {
 
            ExecStmt::None => return None,
 
            ExecStmt::CreatedChannel(ports) => return Some(ports),
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    fn performed_select_start(&mut self) -> bool {
 
        match self.stmt.take() {
 
            ExecStmt::None => return false,
 
            ExecStmt::PerformedSelectStart => return true,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    fn performed_select_register_port(&mut self) -> bool {
 
        match self.stmt.take() {
 
            ExecStmt::None => return false,
 
            ExecStmt::PerformedSelectRegister => return true,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    fn performed_select_wait(&mut self) -> Option<u32> {
 
        match self.stmt.take() {
 
            ExecStmt::None => return None,
 
            ExecStmt::PerformedSelectWait(selected_case) => Some(selected_case),
 
            _ => unreachable!(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
 
pub(crate) enum Mode {
 
    NonSync, // not in sync mode
 
    Sync, // in sync mode, can interact with other components
 
    SyncEnd, // awaiting a solution, i.e. encountered the end of the sync block
 
    BlockedGet,
 
    BlockedPut,
 
    StartExit, // temporary state: if encountered then we start the shutdown process
 
    BusyExit, // temporary state: waiting for Acks for all the closed ports
 
    Exit, // exiting: shutdown process started, now waiting until the reference count drops to 0
 
}
 

	
 
pub(crate) struct CompPDL {
 
    pub mode: Mode,
 
    pub mode_port: PortId, // when blocked on a port
 
    pub mode_value: ValueGroup, // when blocked on a put
 
    pub prompt: Prompt,
 
    pub control: ControlLayer,
 
    pub consensus: Consensus,
 
    pub sync_counter: u32,
 
    pub exec_ctx: ExecCtx,
 
    // TODO: Temporary field, simulates future plans of having one storage place
 
    //  reserved per port.
 
    // Should be same length as the number of ports. Corresponding indices imply
 
    // message is intended for that port.
 
    pub inbox_main: Vec<Option<DataMessage>>,
 
    pub inbox_backup: Vec<DataMessage>,
 
}
 

	
 
impl CompPDL {
 
    pub(crate) fn new(initial_state: Prompt, num_ports: usize) -> Self {
 
        let mut inbox_main = Vec::new();
 
        inbox_main.reserve(num_ports);
 
        for _ in 0..num_ports {
 
            inbox_main.push(None);
 
        }
 

	
 
        return Self{
 
            mode: Mode::NonSync,
 
            mode_port: PortId::new_invalid(),
 
            mode_value: ValueGroup::default(),
 
            prompt: initial_state,
 
            control: ControlLayer::default(),
 
            consensus: Consensus::new(),
 
            sync_counter: 0,
 
            exec_ctx: ExecCtx{
 
@@ -200,183 +227,203 @@ impl CompPDL {
 
                self.handle_sync_end(sched_ctx, comp_ctx);
 
                return Ok(CompScheduling::Immediate);
 
            },
 
            EC::BlockGet(port_id) => {
 
                debug_assert_eq!(self.mode, Mode::Sync);
 
                debug_assert!(self.exec_ctx.stmt.is_none());
 

	
 
                let port_id = port_id_from_eval(port_id);
 
                let port_handle = comp_ctx.get_port_handle(port_id);
 
                let port_index = comp_ctx.get_port_index(port_handle);
 
                if let Some(message) = &self.inbox_main[port_index] {
 
                    // Check if we can actually receive the message
 
                    if self.consensus.try_receive_data_message(sched_ctx, comp_ctx, message) {
 
                        // Message was received. Make sure any blocked peers and
 
                        // pending messages are handled.
 
                        let message = self.inbox_main[port_index].take().unwrap();
 
                        self.handle_received_data_message(sched_ctx, comp_ctx, port_handle);
 

	
 
                        self.exec_ctx.stmt = ExecStmt::PerformedGet(message.content);
 
                        return Ok(CompScheduling::Immediate);
 
                    } else {
 
                        todo!("handle sync failure due to message deadlock");
 
                        return Ok(CompScheduling::Sleep);
 
                    }
 
                } else {
 
                    // We need to wait
 
                    self.mode = Mode::BlockedGet;
 
                    self.mode_port = port_id;
 
                    return Ok(CompScheduling::Sleep);
 
                }
 
            },
 
            EC::Put(port_id, value) => {
 
                debug_assert_eq!(self.mode, Mode::Sync);
 
                let port_id = port_id_from_eval(port_id);
 
                let port_handle = comp_ctx.get_port_handle(port_id);
 
                let port_info = comp_ctx.get_port(port_handle);
 
                if port_info.state.is_blocked() {
 
                    self.mode = Mode::BlockedPut;
 
                    self.mode_port = port_id;
 
                    self.mode_value = value;
 
                    self.exec_ctx.stmt = ExecStmt::PerformedPut; // prepare for when we become unblocked
 
                    return Ok(CompScheduling::Sleep);
 
                } else {
 
                    self.send_data_message_and_wake_up(sched_ctx, comp_ctx, port_handle, value);
 
                    self.exec_ctx.stmt = ExecStmt::PerformedPut;
 
                    return Ok(CompScheduling::Immediate);
 
                }
 
            },
 
            EC::SelectStart(num_cases, num_ports) => {
 
                debug_assert_eq!(self.mode, Mode::Sync);
 
                todo!("finish handling select start")
 
            },
 
            EC::SelectRegisterPort(case_index, port_index, port_id) => {
 
                debug_assert_eq!(self.mode, Mode::Sync);
 
                todo!("finish handling register port")
 
            },
 
            EC::SelectWait => {
 
                debug_assert_eq!(self.mode, Mode::Sync);
 
                self.handle_select_wait(sched_ctx, comp_ctx);
 
                todo!("finish handling select wait")
 
            },
 
            // Results that can be returned outside of sync mode
 
            EC::ComponentTerminated => {
 
                self.mode = Mode::StartExit; // next call we'll take care of the exit
 
                return Ok(CompScheduling::Immediate);
 
            },
 
            EC::SyncBlockStart => {
 
                debug_assert_eq!(self.mode, Mode::NonSync);
 
                self.handle_sync_start(sched_ctx, comp_ctx);
 
                return Ok(CompScheduling::Immediate);
 
            },
 
            EC::NewComponent(definition_id, type_id, arguments) => {
 
                debug_assert_eq!(self.mode, Mode::NonSync);
 
                self.create_component_and_transfer_ports(
 
                    sched_ctx, comp_ctx,
 
                    definition_id, type_id, arguments
 
                );
 
                return Ok(CompScheduling::Requeue);
 
            },
 
            EC::NewChannel => {
 
                debug_assert_eq!(self.mode, Mode::NonSync);
 
                debug_assert!(self.exec_ctx.stmt.is_none());
 
                let channel = comp_ctx.create_channel();
 
                self.exec_ctx.stmt = ExecStmt::CreatedChannel((
 
                    Value::Output(port_id_to_eval(channel.putter_id)),
 
                    Value::Input(port_id_to_eval(channel.getter_id))
 
                ));
 
                self.inbox_main.push(None);
 
                self.inbox_main.push(None);
 
                return Ok(CompScheduling::Immediate);
 
            }
 
        }
 
    }
 

	
 
    fn execute_prompt(&mut self, sched_ctx: &SchedulerCtx) -> EvalResult {
 
        let mut step_result = EvalContinuation::Stepping;
 
        while let EvalContinuation::Stepping = step_result {
 
            step_result = self.prompt.step(
 
                &sched_ctx.runtime.protocol.types, &sched_ctx.runtime.protocol.heap,
 
                &sched_ctx.runtime.protocol.modules, &mut self.exec_ctx,
 
            )?;
 
        }
 

	
 
        return Ok(step_result)
 
    }
 

	
 
    fn handle_sync_start(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
 
        sched_ctx.log("Component starting sync mode");
 
        self.consensus.notify_sync_start(comp_ctx);
 
        debug_assert_eq!(self.mode, Mode::NonSync);
 
        self.mode = Mode::Sync;
 
    }
 

	
 
    /// Handles end of sync. The conclusion to the sync round might arise
 
    /// immediately (and be handled immediately), or might come later through
 
    /// messaging. In any case the component should be scheduled again
 
    /// immediately
 
    fn handle_sync_end(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
 
        sched_ctx.log("Component ending sync mode (now waiting for solution)");
 
        let decision = self.consensus.notify_sync_end(sched_ctx, comp_ctx);
 
        self.mode = Mode::SyncEnd;
 
        self.handle_sync_decision(sched_ctx, comp_ctx, decision);
 
    }
 

	
 
    /// Handles decision from the consensus round. This will cause a change in
 
    /// the internal `Mode`, such that the next call to `run` can take the
 
    /// appropriate next steps.
 
    fn handle_sync_decision(&mut self, sched_ctx: &SchedulerCtx, _comp_ctx: &mut CompCtx, decision: SyncRoundDecision) {
 
        sched_ctx.log(&format!("Handling sync decision: {:?} (in mode {:?})", decision, self.mode));
 
        let is_success = match decision {
 
            SyncRoundDecision::None => {
 
                // No decision yet
 
                return;
 
            },
 
            SyncRoundDecision::Solution => true,
 
            SyncRoundDecision::Failure => false,
 
        };
 

	
 
        // If here then we've reached a decision
 
        debug_assert_eq!(self.mode, Mode::SyncEnd);
 
        if is_success {
 
            self.mode = Mode::NonSync;
 
            self.consensus.notify_sync_decision(decision);
 
        } else {
 
            self.mode = Mode::StartExit;
 
        }
 
    }
 

	
 
    /// Handles the moment where the PDL code has notified the runtime of all
 
    /// the ports it is waiting on.
 
    fn handle_select_wait(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
 
        sched_ctx.log("Component waiting for select conclusion");
 

	
 
    }
 

	
 
    fn handle_component_exit(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
 
        sched_ctx.log("Component exiting");
 
        debug_assert_eq!(self.mode, Mode::StartExit);
 
        self.mode = Mode::BusyExit;
 

	
 
        // Doing this by index, then retrieving the handle is a bit rediculous,
 
        // but Rust is being Rust with its borrowing rules.
 
        for port_index in 0..comp_ctx.num_ports() {
 
            let port = comp_ctx.get_port_by_index_mut(port_index);
 
            if port.state == PortState::Closed {
 
                // Already closed, or in the process of being closed
 
                continue;
 
            }
 

	
 
            // Mark as closed
 
            let port_id = port.self_id;
 
            port.state = PortState::Closed;
 

	
 
            // Notify peer of closing
 
            let port_handle = comp_ctx.get_port_handle(port_id);
 
            let (peer, message) = self.control.initiate_port_closing(port_handle, comp_ctx);
 
            let peer_info = comp_ctx.get_peer(peer);
 
            peer_info.handle.send_message(sched_ctx, Message::Control(message), true);
 
        }
 
    }
 

	
 
    // -------------------------------------------------------------------------
 
    // Handling messages
 
    // -------------------------------------------------------------------------
 

	
 
    fn send_data_message_and_wake_up(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, source_port_handle: LocalPortHandle, value: ValueGroup) {
 
        let port_info = comp_ctx.get_port(source_port_handle);
 
        let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
 
        let peer_info = comp_ctx.get_peer(peer_handle);
 
        let annotated_message = self.consensus.annotate_data_message(comp_ctx, port_info, value);
 
        peer_info.handle.send_message(sched_ctx, Message::Data(annotated_message), true);
 
    }
 

	
 
    /// Handles a message that came in through the public inbox. This function
 
    /// will handle putting it in the correct place, and potentially blocking
 
    /// the port in case too many messages are being received.
 
    fn handle_incoming_data_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: DataMessage) {
 
        // Check if we can insert it directly into the storage associated with
 
        // the port
 
        let target_port_id = message.data_header.target_port;
 
        let port_handle = comp_ctx.get_port_handle(target_port_id);
 
        let port_index = comp_ctx.get_port_index(port_handle);
 
        if self.inbox_main[port_index].is_none() {
src/runtime2/component/consensus.rs
Show inline comments
 
use crate::protocol::eval::ValueGroup;
 
use crate::runtime2::scheduler::*;
 
use crate::runtime2::runtime::*;
 
use crate::runtime2::communication::*;
 

	
 
use super::component_context::*;
 

	
 
pub struct PortAnnotation {
 
    self_comp_id: CompId,
 
    self_port_id: PortId,
 
    peer_comp_id: CompId, // only valid for getter ports
 
    peer_port_id: PortId, // only valid for getter ports
 
    mapping: Option<u32>,
 
}
 

	
 
impl PortAnnotation {
 
    fn new(comp_id: CompId, port_id: PortId) -> Self {
 
        return Self{
 
            self_comp_id: comp_id,
 
            self_port_id: port_id,
 
            peer_comp_id: CompId::new_invalid(),
 
            peer_port_id: PortId::new_invalid(),
 
            mapping: None
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Eq, PartialEq)]
 
enum Mode {
 
    NonSync,
 
    SyncBusy,
 
    SyncAwaitingSolution,
 
    SelectBusy,
 
    SelectWait,
 
}
 

	
 
struct SolutionCombiner {
 
    solution: SyncPartialSolution,
 
    matched_channels: usize,
 
}
 

	
 
impl SolutionCombiner {
 
    fn new() -> Self {
 
        return Self {
 
            solution: SyncPartialSolution::default(),
 
            matched_channels: 0,
 
        }
 
    }
 

	
 
    #[inline]
 
    fn has_contributions(&self) -> bool {
 
        return !self.solution.channel_mapping.is_empty();
 
    }
 

	
 
    /// Returns a decision for the current round. If there is no decision (yet)
 
    /// then `RoundDecision::None` is returned.
 
    fn get_decision(&self) -> SyncRoundDecision {
 
        if self.matched_channels == self.solution.channel_mapping.len() {
 
            debug_assert_ne!(self.solution.decision, SyncRoundDecision::None);
 
            return self.solution.decision;
 
        }
 

	
 
        return SyncRoundDecision::None; // even in case of failure: wait for everyone.
 
    }
 

	
 
    fn combine_with_partial_solution(&mut self, partial: SyncPartialSolution) {
 
        debug_assert_ne!(self.solution.decision, SyncRoundDecision::Solution);
 
        debug_assert_ne!(partial.decision, SyncRoundDecision::Solution);
 

	
 
        if partial.decision == SyncRoundDecision::Failure {
 
            self.solution.decision = SyncRoundDecision::Failure;
 
        }
 

	
 
        for entry in partial.channel_mapping {
 
            let channel_index = if entry.getter.is_some() && entry.putter.is_some() {
 
                let channel_index = self.solution.channel_mapping.len();
 
                self.solution.channel_mapping.push(entry);
 
                self.matched_channels += 1;
 

	
 
                channel_index
 
            } else if let Some(putter) = entry.putter {
 
                self.combine_with_putter_port(putter)
src/runtime2/tests/mod.rs
Show inline comments
 
@@ -37,49 +37,98 @@ fn test_component_communication() {
 
        u32 outside_index = 0;
 
        while (outside_index < outside_loops) {
 
            u32 inside_index = 0;
 
            sync while (inside_index < inside_loops) {
 
                put(o, inside_index);
 
                inside_index += 1;
 
            }
 
            outside_index += 1;
 
        }
 
    }
 

	
 
    primitive receiver(in<u32> i, u32 outside_loops, u32 inside_loops) {
 
        u32 outside_index = 0;
 
        while (outside_index < outside_loops) {
 
            u32 inside_index = 0;
 
            sync while (inside_index < inside_loops) {
 
                auto val = get(i);
 
                while (val != inside_index) {} // infinite loop if incorrect value is received
 
                inside_index += 1;
 
            }
 
            outside_index += 1;
 
        }
 
    }
 

	
 
    composite constructor() {
 
        channel o_orom -> i_orom;
 
        channel o_mrom -> i_mrom;
 
        channel o_ormm -> i_ormm;
 
        channel o_mrmm -> i_mrmm;
 

	
 
        // one round, one message per round
 
        new sender(o_orom, 1, 1);
 
        new receiver(i_orom, 1, 1);
 

	
 
        // multiple rounds, one message per round
 
        new sender(o_mrom, 5, 1);
 
        new receiver(i_mrom, 5, 1);
 

	
 
        // one round, multiple messages per round
 
        new sender(o_ormm, 1, 5);
 
        new receiver(i_ormm, 1, 5);
 

	
 
        // multiple rounds, multiple messages per round
 
        new sender(o_mrmm, 5, 5);
 
        new receiver(i_mrmm, 5, 5);
 
    }").expect("compilation");
 
    let rt = Runtime::new(3, true, pd);
 
    create_component(&rt, "", "constructor", no_args());
 
}
 

	
 
#[test]
 
fn test_simple_select() {
 
    let pd = ProtocolDescription::parse(b"
 
    func infinite_assert<T>(T val, T expected) -> () {
 
        while (val != expected) { print(\"nope!\"); }
 
    }
 

	
 
    primitive receiver(in<u32> in_a, in<u32> in_b, u32 num_sends) {
 
        auto num_from_a = 0;
 
        auto num_from_b = 0;
 
        while (num_from_a + num_from_b < 2 * num_sends) {
 
            sync select {
 
                auto v = get(in_a) -> {
 
                    print(\"got something from A\");
 
                    infinite_assert(v, num_from_a);
 
                    num_from_a += 1;
 
                }
 
                auto v = get(in_b) -> {
 
                    print(\"got something from B\");
 
                    infinite_assert(v, num_from_b);
 
                    num_from_b +=1;
 
                }
 
            }
 
        }
 
    }
 

	
 
    primitive sender(out<u32> tx, u32 num_sends) {
 
        auto index = 0;
 
        while (index < num_sends) {
 
            sync {
 
                put(tx, index);
 
                index += 1;
 
            }
 
        }
 
    }
 

	
 
    composite constructor() {
 
        auto num_sends = 3;
 
        channel tx_a -> rx_a;
 
        channel tx_b -> rx_b;
 
        new sender(tx_a, num_sends);
 
        new receiver(rx_a, rx_b, num_sends);
 
        new sender(tx_b, num_sends);
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(1, true, pd);
 
    create_component(&rt, "", "constructor", no_args());
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)