Changeset - be8ea413a49a
[Not reviewed]
0 5 0
mh - 3 years ago 2022-03-30 08:47:08
contact@maxhenger.nl
Initial (failing) implementation of builtin component
5 files changed with 89 insertions and 32 deletions:
0 comments (0 inline, 0 general)
src/runtime2/component/component.rs
Show inline comments
 
use crate::protocol::eval::*;
 
use crate::protocol::*;
 
use crate::runtime2::*;
 
use super::{CompCtx, CompPDL};
 
use super::component_ip::*;
 

	
 
pub enum CompScheduling {
 
    Immediate,
 
    Requeue,
 
    Sleep,
 
    Exit,
 
}
 

	
 
/// Generic representation of a component (as viewed by a scheduler).
 
pub(crate) trait Component {
 
    /// Called if the component is created by another component and the messages
 
    /// are being transferred between the two.
 
    fn adopt_message(&mut self, comp_ctx: &mut CompCtx, message: DataMessage);
 

	
 
    /// Called if the component receives a new message. The component is
 
    /// responsible for deciding where that messages goes.
 
    fn handle_message(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx, message: Message);
 

	
 
    /// Called if the component's routine should be executed. The return value
 
    /// can be used to indicate when the routine should be run again.
 
    fn run(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx) -> Result<CompScheduling, EvalError>;
 
}
 

	
 
/// Creates a new component based on its definition. Meaning that if it is a
 
/// user-defined component then we set up the PDL code state. Otherwise we
 
/// construct a custom component. This does NOT take care of port and message
 
/// management.
 
pub(crate) fn create_component(
 
    protocol: &ProtocolDescription,
 
    definition_id: ProcedureDefinitionId, type_id: TypeId,
 
    arguments: ValueGroup, num_ports: usize
 
) -> Box<dyn Component> {
 
    let definition = &protocol.heap[definition_id];
 
    debug_assert!(definition.kind == ProcedureKind::Primitive || definition.kind == ProcedureKind::Composite);
 

	
 
    if definition.source.is_builtin() {
 
        // Builtin component
 
        todo!("implement")
 
        let component = match definition.source {
 
            ProcedureSource::CompRandomU32 => Box::new(ComponentRandomU32::new(arguments)),
 
            _ => unreachable!(),
 
        };
 

	
 
        return component;
 
    } else {
 
        // User-defined component
 
        let prompt = Prompt::new(
 
            &protocol.types, &protocol.heap,
 
            definition_id, type_id, arguments
 
        );
 
        let component = CompPDL::new(prompt, num_ports);
 
        return Box::new(component);
 
    }
 
}
 
\ No newline at end of file
 
}
 

	
 

	
 
#[inline]
 
pub(crate) fn port_id_from_eval(port_id: EvalPortId) -> PortId {
 
    return PortId(port_id.id);
 
}
 

	
 
#[inline]
 
pub(crate) fn port_id_to_eval(port_id: PortId) -> EvalPortId {
 
    return EvalPortId{ id: port_id.0 };
 
}
src/runtime2/component/component_ip.rs
Show inline comments
 
use crate::protocol::eval::*;
 
use crate::runtime2::*;
 
use super::*;
 
use super::component::*;
 

	
 
/// TODO: Temporary component to figure out what to do with custom components.
 
///     This component sends random numbers between two u32 limits
 
struct ComponentRandSend {
 
pub struct ComponentRandomU32 {
 
    output_port_id: PortId,
 
    random_minimum: u32,
 
    random_maximum: u32,
 
}
 

	
 
impl Component for ComponentRandSend {
 
impl Component for ComponentRandomU32 {
 
    fn adopt_message(&mut self, _comp_ctx: &mut CompCtx, _message: DataMessage) {
 
        unreachable!("should not adopt messages");
 
    }
 

	
 
    fn handle_message(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx, message: Message) {
 
        todo!()
 
    }
 

	
 
    fn run(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx) -> Result<CompScheduling, EvalError> {
 
        todo!()
 
    }
 
}
 

	
 
impl ComponentRandomU32 {
 
    pub(crate) fn new(arguments: ValueGroup) -> Self {
 
        debug_assert_eq!(arguments.values.len(), 3);
 
        debug_assert!(arguments.regions.is_empty());
 
        let port_id = port_id_from_eval(arguments.values[0].as_port_id());
 
        let minimum = arguments.values[1].as_uint32();
 
        let maximum = arguments.values[2].as_uint32();
 

	
 
        return ComponentRandomU32{
 
            output_port_id: port_id,
 
            random_minimum: minimum,
 
            random_maximum: maximum,
 
        }
 
    }
 
}
 
\ No newline at end of file
src/runtime2/component/component_pdl.rs
Show inline comments
 
use crate::random::Random;
 
use crate::protocol::*;
 
use crate::protocol::ast::ProcedureDefinitionId;
 
use crate::protocol::eval::{
 
    PortId as EvalPortId, Prompt,
 
    ValueGroup, Value,
 
    EvalContinuation, EvalResult, EvalError
 
};
 

	
 
use crate::runtime2::scheduler::SchedulerCtx;
 
use crate::runtime2::communication::*;
 

	
 
use super::component::*;
 
use super::component_context::*;
 
use super::control_layer::*;
 
use super::consensus::Consensus;
 

	
 
pub enum ExecStmt {
 
    CreatedChannel((Value, Value)),
 
    PerformedPut,
 
    PerformedGet(ValueGroup),
 
    PerformedSelectWait(u32),
 
    None,
 
}
 

	
 
impl ExecStmt {
 
    fn take(&mut self) -> ExecStmt {
 
        let mut value = ExecStmt::None;
 
        std::mem::swap(self, &mut value);
 
        return value;
 
    }
 

	
 
    fn is_none(&self) -> bool {
 
        match self {
 
            ExecStmt::None => return true,
 
            _ => return false,
 
        }
 
    }
 
}
 

	
 
pub struct ExecCtx {
 
    stmt: ExecStmt,
 
}
 

	
 
impl RunContext for ExecCtx {
 
    fn performed_put(&mut self, _port: EvalPortId) -> bool {
 
        match self.stmt.take() {
 
            ExecStmt::None => return false,
 
            ExecStmt::PerformedPut => return true,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    fn performed_get(&mut self, _port: EvalPortId) -> Option<ValueGroup> {
 
        match self.stmt.take() {
 
            ExecStmt::None => return None,
 
            ExecStmt::PerformedGet(value) => return Some(value),
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    fn fires(&mut self, _port: EvalPortId) -> Option<Value> {
 
        todo!("remove fires")
 
    }
 

	
 
    fn performed_fork(&mut self) -> Option<bool> {
 
        todo!("remove fork")
 
    }
 

	
 
    fn created_channel(&mut self) -> Option<(Value, Value)> {
 
        match self.stmt.take() {
 
            ExecStmt::None => return None,
 
            ExecStmt::CreatedChannel(ports) => return Some(ports),
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    fn performed_select_wait(&mut self) -> Option<u32> {
 
        match self.stmt.take() {
 
            ExecStmt::None => return None,
 
            ExecStmt::PerformedSelectWait(selected_case) => Some(selected_case),
 
            _v => unreachable!(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
 
pub(crate) enum Mode {
 
    NonSync, // not in sync mode
 
    Sync, // in sync mode, can interact with other components
 
    SyncEnd, // awaiting a solution, i.e. encountered the end of the sync block
 
    BlockedGet, // blocked because we need to receive a message on a particular port
 
    BlockedPut, // component is blocked because the port is blocked
 
    BlockedSelect, // waiting on message to complete the select statement
 
    StartExit, // temporary state: if encountered then we start the shutdown process
 
    BusyExit, // temporary state: waiting for Acks for all the closed ports
 
    Exit, // exiting: shutdown process started, now waiting until the reference count drops to 0
 
}
 

	
 
impl Mode {
 
    fn is_in_sync_block(&self) -> bool {
 
        use Mode::*;
 

	
 
        match self {
 
            Sync | SyncEnd | BlockedGet | BlockedPut | BlockedSelect => true,
 
            NonSync | StartExit | BusyExit | Exit => false,
 
        }
 
    }
 
}
 

	
 
struct SelectCase {
 
    involved_ports: Vec<LocalPortHandle>,
 
}
 

	
 
// TODO: @Optimize, flatten cases into single array, have index-pointers to next case
 
struct SelectState {
 
    cases: Vec<SelectCase>,
 
    next_case: u32,
 
    num_cases: u32,
 
    random: Random,
 
    candidates_workspace: Vec<usize>,
 
}
 

	
 
enum SelectDecision {
 
    None,
 
    Case(u32), // contains case index, should be passed along to PDL code
 
}
 

	
 
type InboxMain = Vec<Option<DataMessage>>;
 

	
 
impl SelectState {
 
    fn new() -> Self {
 
        return Self{
 
            cases: Vec::new(),
 
            next_case: 0,
 
            num_cases: 0,
 
            random: Random::new(),
 
            candidates_workspace: Vec::new(),
 
        }
 
    }
 

	
 
    fn handle_select_start(&mut self, num_cases: u32) {
 
        self.cases.clear();
 
        self.next_case = 0;
 
        self.num_cases = num_cases;
 
    }
 

	
 
    /// Register a port as belonging to a particular case. As for correctness of
 
    /// PDL code one cannot register the same port twice, this function might
 
    /// return an error
 
    fn register_select_case_port(&mut self, comp_ctx: &CompCtx, case_index: u32, _port_index: u32, port_id: PortId) -> Result<(), PortId> {
 
        // Retrieve case and port handle
 
        self.ensure_at_case(case_index);
 
        let cur_case = &mut self.cases[case_index as usize];
 
        let port_handle = comp_ctx.get_port_handle(port_id);
 
        debug_assert_eq!(cur_case.involved_ports.len(), _port_index as usize);
 

	
 
        // Make sure port wasn't added before, we disallow having the same port
 
        // in the same select guard twice.
 
        if cur_case.involved_ports.contains(&port_handle) {
 
            return Err(port_id);
 
        }
 

	
 
        cur_case.involved_ports.push(port_handle);
 
        return Ok(());
 
    }
 

	
 
    /// Notification that all ports have been registered and we should now wait
 
    /// until the appropriate messages have come in.
 
    fn handle_select_waiting_point(&mut self, inbox: &InboxMain, comp_ctx: &CompCtx) -> SelectDecision {
 
        if self.num_cases != self.next_case {
 
            // This happens when there are >=1 select cases written at the end
 
            // of the select block.
 
            self.ensure_at_case(self.num_cases - 1);
 
        }
 

	
 
        return self.has_decision(inbox, comp_ctx);
 
    }
 

	
 
    fn handle_updated_inbox(&mut self, inbox: &InboxMain, comp_ctx: &CompCtx) -> SelectDecision {
 
        return self.has_decision(inbox, comp_ctx);
 
    }
 

	
 
    /// Internal helper, pushes empty cases inbetween last case and provided new
 
    /// case index.
 
    fn ensure_at_case(&mut self, new_case_index: u32) {
 
        // Push an empty case for all intermediate cases that were not
 
        // registered with a port.
 
        debug_assert!(new_case_index >= self.next_case && new_case_index < self.num_cases);
 
        for _ in self.next_case..new_case_index + 1 {
 
            self.cases.push(SelectCase{ involved_ports: Vec::new() });
 
        }
 
        self.next_case = new_case_index + 1;
 
    }
 

	
 
    /// Checks if a decision can be reached
 
    fn has_decision(&mut self, inbox: &InboxMain, comp_ctx: &CompCtx) -> SelectDecision {
 
        self.candidates_workspace.clear();
 
        if self.cases.is_empty() {
 
            // If there are no cases then we can immediately reach a "bogus
 
            // decision".
 
            return SelectDecision::Case(0);
 
        }
 

	
 
        // Need to check for valid case
 
        'case_loop: for (case_index, case) in self.cases.iter().enumerate() {
 
            for port_handle in case.involved_ports.iter().copied() {
 
                let port_index = comp_ctx.get_port_index(port_handle);
 
                if inbox[port_index].is_none() {
 
                    // Condition not satisfied
 
                    continue 'case_loop;
 
                }
 
            }
 

	
 
            // If here then the case guard is satisfied
 
            self.candidates_workspace.push(case_index);
 
        }
 

	
 
        if self.candidates_workspace.is_empty() {
 
            return SelectDecision::None;
 
        } else {
 
            let candidate_index = self.random.get_u64() as usize % self.candidates_workspace.len();
 
            return SelectDecision::Case(self.candidates_workspace[candidate_index] as u32);
 
        }
 
    }
 
}
 

	
 
pub(crate) struct CompPDL {
 
    pub mode: Mode,
 
    pub mode_port: PortId, // when blocked on a port
 
    pub mode_value: ValueGroup, // when blocked on a put
 
    select: SelectState,
 
    pub prompt: Prompt,
 
    pub control: ControlLayer,
 
    pub consensus: Consensus,
 
    pub sync_counter: u32,
 
    pub exec_ctx: ExecCtx,
 
    // TODO: Temporary field, simulates future plans of having one storage place
 
    //  reserved per port.
 
    // Should be same length as the number of ports. Corresponding indices imply
 
    // message is intended for that port.
 
    pub inbox_main: InboxMain,
 
    pub inbox_backup: Vec<DataMessage>,
 
}
 

	
 
impl Component for CompPDL {
 
    fn adopt_message(&mut self, comp_ctx: &mut CompCtx, message: DataMessage) {
 
        let port_handle = comp_ctx.get_port_handle(message.data_header.target_port);
 
        let port_index = comp_ctx.get_port_index(port_handle);
 
        if self.inbox_main[port_index].is_none() {
 
            self.inbox_main[port_index] = Some(message);
 
        } else {
 
            self.inbox_backup.push(message);
 
        }
 
    }
 

	
 
    fn handle_message(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx, mut message: Message) {
 
        sched_ctx.log(&format!("handling message: {:#?}", message));
 
        if let Some(new_target) = self.control.should_reroute(&mut message) {
 
            let mut target = sched_ctx.runtime.get_component_public(new_target);
 
            target.send_message(sched_ctx, message, false); // not waking up: we schedule once we've received all PortPeerChanged Acks
 
            let _should_remove = target.decrement_users();
 
            debug_assert!(_should_remove.is_none());
 
            return;
 
        }
 

	
 
        match message {
 
            Message::Data(message) => {
 
                self.handle_incoming_data_message(sched_ctx, comp_ctx, message);
 
            },
 
            Message::Control(message) => {
 
                self.handle_incoming_control_message(sched_ctx, comp_ctx, message);
 
            },
 
            Message::Sync(message) => {
 
                self.handle_incoming_sync_message(sched_ctx, comp_ctx, message);
 
            }
 
        }
 
    }
 

	
 
    fn run(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx) -> Result<CompScheduling, EvalError> {
 
        use EvalContinuation as EC;
 

	
 
        sched_ctx.log(&format!("Running component (mode: {:?})", self.mode));
 

	
 
        // Depending on the mode don't do anything at all, take some special
 
        // actions, or fall through and run the PDL code.
 
        match self.mode {
 
            Mode::NonSync | Mode::Sync => {
 
                // continue and run PDL code
 
            },
 
            Mode::SyncEnd | Mode::BlockedGet | Mode::BlockedPut | Mode::BlockedSelect => {
 
                return Ok(CompScheduling::Sleep);
 
            }
 
            Mode::StartExit => {
 
                self.handle_component_exit(sched_ctx, comp_ctx);
 
                return Ok(CompScheduling::Immediate);
 
            },
 
            Mode::BusyExit => {
 
                if self.control.has_acks_remaining() {
 
                    return Ok(CompScheduling::Sleep);
 
                } else {
 
                    self.mode = Mode::Exit;
 
                    return Ok(CompScheduling::Exit);
 
                }
 
            },
 
            Mode::Exit => {
 
                return Ok(CompScheduling::Exit);
 
            }
 
        }
 

	
 
        let run_result = self.execute_prompt(&sched_ctx)?;
 

	
 
        match run_result {
 
            EC::Stepping => unreachable!(), // execute_prompt runs until this is no longer returned
 
            EC::BranchInconsistent | EC::NewFork | EC::BlockFires(_) => todo!("remove these"),
 
            // Results that can be returned in sync mode
 
            EC::SyncBlockEnd => {
 
                debug_assert_eq!(self.mode, Mode::Sync);
 
                self.handle_sync_end(sched_ctx, comp_ctx);
 
                return Ok(CompScheduling::Immediate);
 
            },
 
            EC::BlockGet(port_id) => {
 
                debug_assert_eq!(self.mode, Mode::Sync);
 
                debug_assert!(self.exec_ctx.stmt.is_none());
 

	
 
                let port_id = port_id_from_eval(port_id);
 
                let port_handle = comp_ctx.get_port_handle(port_id);
 
                let port_index = comp_ctx.get_port_index(port_handle);
 
                if let Some(message) = &self.inbox_main[port_index] {
 
                    // Check if we can actually receive the message
 
                    if self.consensus.try_receive_data_message(sched_ctx, comp_ctx, message) {
 
                        // Message was received. Make sure any blocked peers and
 
                        // pending messages are handled.
 
                        let message = self.inbox_main[port_index].take().unwrap();
 
                        self.handle_received_data_message(sched_ctx, comp_ctx, port_handle);
 

	
 
                        self.exec_ctx.stmt = ExecStmt::PerformedGet(message.content);
 
                        return Ok(CompScheduling::Immediate);
 
                    } else {
 
                        todo!("handle sync failure due to message deadlock");
 
                        return Ok(CompScheduling::Sleep);
 
                    }
 
                } else {
 
                    // We need to wait
 
                    self.mode = Mode::BlockedGet;
 
                    self.mode_port = port_id;
 
                    return Ok(CompScheduling::Sleep);
 
                }
 
            },
 
            EC::Put(port_id, value) => {
 
                debug_assert_eq!(self.mode, Mode::Sync);
 
                sched_ctx.log(&format!("Putting value {:?}", value));
 
                let port_id = port_id_from_eval(port_id);
 
                let port_handle = comp_ctx.get_port_handle(port_id);
 
                let port_info = comp_ctx.get_port(port_handle);
 
                if port_info.state.is_blocked() {
 
                    self.mode = Mode::BlockedPut;
 
                    self.mode_port = port_id;
 
                    self.mode_value = value;
 
                    self.exec_ctx.stmt = ExecStmt::PerformedPut; // prepare for when we become unblocked
 
                    return Ok(CompScheduling::Sleep);
 
                } else {
 
                    self.send_data_message_and_wake_up(sched_ctx, comp_ctx, port_handle, value);
 
                    self.exec_ctx.stmt = ExecStmt::PerformedPut;
 
                    return Ok(CompScheduling::Immediate);
 
                }
 
            },
 
            EC::SelectStart(num_cases, _num_ports) => {
 
                debug_assert_eq!(self.mode, Mode::Sync);
 
                self.select.handle_select_start(num_cases);
 
                return Ok(CompScheduling::Requeue);
 
            },
 
            EC::SelectRegisterPort(case_index, port_index, port_id) => {
 
                debug_assert_eq!(self.mode, Mode::Sync);
 
                let port_id = port_id_from_eval(port_id);
 
                if let Err(_err) = self.select.register_select_case_port(comp_ctx, case_index, port_index, port_id) {
 
                    todo!("handle registering a port multiple times");
 
                }
 
                return Ok(CompScheduling::Immediate);
 
            },
 
            EC::SelectWait => {
 
                debug_assert_eq!(self.mode, Mode::Sync);
 
                let select_decision = self.select.handle_select_waiting_point(&self.inbox_main, comp_ctx);
 
                if let SelectDecision::Case(case_index) = select_decision {
 
                    // Reached a conclusion, so we can continue immediately
 
                    self.exec_ctx.stmt = ExecStmt::PerformedSelectWait(case_index);
 
                    self.mode = Mode::Sync;
 
                    return Ok(CompScheduling::Immediate);
 
                } else {
 
                    // No decision yet
 
                    self.mode = Mode::BlockedSelect;
 
                    return Ok(CompScheduling::Sleep);
 
                }
 
            },
 
            // Results that can be returned outside of sync mode
 
            EC::ComponentTerminated => {
 
                self.mode = Mode::StartExit; // next call we'll take care of the exit
 
                return Ok(CompScheduling::Immediate);
 
            },
 
            EC::SyncBlockStart => {
 
                debug_assert_eq!(self.mode, Mode::NonSync);
 
                self.handle_sync_start(sched_ctx, comp_ctx);
 
                return Ok(CompScheduling::Immediate);
 
            },
 
            EC::NewComponent(definition_id, type_id, arguments) => {
 
                debug_assert_eq!(self.mode, Mode::NonSync);
 
                self.create_component_and_transfer_ports(
 
                    sched_ctx, comp_ctx,
 
                    definition_id, type_id, arguments
 
                );
 
                return Ok(CompScheduling::Requeue);
 
            },
 
            EC::NewChannel => {
 
                debug_assert_eq!(self.mode, Mode::NonSync);
 
                debug_assert!(self.exec_ctx.stmt.is_none());
 
                let channel = comp_ctx.create_channel();
 
                self.exec_ctx.stmt = ExecStmt::CreatedChannel((
 
                    Value::Output(port_id_to_eval(channel.putter_id)),
 
                    Value::Input(port_id_to_eval(channel.getter_id))
 
                ));
 
                self.inbox_main.push(None);
 
                self.inbox_main.push(None);
 
                return Ok(CompScheduling::Immediate);
 
            }
 
        }
 
    }
 
}
 

	
 
impl CompPDL {
 
    pub(crate) fn new(initial_state: Prompt, num_ports: usize) -> Self {
 
        let mut inbox_main = Vec::new();
 
        inbox_main.reserve(num_ports);
 
        for _ in 0..num_ports {
 
            inbox_main.push(None);
 
        }
 

	
 
        return Self{
 
            mode: Mode::NonSync,
 
            mode_port: PortId::new_invalid(),
 
            mode_value: ValueGroup::default(),
 
            select: SelectState::new(),
 
            prompt: initial_state,
 
            control: ControlLayer::default(),
 
            consensus: Consensus::new(),
 
            sync_counter: 0,
 
            exec_ctx: ExecCtx{
 
                stmt: ExecStmt::None,
 
            },
 
            inbox_main,
 
            inbox_backup: Vec::new(),
 
        }
 
    }
 

	
 
    // -------------------------------------------------------------------------
 
    // Running component and handling changes in global component state
 
    // -------------------------------------------------------------------------
 

	
 
    fn execute_prompt(&mut self, sched_ctx: &SchedulerCtx) -> EvalResult {
 
        let mut step_result = EvalContinuation::Stepping;
 
        while let EvalContinuation::Stepping = step_result {
 
            step_result = self.prompt.step(
 
                &sched_ctx.runtime.protocol.types, &sched_ctx.runtime.protocol.heap,
 
                &sched_ctx.runtime.protocol.modules, &mut self.exec_ctx,
 
            )?;
 
        }
 

	
 
        return Ok(step_result)
 
    }
 

	
 
    fn handle_sync_start(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
 
        sched_ctx.log("Component starting sync mode");
 
        self.consensus.notify_sync_start(comp_ctx);
 
        for message in self.inbox_main.iter() {
 
            if let Some(message) = message {
 
                self.consensus.handle_new_data_message(comp_ctx, message);
 
            }
 
        }
 
        debug_assert_eq!(self.mode, Mode::NonSync);
 
        self.mode = Mode::Sync;
 
    }
 

	
 
    /// Handles end of sync. The conclusion to the sync round might arise
 
    /// immediately (and be handled immediately), or might come later through
 
    /// messaging. In any case the component should be scheduled again
 
    /// immediately
 
    fn handle_sync_end(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
 
        sched_ctx.log("Component ending sync mode (now waiting for solution)");
 
        let decision = self.consensus.notify_sync_end(sched_ctx, comp_ctx);
 
        self.mode = Mode::SyncEnd;
 
        self.handle_sync_decision(sched_ctx, comp_ctx, decision);
 
    }
 

	
 
    /// Handles decision from the consensus round. This will cause a change in
 
    /// the internal `Mode`, such that the next call to `run` can take the
 
    /// appropriate next steps.
 
    fn handle_sync_decision(&mut self, sched_ctx: &SchedulerCtx, _comp_ctx: &mut CompCtx, decision: SyncRoundDecision) {
 
        sched_ctx.log(&format!("Handling sync decision: {:?} (in mode {:?})", decision, self.mode));
 
        let is_success = match decision {
 
            SyncRoundDecision::None => {
 
                // No decision yet
 
                return;
 
            },
 
            SyncRoundDecision::Solution => true,
 
            SyncRoundDecision::Failure => false,
 
        };
 

	
 
        // If here then we've reached a decision
 
        debug_assert_eq!(self.mode, Mode::SyncEnd);
 
        if is_success {
 
            self.mode = Mode::NonSync;
 
            self.consensus.notify_sync_decision(decision);
 
        } else {
 
            self.mode = Mode::StartExit;
 
        }
 
    }
 

	
 
    fn handle_component_exit(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
 
        sched_ctx.log("Component exiting");
 
        debug_assert_eq!(self.mode, Mode::StartExit);
 
        self.mode = Mode::BusyExit;
 

	
 
        // Doing this by index, then retrieving the handle is a bit rediculous,
 
        // but Rust is being Rust with its borrowing rules.
 
        for port_index in 0..comp_ctx.num_ports() {
 
            let port = comp_ctx.get_port_by_index_mut(port_index);
 
            if port.state == PortState::Closed {
 
                // Already closed, or in the process of being closed
 
                continue;
 
            }
 

	
 
            // Mark as closed
 
            let port_id = port.self_id;
 
            port.state = PortState::Closed;
 

	
 
            // Notify peer of closing
 
            let port_handle = comp_ctx.get_port_handle(port_id);
 
            let (peer, message) = self.control.initiate_port_closing(port_handle, comp_ctx);
 
            let peer_info = comp_ctx.get_peer(peer);
 
            peer_info.handle.send_message(sched_ctx, Message::Control(message), true);
 
        }
 
    }
 

	
 
    // -------------------------------------------------------------------------
 
    // Handling messages
 
    // -------------------------------------------------------------------------
 

	
 
    fn send_data_message_and_wake_up(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, source_port_handle: LocalPortHandle, value: ValueGroup) {
 
        let port_info = comp_ctx.get_port(source_port_handle);
 
        let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
 
        let peer_info = comp_ctx.get_peer(peer_handle);
 
        let annotated_message = self.consensus.annotate_data_message(comp_ctx, port_info, value);
 
        peer_info.handle.send_message(sched_ctx, Message::Data(annotated_message), true);
 
    }
 

	
 
    /// Handles a message that came in through the public inbox. This function
 
    /// will handle putting it in the correct place, and potentially blocking
 
    /// the port in case too many messages are being received.
 
    fn handle_incoming_data_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: DataMessage) {
 
        // Whatever we do, glean information from headers in message
 
        if self.mode.is_in_sync_block() {
 
            self.consensus.handle_new_data_message(comp_ctx, &message);
 
        }
 

	
 
        // Check if we can insert it directly into the storage associated with
 
        // the port
 
        let target_port_id = message.data_header.target_port;
 
        let port_handle = comp_ctx.get_port_handle(target_port_id);
 
        let port_index = comp_ctx.get_port_index(port_handle);
 
        if self.inbox_main[port_index].is_none() {
 
            self.inbox_main[port_index] = Some(message);
 

	
 
            // After direct insertion, check if this component's execution is 
 
            // blocked on receiving a message on that port
 
            debug_assert!(!comp_ctx.get_port(port_handle).state.is_blocked()); // because we could insert directly
 
            if self.mode == Mode::BlockedGet && self.mode_port == target_port_id {
 
                // We were indeed blocked
 
                self.mode = Mode::Sync;
 
                self.mode_port = PortId::new_invalid();
 
            } else if self.mode == Mode::BlockedSelect {
 
                let select_decision = self.select.handle_updated_inbox(&self.inbox_main, comp_ctx);
 
                if let SelectDecision::Case(case_index) = select_decision {
 
                    self.exec_ctx.stmt = ExecStmt::PerformedSelectWait(case_index);
 
                    self.mode = Mode::Sync;
 
                }
 
            }
 
            
 
            return;
 
        }
 

	
 
        // The direct inbox is full, so the port will become (or was already) blocked
 
        let port_info = comp_ctx.get_port_mut(port_handle);
 
        debug_assert!(port_info.state == PortState::Open || port_info.state.is_blocked());
 

	
 
        if port_info.state == PortState::Open {
 
            comp_ctx.set_port_state(port_handle, PortState::BlockedDueToFullBuffers);
 
            let (peer_handle, message) =
 
                self.control.initiate_port_blocking(comp_ctx, port_handle);
 

	
 
            let peer = comp_ctx.get_peer(peer_handle);
 
            peer.handle.send_message(sched_ctx, Message::Control(message), true);
 
        }
 

	
 
        // But we still need to remember the message, so:
 
        self.inbox_backup.push(message);
 
    }
 

	
 
    /// Handles when a message has been handed off from the inbox to the PDL
 
    /// code. We check to see if there are more messages waiting and, if not,
 
    /// then we handle the case where the port might have been blocked
 
    /// previously.
 
    fn handle_received_data_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, port_handle: LocalPortHandle) {
 
        let port_index = comp_ctx.get_port_index(port_handle);
 
        debug_assert!(self.inbox_main[port_index].is_none()); // this function should be called after the message is taken out
 

	
 
        // Check for any more messages
 
        let port_info = comp_ctx.get_port(port_handle);
 
        for message_index in 0..self.inbox_backup.len() {
 
            let message = &self.inbox_backup[message_index];
 
            if message.data_header.target_port == port_info.self_id {
 
                // One more message for this port
 
                let message = self.inbox_backup.remove(message_index);
 
                debug_assert!(comp_ctx.get_port(port_handle).state.is_blocked()); // since we had >1 message on the port
 
                self.inbox_main[port_index] = Some(message);
 

	
 
                return;
 
            }
 
        }
 

	
 
        // Did not have any more messages. So if we were blocked, then we need
 
        // to send the "unblock" message.
 
        if port_info.state == PortState::BlockedDueToFullBuffers {
 
            comp_ctx.set_port_state(port_handle, PortState::Open);
 
            let (peer_handle, message) = self.control.cancel_port_blocking(comp_ctx, port_handle);
 
            let peer_info = comp_ctx.get_peer(peer_handle);
 
            peer_info.handle.send_message(sched_ctx, Message::Control(message), true);
 
        }
 
    }
 

	
 
    fn handle_incoming_control_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: ControlMessage) {
 
        // Little local utility to send an Ack
 
        fn send_control_ack_message(sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, causer_id: ControlId, peer_handle: LocalPeerHandle) {
 
            let peer_info = comp_ctx.get_peer(peer_handle);
 
            peer_info.handle.send_message(sched_ctx, Message::Control(ControlMessage{
 
                id: causer_id,
 
                sender_comp_id: comp_ctx.id,
 
                target_port_id: None,
 
                content: ControlMessageContent::Ack,
 
            }), true);
 
        }
 

	
 
        // Handle the content of the control message, and optionally Ack it
 
        match message.content {
 
            ControlMessageContent::Ack => {
 
                self.handle_ack(sched_ctx, comp_ctx, message.id);
 
            },
 
            ControlMessageContent::BlockPort(port_id) => {
 
                // On of our messages was accepted, but the port should be
 
                // blocked.
 
                let port_handle = comp_ctx.get_port_handle(port_id);
 
                let port_info = comp_ctx.get_port(port_handle);
 
                debug_assert_eq!(port_info.kind, PortKind::Putter);
 
                if port_info.state == PortState::Open {
 
                    // only when open: we don't do this when closed, and we we don't do this if we're blocked due to peer changes
 
                    comp_ctx.set_port_state(port_handle, PortState::BlockedDueToFullBuffers);
 
                }
 
            },
 
            ControlMessageContent::ClosePort(port_id) => {
 
                // Request to close the port. We immediately comply and remove
 
                // the component handle as well
 
                let port_handle = comp_ctx.get_port_handle(port_id);
 
                let peer_comp_id = comp_ctx.get_port(port_handle).peer_comp_id;
 
                let peer_handle = comp_ctx.get_peer_handle(peer_comp_id);
 

	
 
                // One exception to sending an `Ack` is if we just closed the
 
                // port ourselves, meaning that the `ClosePort` messages got
 
                // sent to one another.
 
                if let Some(control_id) = self.control.has_close_port_entry(port_handle, comp_ctx) {
 
                    self.handle_ack(sched_ctx, comp_ctx, control_id);
 
                } else {
 
                    send_control_ack_message(sched_ctx, comp_ctx, message.id, peer_handle);
 
                    comp_ctx.remove_peer(sched_ctx, port_handle, peer_comp_id, false); // do not remove if closed
 
                    comp_ctx.set_port_state(port_handle, PortState::Closed); // now set to closed
 
                }
 
            },
 
            ControlMessageContent::UnblockPort(port_id) => {
 
                // We were previously blocked (or already closed)
 
                let port_handle = comp_ctx.get_port_handle(port_id);
 
                let port_info = comp_ctx.get_port(port_handle);
 
                debug_assert_eq!(port_info.kind, PortKind::Putter);
 
                if port_info.state == PortState::BlockedDueToFullBuffers {
 
                    self.handle_unblock_port_instruction(sched_ctx, comp_ctx, port_handle);
 
                }
 
            },
 
            ControlMessageContent::PortPeerChangedBlock(port_id) => {
 
                // The peer of our port has just changed. So we are asked to
 
                // temporarily block the port (while our original recipient is
 
                // potentially rerouting some of the in-flight messages) and
 
                // Ack. Then we wait for the `unblock` call.
 
                debug_assert_eq!(message.target_port_id, Some(port_id));
 
                let port_handle = comp_ctx.get_port_handle(port_id);
 
                comp_ctx.set_port_state(port_handle, PortState::BlockedDueToPeerChange);
 

	
 
                let port_info = comp_ctx.get_port(port_handle);
 
                let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
 

	
 
                send_control_ack_message(sched_ctx, comp_ctx, message.id, peer_handle);
 
            },
 
            ControlMessageContent::PortPeerChangedUnblock(new_port_id, new_comp_id) => {
 
                let port_handle = comp_ctx.get_port_handle(message.target_port_id.unwrap());
 
                let port_info = comp_ctx.get_port(port_handle);
 
                debug_assert!(port_info.state == PortState::BlockedDueToPeerChange);
 
                let old_peer_id = port_info.peer_comp_id;
 

	
 
                comp_ctx.remove_peer(sched_ctx, port_handle, old_peer_id, false);
 

	
 
                let port_info = comp_ctx.get_port_mut(port_handle);
 
                port_info.peer_comp_id = new_comp_id;
 
                port_info.peer_port_id = new_port_id;
 
                comp_ctx.add_peer(port_handle, sched_ctx, new_comp_id, None);
 
                self.handle_unblock_port_instruction(sched_ctx, comp_ctx, port_handle);
 
            }
 
        }
 
    }
 

	
 
    fn handle_incoming_sync_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: SyncMessage) {
 
        let decision = self.consensus.receive_sync_message(sched_ctx, comp_ctx, message);
 
        self.handle_sync_decision(sched_ctx, comp_ctx, decision);
 
    }
 

	
 
    /// Little helper that notifies the control layer of an `Ack`, and takes the
 
    /// appropriate subsequent action
 
    fn handle_ack(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, control_id: ControlId) {
 
        let mut to_ack = control_id;
 
        loop {
 
            let (action, new_to_ack) = self.control.handle_ack(to_ack, sched_ctx, comp_ctx);
 
            match action {
 
                AckAction::SendMessage(target_comp, message) => {
 
                    // FIX @NoDirectHandle
 
                    let mut handle = sched_ctx.runtime.get_component_public(target_comp);
 
                    handle.send_message(sched_ctx, Message::Control(message), true);
 
                    let _should_remove = handle.decrement_users();
 
                    debug_assert!(_should_remove.is_none());
 
                },
 
                AckAction::ScheduleComponent(to_schedule) => {
 
                    // FIX @NoDirectHandle
 
                    let mut handle = sched_ctx.runtime.get_component_public(to_schedule);
 

	
 
                    // Note that the component is intentionally not
 
                    // sleeping, so we just wake it up
 
                    debug_assert!(!handle.sleeping.load(std::sync::atomic::Ordering::Acquire));
 
                    let key = unsafe{ to_schedule.upgrade() };
 
                    sched_ctx.runtime.enqueue_work(key);
 
                    let _should_remove = handle.decrement_users();
 
                    debug_assert!(_should_remove.is_none());
 
                },
 
                AckAction::None => {}
 
            }
 

	
 
            match new_to_ack {
 
                Some(new_to_ack) => to_ack = new_to_ack,
 
                None => break,
 
            }
 
        }
 
    }
 

	
 
    // -------------------------------------------------------------------------
 
    // Handling ports
 
    // -------------------------------------------------------------------------
 

	
 
    /// Unblocks a port, potentially continuing execution of the component, in
 
    /// response to a message that told us to unblock a previously blocked
 
    fn handle_unblock_port_instruction(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, port_handle: LocalPortHandle) {
 
        let port_info = comp_ctx.get_port_mut(port_handle);
 
        let port_id = port_info.self_id;
 
        debug_assert!(port_info.state.is_blocked());
 
        port_info.state = PortState::Open;
 

	
 
        if self.mode == Mode::BlockedPut && port_id == self.mode_port {
 
            // We were blocked on the port that just became unblocked, so
 
            // send the message.
 
            debug_assert_eq!(port_info.kind, PortKind::Putter);
 
            let mut replacement = ValueGroup::default();
 
            std::mem::swap(&mut replacement, &mut self.mode_value);
 
            self.send_data_message_and_wake_up(sched_ctx, comp_ctx, port_handle, replacement);
 

	
 
            self.mode = Mode::Sync;
 
            self.mode_port = PortId::new_invalid();
 
        }
 
    }
 

	
 
    fn create_component_and_transfer_ports(
 
        &mut self,
 
        sched_ctx: &SchedulerCtx, creator_ctx: &mut CompCtx,
 
        definition_id: ProcedureDefinitionId, type_id: TypeId, mut arguments: ValueGroup
 
    ) {
 
        struct PortPair{
 
            creator_handle: LocalPortHandle,
 
            creator_id: PortId,
 
            created_handle: LocalPortHandle,
 
            created_id: PortId,
 
        }
 
        let mut port_id_pairs = Vec::new();
 
        let mut opened_port_id_pairs = Vec::new();
 
        let mut closed_port_id_pairs = Vec::new();
 

	
 
        // TODO: @Nocommit
 
        let other_proc = &sched_ctx.runtime.protocol.heap[definition_id];
 
        let self_proc = &sched_ctx.runtime.protocol.heap[self.prompt.frames[0].definition];
 

	
 
        let reservation = sched_ctx.runtime.start_create_pdl_component();
 
        let mut created_ctx = CompCtx::new(&reservation);
 

	
 
        println!(
 
            "DEBUG: Comp '{}' is creating comp '{}' at ID {:?}",
 
            self_proc.identifier.value.as_str(), other_proc.identifier.value.as_str(),
 
            reservation.id()
 
        );
 

	
 
        // Take all the ports ID that are in the `args` (and currently belong to
 
        // the creator component) and translate them into new IDs that are
 
        // associated with the component we're about to create
 
        let mut arg_iter = ValueGroupPortIter::new(&mut arguments);
 
        while let Some(port_reference) = arg_iter.next() {
 
            // Create port entry for new component
 
            let creator_port_id = port_reference.id;
 
            let creator_port_handle = creator_ctx.get_port_handle(creator_port_id);
 
            let creator_port = creator_ctx.get_port(creator_port_handle);
 
            let created_port_handle = created_ctx.add_port(
 
                creator_port.peer_comp_id, creator_port.peer_port_id,
 
                creator_port.kind, creator_port.state
 
            );
 
            let created_port = created_ctx.get_port(created_port_handle);
 
            let created_port_id = created_port.self_id;
 

	
 
            port_id_pairs.push(PortPair{
 
            let port_id_pair = PortPair {
 
                creator_handle: creator_port_handle,
 
                creator_id: creator_port_id,
 
                created_handle: created_port_handle,
 
                created_id: created_port_id,
 
            });
 
            };
 

	
 
            if creator_port.state == PortState::Closed {
 
                closed_port_id_pairs.push(port_id_pair)
 
            } else {
 
                opened_port_id_pairs.push(port_id_pair);
 
            }
 

	
 
            // Modify value in arguments (bit dirty, but double vec in ValueGroup causes lifetime issues)
 
            let arg_value = if let Some(heap_pos) = port_reference.heap_pos {
 
                &mut arg_iter.group.regions[heap_pos][port_reference.index]
 
            } else {
 
                &mut arg_iter.group.values[port_reference.index]
 
            };
 
            match arg_value {
 
                Value::Input(id) => *id = port_id_to_eval(created_port_id),
 
                Value::Output(id) => *id = port_id_to_eval(created_port_id),
 
                _ => unreachable!(),
 
            }
 
        }
 

	
 
        // For each transferred port pair set their peer components to the
 
        // correct values. This will only change the values for the ports of
 
        // the new component.
 
        let mut created_component_has_remote_peers = false;
 

	
 
        for pair in port_id_pairs.iter() {
 
        for pair in opened_port_id_pairs.iter() {
 
            let creator_port_info = creator_ctx.get_port(pair.creator_handle);
 
            let created_port_info = created_ctx.get_port_mut(pair.created_handle);
 

	
 
            if created_port_info.peer_comp_id == creator_ctx.id {
 
                // Port peer is owned by the creator as well
 
                let created_peer_port_index = port_id_pairs
 
                let created_peer_port_index = opened_port_id_pairs
 
                    .iter()
 
                    .position(|v| v.creator_id == creator_port_info.peer_port_id);
 
                match created_peer_port_index {
 
                    Some(created_peer_port_index) => {
 
                        // Peer port moved to the new component as well. So
 
                        // adjust IDs appropriately.
 
                        let peer_pair = &port_id_pairs[created_peer_port_index];
 
                        let peer_pair = &opened_port_id_pairs[created_peer_port_index];
 
                        created_port_info.peer_port_id = peer_pair.created_id;
 
                        created_port_info.peer_comp_id = reservation.id();
 
                        todo!("either add 'self peer', or remove that idea from Ctx altogether")
 
                    },
 
                    None => {
 
                        // Peer port remains with creator component.
 
                        created_port_info.peer_comp_id = creator_ctx.id;
 
                        created_ctx.add_peer(pair.created_handle, sched_ctx, creator_ctx.id, None);
 
                    }
 
                }
 
            } else {
 
                // Peer is a different component. We'll deal with sending the
 
                // appropriate messages later
 
                let peer_handle = creator_ctx.get_peer_handle(created_port_info.peer_comp_id);
 
                let peer_info = creator_ctx.get_peer(peer_handle);
 
                created_ctx.add_peer(pair.created_handle, sched_ctx, peer_info.id, Some(&peer_info.handle));
 
                created_component_has_remote_peers = true;
 
            }
 
        }
 

	
 
        // We'll now actually turn our reservation for a new component into an
 
        // actual component. Note that we initialize it as "not sleeping" as
 
        // its initial scheduling might be performed based on `Ack`s in response
 
        // to message exchanges between remote peers.
 
        let prompt = Prompt::new(
 
            &sched_ctx.runtime.protocol.types, &sched_ctx.runtime.protocol.heap,
 
            definition_id, type_id, arguments,
 
        );
 
        let component = CompPDL::new(prompt, port_id_pairs.len());
 
        let total_num_ports = opened_port_id_pairs.len() + closed_port_id_pairs.len();
 
        let component = create_component(&sched_ctx.runtime.protocol, definition_id, type_id, arguments, total_num_ports);
 
        let (created_key, component) = sched_ctx.runtime.finish_create_pdl_component(
 
            reservation, component, created_ctx, false,
 
        );
 

	
 
        // Now modify the creator's ports: remove every transferred port and
 
        // potentially remove the peer component.
 
        for pair in port_id_pairs.iter() {
 
        for pair in opened_port_id_pairs.iter() {
 
            // Remove peer if appropriate
 
            let creator_port_info = creator_ctx.get_port(pair.creator_handle);
 
            let creator_port_index = creator_ctx.get_port_index(pair.creator_handle);
 
            let creator_peer_comp_id = creator_port_info.peer_comp_id;
 
            creator_ctx.remove_peer(sched_ctx, pair.creator_handle, creator_peer_comp_id, false);
 
            creator_ctx.remove_port(pair.creator_handle);
 

	
 
            // Transfer any messages
 
            if let Some(mut message) = self.inbox_main.remove(creator_port_index) {
 
                message.data_header.target_port = pair.created_id;
 
                component.component.adopt_message(&mut component.ctx, message)
 
            }
 

	
 
            let mut message_index = 0;
 
            while message_index < self.inbox_backup.len() {
 
                let message = &self.inbox_backup[message_index];
 
                if message.data_header.target_port == pair.creator_id {
 
                    // transfer message
 
                    let mut message = self.inbox_backup.remove(message_index);
 
                    message.data_header.target_port = pair.created_id;
 
                    component.component.adopt_message(&mut component.ctx, message);
 
                } else {
 
                    message_index += 1;
 
                }
 
            }
 

	
 
            // Handle potential channel between creator and created component
 
            let created_port_info = component.ctx.get_port(pair.created_handle);
 

	
 
            if created_port_info.peer_comp_id == creator_ctx.id {
 
                let peer_port_handle = creator_ctx.get_port_handle(created_port_info.peer_port_id);
 
                let peer_port_info = creator_ctx.get_port_mut(peer_port_handle);
 
                peer_port_info.peer_comp_id = component.ctx.id;
 
                peer_port_info.peer_port_id = created_port_info.self_id;
 
                creator_ctx.add_peer(peer_port_handle, sched_ctx, component.ctx.id, None);
 
            }
 
        }
 

	
 
        // Do the same for the closed ports
 
        for pair in closed_port_id_pairs.iter() {
 
            let port_index = creator_ctx.get_port_index(pair.creator_handle);
 
            creator_ctx.remove_port(pair.creator_handle);
 
            let _removed_message = self.inbox_main.remove(port_index);
 

	
 
            // In debug mode: since we've closed the port we shouldn't have any
 
            // messages for that port.
 
            debug_assert!(_removed_message.is_none());
 
            debug_assert!(!self.inbox_backup.iter().any(|v| v.data_header.target_port == pair.creator_id));
 
        }
 

	
 
        // By now all ports and messages have been transferred. If there are any
 
        // peers that need to be notified about this new component, then we
 
        // initiate the protocol that will notify everyone here.
 
        if created_component_has_remote_peers {
 
            let created_ctx = &component.ctx;
 
            let schedule_entry_id = self.control.add_schedule_entry(created_ctx.id);
 
            for pair in port_id_pairs.iter() {
 
            for pair in opened_port_id_pairs.iter() {
 
                let port_info = created_ctx.get_port(pair.created_handle);
 
                if port_info.peer_comp_id != creator_ctx.id && port_info.peer_comp_id != created_ctx.id {
 
                    let message = self.control.add_reroute_entry(
 
                        creator_ctx.id, port_info.peer_port_id, port_info.peer_comp_id,
 
                        pair.creator_id, pair.created_id, created_ctx.id,
 
                        schedule_entry_id
 
                    );
 
                    let peer_handle = created_ctx.get_peer_handle(port_info.peer_comp_id);
 
                    let peer_info = created_ctx.get_peer(peer_handle);
 
                    peer_info.handle.send_message(sched_ctx, message, true);
 
                }
 
            }
 
        } else {
 
            // Peer can be scheduled immediately
 
            sched_ctx.runtime.enqueue_work(created_key);
 
        }
 
    }
 
}
 

	
 
#[inline]
 
fn port_id_from_eval(port_id: EvalPortId) -> PortId {
 
    return PortId(port_id.id);
 
}
 

	
 
#[inline]
 
fn port_id_to_eval(port_id: PortId) -> EvalPortId {
 
    return EvalPortId{ id: port_id.0 };
 
}
 

	
 
/// Recursively goes through the value group, attempting to find ports.
 
/// Duplicates will only be added once.
 
pub(crate) fn find_ports_in_value_group(value_group: &ValueGroup, ports: &mut Vec<PortId>) {
 
    // Helper to check a value for a port and recurse if needed.
 
    fn find_port_in_value(group: &ValueGroup, value: &Value, ports: &mut Vec<PortId>) {
 
        match value {
 
            Value::Input(port_id) | Value::Output(port_id) => {
 
                // This is an actual port
 
                let cur_port = PortId(port_id.id);
 
                for prev_port in ports.iter() {
 
                    if *prev_port == cur_port {
 
                        // Already added
 
                        return;
 
                    }
 
                }
 

	
 
                ports.push(cur_port);
 
            },
 
            Value::Array(heap_pos) |
 
            Value::Message(heap_pos) |
 
            Value::String(heap_pos) |
 
            Value::Struct(heap_pos) |
 
            Value::Union(_, heap_pos) => {
 
                // Reference to some dynamic thing which might contain ports,
 
                // so recurse
 
                let heap_region = &group.regions[*heap_pos as usize];
 
                for embedded_value in heap_region {
 
                    find_port_in_value(group, embedded_value, ports);
 
                }
 
            },
 
            _ => {}, // values we don't care about
 
        }
 
    }
 

	
 
    // Clear the ports, then scan all the available values
 
    ports.clear();
 
    for value in &value_group.values {
 
        find_port_in_value(value_group, value, ports);
 
    }
 
}
 

	
 
struct ValueGroupPortIter<'a> {
 
    group: &'a mut ValueGroup,
 
    heap_stack: Vec<(usize, usize)>,
 
    index: usize,
 
}
 

	
 
impl<'a> ValueGroupPortIter<'a> {
 
    fn new(group: &'a mut ValueGroup) -> Self {
 
        return Self{ group, heap_stack: Vec::new(), index: 0 }
 
    }
 
}
 

	
 
struct ValueGroupPortRef {
 
    id: PortId,
 
    heap_pos: Option<usize>, // otherwise: on stack
 
    index: usize,
 
}
 

	
 
impl<'a> Iterator for ValueGroupPortIter<'a> {
 
    type Item = ValueGroupPortRef;
 

	
 
    fn next(&mut self) -> Option<Self::Item> {
 
        // Enter loop that keeps iterating until a port is found
 
        loop {
 
            if let Some(pos) = self.heap_stack.last() {
 
                let (heap_pos, region_index) = *pos;
 
                if region_index >= self.group.regions[heap_pos].len() {
 
                    self.heap_stack.pop();
 
                    continue;
 
                }
 

	
 
                let value = &self.group.regions[heap_pos][region_index];
 
                self.heap_stack.last_mut().unwrap().1 += 1;
 

	
 
                match value {
 
                    Value::Input(id) | Value::Output(id) => {
 
                        let id = PortId(id.id);
 
                        return Some(ValueGroupPortRef{
 
                            id,
 
                            heap_pos: Some(heap_pos),
 
                            index: region_index,
 
                        });
 
                    },
 
                    _ => {},
 
                }
 

	
 
                if let Some(heap_pos) = value.get_heap_pos() {
 
                    self.heap_stack.push((heap_pos as usize, 0));
 
                }
 
            } else {
 
                if self.index >= self.group.values.len() {
 
                    return None;
 
                }
 

	
 
                let value = &mut self.group.values[self.index];
 
                self.index += 1;
 

	
 
                match value {
 
                    Value::Input(id) | Value::Output(id) => {
 
                        let id = PortId(id.id);
 
                        return Some(ValueGroupPortRef{
 
                            id,
 
                            heap_pos: None,
 
                            index: self.index - 1
 
                        });
 
                    },
 
                    _ => {},
 
                }
 

	
 
                // Not a port, check if we need to enter a heap region
 
                if let Some(heap_pos) = value.get_heap_pos() {
 
                    self.heap_stack.push((heap_pos as usize, 0));
 
                } // else: just consider the next value
 
            }
 
        }
 
    }
 
}
 
\ No newline at end of file
src/runtime2/runtime.rs
Show inline comments
 
use std::sync::{Arc, Mutex, Condvar};
 
use std::sync::atomic::{AtomicU32, AtomicBool, Ordering};
 
use std::collections::VecDeque;
 

	
 
use crate::protocol::*;
 

	
 
use super::communication::Message;
 
use super::component::{Component, wake_up_if_sleeping, CompPDL, CompCtx};
 
use super::store::{ComponentStore, ComponentReservation, QueueDynMpsc, QueueDynProducer};
 
use super::scheduler::*;
 

	
 
// -----------------------------------------------------------------------------
 
// Component
 
// -----------------------------------------------------------------------------
 

	
 
/// Key to a component. Type system somewhat ensures that there can only be one
 
/// of these. Only with a key one may retrieve privately-accessible memory for
 
/// a component. Practically just a generational index, like `CompId` is.
 
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
 
pub(crate) struct CompKey(pub u32);
 

	
 
impl CompKey {
 
    pub(crate) fn downgrade(&self) -> CompId {
 
        return CompId(self.0);
 
    }
 
}
 

	
 
/// Generational ID of a component
 
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
 
pub struct CompId(pub u32);
 

	
 
impl CompId {
 
    pub(crate) fn new_invalid() -> CompId {
 
        return CompId(u32::MAX);
 
    }
 

	
 
    /// Upgrade component ID to component key. Unsafe because the caller needs
 
    /// to make sure that only one component key can exist at a time (to ensure
 
    /// a component can only be scheduled/executed by one thread).
 
    pub(crate) unsafe fn upgrade(&self) -> CompKey {
 
        return CompKey(self.0);
 
    }
 
}
 

	
 
/// Handle to a component that is being created.
 
pub(crate) struct CompReserved {
 
    reservation: ComponentReservation,
 
}
 

	
 
impl CompReserved {
 
    pub(crate) fn id(&self) -> CompId {
 
        return CompId(self.reservation.index)
 
    }
 
}
 

	
 
/// Representation of a runtime component. Contains the bookkeeping variables
 
/// for the schedulers, the publicly accessible fields, and the private fields
 
/// that should only be accessed by the thread running the component's routine.
 
pub(crate) struct RuntimeComp {
 
    pub public: CompPublic,
 
    pub component: Box<dyn Component>,
 
    pub ctx: CompCtx,
 
    pub inbox: QueueDynMpsc<Message>,
 
    pub exiting: bool,
 
}
 

	
 
/// Should contain everything that is accessible in a thread-safe manner
 
// TODO: Do something about the `num_handles` thing. This needs to be a bit more
 
//  "foolproof" to lighten the mental burden of using the `num_handles`
 
//  variable.
 
pub(crate) struct CompPublic {
 
    pub sleeping: AtomicBool,
 
    pub num_handles: AtomicU32, // manually modified (!)
 
    inbox: QueueDynProducer<Message>,
 
}
 

	
 
/// Handle to public part of a component. Would be nice if we could
 
/// automagically manage the `num_handles` counter. But when it reaches zero we
 
/// need to manually remove the handle from the runtime. So we just have debug
 
/// code to make sure this actually happens.
 
pub(crate) struct CompHandle {
 
    target: *const CompPublic,
 
    id: CompId, // TODO: @Remove after debugging
 
    #[cfg(debug_assertions)] decremented: bool,
 
}
 

	
 
impl CompHandle {
 
    fn new(id: CompId, public: &CompPublic) -> CompHandle {
 
        let handle = CompHandle{
 
            target: public,
 
            id,
 
            #[cfg(debug_assertions)] decremented: false,
 
        };
 
        handle.increment_users();
 
        return handle;
 
    }
 

	
 
    pub(crate) fn send_message(&self, sched_ctx: &SchedulerCtx, message: Message, try_wake_up: bool) {
 
        sched_ctx.log(&format!("Sending message to [c:{:03}, wakeup:{}]: {:?}", self.id.0, try_wake_up, message));
 
        self.inbox.push(message);
 
        if try_wake_up {
 
            wake_up_if_sleeping(sched_ctx, self.id, self);
 
        }
 
    }
 

	
 
    fn increment_users(&self) {
 
        let old_count = self.num_handles.fetch_add(1, Ordering::AcqRel);
 
        debug_assert!(old_count > 0); // because we should never be able to retrieve a handle when the component is (being) destroyed
 
    }
 

	
 
    /// Returns the `CompKey` to the component if it should be destroyed
 
    pub(crate) fn decrement_users(&mut self) -> Option<CompKey> {
 
        dbg_code!(assert!(!self.decremented, "illegal to 'decrement_users' twice"));
 
        let old_count = self.num_handles.fetch_sub(1, Ordering::AcqRel);
 
        let new_count = old_count - 1;
 
        dbg_code!(self.decremented = true);
 
        if new_count == 0 {
 
            return Some(unsafe{ self.id.upgrade() });
 
        }
 

	
 
        return None;
 
    }
 
}
 

	
 
impl Clone for CompHandle {
 
    fn clone(&self) -> Self {
 
        dbg_code!(assert!(!self.decremented, "illegal to clone after 'decrement_users'"));
 
        self.increment_users();
 
        return CompHandle{
 
            target: self.target,
 
            id: self.id,
 
            #[cfg(debug_assertions)] decremented: false,
 
        };
 
    }
 
}
 

	
 
impl std::ops::Deref for CompHandle {
 
    type Target = CompPublic;
 

	
 
    fn deref(&self) -> &Self::Target {
 
        dbg_code!(assert!(!self.decremented)); // cannot access if control is relinquished
 
        return unsafe{ &*self.target };
 
    }
 
}
 

	
 
impl Drop for CompHandle {
 
    fn drop(&mut self) {
 
        dbg_code!(assert!(self.decremented, "need call to 'decrement_users' before dropping"));
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// Runtime
 
// -----------------------------------------------------------------------------
 

	
 
pub struct Runtime {
 
    pub(crate) inner: Arc<RuntimeInner>,
 
    threads: Vec<std::thread::JoinHandle<()>>,
 
}
 

	
 
impl Runtime {
 
    // TODO: debug_logging should be removed at some point
 
    pub fn new(num_threads: u32, debug_logging: bool, protocol_description: ProtocolDescription) -> Runtime {
 
        assert!(num_threads > 0, "need a thread to perform work");
 
        let runtime_inner = Arc::new(RuntimeInner {
 
            protocol: protocol_description,
 
            components: ComponentStore::new(128),
 
            work_queue: Mutex::new(VecDeque::with_capacity(128)),
 
            work_condvar: Condvar::new(),
 
            active_elements: AtomicU32::new(1),
 
        });
 
        let mut runtime = Runtime {
 
            inner: runtime_inner,
 
            threads: Vec::with_capacity(num_threads as usize),
 
        };
 

	
 
        for thread_index in 0..num_threads {
 
            let mut scheduler = Scheduler::new(runtime.inner.clone(), thread_index, debug_logging);
 
            let thread_handle = std::thread::spawn(move || {
 
                scheduler.run();
 
            });
 

	
 
            runtime.threads.push(thread_handle);
 
        }
 

	
 
        return runtime;
 
    }
 

	
 
    pub fn create_component(&self, module_name: &[u8], routine_name: &[u8]) -> Result<(), ComponentCreationError> {
 
        use crate::protocol::eval::ValueGroup;
 
        let prompt = self.inner.protocol.new_component(
 
            module_name, routine_name,
 
            ValueGroup::new_stack(Vec::new())
 
        )?;
 
        let reserved = self.inner.start_create_pdl_component();
 
        let ctx = CompCtx::new(&reserved);
 
        let (key, _) = self.inner.finish_create_pdl_component(reserved, CompPDL::new(prompt, 0), ctx, false);
 
        let component = Box::new(CompPDL::new(prompt, 0));
 
        let (key, _) = self.inner.finish_create_pdl_component(reserved, component, ctx, false);
 
        self.inner.enqueue_work(key);
 

	
 
        return Ok(())
 
    }
 
}
 

	
 
impl Drop for Runtime {
 
    fn drop(&mut self) {
 
        self.inner.decrement_active_components();
 
        for handle in self.threads.drain(..) {
 
            handle.join().expect("join scheduler thread");
 
        }
 
    }
 
}
 

	
 
/// Memory that is maintained by "the runtime". In practice it is maintained by
 
/// multiple schedulers, and this serves as the common interface to that memory.
 
pub(crate) struct RuntimeInner {
 
    pub protocol: ProtocolDescription,
 
    components: ComponentStore<RuntimeComp>,
 
    work_queue: Mutex<VecDeque<CompKey>>,
 
    work_condvar: Condvar,
 
    active_elements: AtomicU32, // active components and APIs (i.e. component creators)
 
}
 

	
 
impl RuntimeInner {
 
    // Scheduling and retrieving work
 

	
 
    pub(crate) fn take_work(&self) -> Option<CompKey> {
 
        let mut lock = self.work_queue.lock().unwrap();
 
        while lock.is_empty() && self.active_elements.load(Ordering::Acquire) != 0 {
 
            lock = self.work_condvar.wait(lock).unwrap();
 
        }
 

	
 
        // We have work, or the schedulers should exit.
 
        return lock.pop_front();
 
    }
 

	
 
    pub(crate) fn enqueue_work(&self, key: CompKey) {
 
        let mut lock = self.work_queue.lock().unwrap();
 
        lock.push_back(key);
 
        self.work_condvar.notify_one();
 
    }
 

	
 
    // Creating/destroying components
 

	
 
    pub(crate) fn start_create_pdl_component(&self) -> CompReserved {
 
        self.increment_active_components();
 
        let reservation = self.components.reserve();
 
        return CompReserved{ reservation };
 
    }
 

	
 
    pub(crate) fn finish_create_pdl_component<C: 'static + Component>(
 
    pub(crate) fn finish_create_pdl_component(
 
        &self, reserved: CompReserved,
 
        component: C, mut context: CompCtx, initially_sleeping: bool,
 
        component: Box<dyn Component>, mut context: CompCtx, initially_sleeping: bool,
 
    ) -> (CompKey, &mut RuntimeComp) {
 
        let inbox_queue = QueueDynMpsc::new(16);
 
        let inbox_producer = inbox_queue.producer();
 

	
 
        let _id = reserved.id();
 
        context.id = reserved.id();
 
        let component = RuntimeComp {
 
            public: CompPublic{
 
                sleeping: AtomicBool::new(initially_sleeping),
 
                num_handles: AtomicU32::new(1), // the component itself acts like a handle
 
                inbox: inbox_producer,
 
            },
 
            component: Box::new(component),
 
            component,
 
            ctx: context,
 
            inbox: inbox_queue,
 
            exiting: false,
 
        };
 

	
 
        let index = self.components.submit(reserved.reservation, component);
 
        debug_assert_eq!(index, _id.0);
 
        let component = self.components.get_mut(index);
 

	
 
        return (CompKey(index), component);
 
    }
 

	
 
    pub(crate) fn get_component(&self, key: CompKey) -> &mut RuntimeComp {
 
        let component = self.components.get_mut(key.0);
 
        return component;
 
    }
 

	
 
    pub(crate) fn get_component_public(&self, id: CompId) -> CompHandle {
 
        let component = self.components.get(id.0);
 
        return CompHandle::new(id, &component.public);
 
    }
 

	
 
    pub(crate) fn destroy_component(&self, key: CompKey) {
 
        dbg_code!({
 
            let component = self.get_component(key);
 
            debug_assert!(component.exiting);
 
            debug_assert_eq!(component.public.num_handles.load(Ordering::Acquire), 0);
 
        });
 
        self.decrement_active_components();
 
        self.components.destroy(key.0);
 
    }
 

	
 
    // Tracking number of active interfaces and the active components
 

	
 
    #[inline]
 
    fn increment_active_components(&self) {
 
        let _old_val = self.active_elements.fetch_add(1, Ordering::AcqRel);
 
        debug_assert!(_old_val > 0); // can only create a component from a API/component, so can never be 0.
 
    }
 

	
 
    fn decrement_active_components(&self) {
 
        let old_val = self.active_elements.fetch_sub(1, Ordering::AcqRel);
 
        debug_assert!(old_val > 0); // something wrong with incr/decr logic
 
        let new_val = old_val - 1;
 
        if new_val == 0 {
 
            // Just to be sure, in case the last thing that gets destroyed is an
 
            // API instead of a thread.
 
            let _lock = self.work_queue.lock();
 
            self.work_condvar.notify_all();
 
        }
 
    }
 
}
src/runtime2/tests/mod.rs
Show inline comments
 
use crate::protocol::*;
 
use crate::protocol::eval::*;
 
use crate::runtime2::runtime::*;
 
use crate::runtime2::component::{CompCtx, CompPDL};
 

	
 
fn create_component(rt: &Runtime, module_name: &str, routine_name: &str, args: ValueGroup) {
 
    let prompt = rt.inner.protocol.new_component(
 
        module_name.as_bytes(), routine_name.as_bytes(), args
 
    ).expect("create prompt");
 
    let reserved = rt.inner.start_create_pdl_component();
 
    let ctx = CompCtx::new(&reserved);
 
    let (key, _) = rt.inner.finish_create_pdl_component(reserved, CompPDL::new(prompt, 0), ctx, false);
 
    let component = Box::new(CompPDL::new(prompt, 0));
 
    let (key, _) = rt.inner.finish_create_pdl_component(reserved, component, ctx, false);
 
    rt.inner.enqueue_work(key);
 
}
 

	
 
fn no_args() -> ValueGroup { ValueGroup::new_stack(Vec::new()) }
 

	
 
#[test]
 
fn test_component_creation() {
 
    let pd = ProtocolDescription::parse(b"
 
    primitive nothing_at_all() {
 
        s32 a = 5;
 
        auto b = 5 + a;
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(1, true, pd);
 

	
 
    for _i in 0..20 {
 
        create_component(&rt, "", "nothing_at_all", no_args());
 
    }
 
}
 

	
 
#[test]
 
fn test_component_communication() {
 
    let pd = ProtocolDescription::parse(b"
 
    primitive sender(out<u32> o, u32 outside_loops, u32 inside_loops) {
 
        u32 outside_index = 0;
 
        while (outside_index < outside_loops) {
 
            u32 inside_index = 0;
 
            sync while (inside_index < inside_loops) {
 
                put(o, inside_index);
 
                inside_index += 1;
 
            }
 
            outside_index += 1;
 
        }
 
    }
 

	
 
    primitive receiver(in<u32> i, u32 outside_loops, u32 inside_loops) {
 
        u32 outside_index = 0;
 
        while (outside_index < outside_loops) {
 
            u32 inside_index = 0;
 
            sync while (inside_index < inside_loops) {
 
                auto val = get(i);
 
                while (val != inside_index) {} // infinite loop if incorrect value is received
 
                inside_index += 1;
 
            }
 
            outside_index += 1;
 
        }
 
    }
 

	
 
    composite constructor() {
 
        channel o_orom -> i_orom;
 
        channel o_mrom -> i_mrom;
 
        channel o_ormm -> i_ormm;
 
        channel o_mrmm -> i_mrmm;
 

	
 
        // one round, one message per round
 
        new sender(o_orom, 1, 1);
 
        new receiver(i_orom, 1, 1);
 

	
 
        // multiple rounds, one message per round
 
        new sender(o_mrom, 5, 1);
 
        new receiver(i_mrom, 5, 1);
 

	
 
        // one round, multiple messages per round
 
        new sender(o_ormm, 1, 5);
 
        new receiver(i_ormm, 1, 5);
 

	
 
        // multiple rounds, multiple messages per round
 
        new sender(o_mrmm, 5, 5);
 
        new receiver(i_mrmm, 5, 5);
 
    }").expect("compilation");
 
    let rt = Runtime::new(3, true, pd);
 
    create_component(&rt, "", "constructor", no_args());
 
}
 

	
 
#[test]
 
fn test_intermediate_messenger() {
 
    let pd = ProtocolDescription::parse(b"
 
    primitive receiver<T>(in<T> rx, u32 num) {
 
        auto index = 0;
 
        while (index < num) {
 
            sync { auto v = get(rx); }
 
            index += 1;
 
        }
 
    }
 

	
 
    primitive middleman<T>(in<T> rx, out<T> tx, u32 num) {
 
        auto index = 0;
 
        while (index < num) {
 
            sync { put(tx, get(rx)); }
 
            index += 1;
 
        }
 
    }
 

	
 
    primitive sender<T>(out<T> tx, u32 num) {
 
        auto index = 0;
 
        while (index < num) {
 
            sync put(tx, 1337);
 
            index += 1;
 
        }
 
    }
 

	
 
    composite constructor_template<T>() {
 
        auto num = 0;
 
        channel<T> tx_a -> rx_a;
 
        channel tx_b -> rx_b;
 
        new sender(tx_a, 3);
 
        new middleman(rx_a, tx_b, 3);
 
        new receiver(rx_b, 3);
 
    }
 

	
 
    composite constructor() {
 
        new constructor_template<u16>();
 
        new constructor_template<u32>();
 
        new constructor_template<u64>();
 
        new constructor_template<s16>();
 
        new constructor_template<s32>();
 
        new constructor_template<s64>();
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(3, true, pd);
 
    create_component(&rt, "", "constructor", no_args());
 
}
 

	
 
#[test]
 
fn test_simple_select() {
 
    let pd = ProtocolDescription::parse(b"
 
    func infinite_assert<T>(T val, T expected) -> () {
 
        while (val != expected) { print(\"nope!\"); }
 
        return ();
 
    }
 

	
 
    primitive receiver(in<u32> in_a, in<u32> in_b, u32 num_sends) {
 
        auto num_from_a = 0;
 
        auto num_from_b = 0;
 
        while (num_from_a + num_from_b < 2 * num_sends) {
 
            sync select {
 
                auto v = get(in_a) -> {
 
                    print(\"got something from A\");
 
                    auto _ = infinite_assert(v, num_from_a);
 
                    num_from_a += 1;
 
                }
 
                auto v = get(in_b) -> {
 
                    print(\"got something from B\");
 
                    auto _ = infinite_assert(v, num_from_b);
 
                    num_from_b += 1;
 
                }
 
            }
 
        }
 
    }
 

	
 
    primitive sender(out<u32> tx, u32 num_sends) {
 
        auto index = 0;
 
        while (index < num_sends) {
 
            sync {
 
                put(tx, index);
 
                index += 1;
 
            }
 
        }
 
    }
 

	
 
    composite constructor() {
 
        auto num_sends = 15;
 
        channel tx_a -> rx_a;
 
        channel tx_b -> rx_b;
 
        new sender(tx_a, num_sends);
 
        new receiver(rx_a, rx_b, num_sends);
 
        new sender(tx_b, num_sends);
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(3, false, pd);
 
    create_component(&rt, "", "constructor", no_args());
 
}
 

	
 
#[test]
 
fn test_unguarded_select() {
 
    let pd = ProtocolDescription::parse(b"
 
    primitive constructor_outside_select() {
 
        u32 index = 0;
 
        while (index < 5) {
 
            sync select { auto v = () -> print(\"hello\"); }
 
            index += 1;
 
        }
 
    }
 

	
 
    primitive constructor_inside_select() {
 
        u32 index = 0;
 
        while (index < 5) {
 
            sync select { auto v = () -> index += 1; }
 
        }
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(3, false, pd);
 
    create_component(&rt, "", "constructor_outside_select", no_args());
 
    create_component(&rt, "", "constructor_inside_select", no_args());
 
}
 

	
 
#[test]
 
fn test_empty_select() {
 
    let pd = ProtocolDescription::parse(b"
 
    primitive constructor() {
 
        u32 index = 0;
 
        while (index < 5) {
 
            sync select {}
 
            index += 1;
 
        }
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(3, false, pd);
 
    create_component(&rt, "", "constructor", no_args());
 
}
 

	
 
#[test]
 
fn test_random_u32_temporary_thingo() {
 
    let pd = ProtocolDescription::parse(b"
 
    primitive random_taker(in<u32> generator) {
 
        sync {
 
            auto a = get(generator);
 
        }
 
    }
 

	
 
    composite constructor() {
 
        channel tx -> rx;
 
        new random_u32(tx, 1, 100);
 
        new random_taker(rx);
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(1, true, pd);
 
    create_component(&rt, "", "constructor", no_args());
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)