Changeset - c14c92253f09
[Not reviewed]
0 1 0
MH - 3 years ago 2022-02-21 17:57:49
contact@maxhenger.nl
WIP: More refactored inferencing rules
1 file changed with 241 insertions and 49 deletions:
0 comments (0 inline, 0 general)
src/protocol/parser/pass_typing.rs
Show inline comments
 
@@ -673,501 +673,501 @@ impl InferenceType {
 
                buffer.push_str("[..]");
 
            },
 
            ITP::Input => {
 
                buffer.push_str(KW_TYPE_IN_PORT_STR);
 
                buffer.push('<');
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            },
 
            ITP::Output => {
 
                buffer.push_str(KW_TYPE_OUT_PORT_STR);
 
                buffer.push('<');
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            },
 
            ITP::Tuple(num_sub) => {
 
                buffer.push('(');
 
                if *num_sub > 0 {
 
                    idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                    for _sub_idx in 1..*num_sub {
 
                        buffer.push_str(", ");
 
                        idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                    }
 
                }
 
                buffer.push(')');
 
            }
 
            ITP::Instance(definition_id, num_sub) => {
 
                let definition = &heap[*definition_id];
 
                buffer.push_str(definition.identifier().value.as_str());
 
                if *num_sub > 0 {
 
                    buffer.push('<');
 
                    idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                    for _sub_idx in 1..*num_sub {
 
                        buffer.push_str(", ");
 
                        idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                    }
 
                    buffer.push('>');
 
                }
 
            },
 
        }
 

	
 
        idx
 
    }
 

	
 
    /// Returns the display name of a (part of) the type tree. Will allocate a
 
    /// string.
 
    fn partial_display_name(heap: &Heap, parts: &[InferenceTypePart]) -> String {
 
        let mut buffer = String::with_capacity(parts.len() * 6);
 
        Self::write_display_name(&mut buffer, heap, parts, 0);
 
        buffer
 
    }
 

	
 
    /// Returns the display name of the full type tree. Will allocate a string.
 
    fn display_name(&self, heap: &Heap) -> String {
 
        Self::partial_display_name(heap, &self.parts)
 
    }
 
}
 

	
 
impl Default for InferenceType {
 
    fn default() -> Self {
 
        Self{
 
            has_marker: false,
 
            is_done: false,
 
            parts: Vec::new(),
 
        }
 
    }
 
}
 

	
 
/// Iterator over the subtrees that follow a marker in an `InferenceType`
 
/// instance. Returns immutable slices over the internal parts
 
struct InferenceTypeMarkerIter<'a> {
 
    parts: &'a [InferenceTypePart],
 
    idx: usize,
 
}
 

	
 
impl<'a> InferenceTypeMarkerIter<'a> {
 
    fn new(parts: &'a [InferenceTypePart]) -> Self {
 
        Self{ parts, idx: 0 }
 
    }
 
}
 

	
 
impl<'a> Iterator for InferenceTypeMarkerIter<'a> {
 
    type Item = (u32, &'a [InferenceTypePart]);
 

	
 
    fn next(&mut self) -> Option<Self::Item> {
 
        // Iterate until we find a marker
 
        while self.idx < self.parts.len() {
 
            if let InferenceTypePart::Marker(marker) = self.parts[self.idx] {
 
                // Found a marker, find the subtree end
 
                let start_idx = self.idx + 1;
 
                let end_idx = InferenceType::find_subtree_end_idx(self.parts, start_idx);
 

	
 
                // Modify internal index, then return items
 
                self.idx = end_idx;
 
                return Some((marker, &self.parts[start_idx..end_idx]));
 
            }
 

	
 
            self.idx += 1;
 
        }
 

	
 
        None
 
    }
 
}
 

	
 
#[derive(Debug, PartialEq, Eq)]
 
enum DualInferenceResult {
 
    Neither,        // neither argument is clarified
 
    First,          // first argument is clarified using the second one
 
    Second,         // second argument is clarified using the first one
 
    Both,           // both arguments are clarified
 
    Incompatible,   // types are incompatible: programmer error
 
}
 

	
 
impl DualInferenceResult {
 
    fn modified_lhs(&self) -> bool {
 
        match self {
 
            DualInferenceResult::First | DualInferenceResult::Both => true,
 
            _ => false
 
        }
 
    }
 
    fn modified_rhs(&self) -> bool {
 
        match self {
 
            DualInferenceResult::Second | DualInferenceResult::Both => true,
 
            _ => false
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, PartialEq, Eq)]
 
enum SingleInferenceResult {
 
    Unmodified,
 
    Modified,
 
    Incompatible
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// PassTyping - Public Interface
 
// -----------------------------------------------------------------------------
 

	
 
type InferNodeIndex = usize;
 
type PolyDataIndex = usize;
 

	
 
enum DefinitionType{
 
    Component(ComponentDefinitionId),
 
    Function(FunctionDefinitionId),
 
}
 

	
 
impl DefinitionType {
 
    fn definition_id(&self) -> DefinitionId {
 
        match self {
 
            DefinitionType::Component(v) => v.upcast(),
 
            DefinitionType::Function(v) => v.upcast(),
 
        }
 
    }
 
}
 

	
 
pub(crate) struct ResolveQueueElement {
 
    // Note that using the `definition_id` and the `monomorph_idx` one may
 
    // query the type table for the full procedure type, thereby retrieving
 
    // the polymorphic arguments to the procedure.
 
    pub(crate) root_id: RootId,
 
    pub(crate) definition_id: DefinitionId,
 
    pub(crate) reserved_type_id: TypeId,
 
}
 

	
 
pub(crate) type ResolveQueue = Vec<ResolveQueueElement>;
 

	
 
#[derive(Clone)]
 
struct InferenceNode {
 
    expr_type: InferenceType,       // result type from expression
 
    expr_id: ExpressionId,          // expression that is evaluated
 
    inference_rule: InferenceRule,
 
    parent_index: Option<InferNodeIndex>,
 
    field_or_monomorph_index: i32,    // index of field
 
    poly_data_index: PolyDataIndex,            // index of extra data needed for inference
 
    type_id: TypeId,                // when applicable indexes into type table
 
}
 

	
 
/// Inferencing rule to apply. Some of these are reasonably generic. Other ones
 
/// require so much custom logic that we'll not try to come up with an
 
/// abstraction.
 
enum InferenceRule {
 
    Noop,
 
    MonoTemplate(InferenceRuleTemplate),
 
    BiEqual(InferenceRuleBiEqual),
 
    TriEqualArgs(InferenceRuleTriEqualArgs),
 
    TriEqualAll(InferenceRuleTriEqualAll),
 
    Concatenate(InferenceRuleTwoArgs),
 
    IndexingExpr(InferenceRuleIndexingExpr),
 
    SlicingExpr(InferenceRuleSlicingExpr),
 
    SelectStructField(InferenceRuleSelectStructField),
 
    SelectTupleMember(InferenceRuleSelectTupleMember),
 
    LiteralStruct(InferenceRuleLiteralStruct),
 
    LiteralEnum(InferenceRuleLiteralEnum),
 
    LiteralEnum,
 
    LiteralUnion(InferenceRuleLiteralUnion),
 
    LiteralArray(InferenceRuleLiteralArray),
 
    LiteralTuple(InferenceRuleLiteralTuple),
 
    CastExpr(InferenceRuleCastExpr),
 
    CallExpr(InferenceRuleCallExpr),
 
    VariableExpr(InferenceRuleVariableExpr),
 
}
 

	
 
impl InferenceRule {
 
    union_cast_method_impl!(as_mono_template, InferenceRuleTemplate, InferenceRule::MonoTemplate);
 
    union_cast_method_impl!(as_bi_equal, InferenceRuleBiEqual, InferenceRule::BiEqual);
 
    union_cast_method_impl!(as_tri_equal_args, InferenceRuleTriEqualArgs, InferenceRule::TriEqualArgs);
 
    union_cast_method_impl!(as_tri_equal_all, InferenceRuleTriEqualAll, InferenceRule::TriEqualAll);
 
    union_cast_method_impl!(as_concatenate, InferenceRuleTwoArgs, InferenceRule::Concatenate);
 
    union_cast_method_impl!(as_indexing_expr, InferenceRuleIndexingExpr, InferenceRule::IndexingExpr);
 
    union_cast_method_impl!(as_slicing_expr, InferenceRuleSlicingExpr, InferenceRule::SlicingExpr);
 
    union_cast_method_impl!(as_select_struct_field, InferenceRuleSelectStructField, InferenceRule::SelectStructField);
 
    union_cast_method_impl!(as_select_tuple_member, InferenceRuleSelectTupleMember, InferenceRule::SelectTupleMember);
 
    union_cast_method_impl!(as_literal_struct, InferenceRuleLiteralStruct, InferenceRule::LiteralStruct);
 
    union_cast_method_impl!(as_literal_union, InferenceRuleLiteralUnion, InferenceRule::LiteralUnion);
 
    union_cast_method_impl!(as_literal_array, InferenceRuleLiteralArray, InferenceRule::LiteralArray);
 
    union_cast_method_impl!(as_literal_tuple, InferenceRuleLiteralTuple, InferenceRule::LiteralTuple);
 
}
 

	
 
struct InferenceRuleTemplate {
 
    template: &'static [InferenceTypePart],
 
    application: InferenceRuleTemplateApplication,
 
}
 

	
 
impl InferenceRuleTemplate {
 
    fn new_none() -> Self {
 
        return Self{
 
            template: &[],
 
            application: InferenceRuleTemplateApplication::None,
 
        };
 
    }
 

	
 
    fn new_forced(template: &'static [InferenceTypePart]) -> Self {
 
        return Self{
 
            template,
 
            application: InferenceRuleTemplateApplication::Forced,
 
        };
 
    }
 

	
 
    fn new_template(template: &'static [InferenceTypePart]) -> Self {
 
        return Self{
 
            template,
 
            application: InferenceRuleTemplateApplication::Template,
 
        }
 
    }
 
}
 

	
 
#[derive(Clone, Copy)]
 
enum InferenceRuleTemplateApplication {
 
    None, // do not apply template, silly, but saves some bytes
 
    Forced,
 
    Template,
 
}
 

	
 
/// Type equality applied to 'self' and the argument. An optional template will
 
/// be applied to 'self' first. Example: "bitwise not"
 
struct InferenceRuleBiEqual {
 
    template: InferenceRuleTemplate,
 
    argument_index: InferNodeIndex,
 
}
 

	
 
/// Type equality applied to two arguments. Template can be applied to 'self'
 
/// (generally forced, since this rule does not apply a type equality constraint
 
/// to 'self') and the two arguments. Example: "equality operator"
 
struct InferenceRuleTriEqualArgs {
 
    argument_template: InferenceRuleTemplate,
 
    result_template: InferenceRuleTemplate,
 
    argument1_index: InferNodeIndex,
 
    argument2_index: InferNodeIndex,
 
}
 

	
 
/// Type equality applied to 'self' and two arguments. Template may be
 
/// optionally applied to 'self'. Example: "addition operator"
 
struct InferenceRuleTriEqualAll {
 
    template: InferenceRuleTemplate,
 
    argument1_index: InferNodeIndex,
 
    argument2_index: InferNodeIndex,
 
}
 

	
 
/// Information for an inference rule that is applied to 'self' and two
 
/// arguments, see `InferenceRule` for its meaning.
 
struct InferenceRuleTwoArgs {
 
    argument1_index: InferNodeIndex,
 
    argument2_index: InferNodeIndex,
 
}
 

	
 
struct InferenceRuleIndexingExpr {
 
    subject_index: InferNodeIndex,
 
    index_index: InferNodeIndex,
 
}
 

	
 
struct InferenceRuleSlicingExpr {
 
    subject_index: InferNodeIndex,
 
    from_index: InferNodeIndex,
 
    to_index: InferNodeIndex,
 
}
 

	
 
struct InferenceRuleSelectStructField {
 
    subject_index: InferNodeIndex,
 
    selected_field: Identifier,
 
}
 

	
 
struct InferenceRuleSelectTupleMember {
 
    subject_index: InferNodeIndex,
 
    selected_index: u64,
 
}
 

	
 
struct InferenceRuleLiteralStruct {
 
    element_indices: Vec<InferNodeIndex>,
 
}
 

	
 
struct InferenceRuleLiteralEnum {
 

	
 
}
 

	
 
struct InferenceRuleLiteralUnion {
 
    element_indices: Vec<InferNodeIndex>
 
}
 

	
 
struct InferenceRuleLiteralArray {
 
    element_indices: Vec<InferNodeIndex>
 
}
 

	
 
struct InferenceRuleLiteralTuple {
 
    element_indices: Vec<InferNodeIndex>
 
}
 

	
 
struct InferenceRuleCastExpr {
 
    subject_index: InferNodeIndex,
 
}
 

	
 
struct InferenceRuleCallExpr {
 
    argument_indices: Vec<InferNodeIndex>
 
}
 

	
 
/// Data associated with a variable expression: an expression that reads the
 
/// value from a variable.
 
struct InferenceRuleVariableExpr {
 
    variable_index: InferNodeIndex,
 
}
 

	
 
/// Data associated with a variable: keeping track of all the variable
 
/// expressions in which it is used.
 
struct InferenceRuleVariable {
 
    used_at_indices: Vec<InferNodeIndex>,
 
}
 

	
 
/// This particular visitor will recurse depth-first into the AST and ensures
 
/// that all expressions have the appropriate types.
 
pub(crate) struct PassTyping {
 
    // Current definition we're typechecking.
 
    reserved_type_id: TypeId,
 
    definition_type: DefinitionType,
 
    poly_vars: Vec<ConcreteType>,
 
    // Temporary variables during construction of inference rulesr
 
    parent_index: Option<InferNodeIndex>,
 
    // Buffers for iteration over various types
 
    var_buffer: ScopedBuffer<VariableId>,
 
    expr_buffer: ScopedBuffer<ExpressionId>,
 
    stmt_buffer: ScopedBuffer<StatementId>,
 
    bool_buffer: ScopedBuffer<bool>,
 
    index_buffer: ScopedBuffer<usize>,
 
    poly_progress_buffer: ScopedBuffer<u32>,
 
    // Mapping from parser type to inferred type. We attempt to continue to
 
    // specify these types until we're stuck or we've fully determined the type.
 
    var_types: HashMap<VariableId, VarData>,            // types of variables
 
    infer_nodes: Vec<InferenceNode>,                     // will be transferred to type table at end
 
    poly_data: Vec<PolyData>,       // data for polymorph inference
 
    // Keeping track of which expressions need to be reinferred because the
 
    // expressions they're linked to made progression on an associated type
 
    expr_queued: DequeSet<i32>,
 
}
 

	
 
/// Generic struct that is used to store inferred types associated with
 
/// polymorphic types.
 
struct PolyData {
 
    definition_id: DefinitionId, // the definition, only used for user feedback
 
    /// Inferred types of the polymorphic variables as they are written down
 
    /// at the type's definition.
 
    poly_vars: Vec<InferenceType>,
 
    /// Inferred types of associated types (e.g. struct fields, tuple members,
 
    /// function arguments). These types may depend on the polymorphic variables
 
    /// defined above.
 
    associated: Vec<InferenceType>,
 
    /// Inferred "returned" type (e.g. if a struct field is selected, then this
 
    /// contains the type of the selected field, for a function call it contains
 
    /// the return type). May depend on the polymorphic variables defined above.
 
    returned: InferenceType,
 
}
 

	
 
impl Default for PolyData {
 
    fn default() -> Self {
 
        Self {
 
            definition_id: DefinitionId::new_invalid(),
 
            poly_vars: Vec::new(),
 
            associated: Vec::new(),
 
            returned: InferenceType::default(),
 
        }
 
    }
 
}
 

	
 
#[derive(Clone, Copy)]
 
enum PolyDataTypeIndex {
 
    Associated(usize), // indexes into `PolyData.associated`
 
    Returned,
 
}
 

	
 
impl PolyData {
 
    fn get_type(&self, index: PolyDataTypeIndex) -> &InferenceType {
 
        match index {
 
            PolyDataTypeIndex::Associated(index) => return &self.associated[index],
 
            PolyDataTypeIndex::Returned => return &self.returned,
 
        }
 
    }
 

	
 
    fn get_type_mut(&mut self, index: PolyDataTypeIndex) -> &mut InferenceType {
 
        match index {
 
            PolyDataTypeIndex::Associated(index) => return &mut self.associated[index],
 
            PolyDataTypeIndex::Returned => return &mut self.returned,
 
        }
 
    }
 
}
 

	
 
struct VarData {
 
    /// Type of the variable
 
    var_type: InferenceType,
 
    /// VariableExpressions that use the variable
 
    used_at: Vec<ExpressionId>,
 
    /// For channel statements we link to the other variable such that when one
 
    /// channel's interior type is resolved, we can also resolve the other one.
 
    linked_var: Option<VariableId>,
 
}
 

	
 
impl VarData {
 
    fn new_channel(var_type: InferenceType, other_port: VariableId) -> Self {
 
        Self{ var_type, used_at: Vec::new(), linked_var: Some(other_port) }
 
    }
 
    fn new_local(var_type: InferenceType) -> Self {
 
        Self{ var_type, used_at: Vec::new(), linked_var: None }
 
    }
 
}
 

	
 
impl PassTyping {
 
    pub(crate) fn new() -> Self {
 
        PassTyping {
 
            reserved_type_id: TypeId::new_invalid(),
 
            definition_type: DefinitionType::Function(FunctionDefinitionId::new_invalid()),
 
            poly_vars: Vec::new(),
 
            parent_index: None,
 
            var_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            expr_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            stmt_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            bool_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            poly_progress_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            var_types: HashMap::new(),
 
            infer_nodes: Vec::new(),
 
            poly_data: Vec::new(),
 
            expr_queued: DequeSet::new(),
 
        }
 
    }
 

	
 
    pub(crate) fn queue_module_definitions(ctx: &mut Ctx, queue: &mut ResolveQueue) {
 
        debug_assert_eq!(ctx.module().phase, ModuleCompilationPhase::ValidatedAndLinked);
 
        let root_id = ctx.module().root_id;
 
        let root = &ctx.heap.protocol_descriptions[root_id];
 
        for definition_id in &root.definitions {
 
            let definition = &ctx.heap[*definition_id];
 

	
 
            let first_concrete_part = match definition {
 
                Definition::Function(definition) => {
 
                    if definition.poly_vars.is_empty() {
 
                        Some(ConcreteTypePart::Function(*definition_id, 0))
 
                    } else {
 
                        None
 
                    }
 
                }
 
                Definition::Component(definition) => {
 
                    if definition.poly_vars.is_empty() {
 
                        Some(ConcreteTypePart::Component(*definition_id, 0))
 
                    } else {
 
                        None
 
                    }
 
                },
 
                Definition::Enum(_) | Definition::Struct(_) | Definition::Union(_) => None,
 
            };
 

	
 
            if let Some(first_concrete_part) = first_concrete_part {
 
                let concrete_type = ConcreteType{ parts: vec![first_concrete_part] };
 
                let type_id = ctx.types.reserve_procedure_monomorph_type_id(definition_id, concrete_type);
 
                queue.push(ResolveQueueElement{
 
                    root_id,
 
                    definition_id: *definition_id,
 
                    reserved_type_id: type_id,
 
                })
 
            }
 
        }
 
    }
 

	
 
    pub(crate) fn handle_module_definition(
 
        &mut self, ctx: &mut Ctx, queue: &mut ResolveQueue, element: ResolveQueueElement
 
    ) -> VisitorResult {
 
        self.reset();
 
        debug_assert_eq!(ctx.module().root_id, element.root_id);
 
        debug_assert!(self.poly_vars.is_empty());
 

	
 
        // Prepare for visiting the definition
 
        self.reserved_type_id = element.reserved_type_id;
 
@@ -2193,436 +2193,632 @@ impl PassTyping {
 
        return Ok(())
 
    }
 

	
 
    fn progress_inference_rule_indexing_expr(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_indexing_expr();
 
        let subject_index = rule.subject_index;
 
        let index_index = rule.index_index; // which one?
 

	
 
        // Subject is arraylike, index in integerlike
 
        let subject_template_progress = self.apply_template_constraint(ctx, subject_index, &ARRAYLIKE_TEMPLATE)?;
 
        let index_template_progress = self.apply_template_constraint(ctx, index_index, &INTEGERLIKE_TEMPLATE)?;
 

	
 
        // If subject is type `Array<T>`, then expr type is `T`
 
        let (node_progress, subject_progress) =
 
            self.apply_equal2_constraint(ctx, node_index, node_index, 0, subject_index, 1)?;
 

	
 
        if node_progress { self.queue_node_parent(node_index); }
 
        if subject_template_progress || subject_progress { self.queue_node(subject_index); }
 
        if index_template_progress { self.queue_node(index_index); }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_slicing_expr(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_slicing_expr();
 
        let subject_index = rule.subject_index;
 
        let from_index_index = rule.from_index;
 
        let to_index_index = rule.to_index;
 

	
 
        debug_log!("Rule slicing [node: {}, expr: {}]", node_index, node.expr_id.index);
 

	
 
        // Subject is arraylike, indices are integerlike
 
        let subject_template_progress = self.apply_template_constraint(ctx, subject_index, &ARRAYLIKE_TEMPLATE)?;
 
        let from_template_progress = self.apply_template_constraint(ctx, from_index_index, &INTEGERLIKE_TEMPLATE)?;
 
        let to_template_progress = self.apply_template_constraint(ctx, to_index_index, &INTEGERLIKE_TEMPLATE)?;
 
        let (from_index_progress, to_index_progress) =
 
            self.apply_equal2_constraint(ctx, node_index, from_index_index, 0, to_index_index, 0)?;
 

	
 
        // Same as array indexing: result depends on whether subject is string
 
        // or array
 
        let (is_string, is_not_string) = self.type_is_certainly_or_certainly_not_string(node_index);
 
        let (node_progress, subject_progress) = if is_string {
 
            // Certainly a string
 
            (
 
                self.apply_forced_constraint(ctx, node_index, &STRING_TEMPLATE)?,
 
                false
 
            )
 
        } else if is_not_string {
 
            // Certainly not a string, apply template constraint. Then make sure
 
            // that if we have an `Array<T>`, that the slice produces `Slice<T>`
 
            let node_template_progress = self.apply_template_constraint(ctx, node_index, &SLICE_TEMPLATE)?;
 
            let (node_progress, subject_progress) =
 
                self.apply_equal2_constraint(ctx, node_index, node_index, 1, subject_index, 1)?;
 

	
 
            (
 
                node_template_progress || node_progress,
 
                subject_progress
 
            )
 
        } else {
 
            // Not sure yet
 
            let node_template_progress = self.apply_template_constraint(ctx, node_index, &ARRAYLIKE_TEMPLATE)?;
 
            let (node_progress, subject_progress) =
 
                self.apply_equal2_constraint(ctx, node_index, node_index, 1, subject_index, 1)?;
 

	
 
            (
 
                node_template_progress || node_progress,
 
                subject_progress
 
            )
 
        };
 

	
 
        if node_progress { self.queue_node_parent(node_index); }
 
        if subject_template_progress || subject_progress { self.queue_node(subject_index); }
 
        if from_template_progress || from_index_progress { self.queue_node(from_index_index); }
 
        if to_template_progress || to_index_progress { self.queue_node(to_index_index); }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_select_struct_field(&mut self, ctx: &mut Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_select_struct_field();
 

	
 
        let subject_index = rule.subject_index;
 

	
 
        fn get_definition_id_from_inference_type(inference_type: &InferenceType) -> Result<Option<DefinitionId>, ()> {
 
            for part in inference_type.parts.iter() {
 
                if part.is_marker() { continue; }
 
                if !part.is_concrete() { break; }
 

	
 
                if let InferenceTypePart::Instance(definition_id, _) = part {
 
                    return Ok(Some(*definition_id));
 
                } else {
 
                    return Err(())
 
                }
 
            }
 

	
 
            // Nothing is known yet
 
            return Ok(None);
 
        }
 

	
 
        if node.field_or_monomorph_index < 0 {
 
            // Don't know the subject definition, hence the field yet. Try to
 
            // determine it.
 
            let subject_node = &self.infer_nodes[subject_index];
 
            match get_definition_id_from_inference_type(&subject_node.expr_type) {
 
                Ok(Some(definition_id)) => {
 
                    // Determined definition of subject for the first time.
 
                    let base_definition = ctx.types.get_base_definition(&definition_id).unwrap();
 
                    let struct_definition = if let DefinedTypeVariant::Struct(struct_definition) = &base_definition.definition {
 
                        struct_definition
 
                    } else {
 
                        return Err(ParseError::new_error_at_span(
 
                            &ctx.module().source, rule.selected_field.span, format!(
 
                                "Can only apply field access to structs, got a subject of type '{}'",
 
                                subject_type.display_name(&ctx.heap)
 
                            )
 
                        ));
 
                    };
 

	
 
                    // Seek the field that is referenced by the select
 
                    // expression
 
                    let mut field_found = false;
 
                    for (field_index, field) in struct_definition.fields.iter().enumerate() {
 
                        if field.identifier.value == rule.selected_field.value {
 
                            // Found the field of interest
 
                            field_found = true;
 
                            let node = &mut self.infer_nodes[node_index];
 
                            node.field_or_monomorph_index = field_index as i32;
 
                            break;
 
                        }
 
                    }
 

	
 
                    if !field_found {
 
                        let struct_definition = ctx.heap[definition_id].as_struct();
 
                        return Err(ParseError::new_error_at_span(
 
                            &ctx.module().source, rule.selected_field.span, format!(
 
                                "this field does not exist on the struct '{}'",
 
                                ast_struct_def.identifier.value.as_str()
 
                            )
 
                        ));
 
                    }
 

	
 
                    // Insert the initial data needed to infer polymorphic
 
                    // fields
 
                    let extra_index = self.insert_initial_select_polymorph_data(ctx, node_index, definition_id);
 
                    let node = &mut self.infer_nodes[node_index];
 
                    node.poly_data_index = extra_index;
 
                },
 
                Ok(None) => {
 
                    // We don't know what to do yet, because we don't know the
 
                    // subject type yet.
 
                    return Ok(())
 
                },
 
                Err(()) => {
 
                    return Err(ParseError::new_error_at_span(
 
                        &ctx.module().source, rule.selected_field.span, format!(
 
                            "Can only apply field access to structs, got a subject of type '{}'",
 
                            subject_type.display_name(&ctx.heap)
 
                        )
 
                    ));
 
                },
 
            }
 
        }
 

	
 
        // If here then the field index is known, hence we can start inferring
 
        // the type of the selected field
 
        let field_expr_id = self.infer_nodes[node_index].expr_id;
 
        let subject_expr_id = self.infer_nodes[subject_index].expr_id;
 
        let mut poly_progress_section = self.poly_progress_buffer.start_section();
 

	
 
        let (_, progress_subject_1) = self.apply_polydata_equal2_constraint(
 
            ctx, node_index, subject_expr_id, "selected struct's",
 
            PolyDataTypeIndex::Associated(0), 0, subject_index, 0, &mut poly_progress_section
 
        )?;
 
        let (_, progress_field_1) = self.apply_polydata_equal2_constraint(
 
            ctx, node_index, field_expr_id, "selected field's",
 
            PolyDataTypeIndex::Returned, 0, node_index, 0, &mut poly_progress_section
 
        )?;
 

	
 
        // Maybe make progress on types due to inferred polymorphic variables
 
        let progress_subject_2 = self.apply_polydata_polyvar_constraint(
 
            ctx, node_index, PolyDataTypeIndex::Associated(0), subject_index, &poly_progress_section
 
        );
 
        let progress_field_2 = self.apply_polydata_polyvar_constraint(
 
            ctx, node_index, PolyDataTypeIndex::Returned, node_index, &poly_progress_section
 
        );
 

	
 
        if progress_subject_1 || progress_subject_2 { self.queue_node(subject_index); }
 
        if progress_field_1 || progress_field_2 { self.queue_node_parent(node_index); }
 

	
 
        poly_progress_section.forget();
 

	
 
        return Ok(())
 
    }
 

	
 
    fn progress_inference_rule_select_tuple_member(&mut self, ctx: &mut Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_select_tuple_member();
 
        let subject_index = rule.subject_index;
 
        let tuple_member_index = rule.selected_index;
 

	
 
        fn get_tuple_size_from_inference_type(inference_type: &InferenceType) -> Result<Option<u32>, ()> {
 
            for part in &inference_type.parts {
 
                if part.is_marker() { continue; }
 
                if !part.is_concrete() { break; }
 

	
 
                if let InferenceTypePart::Tuple(size) = part {
 
                    return Ok(Some(*size));
 
                } else {
 
                    return Err(()); // not a tuple!
 
                }
 
            }
 

	
 
            return Ok(None);
 
        }
 

	
 
        if node.field_or_monomorph_index < 0 {
 
            let subject_type = &self.infer_nodes[subject_index].expr_type;
 
            let tuple_size = get_tuple_size_from_inference_type(subject_type);
 
            let tuple_size = match tuple_size {
 
                Ok(Some(tuple_size)) => {
 
                    tuple_size
 
                },
 
                Ok(None) => {
 
                    // We can't infer anything yet
 
                    return Ok(())
 
                },
 
                Err(()) => {
 
                    let select_expr_span = ctx.heap[node.expr_id].full_span();
 
                    return Err(ParseError::new_error_at_span(
 
                        &ctx.module().source, select_expr_span, format!(
 
                            "tuple element select cannot be applied to a subject of type '{}'",
 
                            subject_type.display_name(&ctx.heap)
 
                        )
 
                    ));
 
                }
 
            };
 

	
 
            // If here then we at least have the tuple size. Now check if the
 
            // index doesn't exceed that size.
 
            if tuple_member_index >= tuple_size as u64 {
 
                let select_expr_span = ctx.heap[node.expr_id].full_span();
 
                return Err(ParseError::new_error_at_span(
 
                    &ctx.module().source, select_expr_span, format!(
 
                        "element index {} is out of bounds, tuple has {} elements",
 
                        tuple_member_index, tuple_size
 
                    )
 
                ));
 
            }
 

	
 
            // Within bounds, set index on the type inference node
 
            let node = &mut self.infer_nodes[node_index];
 
            node.field_or_monomorph_index = tuple_member_index as i32;
 
        }
 

	
 
        // If here then we know we can use `tuple_member_index`. We need to keep
 
        // computing the offset to the subtype, as its value changes during
 
        // inference
 
        let subject_type = &self.infer_nodes[subject_index].expr_type;
 
        let mut selected_member_start_index = 1; // start just after the InferenceTypeElement::Tuple
 
        for _ in 0..tuple_member_index {
 
            selected_member_start_index = InferenceType::find_subtree_end_idx(&subject_type.parts, selected_member_start_index);
 
        }
 

	
 
        let (progress_member, progress_subject) = self.apply_equal2_constraint(
 
            ctx, node_index, node_index, 0, subject_index, selected_member_start_idx
 
        )?;
 

	
 
        if progress_member { self.queue_node_parent(node_index); }
 
        if progress_subject { self.queue_node(subject_index); }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_literal_struct(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_literal_struct();
 

	
 
        // For each of the fields in the literal struct, apply the type equality
 
        // constraint. If the literal is polymorphic, then we try to progress
 
        // their types during this process
 
        let mut poly_progress_section = self.poly_progress_buffer.start_section();
 
        for (field_index, field_node_index) in rule.element_indices.iter().copied().enumerate() {
 
            let field_expr_id = self.infer_nodes[field_node_index].expr_id;
 
            let (_, progress_field) = self.apply_polydata_equal2_constraint(
 
                ctx, node_index, field_expr_id, "struct field's",
 
                PolyDataTypeIndex::Associated(field_index), 0,
 
                field_node_index, 0, &mut poly_progress_section
 
            )?;
 

	
 
            if progress_field { self.queue_node(field_node_index); }
 
        }
 

	
 
        // Now we do the same thing for the struct literal expression (the type
 
        // of the struct itself).
 
        let (_, progress_literal_1) = self.apply_polydata_equal2_constraint(
 
            ctx, node_index, node.expr_id, "struct literal's",
 
            PolyDataTypeIndex::Returned, 0, node_index, 0, &mut poly_progress_section
 
        )?;
 

	
 
        // And the other way around: if any of our polymorphic variables are
 
        // more specific then they were before, then we forward that information
 
        // back to our struct/fields.
 
        for (field_index, field_node_index) in rule.element_indices.iter().copied().enumerate() {
 
            let progress_field = self.apply_polydata_polyvar_constraint(
 
                ctx, node_index, PolyDataTypeIndex::Associated(field_index),
 
                field_node_index, &poly_progress_section
 
            );
 

	
 
            if progress_field { self.queue_node(field_node_index); }
 
        }
 

	
 
        let progress_literal_2 = self.apply_polydata_polyvar_constraint(
 
            ctx, node_index, PolyDataTypeIndex::Returned,
 
            node_index, &poly_progress_section
 
        );
 

	
 
        if progress_literal_1 || progress_literal_2 { self.queue_node_parent(node_index); }
 

	
 
        poly_progress_section.forget();
 

	
 
        return Ok(())
 
    }
 

	
 
    fn progress_inference_rule_literal_enum(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_literal_enum();
 

	
 
        let mut poly_progress_section = self.poly_progress_buffer.start_section();
 

	
 
        // An enum literal type is simply, well, the enum's type. However, it
 
        // might still have polymorphic variables, hence the use of `PolyData`.
 
        let (_, progress_literal_1) = self.apply_polydata_equal2_constraint(
 
            ctx, node_index, node.expr_id, "enum literal's",
 
            PolyDataTypeIndex::Returned, 0, node_index, 0, &mut poly_progress_section
 
        )?;
 

	
 
        let progress_literal_2 = self.apply_polydata_polyvar_constraint(
 
            ctx, node_index, PolyDataTypeIndex::Returned, node_index, &poly_progress_section
 
        );
 

	
 
        if progress_literal_1 || progress_literal_2 { self.queue_node_parent(node_index); }
 

	
 
        poly_progress_section.forget();
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_literal_union(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_literal_union();
 

	
 
        // Infer type of any embedded values in the union variant. At the same
 
        // time progress the polymorphic variables associated with the union.
 
        let mut poly_progress_section = self.poly_progress_buffer.start_section();
 

	
 
        for (embedded_index, embedded_node_index) in rule.element_indices.iter().copied().enumerate() {
 
            let embedded_node_expr_id = self.infer_nodes[embedded_node_index].expr_id;
 
            let (_, progress_embedded) = self.apply_polydata_equal2_constraint(
 
                ctx, node_index, embedded_node_expr_id, "embedded value's",
 
                PolyDataTypeIndex::Associated(embedded_index), 0,
 
                embedded_node_index, 0, &mut poly_progress_section
 
            )?;
 

	
 
            if progress_embedded { self.queue_node(embedded_node_index); }
 
        }
 

	
 
        let (_, progress_literal_1) = self.apply_polydata_equal2_constraint(
 
            ctx, node_index, node.expr_id, "union's",
 
            PolyDataTypeIndex::Returned, 0, node_index, 0, &mut poly_progress_section
 
        )?;
 

	
 
        // Propagate progress in the polymorphic variables to the expressions
 
        // that constitute the union literal.
 
        for (embedded_index, embedded_node_index) in rule.element_indices.iter().copied().enumerate() {
 
            let progress_embedded = self.apply_polydata_polyvar_constraint(
 
                ctx, node_index, PolyDataTypeIndex::Associated(embedded_index),
 
                embedded_node_index, &poly_progress_section
 
            );
 

	
 
            if progress_embedded { self.queue_node(embedded_node_index); }
 
        }
 

	
 
        let progress_literal_2 = self.apply_polydata_polyvar_constraint(
 
            ctx, node_index, PolyDataTypeIndex::Returned, node_index, &poly_progress_section
 
        );
 

	
 
        if progress_literal_1 || progress_literal_2 { self.queue_node_parent(node_index); }
 

	
 
        poly_progress_section.forget();
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_literal_array(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_literal_array();
 

	
 
        // Apply equality rule to all of the elements that form the array
 
        let argument_node_indices = self.index_buffer.start_section_initialized(&rule.element_indices);
 
        let mut argument_progress_section = self.bool_buffer.start_section();
 
        self.apply_equal_n_constraint(ctx, node_index, &argument_node_indices, &mut argument_progress_section)?;
 

	
 
        debug_assert_eq!(argument_node_indices.len(), argument_progress_section.len());
 
        for argument_index in 0..argument_node_indices.len() {
 
            let argument_node_index = argument_node_indices[argument_index];
 
            let progress = argument_progress_section[argument_index];
 

	
 
            if progress { self.queue_node(argument_node_index); }
 
        }
 

	
 
        // If elements are of type `T`, then the array is of type `Array<T>`, so:
 
        let mut progress_literal = self.apply_template_constraint(ctx, node_index, &ARRAY_TEMPLATE)?;
 
        if argument_node_indices.len() != 0 {
 
            let argument_node_index = argument_node_indices[0];
 
            let (progress_literal_inner, progress_argument) = self.apply_equal2_constraint(
 
                ctx, node_index, node_index, 1, argument_node_index, 0
 
            )?;
 

	
 
            progress_literal = progress_literal || progress_literal_inner;
 

	
 
            // It is possible that the `Array<T>` has a more progress `T` then
 
            // the arguments. So in the case we progress our argument type we
 
            // simply queue this rule again
 
            if progress_argument { self.queue_expr(node_index); }
 
        }
 

	
 
        argument_node_indices.forget();
 
        argument_progress_section.forget();
 

	
 
        if progress_literal { self.queue_node_parent(node_index); }
 
        return Ok(());
 
    }
 

	
 
    fn progress_inference_rule_literal_tuple(&mut self, ctx: &Ctx, node_index: InferNodeIndex) -> Result<(), ParseError> {
 
        let node = &self.infer_nodes[node_index];
 
        let rule = node.inference_rule.as_literal_tuple();
 
        
 
    }
 

	
 
    fn progress_template(&mut self, ctx: &Ctx, node_index: InferNodeIndex, application: InferenceRuleTemplateApplication, template: &[InferenceTypePart]) -> Result<bool, ParseError> {
 
        use InferenceRuleTemplateApplication as TA;
 

	
 
        match application {
 
            TA::None => Ok(false),
 
            TA::Template => self.apply_template_constraint(ctx, node_index, template),
 
            TA::Forced => self.apply_forced_constraint(ctx, node_index, template),
 
        }
 
    }
 

	
 
    fn progress_expr(&mut self, ctx: &mut Ctx, idx: i32) -> Result<(), ParseError> {
 
        let id = self.infer_nodes[idx as usize].expr_id;
 
        match &ctx.heap[id] {
 
            Expression::Assignment(expr) => {
 
                let id = expr.this;
 
                self.progress_assignment_expr(ctx, id)
 
            },
 
            Expression::Binding(expr) => {
 
                let id = expr.this;
 
                self.progress_binding_expr(ctx, id)
 
            },
 
            Expression::Conditional(expr) => {
 
                let id = expr.this;
 
                self.progress_conditional_expr(ctx, id)
 
            },
 
            Expression::Binary(expr) => {
 
                let id = expr.this;
 
                self.progress_binary_expr(ctx, id)
 
            },
 
            Expression::Unary(expr) => {
 
                let id = expr.this;
 
                self.progress_unary_expr(ctx, id)
 
            },
 
            Expression::Indexing(expr) => {
 
                let id = expr.this;
 
                self.progress_indexing_expr(ctx, id)
 
            },
 
            Expression::Slicing(expr) => {
 
                let id = expr.this;
 
                self.progress_slicing_expr(ctx, id)
 
            },
 
            Expression::Select(expr) => {
 
                let id = expr.this;
 
                self.progress_select_expr(ctx, id)
 
            },
 
            Expression::Literal(expr) => {
 
                let id = expr.this;
 
                self.progress_literal_expr(ctx, id)
 
            },
 
            Expression::Cast(expr) => {
 
                let id = expr.this;
 
                self.progress_cast_expr(ctx, id)
 
            },
 
            Expression::Call(expr) => {
 
                let id = expr.this;
 
                self.progress_call_expr(ctx, id)
 
            },
 
            Expression::Variable(expr) => {
 
                let id = expr.this;
 
                self.progress_variable_expr(ctx, id)
 
            }
 
        }
 
    }
 

	
 
    fn progress_assignment_expr(&mut self, ctx: &mut Ctx, infer_index: InferNodeIndex) -> Result<(), ParseError> {
 
        use AssignmentOperator as AO;
 

	
 

	
 
        let expr = &ctx.heap[id];
 
        let arg1_expr_id = expr.left;
 
        let arg2_expr_id = expr.right;
 

	
 
        debug_log!("Assignment expr '{:?}': {}", expr.operation, upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Arg1 type: {}", self.debug_get_display_name(ctx, arg1_expr_id));
 
        debug_log!("   - Arg2 type: {}", self.debug_get_display_name(ctx, arg2_expr_id));
 
        debug_log!("   - Expr type: {}", self.debug_get_display_name(ctx, upcast_id));
 

	
 
        // Assignment does not return anything (it operates like a statement)
 
        let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &VOID_TEMPLATE)?;
 

	
 
        // Apply forced constraint to LHS value
 
        let progress_forced = match expr.operation {
 
            AO::Set =>
 
                false,
 
            AO::Concatenated =>
 
                self.apply_template_constraint(ctx, arg1_expr_id, &ARRAYLIKE_TEMPLATE)?,
 
            AO::Multiplied | AO::Divided | AO::Added | AO::Subtracted =>
 
                self.apply_template_constraint(ctx, arg1_expr_id, &NUMBERLIKE_TEMPLATE)?,
 
            AO::Remained | AO::ShiftedLeft | AO::ShiftedRight |
 
            AO::BitwiseAnded | AO::BitwiseXored | AO::BitwiseOred =>
 
                self.apply_template_constraint(ctx, arg1_expr_id, &INTEGERLIKE_TEMPLATE)?,
 
        };
 

	
 
        let (progress_arg1, progress_arg2) = self.apply_equal2_constraint(
 
            ctx, upcast_id, arg1_expr_id, 0, arg2_expr_id, 0
 
        )?;
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Arg1 type [{}]: {}", progress_forced || progress_arg1, self.debug_get_display_name(ctx, arg1_expr_id));
 
        debug_log!("   - Arg2 type [{}]: {}", progress_arg2, self.debug_get_display_name(ctx, arg2_expr_id));
 
        debug_log!("   - Expr type [{}]: {}", progress_expr, self.debug_get_display_name(ctx, upcast_id));
 

	
 

	
 
        if progress_expr { self.queue_node_parent(ctx, upcast_id); }
 
        if progress_forced || progress_arg1 { self.queue_expr(ctx, arg1_expr_id); }
 
        if progress_arg2 { self.queue_expr(ctx, arg2_expr_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_binding_expr(&mut self, ctx: &mut Ctx, id: BindingExpressionId) -> Result<(), ParseError> {
 
        let upcast_id = id.upcast();
 
        let binding_expr = &ctx.heap[id];
 
        let bound_from_id = binding_expr.bound_from;
 
        let bound_to_id = binding_expr.bound_to;
 

	
 
        // Output is always a boolean. The two arguments should be of equal
 
        // type.
 
        let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
        let (progress_from, progress_to) = self.apply_equal2_constraint(ctx, upcast_id, bound_from_id, 0, bound_to_id, 0)?;
 

	
 
        if progress_expr { self.queue_node_parent(ctx, upcast_id); }
 
        if progress_from { self.queue_expr(ctx, bound_from_id); }
 
        if progress_to { self.queue_expr(ctx, bound_to_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_conditional_expr(&mut self, ctx: &mut Ctx, id: ConditionalExpressionId) -> Result<(), ParseError> {
 
        // Note: test expression type is already enforced
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let arg1_expr_id = expr.true_expression;
 
        let arg2_expr_id = expr.false_expression;
 

	
 
        debug_log!("Conditional expr: {}", upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Arg1 type: {}", self.debug_get_display_name(ctx, arg1_expr_id));
 
        debug_log!("   - Arg2 type: {}", self.debug_get_display_name(ctx, arg2_expr_id));
 
        debug_log!("   - Expr type: {}", self.debug_get_display_name(ctx, upcast_id));
 

	
 
        // I keep confusing myself: this applies equality of types between the
 
        // condition branches' types, and the result from the conditional
 
        // expression, because the result from the conditional is one of the
 
        // branches.
 
        let (progress_expr, progress_arg1, progress_arg2) = self.apply_equal3_constraint(
 
            ctx, upcast_id, arg1_expr_id, arg2_expr_id, 0
 
        )?;
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Arg1 type [{}]: {}", progress_arg1, self.debug_get_display_name(ctx, arg1_expr_id));
 
        debug_log!("   - Arg2 type [{}]: {}", progress_arg2, self.debug_get_display_name(ctx, arg2_expr_id));
 
        debug_log!("   - Expr type [{}]: {}", progress_expr, self.debug_get_display_name(ctx, upcast_id));
 

	
 
        if progress_expr { self.queue_node_parent(ctx, upcast_id); }
 
        if progress_arg1 { self.queue_expr(ctx, arg1_expr_id); }
 
        if progress_arg2 { self.queue_expr(ctx, arg2_expr_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_binary_expr(&mut self, ctx: &mut Ctx, id: BinaryExpressionId) -> Result<(), ParseError> {
 
        // Note: our expression type might be fixed by our parent, but we still
 
        // need to make sure it matches the type associated with our operation.
 
        use BinaryOperator as BO;
 

	
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let arg1_id = expr.left;
 
        let arg2_id = expr.right;
 

	
 
        debug_log!("Binary expr '{:?}': {}", expr.operation, upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Arg1 type: {}", self.debug_get_display_name(ctx, arg1_id));
 
        debug_log!("   - Arg2 type: {}", self.debug_get_display_name(ctx, arg2_id));
 
        debug_log!("   - Expr type: {}", self.debug_get_display_name(ctx, upcast_id));
 

	
 
        let (progress_expr, progress_arg1, progress_arg2) = match expr.operation {
 
            BO::Concatenate => {
 
                // Two cases: if one of the arguments or the output type is a
 
                // string, then all must be strings. Otherwise the arguments
 
                // must be arraylike and the output will be an array.
 
                let (expr_is_str, expr_is_not_str) = self.type_is_certainly_or_certainly_not_string(ctx, upcast_id);
 
                let (arg1_is_str, arg1_is_not_str) = self.type_is_certainly_or_certainly_not_string(ctx, arg1_id);
 
                let (arg2_is_str, arg2_is_not_str) = self.type_is_certainly_or_certainly_not_string(ctx, arg2_id);
 

	
 
                let someone_is_str = expr_is_str || arg1_is_str || arg2_is_str;
 
                let someone_is_not_str = expr_is_not_str || arg1_is_not_str || arg2_is_not_str;
 

	
 
                // Note: this statement is an expression returning the progression bools
 
                if someone_is_str {
 
@@ -3961,453 +4157,449 @@ impl PassTyping {
 
        if modified_poly_type {
 
            let associated_type = &mut self.infer_nodes[associated_node_index].expr_type;
 
            match InferenceType::infer_subtree_for_single_type(
 
                associated_type, 0, &poly_data_type.parts, 0, true
 
            ) {
 
                SingleInferenceResult::Modified => return true,
 
                SingleInferenceResult::Unmodified => return false,
 
                SingleInferenceResult::Incompatible => unreachable!(), // same as above
 
            }
 
        } else {
 
            // Did not update associated type
 
            return false;
 
        }
 
    }
 

	
 
    /// Applies an equal2 constraint between a signature type (e.g. a function
 
    /// argument or struct field) and an expression whose type should match that
 
    /// expression. If we make progress on the signature, then we try to see if
 
    /// any of the embedded polymorphic types can be progressed.
 
    ///
 
    /// `outer_expr_id` is the main expression we're progressing (e.g. a 
 
    /// function call), while `expr_id` is the embedded expression we're 
 
    /// matching against the signature. `expression_type` and 
 
    /// `expression_start_idx` belong to `expr_id`.
 
    fn apply_equal2_signature_constraint(
 
        ctx: &Ctx, outer_expr_id: ExpressionId, expr_id: Option<ExpressionId>,
 
        polymorph_data: &mut PolyData, polymorph_progress: &mut HashSet<u32>,
 
        signature_type: *mut InferenceType, signature_start_idx: usize,
 
        expression_type: *mut InferenceType, expression_start_idx: usize
 
    ) -> Result<(bool, bool), ParseError> {
 
        // Safety: all pointers distinct
 

	
 
        // Infer the signature and expression type
 
        let infer_res = unsafe { 
 
            InferenceType::infer_subtrees_for_both_types(
 
                signature_type, signature_start_idx,
 
                expression_type, expression_start_idx
 
            )
 
        };
 

	
 
        if infer_res == DualInferenceResult::Incompatible {
 
            // TODO: Check if I still need to use this
 
            let outer_span = ctx.heap[outer_expr_id].full_span();
 
            let (span_name, span) = match expr_id {
 
                Some(expr_id) => ("argument's", ctx.heap[expr_id].full_span()),
 
                None => ("type's", outer_span)
 
            };
 
            let (signature_display_type, expression_display_type) = unsafe { (
 
                (&*signature_type).display_name(&ctx.heap),
 
                (&*expression_type).display_name(&ctx.heap)
 
            ) };
 

	
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, outer_span,
 
                "failed to fully resolve the types of this expression"
 
            ).with_info_at_span(
 
                &ctx.module().source, span, format!(
 
                    "because the {} signature has been resolved to '{}', but the expression has been resolved to '{}'",
 
                    span_name, signature_display_type, expression_display_type
 
                )
 
            ));
 
        }
 

	
 
        // Try to see if we can progress any of the polymorphic variables
 
        let progress_sig = infer_res.modified_lhs();
 
        let progress_expr = infer_res.modified_rhs();
 

	
 
        if progress_sig {
 
            let signature_type = unsafe{&mut *signature_type};
 
            debug_assert!(
 
                signature_type.has_marker,
 
                "made progress on signature type, but it doesn't have a marker"
 
            );
 
            for (poly_idx, poly_section) in signature_type.marker_iter() {
 
                let polymorph_type = &mut polymorph_data.poly_vars[poly_idx as usize];
 
                match Self::apply_template_constraint_to_types(
 
                    polymorph_type, 0, poly_section, 0
 
                ) {
 
                    Ok(true) => { polymorph_progress.insert(poly_idx); },
 
                    Ok(false) => {},
 
                    Err(()) => { return Err(Self::construct_poly_arg_error(ctx, polymorph_data, outer_expr_id))}
 
                }
 
            }
 
        }
 
        Ok((progress_sig, progress_expr))
 
    }
 

	
 
    /// Applies equal2 constraints on the signature type for each of the 
 
    /// polymorphic variables. If the signature type is progressed then we 
 
    /// progress the expression type as well.
 
    ///
 
    /// This function assumes that the polymorphic variables have already been
 
    /// progressed as far as possible by calling 
 
    /// `apply_equal2_signature_constraint`. As such, we expect to not encounter
 
    /// any errors.
 
    ///
 
    /// This function returns true if the expression's type has been progressed
 
    fn apply_equal2_polyvar_constraint(
 
        polymorph_data: &PolyData, _polymorph_progress: &HashSet<u32>,
 
        signature_type: *mut InferenceType, expr_type: *mut InferenceType
 
    ) -> bool {
 
        // Safety: all pointers should be distinct
 
        //         polymorph_data containers may not be modified
 
        let signature_type = unsafe{&mut *signature_type};
 
        let expr_type = unsafe{&mut *expr_type};
 

	
 
        // Iterate through markers in signature type to try and make progress
 
        // on the polymorphic variable        
 
        let mut seek_idx = 0;
 
        let mut modified_sig = false;
 
        
 
        while let Some((poly_idx, start_idx)) = signature_type.find_marker(seek_idx) {
 
            let end_idx = InferenceType::find_subtree_end_idx(&signature_type.parts, start_idx);
 
            // if polymorph_progress.contains(&poly_idx) {
 
                // Need to match subtrees
 
                let polymorph_type = &polymorph_data.poly_vars[poly_idx as usize];
 
                let modified_at_marker = Self::apply_template_constraint_to_types(
 
                    signature_type, start_idx, 
 
                    &polymorph_type.parts, 0
 
                ).expect("no failure when applying polyvar constraints");
 

	
 
                modified_sig = modified_sig || modified_at_marker;
 
            // }
 

	
 
            seek_idx = end_idx;
 
        }
 

	
 
        // If we made any progress on the signature's type, then we also need to
 
        // apply it to the expression that is supposed to match the signature.
 
        if modified_sig {
 
            match InferenceType::infer_subtree_for_single_type(
 
                expr_type, 0, &signature_type.parts, 0, true
 
            ) {
 
                SingleInferenceResult::Modified => true,
 
                SingleInferenceResult::Unmodified => false,
 
                SingleInferenceResult::Incompatible =>
 
                    unreachable!("encountered failure while reapplying modified signature to expression after polyvar inference")
 
            }
 
        } else {
 
            false
 
        }
 
    }
 

	
 
    /// Applies a type constraint that expects all three provided types to be
 
    /// equal. In case we can make progress in inferring the types then we
 
    /// attempt to do so. If the call is successful then the composition of all
 
    /// types is made equal.
 
    fn apply_equal3_constraint(
 
        &mut self, ctx: &Ctx, node_index: InferNodeIndex,
 
        arg1_index: InferNodeIndex, arg2_index: InferNodeIndex,
 
        start_idx: usize
 
    ) -> Result<(bool, bool, bool), ParseError> {
 
        // Safety: all indices are unique
 
        //         containers may not be modified
 
        let expr_type: *mut _ = &mut self.infer_nodes[node_index].expr_type;
 
        let arg1_type: *mut _ = &mut self.infer_nodes[arg1_index].expr_type;
 
        let arg2_type: *mut _ = &mut self.infer_nodes[arg2_index].expr_type;
 

	
 
        let expr_res = unsafe{
 
            InferenceType::infer_subtrees_for_both_types(expr_type, start_idx, arg1_type, start_idx)
 
        };
 
        if expr_res == DualInferenceResult::Incompatible {
 
            return Err(self.construct_expr_type_error(ctx, node_index, arg1_index));
 
        }
 

	
 
        let args_res = unsafe{
 
            InferenceType::infer_subtrees_for_both_types(arg1_type, start_idx, arg2_type, start_idx) };
 
        if args_res == DualInferenceResult::Incompatible {
 
            return Err(self.construct_arg_type_error(ctx, node_index, arg1_index, arg2_index));
 
        }
 

	
 
        // If all types are compatible, but the second call caused the arg1_type
 
        // to be expanded, then we must also assign this to expr_type.
 
        let mut progress_expr = expr_res.modified_lhs();
 
        let mut progress_arg1 = expr_res.modified_rhs();
 
        let progress_arg2 = args_res.modified_rhs();
 

	
 
        if args_res.modified_lhs() { 
 
            unsafe {
 
                let end_idx = InferenceType::find_subtree_end_idx(&(*arg2_type).parts, start_idx);
 
                let subtree = &((*arg2_type).parts[start_idx..end_idx]);
 
                (*expr_type).replace_subtree(start_idx, subtree);
 
            }
 
            progress_expr = true;
 
            progress_arg1 = true;
 
        }
 

	
 
        Ok((progress_expr, progress_arg1, progress_arg2))
 
    }
 

	
 
    /// Applies equal constraint to N consecutive expressions. The returned
 
    /// `progress` vec will contain which expressions were progressed and will
 
    /// have length N
 
    // If you ever
 
    /// have length N.
 
    fn apply_equal_n_constraint(
 
        &mut self, ctx: &Ctx, expr_id: ExpressionId,
 
        args: &ScopedSection<ExpressionId>, progress: &mut ScopedSection<bool>
 
        &mut self, ctx: &Ctx, outer_node_index: InferNodeIndex,
 
        arguments: &ScopedSection<InferNodeIndex>, progress: &mut ScopedSection<bool>
 
    ) -> Result<(), ParseError> {
 
        // Early exit
 
        // Depending on the argument perform an early exit. This simplifies
 
        // later logic
 
        debug_assert_eq!(progress.len(), 0);
 
        match args.len() {
 
        match arguments.len() {
 
            0 => {
 
                // nothing to progress
 
                return Ok(())
 
            },
 
            1 => {
 
                // only one type, so nothing to infer
 
                progress.push(false);
 
                return Ok(())
 
            },
 
            n => {
 
                for _ in 0..n {
 
                    progress.push(false);
 
                }
 
            }
 
        }
 

	
 
        // Do pairwise inference, keep track of the last entry we made progress
 
        // on. Once done we need to update everything to the most-inferred type.
 
        let mut arg_iter = args.iter_copied();
 
        let mut last_arg_id = arg_iter.next().unwrap();
 
        let mut last_lhs_progressed = 0;
 
        let mut lhs_arg_idx = 0;
 

	
 
        while let Some(next_arg_id) = arg_iter.next() {
 
            let last_expr_idx = ctx.heap[last_arg_id].get_unique_id_in_definition(); // TODO: @Temp
 
            let next_expr_idx = ctx.heap[next_arg_id].get_unique_id_in_definition();
 
            let last_type: *mut _ = &mut self.infer_nodes[last_expr_idx as usize].expr_type;
 
            let next_type: *mut _ = &mut self.infer_nodes[next_expr_idx as usize].expr_type;
 

	
 
            let res = unsafe {
 
                InferenceType::infer_subtrees_for_both_types(last_type, 0, next_type, 0)
 
            };
 
        // We'll start doing pairwise inference for all of the inference nodes
 
        // (node[0] with node[1], then node[1] with node[2], then node[2] ...,
 
        // etc.), so when we're at the end we have `node[N-1]` as the most
 
        // progressed type.
 
        let mut last_index_requiring_inference = 0;
 

	
 
            if res == DualInferenceResult::Incompatible {
 
                return Err(self.construct_arg_type_error(ctx, expr_id, last_arg_id, next_arg_id));
 
            }
 
        for prev_argument_index in 0..arguments.len() - 1 {
 
            let next_argument_index = prev_argument_index + 1;
 

	
 
            if res.modified_lhs() {
 
                // We re-inferred something on the left hand side, so everything
 
                // up until now should be re-inferred.
 
                progress[lhs_arg_idx] = true;
 
                last_lhs_progressed = lhs_arg_idx;
 
            }
 
            progress[lhs_arg_idx + 1] = res.modified_rhs();
 
            let prev_node_index = arguments[prev_argument_index];
 
            let next_node_index = arguments[next_argument_index];
 
            let (prev_progress, next_progress) = self.apply_equal2_constraint(
 
                ctx, outer_node_index, prev_node_index, 0, next_node_index, 0
 
            )?;
 

	
 
            last_arg_id = next_arg_id;
 
            lhs_arg_idx += 1;
 
            if prev_progress {
 
                // Previous node is progress, so every type in front of it needs
 
                // to be reinferred.
 
                progress[prev_argument_index] = true;
 
                last_index_requiring_inference = prev_argument_index;
 
            }
 
            progress[next_argument_index] = next_progress;
 
        }
 

	
 
        // Re-infer everything. Note that we do not need to re-infer the type
 
        // exactly at `last_lhs_progressed`, but only everything up to it.
 
        let last_arg_expr_idx = ctx.heap[last_arg_id].get_unique_id_in_definition();
 
        let last_type: *mut _ = &mut self.infer_nodes[last_arg_expr_idx as usize].expr_type;
 
        for arg_idx in 0..last_lhs_progressed {
 
            let other_arg_expr_idx = ctx.heap[args[arg_idx]].get_unique_id_in_definition();
 
            let arg_type: *mut _ = &mut self.infer_nodes[other_arg_expr_idx as usize].expr_type;
 
            unsafe{
 
                (*arg_type).replace_subtree(0, &(*last_type).parts);
 
        // Apply inference using the most progressed type (the last one) to the
 
        // ones that did not obtain this information during the inference
 
        // process.
 
        let last_argument_node_index = arguments[arguments.len() - 1];
 
        let last_argument_type: *mut _ = &mut self.infer_nodes[last_argument_node_index].expr_type;
 

	
 
        for argument_index in 0..last_index_requiring_inference {
 
            // We can cheat, we know the LHS is less specific than the right
 
            // hand side, so:
 
            let argument_node_index = arguments[argument_index];
 
            let argument_type = &mut self.infer_nodes[argument_node_index].expr_type;
 
            unsafe {
 
                // safety: we're dealing with different vectors, so cannot alias
 
                argument_type.replace_subtree(0, &(*last_argument_type).parts);
 
            }
 
            progress[arg_idx] = true;
 
            progress[argument_index] = true;
 
        }
 

	
 
        return Ok(());
 
    }
 

	
 
    /// Determines the `InferenceType` for the expression based on the
 
    /// expression parent (this is not done if the parent is a regular 'ol
 
    /// expression). Expects `parent_index` to be set to the parent of the
 
    /// inference node that is created here.
 
    fn insert_initial_inference_node(
 
        &mut self, ctx: &mut Ctx, expr_id: ExpressionId
 
    ) -> Result<InferNodeIndex, ParseError> {
 
        use ExpressionParent as EP;
 
        use InferenceTypePart as ITP;
 

	
 
        // Set the initial inference type based on the expression parent.
 
        let expr = &ctx.heap[expr_id];
 
        let inference_type = match expr.parent() {
 
            EP::None =>
 
                // Should have been set by linker
 
                unreachable!(),
 
            EP::Memory(_) | EP::ExpressionStmt(_) =>
 
                // Determined during type inference
 
                InferenceType::new(false, false, vec![ITP::Unknown]),
 
            EP::Expression(parent_id, idx_in_parent) => {
 
                // If we are the test expression of a conditional expression,
 
                // then we must resolve to a boolean
 
                let is_conditional = if let Expression::Conditional(_) = &ctx.heap[*parent_id] {
 
                    true
 
                } else {
 
                    false
 
                };
 

	
 
                if is_conditional && *idx_in_parent == 0 {
 
                    InferenceType::new(false, true, vec![ITP::Bool])
 
                } else {
 
                    InferenceType::new(false, false, vec![ITP::Unknown])
 
                }
 
            },
 
            EP::If(_) | EP::While(_) =>
 
                // Must be a boolean
 
                InferenceType::new(false, true, vec![ITP::Bool]),
 
            EP::Return(_) =>
 
                // Must match the return type of the function
 
                if let DefinitionType::Function(func_id) = self.definition_type {
 
                    let returned = &ctx.heap[func_id].return_type;
 
                    self.determine_inference_type_from_parser_type_elements(&returned.elements, true)
 
                } else {
 
                    // Cannot happen: definition always set upon body traversal
 
                    // and "return" calls in components are illegal.
 
                    unreachable!();
 
                },
 
            EP::New(_) =>
 
                // Must be a component call, which we assign a "Void" return
 
                // type
 
                InferenceType::new(false, true, vec![ITP::Void]),
 
        };
 

	
 
        let infer_index = self.infer_nodes.len() as InferNodeIndex;
 
        self.infer_nodes.push(InferenceNode {
 
            expr_type: inference_type,
 
            expr_id,
 
            parent_index: self.parent_index,
 
            field_or_monomorph_index: -1,
 
            extra_data_idx: -1,
 
            type_id: TypeId::new_invalid(),
 
        });
 

	
 
        return Ok(infer_index);
 
    }
 

	
 
    fn insert_initial_call_polymorph_data(
 
        &mut self, ctx: &mut Ctx, call_id: CallExpressionId
 
    ) -> PolyDataIndex {
 
        // Note: the polymorph variables may be partially specified and may
 
        // contain references to the wrapping definition's (i.e. the proctype
 
        // we are currently visiting) polymorphic arguments.
 
        //
 
        // The arguments of the call may refer to polymorphic variables in the
 
        // definition of the function we're calling, not of the wrapping
 
        // definition. We insert markers in these inferred types to be able to
 
        // map them back and forth to the polymorphic arguments of the function
 
        // we are calling.
 
        let call = &ctx.heap[call_id];
 

	
 
        // Handle the polymorphic arguments (if there are any)
 
        let num_poly_args = call.parser_type.elements[0].variant.num_embedded();
 
        let mut poly_args = Vec::with_capacity(num_poly_args);
 
        for embedded_elements in call.parser_type.iter_embedded(0) {
 
            poly_args.push(self.determine_inference_type_from_parser_type_elements(embedded_elements, true));
 
        }
 

	
 
        // Handle the arguments and return types
 
        let definition = &ctx.heap[call.definition];
 
        let (parameters, returned) = match definition {
 
            Definition::Component(definition) => {
 
                debug_assert_eq!(poly_args.len(), definition.poly_vars.len());
 
                (&definition.parameters, None)
 
            },
 
            Definition::Function(definition) => {
 
                debug_assert_eq!(poly_args.len(), definition.poly_vars.len());
 
                (&definition.parameters, Some(&definition.return_type))
 
            },
 
            Definition::Struct(_) | Definition::Enum(_) | Definition::Union(_) => {
 
                unreachable!("insert_initial_call_polymorph data for non-procedure type");
 
            },
 
        };
 

	
 
        let mut parameter_types = Vec::with_capacity(parameters.len());
 
        for parameter_id in parameters.clone().into_iter() { // TODO: @Performance @Now
 
            let param = &ctx.heap[parameter_id];
 
            parameter_types.push(self.determine_inference_type_from_parser_type_elements(&param.parser_type.elements, false));
 
        }
 

	
 
        let return_type = match returned {
 
            None => {
 
                // Component, so returns a "Void"
 
                InferenceType::new(false, true, vec![InferenceTypePart::Void])
 
            },
 
            Some(returned) => {
 
                self.determine_inference_type_from_parser_type_elements(&returned.elements, false)
 
            }
 
        };
 

	
 
        let extra_data_idx = self.poly_data.len() as PolyDataIndex;
 
        self.poly_data.push(PolyData {
 
            expr_id: call_id.upcast(),
 
            definition_id: call.definition,
 
            poly_vars: poly_args,
 
            associated: parameter_types,
 
            returned: return_type
 
        });
 
        return extra_data_idx
 
    }
 

	
 
    fn insert_initial_struct_polymorph_data(
 
        &mut self, ctx: &mut Ctx, lit_id: LiteralExpressionId,
 
    ) -> PolyDataIndex {
 
        use InferenceTypePart as ITP;
 
        let literal = ctx.heap[lit_id].value.as_struct();
 

	
 
        // Handle polymorphic arguments
 
        let num_embedded = literal.parser_type.elements[0].variant.num_embedded();
 
        let mut total_num_poly_parts = 0;
 
        let mut poly_args = Vec::with_capacity(num_embedded);
 

	
 
        for embedded_elements in literal.parser_type.iter_embedded(0) {
 
            let poly_type = self.determine_inference_type_from_parser_type_elements(embedded_elements, true);
 
            total_num_poly_parts += poly_type.parts.len();
 
            poly_args.push(poly_type);
 
        }
 

	
 
        // Handle parser types on struct definition
 
        let defined_type = ctx.types.get_base_definition(&literal.definition).unwrap();
 
        let struct_type = defined_type.definition.as_struct();
 
        debug_assert_eq!(poly_args.len(), defined_type.poly_vars.len());
 

	
 
        // Note: programmer is capable of specifying fields in a struct literal
 
        // in a different order than on the definition. We take the literal-
 
        // specified order to be leading.
 
        let mut embedded_types = Vec::with_capacity(struct_type.fields.len());
 
        for lit_field in literal.fields.iter() {
 
            let def_field = &struct_type.fields[lit_field.field_idx];
 
            let inference_type = self.determine_inference_type_from_parser_type_elements(&def_field.parser_type.elements, false);
 
            embedded_types.push(inference_type);
 
        }
 

	
 
        // Return type is the struct type itself, with the appropriate 
 
        // polymorphic variables. So:
 
        // - 1 part for definition
 
        // - N_poly_arg marker parts for each polymorphic argument
 
        // - all the parts for the currently known polymorphic arguments 
 
        let parts_reserved = 1 + poly_args.len() + total_num_poly_parts;
 
        let mut parts = Vec::with_capacity(parts_reserved);
 
        parts.push(ITP::Instance(literal.definition, poly_args.len() as u32));
 
        let mut return_type_done = true;
 
        for (poly_var_idx, poly_var) in poly_args.iter().enumerate() {
 
            if !poly_var.is_done { return_type_done = false; }
 

	
 
            parts.push(ITP::Marker(poly_var_idx as u32));
 
            parts.extend(poly_var.parts.iter().cloned());
 
        }
 

	
 
        debug_assert_eq!(parts.len(), parts_reserved);
 
        let return_type = InferenceType::new(!poly_args.is_empty(), return_type_done, parts);
 

	
 
        let extra_data_index = self.poly_data.len() as PolyDataIndex;
 
        self.poly_data.push(PolyData {
 
            expr_id: lit_id.upcast(),
 
            definition_id: literal.definition,
 
            poly_vars: poly_args,
 
            associated: embedded_types,
0 comments (0 inline, 0 general)