Changeset - c502fc0c252a
[Not reviewed]
0 3 0
MH - 4 years ago 2021-10-26 20:16:25
contact@maxhenger.nl
Preparing to fix 'delayed port transfer' bug
3 files changed with 75 insertions and 57 deletions:
0 comments (0 inline, 0 general)
src/runtime2/mod.rs
Show inline comments
 
@@ -244,96 +244,98 @@ impl RuntimeInner {
 

	
 
        return (getter_port, putter_port);
 
    }
 

	
 
    /// Sends a message to a particular connector. If the connector happened to
 
    /// be sleeping then it will be scheduled for execution.
 
    pub(crate) fn send_message(&self, target_id: ConnectorId, message: Message) {
 
        let target = self.get_component_public(target_id);
 
        target.inbox.insert_message(message);
 

	
 
        let should_wake_up = target.sleeping
 
            .compare_exchange(true, false, Ordering::SeqCst, Ordering::Acquire)
 
            .is_ok();
 

	
 
        if should_wake_up {
 
            let key = unsafe{ ConnectorKey::from_id(target_id) };
 
            self.push_work(key);
 
        }
 
    }
 

	
 
    // --- Creating/retrieving/destroying components
 

	
 
    pub(crate) fn create_interface_component(&self, component: ConnectorApplication) -> ConnectorKey {
 
        // Initialize as sleeping, as it will be scheduled by the programmer.
 
        let mut lock = self.connectors.write().unwrap();
 
        let key = lock.create(ConnectorVariant::Native(Box::new(component)), true);
 

	
 
        self.increment_active_components();
 
        return key;
 
    }
 

	
 
    /// Creates a new PDL component. The caller MUST make sure to schedule the
 
    /// connector.
 
    // TODO: Nicer code, not forcing the caller to schedule, perhaps?
 
    pub(crate) fn create_pdl_component(&self, created_by: &mut ScheduledConnector, connector: ConnectorPDL) -> ConnectorKey {
 
        // Create as not sleeping, as we'll schedule it immediately
 
        let key = {
 
            let mut lock = self.connectors.write().unwrap();
 
            lock.create(ConnectorVariant::UserDefined(connector), false)
 
        };
 

	
 
        // Transfer the ports
 
        {
 
            let lock = self.connectors.read().unwrap();
 
            let created = lock.get_private(&key);
 

	
 
            match &created.connector {
 
                ConnectorVariant::UserDefined(connector) => {
 

	
 
                    println!("DEBUG: The connector {} owns the ports: {:?}", key.index, connector.ports.owned_ports.iter().map(|v| v.index).collect::<Vec<_>>());
 
                    for port_id in connector.ports.owned_ports.iter().copied() {
 
                        println!("DEBUG: Transferring port {:?} from {} to {}", port_id, created_by.context.id.0, key.index);
 
                        let port = created_by.context.remove_port(port_id);
 
                        created.context.add_port(port);
 
                    }
 
                },
 
                ConnectorVariant::Native(_) => unreachable!(),
 
            }
 
        }
 

	
 
        self.increment_active_components();
 
        return key;
 
    }
 

	
 
    #[inline]
 
    pub(crate) fn get_component_private(&self, connector_key: &ConnectorKey) -> &'static mut ScheduledConnector {
 
        let lock = self.connectors.read().unwrap();
 
        return lock.get_private(connector_key);
 
    }
 

	
 
    #[inline]
 
    pub(crate) fn get_component_public(&self, connector_id: ConnectorId) -> &'static ConnectorPublic {
 
        let lock = self.connectors.read().unwrap();
 
        return lock.get_public(connector_id);
 
    }
 

	
 
    pub(crate) fn destroy_component(&self, connector_key: ConnectorKey) {
 
        let mut lock = self.connectors.write().unwrap();
 
        lock.destroy(connector_key);
 
        self.decrement_active_components();
 
    }
 

	
 
    // --- Managing exit condition
 

	
 
    #[inline]
 
    pub(crate) fn increment_active_interfaces(&self) {
 
        let _old_num = self.active_interfaces.fetch_add(1, Ordering::SeqCst);
 
        println!("DEBUG: Incremented active interfaces to {}", _old_num + 1);
 
        debug_assert_ne!(_old_num, 0); // once it hits 0, it stays zero
 
    }
 

	
 
    pub(crate) fn decrement_active_interfaces(&self) {
 
        let old_num = self.active_interfaces.fetch_sub(1, Ordering::SeqCst);
 
        println!("DEBUG: Decremented active interfaces to {}", old_num - 1);
 
        debug_assert!(old_num > 0);
 
        if old_num == 1 { // such that active interfaces is now 0
 
            let num_connectors = self.active_connectors.load(Ordering::Acquire);
 
            if num_connectors == 0 {
src/runtime2/scheduler.rs
Show inline comments
 
@@ -78,294 +78,294 @@ impl Scheduler {
 
        'thread_loop: loop {
 
            // Retrieve a unit of work
 
            self.debug("Waiting for work");
 
            let connector_key = self.runtime.wait_for_work();
 
            if connector_key.is_none() {
 
                // We should exit
 
                self.debug(" ... No more work, quitting");
 
                break 'thread_loop;
 
            }
 

	
 
            // We have something to do
 
            let connector_key = connector_key.unwrap();
 
            let connector_id = connector_key.downcast();
 
            self.debug_conn(connector_id, &format!(" ... Got work, running {}", connector_key.index));
 

	
 
            let scheduled = self.runtime.get_component_private(&connector_key);
 

	
 
            // Keep running until we should no longer immediately schedule the
 
            // connector.
 
            let mut cur_schedule = ConnectorScheduling::Immediate;
 
            while cur_schedule == ConnectorScheduling::Immediate {
 
                // Check all the message that are in the shared inbox
 
                while let Some(message) = scheduled.public.inbox.take_message() {
 
                    // Check for rerouting
 
                    self.debug_conn(connector_id, &format!("Handling message from conn({}) at port({})\n --- {:?}", message.sending_connector.0, message.receiving_port.index, message));
 
                    if let Some(other_connector_id) = scheduled.router.should_reroute(message.sending_connector, message.receiving_port) {
 
                        self.debug_conn(connector_id, &format!(" ... Rerouting to connector {}", other_connector_id.0));
 
                        self.runtime.send_message(other_connector_id, message);
 
                        continue;
 
                    }
 

	
 
                    self.debug_conn(connector_id, " ... Handling message myself");
 
                    // Check for messages that requires special action from the
 
                    // scheduler.
 
                    if let MessageContents::Control(content) = message.contents {
 
                        match content.content {
 
                            ControlMessageVariant::ChangePortPeer(port_id, new_target_connector_id) => {
 
                                // Need to change port target
 
                                let port = scheduled.context.get_port_mut(port_id);
 
                                port.peer_connector = new_target_connector_id;
 

	
 
                                // Note: for simplicity we program the scheduler to always finish
 
                                // running a connector with an empty outbox. If this ever changes
 
                                // then accepting the "port peer changed" message implies we need
 
                                // to change the recipient of the message in the outbox.
 
                                debug_assert!(delta_state.outbox.is_empty());
 

	
 
                                // And respond with an Ack
 
                                self.runtime.send_message(
 
                                    message.sending_connector,
 
                                    Message{
 
                                        sending_connector: connector_id,
 
                                        receiving_port: PortIdLocal::new_invalid(),
 
                                        contents: MessageContents::Control(ControlMessage{
 
                                            id: content.id,
 
                                            content: ControlMessageVariant::Ack,
 
                                        }),
 
                                    }
 
                                );
 
                                let ack_message = Message{
 
                                    sending_connector: connector_id,
 
                                    receiving_port: PortIdLocal::new_invalid(),
 
                                    contents: MessageContents::Control(ControlMessage{
 
                                        id: content.id,
 
                                        content: ControlMessageVariant::Ack,
 
                                    }),
 
                                };
 
                                self.debug_conn(connector_id, &format!("Sending message [pp ack]\n --- {:?}", ack_message));
 
                                self.runtime.send_message(message.sending_connector, ack_message);
 
                            },
 
                            ControlMessageVariant::CloseChannel(port_id) => {
 
                                // Mark the port as being closed
 
                                let port = scheduled.context.get_port_mut(port_id);
 
                                port.state = PortState::Closed;
 

	
 
                                // Send an Ack
 
                                self.runtime.send_message(
 
                                    message.sending_connector,
 
                                    Message{
 
                                        sending_connector: connector_id,
 
                                        receiving_port: PortIdLocal::new_invalid(),
 
                                        contents: MessageContents::Control(ControlMessage{
 
                                            id: content.id,
 
                                            content: ControlMessageVariant::Ack,
 
                                        }),
 
                                    }
 
                                );
 
                                let ack_message = Message{
 
                                    sending_connector: connector_id,
 
                                    receiving_port: PortIdLocal::new_invalid(),
 
                                    contents: MessageContents::Control(ControlMessage{
 
                                        id: content.id,
 
                                        content: ControlMessageVariant::Ack,
 
                                    }),
 
                                };
 
                                self.debug_conn(connector_id, &format!("Sending message [cc ack] \n --- {:?}", ack_message));
 
                                self.runtime.send_message(message.sending_connector, ack_message);
 

	
 
                            },
 
                            ControlMessageVariant::Ack => {
 
                                scheduled.router.handle_ack(content.id);
 
                            }
 
                        }
 
                    } else {
 
                        // Let connector handle message
 
                        scheduled.connector.handle_message(message, &scheduled.context, &mut delta_state);
 
                    }
 
                }
 

	
 
                // Run the main behaviour of the connector, depending on its
 
                // current state.
 
                if scheduled.shutting_down {
 
                    // Nothing to do. But we're stil waiting for all our pending
 
                    // control messages to be answered.
 
                    self.debug_conn(connector_id, &format!("Shutting down, {} Acks remaining", scheduled.router.num_pending_acks()));
 
                    if scheduled.router.num_pending_acks() == 0 {
 
                        // We're actually done, we can safely destroy the
 
                        // currently running connector
 
                        self.runtime.destroy_component(connector_key);
 
                        continue 'thread_loop;
 
                    } else {
 
                        cur_schedule = ConnectorScheduling::NotNow;
 
                    }
 
                } else {
 
                    self.debug_conn(connector_id, "Running ...");
 
                    let scheduler_ctx = SchedulerCtx{ runtime: &*self.runtime };
 
                    let new_schedule = scheduled.connector.run(
 
                        scheduler_ctx, &scheduled.context, &mut delta_state
 
                    );
 
                    self.debug_conn(connector_id, "Finished running");
 

	
 
                    // Handle all of the output from the current run: messages to
 
                    // send and connectors to instantiate.
 
                    self.handle_delta_state(scheduled, connector_key.downcast(), &mut delta_state);
 

	
 
                    cur_schedule = new_schedule;
 
                }
 
            }
 

	
 
            // If here then the connector does not require immediate execution.
 
            // So enqueue it if requested, and otherwise put it in a sleeping
 
            // state.
 
            match cur_schedule {
 
                ConnectorScheduling::Immediate => unreachable!(),
 
                ConnectorScheduling::Later => {
 
                    // Simply queue it again later
 
                    self.runtime.push_work(connector_key);
 
                },
 
                ConnectorScheduling::NotNow => {
 
                    // Need to sleep, note that we are the only ones which are
 
                    // allows to set the sleeping state to `true`, and since
 
                    // we're running it must currently be `false`.
 
                    self.try_go_to_sleep(connector_key, scheduled);
 
                },
 
                ConnectorScheduling::Exit => {
 
                    // Prepare for exit. Set the shutdown flag and broadcast
 
                    // messages to notify peers of closing channels
 
                    scheduled.shutting_down = true;
 
                    for port in &scheduled.context.ports {
 
                        if port.state != PortState::Closed {
 
                            let message = scheduled.router.prepare_closing_channel(
 
                                port.self_id, port.peer_id,
 
                                connector_id
 
                            );
 
                            self.debug_conn(connector_id, &format!("Sending message [ exit ] \n --- {:?}", message));
 
                            self.runtime.send_message(port.peer_connector, message);
 
                        }
 
                    }
 

	
 
                    if scheduled.router.num_pending_acks() == 0 {
 
                        self.runtime.destroy_component(connector_key);
 
                        continue 'thread_loop;
 
                    }
 

	
 
                    self.try_go_to_sleep(connector_key, scheduled);
 
                }
 
            }
 
        }
 
    }
 

	
 
    fn handle_delta_state(&mut self,
 
        cur_connector: &mut ScheduledConnector, connector_id: ConnectorId,
 
        delta_state: &mut RunDeltaState
 
    ) {
 
        // Handling any messages that were sent
 
        if !delta_state.outbox.is_empty() {
 
            for mut message in delta_state.outbox.drain(..) {
 
                // Based on the message contents, decide where the message
 
                // should be sent to. This might end up modifying the message.
 
                self.debug_conn(connector_id, &format!("Sending message\n --- {:?}", message));
 
                self.debug_conn(connector_id, &format!("Sending message [outbox] \n --- {:?}", message));
 
                let (peer_connector, self_port, peer_port) = match &mut message {
 
                    MessageContents::Data(contents) => {
 
                        let port = cur_connector.context.get_port(contents.sending_port);
 
                        (port.peer_connector, contents.sending_port, port.peer_id)
 
                    },
 
                    MessageContents::Sync(contents) => {
 
                        let connector = contents.to_visit.pop().unwrap();
 
                        (connector, PortIdLocal::new_invalid(), PortIdLocal::new_invalid())
 
                    },
 
                    MessageContents::RequestCommit(contents)=> {
 
                        let connector = contents.to_visit.pop().unwrap();
 
                        (connector, PortIdLocal::new_invalid(), PortIdLocal::new_invalid())
 
                    },
 
                    MessageContents::ConfirmCommit(contents) => {
 
                        for to_visit in &contents.to_visit {
 
                            let message = Message{
 
                                sending_connector: connector_id,
 
                                receiving_port: PortIdLocal::new_invalid(),
 
                                contents: MessageContents::ConfirmCommit(contents.clone()),
 
                            };
 
                            self.runtime.send_message(*to_visit, message);
 
                        }
 
                        (ConnectorId::new_invalid(), PortIdLocal::new_invalid(), PortIdLocal::new_invalid())
 
                    },
 
                    MessageContents::Control(_) | MessageContents::Ping => {
 
                        // Never generated by the user's code
 
                        unreachable!();
 
                    }
 
                };
 

	
 
                // TODO: Maybe clean this up, perhaps special case for
 
                //  ConfirmCommit can be handled differently.
 
                if peer_connector.is_valid() {
 
                    if peer_port.is_valid() {
 
                        // Sending a message to a port, so the port may not be
 
                        // closed.
 
                        let port = cur_connector.context.get_port(self_port);
 
                        match port.state {
 
                            PortState::Open => {},
 
                            PortState::Closed => {
 
                                todo!("Handling sending over a closed port");
 
                            }
 
                        }
 
                    }
 
                    let message = Message {
 
                        sending_connector: connector_id,
 
                        receiving_port: peer_port,
 
                        contents: message,
 
                    };
 
                    self.runtime.send_message(peer_connector, message);
 
                }
 
            }
 
        }
 

	
 
        if !delta_state.new_ports.is_empty() {
 
            for port in delta_state.new_ports.drain(..) {
 
                cur_connector.context.ports.push(port);
 
            }
 
        }
 

	
 
        // Handling any new connectors that were scheduled
 
        // TODO: Pool outgoing messages to reduce atomic access
 
        if !delta_state.new_connectors.is_empty() {
 
            for new_connector in delta_state.new_connectors.drain(..) {
 
                // Add to global registry to obtain key
 
                let new_key = self.runtime.create_pdl_component(cur_connector, new_connector);
 
                let new_connector = self.runtime.get_component_private(&new_key);
 

	
 
                // Call above changed ownership of ports, but we still have to
 
                // let the other end of the channel know that the port has
 
                // changed location.
 
                for port in &new_connector.context.ports {
 
                    let reroute_message = cur_connector.router.prepare_reroute(
 
                        port.self_id, port.peer_id, cur_connector.context.id,
 
                        port.peer_connector, new_connector.context.id
 
                    );
 

	
 
                    self.debug_conn(connector_id, &format!("Sending message [newcon]\n --- {:?}", reroute_message));
 
                    self.runtime.send_message(port.peer_connector, reroute_message);
 
                }
 

	
 
                // Schedule new connector to run
 
                self.runtime.push_work(new_key);
 
            }
 
        }
 

	
 
        debug_assert!(delta_state.outbox.is_empty());
 
        debug_assert!(delta_state.new_ports.is_empty());
 
        debug_assert!(delta_state.new_connectors.is_empty());
 
    }
 

	
 
    fn try_go_to_sleep(&self, connector_key: ConnectorKey, connector: &mut ScheduledConnector) {
 
        debug_assert_eq!(connector_key.index, connector.context.id.0);
 
        debug_assert_eq!(connector.public.sleeping.load(Ordering::Acquire), false);
 

	
 
        // This is the running connector, and only the running connector may
 
        // decide it wants to sleep again.
 
        connector.public.sleeping.store(true, Ordering::Release);
 

	
 
        // But do to reordering we might have received messages from peers who
 
        // did not consider us sleeping. If so, then we wake ourselves again.
 
        if !connector.public.inbox.is_empty() {
 
            // Try to wake ourselves up
 
            let should_wake_up_again = connector.public.sleeping
 
                .compare_exchange(true, false, Ordering::SeqCst, Ordering::Acquire)
 
                .is_ok();
 

	
 
            if should_wake_up_again {
 
                self.runtime.push_work(connector_key)
 
            }
 
        }
 
    }
 

	
 
    // TODO: Remove, this is debugging stuff
 
    fn debug(&self, message: &str) {
 
        println!("DEBUG [thrd:{:02} conn:  ]: {}", self.scheduler_id, message);
 
    }
 

	
 
    fn debug_conn(&self, conn: ConnectorId, message: &str) {
 
        println!("DEBUG [thrd:{:02} conn:{:02}]: {}", self.scheduler_id, conn.0, message);
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// Control messages
 
// -----------------------------------------------------------------------------
 
@@ -420,85 +420,84 @@ impl ControlMessageHandler {
 
            }),
 
        });
 

	
 
        return Message{
 
            sending_connector: self_connector_id,
 
            receiving_port: peer_port_id,
 
            contents: MessageContents::Control(ControlMessage{
 
                id,
 
                content: ControlMessageVariant::CloseChannel(peer_port_id),
 
            }),
 
        };
 
    }
 

	
 
    /// Prepares rerouting messages due to changed ownership of a port. The
 
    /// control message returned by this function must be sent to the
 
    /// transferred port's peer connector.
 
    pub fn prepare_reroute(
 
        &mut self,
 
        port_id: PortIdLocal, peer_port_id: PortIdLocal,
 
        self_connector_id: ConnectorId, peer_connector_id: ConnectorId,
 
        new_owner_connector_id: ConnectorId
 
    ) -> Message {
 
        let id = self.take_id();
 

	
 
        self.active.push(ControlEntry{
 
            id,
 
            variant: ControlVariant::ChangedPort(ControlChangedPort{
 
                target_port: port_id,
 
                source_connector: peer_connector_id,
 
                target_connector: new_owner_connector_id,
 
            }),
 
        });
 

	
 
        return Message{
 
            sending_connector: self_connector_id,
 
            receiving_port: peer_port_id,
 
            contents: MessageContents::Control(ControlMessage{
 
                id,
 
                content: ControlMessageVariant::ChangePortPeer(peer_port_id, new_owner_connector_id),
 
            })
 
        };
 
    }
 

	
 
    /// Returns true if the supplied message should be rerouted. If so then this
 
    /// function returns the connector that should retrieve this message.
 
    pub fn should_reroute(&self, sending_connector: ConnectorId, target_port: PortIdLocal) -> Option<ConnectorId> {
 
        for entry in &self.active {
 
            if let ControlVariant::ChangedPort(entry) = &entry.variant {
 
                if entry.source_connector == sending_connector &&
 
                    entry.target_port == target_port {
 
                if entry.target_port == target_port {
 
                    // Need to reroute this message
 
                    return Some(entry.target_connector);
 
                }
 
            }
 
        }
 

	
 
        return None;
 
    }
 

	
 
    /// Handles an Ack as an answer to a previously sent control message
 
    pub fn handle_ack(&mut self, id: u32) {
 
        let index = self.active.iter()
 
            .position(|v| v.id == id);
 

	
 
        match index {
 
            Some(index) => { self.active.remove(index); },
 
            None => { todo!("handling of nefarious ACKs"); },
 
        }
 
    }
 

	
 
    /// Retrieves the number of responses we still expect to receive from our
 
    /// peers
 
    #[inline]
 
    pub fn num_pending_acks(&self) -> usize {
 
        return self.active.len();
 
    }
 

	
 
    fn take_id(&mut self) -> u32 {
 
        let generated_id = self.id_counter;
 
        let (new_id, _) = self.id_counter.overflowing_add(1);
 
        self.id_counter = new_id;
 

	
 
        return generated_id;
 
    }
 
}
 
\ No newline at end of file
src/runtime2/tests/mod.rs
Show inline comments
 
use std::sync::Arc;
 

	
 
use super::*;
 
use crate::{PortId, ProtocolDescription};
 
use crate::common::Id;
 
use crate::protocol::eval::*;
 

	
 
fn runtime_for(num_threads: u32, pdl: &str) -> Runtime {
 
const NUM_THREADS: u32 = 4;     // number of threads in runtime
 
const NUM_INSTANCES: u32 = 10;   // number of test instances constructed
 
const NUM_LOOPS: u32 = 1;       // number of loops within a single test (not used by all tests)
 

	
 
fn create_runtime(pdl: &str) -> Runtime {
 
    let protocol = ProtocolDescription::parse(pdl.as_bytes()).expect("parse pdl");
 
    let runtime = Runtime::new(num_threads, protocol);
 
    let runtime = Runtime::new(NUM_THREADS, protocol);
 

	
 
    return runtime;
 
}
 

	
 
fn run_test_in_runtime<F: Fn(&mut ApplicationInterface)>(pdl: &str, constructor: F) {
 
    let protocol = ProtocolDescription::parse(pdl.as_bytes())
 
        .expect("parse PDL");
 
    let runtime = Runtime::new(NUM_THREADS, protocol);
 

	
 
    let mut api = runtime.create_interface();
 
    for _ in 0..NUM_INSTANCES {
 
        constructor(&mut api);
 
    }
 

	
 
    // Wait until done :)
 
}
 

	
 
#[test]
 
fn test_put_and_get() {
 
    let rt = runtime_for(4, "
 
primitive putter(out<bool> sender, u32 loops) {
 
    u32 index = 0;
 
    while (index < loops) {
 
        synchronous {
 
            print(\"putting!\");
 
            put(sender, true);
 
    const CODE: &'static str = "
 
    primitive putter(out<bool> sender, u32 loops) {
 
        u32 index = 0;
 
        while (index < loops) {
 
            synchronous {
 
                print(\"putting!\");
 
                put(sender, true);
 
            }
 
            index += 1;
 
        }
 
        index += 1;
 
    }
 
}
 

	
 
primitive getter(in<bool> receiver, u32 loops) {
 
    u32 index = 0;
 
    while (index < loops) {
 
        synchronous {
 
            print(\"getting!\");
 
            auto result = get(receiver);
 
            assert(result);
 
    primitive getter(in<bool> receiver, u32 loops) {
 
        u32 index = 0;
 
        while (index < loops) {
 
            synchronous {
 
                print(\"getting!\");
 
                auto result = get(receiver);
 
                assert(result);
 

	
 
            }
 
            index += 1;
 
        }
 
        index += 1;
 
    }
 
}
 
    ");
 
    ";
 

	
 
    let mut api = rt.create_interface();
 
    let channel = api.create_channel();
 
    let num_loops = 1;
 
    run_test_in_runtime(CODE, |api| {
 
        let channel = api.create_channel();
 

	
 
    api.create_connector("", "putter", ValueGroup::new_stack(vec![
 
        Value::Output(PortId(Id{ connector_id: 0, u32_suffix: channel.putter_id.index })),
 
        Value::UInt32(num_loops)
 
    ])).expect("create putter");
 
        api.create_connector("", "putter", ValueGroup::new_stack(vec![
 
            Value::Output(PortId(Id{ connector_id: 0, u32_suffix: channel.putter_id.index })),
 
            Value::UInt32(NUM_LOOPS)
 
        ])).expect("create putter");
 

	
 
    api.create_connector("", "getter", ValueGroup::new_stack(vec![
 
        Value::Input(PortId(Id{ connector_id: 0, u32_suffix: channel.getter_id.index })),
 
        Value::UInt32(num_loops)
 
    ])).expect("create getter");
 
        api.create_connector("", "getter", ValueGroup::new_stack(vec![
 
            Value::Input(PortId(Id{ connector_id: 0, u32_suffix: channel.getter_id.index })),
 
            Value::UInt32(NUM_LOOPS)
 
        ])).expect("create getter");
 
    });
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)