Changeset - cc8030b35903
[Not reviewed]
1 5 0
MH - 4 years ago 2021-09-07 17:41:31
contact@maxhenger.nl
more WIP on runtime revisiting
6 files changed with 597 insertions and 55 deletions:
0 comments (0 inline, 0 general)
src/common.rs
Show inline comments
 
///////////////////// PRELUDE /////////////////////
 
pub(crate) use crate::protocol::{ComponentState, ProtocolDescription};
 
pub(crate) use crate::runtime::{error::AddComponentError, NonsyncProtoContext, SyncProtoContext};
 
pub(crate) use core::{
 
    cmp::Ordering,
 
    fmt::{Debug, Formatter},
 
    hash::Hash,
 
    ops::Range,
 
    time::Duration,
 
};
 
pub(crate) use maplit::hashmap;
 
pub(crate) use mio::{
 
    net::{TcpListener, TcpStream},
 
    Events, Interest, Poll, Token,
 
};
 
pub(crate) use std::{
 
    collections::{BTreeMap, HashMap, HashSet},
 
    io::{Read, Write},
 
    net::SocketAddr,
 
    sync::Arc,
 
    time::Instant,
 
};
 
pub(crate) use Polarity::*;
 

	
 
pub(crate) trait IdParts {
 
    fn id_parts(self) -> (ConnectorId, U32Suffix);
 
}
 

	
 
/// Used by various distributed algorithms to identify connectors.
 
pub type ConnectorId = u32;
 

	
 
/// Used in conjunction with the `ConnectorId` type to create identifiers for ports and components
 
pub type U32Suffix = u32;
 
#[derive(Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd)]
 

	
 
/// Generalization of a port/component identifier
 
#[derive(serde::Serialize, serde::Deserialize)]
 
#[repr(C)]
 
pub struct Id {
 
    pub(crate) connector_id: ConnectorId,
 
    pub(crate) u32_suffix: U32Suffix,
 
}
 
#[derive(Clone, Debug, Default)]
 
pub struct U32Stream {
 
    next: u32,
 
}
 

	
 
/// Identifier of a component in a session
 
#[derive(Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize)]
 
pub struct ComponentId(Id); // PUB because it can be returned by errors
 

	
 
/// Identifier of a port in a session
 
#[derive(Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize)]
 
#[repr(transparent)]
 
pub struct PortId(Id);
 
pub struct PortId(pub(crate) Id);
 

	
 
/// A safely aliasable heap-allocated payload of message bytes
 
#[derive(Default, Eq, PartialEq, Clone, Ord, PartialOrd)]
 
pub struct Payload(pub Arc<Vec<u8>>);
 
#[derive(Debug, Eq, PartialEq, Clone, Hash, Copy, Ord, PartialOrd)]
 

	
 
/// "Orientation" of a port, determining whether they can send or receive messages with `put` and `get` respectively.
 
#[repr(C)]
 
#[derive(serde::Serialize, serde::Deserialize)]
 
pub enum Polarity {
 
    Putter, // output port (from the perspective of the component)
 
    Getter, // input port (from the perspective of the component)
 
}
 
#[derive(Debug, Eq, PartialEq, Clone, Hash, Copy, Ord, PartialOrd)]
 

	
 
/// "Orientation" of a transport-layer network endpoint, dictating how it's connection procedure should
 
/// be conducted. Corresponds with connect() / accept() familiar to TCP socket programming.
 
#[repr(C)]
 
pub enum EndpointPolarity {
 
    Active,  // calls connect()
 
    Passive, // calls bind() listen() accept()
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub(crate) enum NonsyncBlocker {
 
    Inconsistent,
 
    ComponentExit,
 
    SyncBlockStart,
 
}
 
#[derive(Debug, Clone)]
 
pub(crate) enum SyncBlocker {
 
    Inconsistent,
 
    SyncBlockEnd,
 
    CouldntReadMsg(PortId),
 
    CouldntCheckFiring(PortId),
 
    PutMsg(PortId, Payload),
 
}
 
pub(crate) struct DenseDebugHex<'a>(pub &'a [u8]);
 
pub(crate) struct DebuggableIter<I: Iterator<Item = T> + Clone, T: Debug>(pub(crate) I);
 
///////////////////// IMPL /////////////////////
 
impl IdParts for Id {
 
    fn id_parts(self) -> (ConnectorId, U32Suffix) {
 
        (self.connector_id, self.u32_suffix)
 
    }
 
}
 
impl IdParts for PortId {
 
    fn id_parts(self) -> (ConnectorId, U32Suffix) {
 
        self.0.id_parts()
 
    }
 
}
 
impl IdParts for ComponentId {
 
    fn id_parts(self) -> (ConnectorId, U32Suffix) {
 
        self.0.id_parts()
 
    }
 
}
 
impl U32Stream {
 
    pub(crate) fn next(&mut self) -> u32 {
 
        if self.next == u32::MAX {
 
            panic!("NO NEXT!")
 
        }
 
        self.next += 1;
 
        self.next - 1
 
    }
 
    pub(crate) fn n_skipped(mut self, n: u32) -> Self {
 
        self.next = self.next.saturating_add(n);
 
        self
 
    }
 
}
 
impl From<Id> for PortId {
 
    fn from(id: Id) -> PortId {
 
        Self(id)
 
    }
 
}
 
impl From<Id> for ComponentId {
 
    fn from(id: Id) -> Self {
 
        Self(id)
 
    }
 
}
 
impl From<&[u8]> for Payload {
 
    fn from(s: &[u8]) -> Payload {
 
        Payload(Arc::new(s.to_vec()))
 
    }
 
}
 
impl Payload {
 
    /// Create a new payload of uninitialized bytes with the given length.
 
    pub fn new(len: usize) -> Payload {
 
        let mut v = Vec::with_capacity(len);
 
        unsafe {
 
            v.set_len(len);
 
        }
 
        Payload(Arc::new(v))
 
    }
 
    /// Returns the length of the payload's byte sequence
 
    pub fn len(&self) -> usize {
 
        self.0.len()
 
    }
 
    /// Allows shared reading of the payload's contents
 
    pub fn as_slice(&self) -> &[u8] {
 
        &self.0
 
    }
 

	
 
    /// Allows mutation of the payload's contents.
 
    /// Results in a deep copy in the event this payload is aliased.
 
    pub fn as_mut_vec(&mut self) -> &mut Vec<u8> {
 
        Arc::make_mut(&mut self.0)
 
    }
 

	
 
    /// Modifies this payload, concatenating the given immutable payload's contents.
 
    /// Results in a deep copy in the event this payload is aliased.
 
    pub fn concatenate_with(&mut self, other: &Self) {
 
        let bytes = other.as_slice().iter().copied();
 
        let me = self.as_mut_vec();
 
        me.extend(bytes);
 
    }
 
}
 
impl serde::Serialize for Payload {
 
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
 
    where
 
        S: serde::Serializer,
 
    {
 
        let inner: &Vec<u8> = &self.0;
 
        inner.serialize(serializer)
 
    }
 
}
 
impl<'de> serde::Deserialize<'de> for Payload {
 
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
 
    where
 
        D: serde::Deserializer<'de>,
 
    {
 
        let inner: Vec<u8> = Vec::deserialize(deserializer)?;
 
        Ok(Self(Arc::new(inner)))
 
    }
 
}
 
impl From<Vec<u8>> for Payload {
 
    fn from(s: Vec<u8>) -> Self {
 
        Self(s.into())
 
    }
 
}
 
impl Debug for PortId {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        let (a, b) = self.id_parts();
 
        write!(f, "pid{}_{}", a, b)
 
    }
 
}
 
impl Debug for ComponentId {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        let (a, b) = self.id_parts();
 
        write!(f, "cid{}_{}", a, b)
 
    }
 
}
 
impl Debug for Payload {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        write!(f, "Payload[{:?}]", DenseDebugHex(self.as_slice()))
 
    }
 
}
 
impl std::ops::Not for Polarity {
 
    type Output = Self;
 
    fn not(self) -> Self::Output {
 
        use Polarity::*;
 
        match self {
 
            Putter => Getter,
 
            Getter => Putter,
 
        }
 
    }
 
}
 
impl Debug for DenseDebugHex<'_> {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        for b in self.0 {
 
            write!(f, "{:02X?}", b)?;
 
        }
 
        Ok(())
 
    }
 
}
 

	
 
impl<I: Iterator<Item = T> + Clone, T: Debug> Debug for DebuggableIter<I, T> {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), std::fmt::Error> {
 
        f.debug_list().entries(self.0.clone()).finish()
 
    }
 
}
src/protocol/eval/executor.rs
Show inline comments
 
@@ -10,957 +10,996 @@ use crate::protocol::type_table::*;
 

	
 
macro_rules! debug_enabled { () => { false }; }
 
macro_rules! debug_log {
 
    ($format:literal) => {
 
        enabled_debug_print!(false, "exec", $format);
 
    };
 
    ($format:literal, $($args:expr),*) => {
 
        enabled_debug_print!(false, "exec", $format, $($args),*);
 
    };
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub(crate) enum ExprInstruction {
 
    EvalExpr(ExpressionId),
 
    PushValToFront,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub(crate) struct Frame {
 
    pub(crate) definition: DefinitionId,
 
    pub(crate) monomorph_idx: i32,
 
    pub(crate) position: StatementId,
 
    pub(crate) expr_stack: VecDeque<ExprInstruction>, // hack for expression evaluation, evaluated by popping from back
 
    pub(crate) expr_values: VecDeque<Value>, // hack for expression results, evaluated by popping from front/back
 
    pub(crate) max_stack_size: u32,
 
}
 

	
 
impl Frame {
 
    /// Creates a new execution frame. Does not modify the stack in any way.
 
    pub fn new(heap: &Heap, definition_id: DefinitionId, monomorph_idx: i32) -> Self {
 
        let definition = &heap[definition_id];
 
        let first_statement = match definition {
 
            Definition::Component(definition) => definition.body,
 
            Definition::Function(definition) => definition.body,
 
            _ => unreachable!("initializing frame with {:?} instead of a function/component", definition),
 
        };
 

	
 
        // Another not-so-pretty thing that has to be replaced somewhere in the
 
        // future...
 
        fn determine_max_stack_size(heap: &Heap, block_id: BlockStatementId, max_size: &mut u32) {
 
            let block_stmt = &heap[block_id];
 
            debug_assert!(block_stmt.next_unique_id_in_scope >= 0);
 

	
 
            // Check current block
 
            let cur_size = block_stmt.next_unique_id_in_scope as u32;
 
            if cur_size > *max_size { *max_size = cur_size; }
 

	
 
            // And child blocks
 
            for child_scope in &block_stmt.scope_node.nested {
 
                determine_max_stack_size(heap, child_scope.to_block(), max_size);
 
            }
 
        }
 

	
 
        let mut max_stack_size = 0;
 
        determine_max_stack_size(heap, first_statement, &mut max_stack_size);
 

	
 
        Frame{
 
            definition: definition_id,
 
            monomorph_idx,
 
            position: first_statement.upcast(),
 
            expr_stack: VecDeque::with_capacity(128),
 
            expr_values: VecDeque::with_capacity(128),
 
            max_stack_size,
 
        }
 
    }
 

	
 
    /// Prepares a single expression for execution. This involves walking the
 
    /// expression tree and putting them in the `expr_stack` such that
 
    /// continuously popping from its back will evaluate the expression. The
 
    /// results of each expression will be stored by pushing onto `expr_values`.
 
    pub fn prepare_single_expression(&mut self, heap: &Heap, expr_id: ExpressionId) {
 
        debug_assert!(self.expr_stack.is_empty());
 
        self.expr_values.clear(); // May not be empty if last expression result(s) were discarded
 

	
 
        self.serialize_expression(heap, expr_id);
 
    }
 

	
 
    /// Prepares multiple expressions for execution (i.e. evaluating all
 
    /// function arguments or all elements of an array/union literal). Per
 
    /// expression this works the same as `prepare_single_expression`. However
 
    /// after each expression is evaluated we insert a `PushValToFront`
 
    /// instruction
 
    pub fn prepare_multiple_expressions(&mut self, heap: &Heap, expr_ids: &[ExpressionId]) {
 
        debug_assert!(self.expr_stack.is_empty());
 
        self.expr_values.clear();
 

	
 
        for expr_id in expr_ids {
 
            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
            self.serialize_expression(heap, *expr_id);
 
        }
 
    }
 

	
 
    /// Performs depth-first serialization of expression tree. Let's not care
 
    /// about performance for a temporary runtime implementation
 
    fn serialize_expression(&mut self, heap: &Heap, id: ExpressionId) {
 
        self.expr_stack.push_back(ExprInstruction::EvalExpr(id));
 

	
 
        match &heap[id] {
 
            Expression::Assignment(expr) => {
 
                self.serialize_expression(heap, expr.left);
 
                self.serialize_expression(heap, expr.right);
 
            },
 
            Expression::Binding(expr) => {
 
                self.serialize_expression(heap, expr.bound_to);
 
                self.serialize_expression(heap, expr.bound_from);
 
            },
 
            Expression::Conditional(expr) => {
 
                self.serialize_expression(heap, expr.test);
 
            },
 
            Expression::Binary(expr) => {
 
                self.serialize_expression(heap, expr.left);
 
                self.serialize_expression(heap, expr.right);
 
            },
 
            Expression::Unary(expr) => {
 
                self.serialize_expression(heap, expr.expression);
 
            },
 
            Expression::Indexing(expr) => {
 
                self.serialize_expression(heap, expr.index);
 
                self.serialize_expression(heap, expr.subject);
 
            },
 
            Expression::Slicing(expr) => {
 
                self.serialize_expression(heap, expr.from_index);
 
                self.serialize_expression(heap, expr.to_index);
 
                self.serialize_expression(heap, expr.subject);
 
            },
 
            Expression::Select(expr) => {
 
                self.serialize_expression(heap, expr.subject);
 
            },
 
            Expression::Literal(expr) => {
 
                // Here we only care about literals that have subexpressions
 
                match &expr.value {
 
                    Literal::Null | Literal::True | Literal::False |
 
                    Literal::Character(_) | Literal::String(_) |
 
                    Literal::Integer(_) | Literal::Enum(_) => {
 
                        // No subexpressions
 
                    },
 
                    Literal::Struct(literal) => {
 
                        // Note: fields expressions are evaluated in programmer-
 
                        // specified order. But struct construction expects them
 
                        // in type-defined order. I might want to come back to
 
                        // this.
 
                        let mut _num_pushed = 0;
 
                        for want_field_idx in 0..literal.fields.len() {
 
                            for field in &literal.fields {
 
                                if field.field_idx == want_field_idx {
 
                                    _num_pushed += 1;
 
                                    self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                                    self.serialize_expression(heap, field.value);
 
                                }
 
                            }
 
                        }
 
                        debug_assert_eq!(_num_pushed, literal.fields.len())
 
                    },
 
                    Literal::Union(literal) => {
 
                        for value_expr_id in &literal.values {
 
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                            self.serialize_expression(heap, *value_expr_id);
 
                        }
 
                    },
 
                    Literal::Array(value_expr_ids) => {
 
                        for value_expr_id in value_expr_ids {
 
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                            self.serialize_expression(heap, *value_expr_id);
 
                        }
 
                    }
 
                }
 
            },
 
            Expression::Cast(expr) => {
 
                self.serialize_expression(heap, expr.subject);
 
            }
 
            Expression::Call(expr) => {
 
                for arg_expr_id in &expr.arguments {
 
                    self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                    self.serialize_expression(heap, *arg_expr_id);
 
                }
 
            },
 
            Expression::Variable(_expr) => {
 
                // No subexpressions
 
            }
 
        }
 
    }
 
}
 

	
 
type EvalResult = Result<EvalContinuation, EvalError>;
 

	
 
pub enum EvalContinuation {
 
    Stepping,
 
    Inconsistent,
 
    Terminal,
 
    SyncBlockStart,
 
    SyncBlockEnd,
 
    NewComponent(DefinitionId, i32, ValueGroup),
 
    BlockFires(Value),
 
    BlockGet(Value),
 
    Put(Value, Value),
 
    NewChannel,
 
    BlockFires(PortId),
 
    BlockGet(PortId),
 
    Put(PortId, Value),
 
}
 

	
 
// Note: cloning is fine, methinks. cloning all values and the heap regions then
 
// we end up with valid "pointers" to heap regions.
 
#[derive(Debug, Clone)]
 
pub struct Prompt {
 
    pub(crate) frames: Vec<Frame>,
 
    pub(crate) store: Store,
 
}
 

	
 
impl Prompt {
 
    pub fn new(_types: &TypeTable, heap: &Heap, def: DefinitionId, monomorph_idx: i32, args: ValueGroup) -> Self {
 
        let mut prompt = Self{
 
            frames: Vec::new(),
 
            store: Store::new(),
 
        };
 

	
 
        // Maybe do typechecking in the future?
 
        debug_assert!((monomorph_idx as usize) < _types.get_base_definition(&def).unwrap().definition.procedure_monomorphs().len());
 
        let new_frame = Frame::new(heap, def, monomorph_idx);
 
        let max_stack_size = new_frame.max_stack_size;
 
        prompt.frames.push(new_frame);
 
        args.into_store(&mut prompt.store);
 
        prompt.store.reserve_stack(max_stack_size);
 

	
 
        prompt
 
    }
 

	
 
    pub(crate) fn step(&mut self, types: &TypeTable, heap: &Heap, modules: &[Module], ctx: &mut EvalContext) -> EvalResult {
 
    /// Big 'ol function right here. Didn't want to break it up unnecessarily.
 
    /// It consists of, in sequence: executing any expressions that should be
 
    /// executed before the next statement can be evaluated, then a section that
 
    /// performs debug printing, and finally a section that takes the next
 
    /// statement and executes it. If the statement requires any expressions to
 
    /// be evaluated, then they will be added such that the next time `step` is
 
    /// called, all of these expressions are indeed evaluated.
 
    pub(crate) fn step(&mut self, types: &TypeTable, heap: &Heap, modules: &[Module], ctx: &mut impl RunContext) -> EvalResult {
 
        // Helper function to transfer multiple values from the expression value
 
        // array into a heap region (e.g. constructing arrays or structs).
 
        fn transfer_expression_values_front_into_heap(cur_frame: &mut Frame, store: &mut Store, num_values: usize) -> HeapPos {
 
            let heap_pos = store.alloc_heap();
 

	
 
            // Do the transformation first (because Rust...)
 
            for val_idx in 0..num_values {
 
                cur_frame.expr_values[val_idx] = store.read_take_ownership(cur_frame.expr_values[val_idx].clone());
 
            }
 

	
 
            // And now transfer to the heap region
 
            let values = &mut store.heap_regions[heap_pos as usize].values;
 
            debug_assert!(values.is_empty());
 
            values.reserve(num_values);
 
            for _ in 0..num_values {
 
                values.push(cur_frame.expr_values.pop_front().unwrap());
 
            }
 

	
 
            heap_pos
 
        }
 

	
 
        // Helper function to make sure that an index into an aray is valid.
 
        fn array_inclusive_index_is_invalid(store: &Store, array_heap_pos: u32, idx: i64) -> bool {
 
            let array_len = store.heap_regions[array_heap_pos as usize].values.len();
 
            return idx < 0 || idx >= array_len as i64;
 
        }
 

	
 
        fn array_exclusive_index_is_invalid(store: &Store, array_heap_pos: u32, idx: i64) -> bool {
 
            let array_len = store.heap_regions[array_heap_pos as usize].values.len();
 
            return idx < 0 || idx > array_len as i64;
 
        }
 

	
 
        fn construct_array_error(prompt: &Prompt, modules: &[Module], heap: &Heap, expr_id: ExpressionId, heap_pos: u32, idx: i64) -> EvalError {
 
            let array_len = prompt.store.heap_regions[heap_pos as usize].values.len();
 
            return EvalError::new_error_at_expr(
 
                prompt, modules, heap, expr_id,
 
                format!("index {} is out of bounds: array length is {}", idx, array_len)
 
            )
 
        }
 

	
 
        // Checking if we're at the end of execution
 
        let cur_frame = self.frames.last_mut().unwrap();
 
        if cur_frame.position.is_invalid() {
 
            if heap[cur_frame.definition].is_function() {
 
                todo!("End of function without return, return an evaluation error");
 
            }
 
            return Ok(EvalContinuation::Terminal);
 
        }
 

	
 
        debug_log!("Taking step in '{}'", heap[cur_frame.definition].identifier().value.as_str());
 

	
 
        // Execute all pending expressions
 
        while !cur_frame.expr_stack.is_empty() {
 
            let next = cur_frame.expr_stack.pop_back().unwrap();
 
            debug_log!("Expr stack: {:?}", next);
 
            match next {
 
                ExprInstruction::PushValToFront => {
 
                    cur_frame.expr_values.rotate_right(1);
 
                },
 
                ExprInstruction::EvalExpr(expr_id) => {
 
                    let expr = &heap[expr_id];
 
                    match expr {
 
                        Expression::Assignment(expr) => {
 
                            let to = cur_frame.expr_values.pop_back().unwrap().as_ref();
 
                            let rhs = cur_frame.expr_values.pop_back().unwrap();
 

	
 
                            // Note: although not pretty, the assignment operator takes ownership
 
                            // of the right-hand side value when possible. So we do not drop the
 
                            // rhs's optionally owned heap data.
 
                            let rhs = self.store.read_take_ownership(rhs);
 
                            apply_assignment_operator(&mut self.store, to, expr.operation, rhs);
 
                        },
 
                        Expression::Binding(_expr) => {
 
                            let bind_to = cur_frame.expr_values.pop_back().unwrap();
 
                            let bind_from = cur_frame.expr_values.pop_back().unwrap();
 
                            let bind_to_heap_pos = bind_to.get_heap_pos();
 
                            let bind_from_heap_pos = bind_from.get_heap_pos();
 

	
 
                            let result = apply_binding_operator(&mut self.store, bind_to, bind_from);
 
                            self.store.drop_value(bind_to_heap_pos);
 
                            self.store.drop_value(bind_from_heap_pos);
 
                            cur_frame.expr_values.push_back(Value::Bool(result));
 
                        },
 
                        Expression::Conditional(expr) => {
 
                            // Evaluate testing expression, then extend the
 
                            // expression stack with the appropriate expression
 
                            let test_result = cur_frame.expr_values.pop_back().unwrap().as_bool();
 
                            if test_result {
 
                                cur_frame.serialize_expression(heap, expr.true_expression);
 
                            } else {
 
                                cur_frame.serialize_expression(heap, expr.false_expression);
 
                            }
 
                        },
 
                        Expression::Binary(expr) => {
 
                            let lhs = cur_frame.expr_values.pop_back().unwrap();
 
                            let rhs = cur_frame.expr_values.pop_back().unwrap();
 
                            let result = apply_binary_operator(&mut self.store, &lhs, expr.operation, &rhs);
 
                            cur_frame.expr_values.push_back(result);
 
                            self.store.drop_value(lhs.get_heap_pos());
 
                            self.store.drop_value(rhs.get_heap_pos());
 
                        },
 
                        Expression::Unary(expr) => {
 
                            let val = cur_frame.expr_values.pop_back().unwrap();
 
                            let result = apply_unary_operator(&mut self.store, expr.operation, &val);
 
                            cur_frame.expr_values.push_back(result);
 
                            self.store.drop_value(val.get_heap_pos());
 
                        },
 
                        Expression::Indexing(_expr) => {
 
                            // Evaluate index. Never heap allocated so we do
 
                            // not have to drop it.
 
                            let index = cur_frame.expr_values.pop_back().unwrap();
 
                            let index = self.store.maybe_read_ref(&index);
 

	
 
                            debug_assert!(index.is_integer());
 
                            let index = if index.is_signed_integer() {
 
                                index.as_signed_integer() as i64
 
                            } else {
 
                                index.as_unsigned_integer() as i64
 
                            };
 

	
 
                            let subject = cur_frame.expr_values.pop_back().unwrap();
 

	
 
                            let (deallocate_heap_pos, value_to_push) = match subject {
 
                                Value::Ref(value_ref) => {
 
                                    // Our expression stack value is a reference to something that
 
                                    // exists in the normal stack/heap. We don't want to deallocate
 
                                    // this thing. Rather we want to return a reference to it.
 
                                    let subject = self.store.read_ref(value_ref);
 
                                    let subject_heap_pos = match subject {
 
                                        Value::String(v) => *v,
 
                                        Value::Array(v) => *v,
 
                                        Value::Message(v) => *v,
 
                                        _ => unreachable!(),
 
                                    };
 

	
 
                                    if array_inclusive_index_is_invalid(&self.store, subject_heap_pos, index) {
 
                                        return Err(construct_array_error(self, modules, heap, expr_id, subject_heap_pos, index));
 
                                    }
 

	
 
                                    (None, Value::Ref(ValueId::Heap(subject_heap_pos, index as u32)))
 
                                },
 
                                _ => {
 
                                    // Our value lives on the expression stack, hence we need to
 
                                    // clone whatever we're referring to. Then drop the subject.
 
                                    let subject_heap_pos = match &subject {
 
                                        Value::String(v) => *v,
 
                                        Value::Array(v) => *v,
 
                                        Value::Message(v) => *v,
 
                                        _ => unreachable!(),
 
                                    };
 

	
 
                                    if array_inclusive_index_is_invalid(&self.store, subject_heap_pos, index) {
 
                                        return Err(construct_array_error(self, modules, heap, expr_id, subject_heap_pos, index));
 
                                    }
 

	
 
                                    let subject_indexed = Value::Ref(ValueId::Heap(subject_heap_pos, index as u32));
 
                                    (Some(subject_heap_pos), self.store.clone_value(subject_indexed))
 
                                },
 
                            };
 

	
 
                            cur_frame.expr_values.push_back(value_to_push);
 
                            self.store.drop_value(deallocate_heap_pos);
 
                        },
 
                        Expression::Slicing(expr) => {
 
                            // Evaluate indices
 
                            let from_index = cur_frame.expr_values.pop_back().unwrap();
 
                            let from_index = self.store.maybe_read_ref(&from_index);
 
                            let to_index = cur_frame.expr_values.pop_back().unwrap();
 
                            let to_index = self.store.maybe_read_ref(&to_index);
 

	
 
                            debug_assert!(from_index.is_integer() && to_index.is_integer());
 
                            let from_index = if from_index.is_signed_integer() {
 
                                from_index.as_signed_integer()
 
                            } else {
 
                                from_index.as_unsigned_integer() as i64
 
                            };
 
                            let to_index = if to_index.is_signed_integer() {
 
                                to_index.as_signed_integer()
 
                            } else {
 
                                to_index.as_unsigned_integer() as i64
 
                            };
 

	
 
                            // Dereference subject if needed
 
                            let subject = cur_frame.expr_values.pop_back().unwrap();
 
                            let deref_subject = self.store.maybe_read_ref(&subject);
 

	
 
                            // Slicing needs to produce a copy anyway (with the
 
                            // current evaluator implementation)
 
                            enum ValueKind{ Array, String, Message }
 
                            let (value_kind, array_heap_pos) = match deref_subject {
 
                                Value::Array(v) => (ValueKind::Array, *v),
 
                                Value::String(v) => (ValueKind::String, *v),
 
                                Value::Message(v) => (ValueKind::Message, *v),
 
                                _ => unreachable!()
 
                            };
 

	
 
                            if array_inclusive_index_is_invalid(&self.store, array_heap_pos, from_index) {
 
                                return Err(construct_array_error(self, modules, heap, expr.from_index, array_heap_pos, from_index));
 
                            }
 
                            if array_exclusive_index_is_invalid(&self.store, array_heap_pos, to_index) {
 
                                return Err(construct_array_error(self, modules, heap, expr.to_index, array_heap_pos, to_index));
 
                            }
 

	
 
                            // Again: would love to push directly, but rust...
 
                            let new_heap_pos = self.store.alloc_heap();
 
                            debug_assert!(self.store.heap_regions[new_heap_pos as usize].values.is_empty());
 
                            if to_index > from_index {
 
                                let from_index = from_index as usize;
 
                                let to_index = to_index as usize;
 
                                let mut values = Vec::with_capacity(to_index - from_index);
 
                                for idx in from_index..to_index {
 
                                    let value = self.store.heap_regions[array_heap_pos as usize].values[idx].clone();
 
                                    values.push(self.store.clone_value(value));
 
                                }
 

	
 
                                self.store.heap_regions[new_heap_pos as usize].values = values;
 

	
 
                            } // else: empty range
 

	
 
                            cur_frame.expr_values.push_back(match value_kind {
 
                                ValueKind::Array => Value::Array(new_heap_pos),
 
                                ValueKind::String => Value::String(new_heap_pos),
 
                                ValueKind::Message => Value::Message(new_heap_pos),
 
                            });
 

	
 
                            // Dropping the original subject, because we don't
 
                            // want to drop something on the stack
 
                            self.store.drop_value(subject.get_heap_pos());
 
                        },
 
                        Expression::Select(expr) => {
 
                            let subject= cur_frame.expr_values.pop_back().unwrap();
 
                            let mono_data = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
 
                            let field_idx = mono_data.expr_data[expr.unique_id_in_definition as usize].field_or_monomorph_idx as u32;
 

	
 
                            // Note: same as above: clone if value lives on expr stack, simply
 
                            // refer to it if it already lives on the stack/heap.
 
                            let (deallocate_heap_pos, value_to_push) = match subject {
 
                                Value::Ref(value_ref) => {
 
                                    let subject = self.store.read_ref(value_ref);
 
                                    let subject_heap_pos = subject.as_struct();
 

	
 
                                    (None, Value::Ref(ValueId::Heap(subject_heap_pos, field_idx)))
 
                                },
 
                                _ => {
 
                                    let subject_heap_pos = subject.as_struct();
 
                                    let subject_indexed = Value::Ref(ValueId::Heap(subject_heap_pos, field_idx));
 
                                    (Some(subject_heap_pos), self.store.clone_value(subject_indexed))
 
                                },
 
                            };
 

	
 
                            cur_frame.expr_values.push_back(value_to_push);
 
                            self.store.drop_value(deallocate_heap_pos);
 
                        },
 
                        Expression::Literal(expr) => {
 
                            let value = match &expr.value {
 
                                Literal::Null => Value::Null,
 
                                Literal::True => Value::Bool(true),
 
                                Literal::False => Value::Bool(false),
 
                                Literal::Character(lit_value) => Value::Char(*lit_value),
 
                                Literal::String(lit_value) => {
 
                                    let heap_pos = self.store.alloc_heap();
 
                                    let values = &mut self.store.heap_regions[heap_pos as usize].values;
 
                                    let value = lit_value.as_str();
 
                                    debug_assert!(values.is_empty());
 
                                    values.reserve(value.len());
 
                                    for character in value.as_bytes() {
 
                                        debug_assert!(character.is_ascii());
 
                                        values.push(Value::Char(*character as char));
 
                                    }
 
                                    Value::String(heap_pos)
 
                                }
 
                                Literal::Integer(lit_value) => {
 
                                    use ConcreteTypePart as CTP;
 
                                    let def_types = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
 
                                    let concrete_type = &def_types.expr_data[expr.unique_id_in_definition as usize].expr_type;
 

	
 
                                    debug_assert_eq!(concrete_type.parts.len(), 1);
 
                                    match concrete_type.parts[0] {
 
                                        CTP::UInt8  => Value::UInt8(lit_value.unsigned_value as u8),
 
                                        CTP::UInt16 => Value::UInt16(lit_value.unsigned_value as u16),
 
                                        CTP::UInt32 => Value::UInt32(lit_value.unsigned_value as u32),
 
                                        CTP::UInt64 => Value::UInt64(lit_value.unsigned_value as u64),
 
                                        CTP::SInt8  => Value::SInt8(lit_value.unsigned_value as i8),
 
                                        CTP::SInt16 => Value::SInt16(lit_value.unsigned_value as i16),
 
                                        CTP::SInt32 => Value::SInt32(lit_value.unsigned_value as i32),
 
                                        CTP::SInt64 => Value::SInt64(lit_value.unsigned_value as i64),
 
                                        _ => unreachable!("got concrete type {:?} for integer literal at expr {:?}", concrete_type, expr_id),
 
                                    }
 
                                }
 
                                Literal::Struct(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.fields.len()
 
                                    );
 
                                    Value::Struct(heap_pos)
 
                                }
 
                                Literal::Enum(lit_value) => {
 
                                    Value::Enum(lit_value.variant_idx as i64)
 
                                }
 
                                Literal::Union(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.values.len()
 
                                    );
 
                                    Value::Union(lit_value.variant_idx as i64, heap_pos)
 
                                }
 
                                Literal::Array(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.len()
 
                                    );
 
                                    Value::Array(heap_pos)
 
                                }
 
                            };
 

	
 
                            cur_frame.expr_values.push_back(value);
 
                        },
 
                        Expression::Cast(expr) => {
 
                            let mono_data = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
 
                            let output_type = &mono_data.expr_data[expr.unique_id_in_definition as usize].expr_type;
 

	
 
                            // Typechecking reduced this to two cases: either we
 
                            // have casting noop (same types), or we're casting
 
                            // between integer/bool/char types.
 
                            let subject = cur_frame.expr_values.pop_back().unwrap();
 
                            match apply_casting(&mut self.store, output_type, &subject) {
 
                                Ok(value) => cur_frame.expr_values.push_back(value),
 
                                Err(msg) => {
 
                                    return Err(EvalError::new_error_at_expr(self, modules, heap, expr.this.upcast(), msg));
 
                                }
 
                            }
 

	
 
                            self.store.drop_value(subject.get_heap_pos());
 
                        }
 
                        Expression::Call(expr) => {
 
                            // If we're dealing with a builtin we don't do any
 
                            // fancy shenanigans at all, just push the result.
 
                            match expr.method {
 
                                Method::Get => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value = self.store.maybe_read_ref(&value).clone();
 

	
 
                                    match ctx.get(value.clone(), &mut self.store) {
 
                                    let port_id = if let Value::Input(port_id) = value {
 
                                        port_id
 
                                    } else {
 
                                        unreachable!("executor calling 'get' on value {:?}", value)
 
                                    };
 

	
 
                                    match ctx.get(port_id, &mut self.store) {
 
                                        Some(result) => {
 
                                            // We have the result
 
                                            cur_frame.expr_values.push_back(result)
 
                                        },
 
                                        None => {
 
                                            // Don't have the result yet, prepare the expression to
 
                                            // get run again after we've received a message.
 
                                            cur_frame.expr_values.push_front(value.clone());
 
                                            cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                            return Ok(EvalContinuation::BlockGet(value));
 
                                            return Ok(EvalContinuation::BlockGet(port_id));
 
                                        }
 
                                    }
 
                                },
 
                                Method::Put => {
 
                                    let port_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let deref_port_value = self.store.maybe_read_ref(&port_value).clone();
 

	
 
                                    let port_id = if let Value::Output(port_id) = deref_port_value {
 
                                        port_id
 
                                    } else {
 
                                        unreachable!("executor calling 'put' on value {:?}", deref_port_value)
 
                                    };
 

	
 
                                    let msg_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let deref_msg_value = self.store.maybe_read_ref(&msg_value).clone();
 

	
 
                                    match deref_msg_value {
 
                                        Value::Message(_) => {},
 
                                        _ => {
 
                                            return Err(EvalError::new_error_at_expr(
 
                                                self, modules, heap, expr_id,
 
                                                String::from("Calls to `put` are currently restricted to only send instances of `msg` types. This will change in the future")
 
                                            ));
 
                                        }
 
                                    }
 

	
 
                                    if ctx.did_put(deref_port_value.clone()) {
 
                                    if ctx.did_put(port_id) {
 
                                        // We're fine, deallocate in case the expression value stack
 
                                        // held an owned value
 
                                        self.store.drop_value(msg_value.get_heap_pos());
 
                                    } else {
 
                                        cur_frame.expr_values.push_front(msg_value);
 
                                        cur_frame.expr_values.push_front(port_value);
 
                                        cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                        return Ok(EvalContinuation::Put(deref_port_value, deref_msg_value));
 
                                        return Ok(EvalContinuation::Put(port_id, deref_msg_value));
 
                                    }
 
                                },
 
                                Method::Fires => {
 
                                    let port_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let port_value_deref = self.store.maybe_read_ref(&port_value).clone();
 
                                    match ctx.fires(port_value_deref.clone()) {
 

	
 
                                    let port_id = match port_value_deref {
 
                                        Value::Input(port_id) => port_id,
 
                                        Value::Output(port_id) => port_id,
 
                                        _ => unreachable!("executor calling 'fires' on value {:?}", value),
 
                                    };
 

	
 
                                    match ctx.fires(port_id) {
 
                                        None => {
 
                                            cur_frame.expr_values.push_front(port_value);
 
                                            cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                            return Ok(EvalContinuation::BlockFires(port_value_deref));
 
                                            return Ok(EvalContinuation::BlockFires(port_id));
 
                                        },
 
                                        Some(value) => {
 
                                            cur_frame.expr_values.push_back(value);
 
                                        }
 
                                    }
 
                                },
 
                                Method::Create => {
 
                                    let length_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let length_value = self.store.maybe_read_ref(&length_value);
 
                                    let length = if length_value.is_signed_integer() {
 
                                        let length_value = length_value.as_signed_integer();
 
                                        if length_value < 0 {
 
                                            return Err(EvalError::new_error_at_expr(
 
                                                self, modules, heap, expr_id,
 
                                                format!("got length '{}', can only create a message with a non-negative length", length_value)
 
                                            ));
 
                                        }
 

	
 
                                        length_value as u64
 
                                    } else {
 
                                        debug_assert!(length_value.is_unsigned_integer());
 
                                        length_value.as_unsigned_integer()
 
                                    };
 

	
 
                                    let heap_pos = self.store.alloc_heap();
 
                                    let values = &mut self.store.heap_regions[heap_pos as usize].values;
 
                                    debug_assert!(values.is_empty());
 
                                    values.resize(length as usize, Value::UInt8(0));
 
                                    cur_frame.expr_values.push_back(Value::Message(heap_pos));
 
                                },
 
                                Method::Length => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value_heap_pos = value.get_heap_pos();
 
                                    let value = self.store.maybe_read_ref(&value);
 

	
 
                                    let heap_pos = match value {
 
                                        Value::Array(pos) => *pos,
 
                                        Value::String(pos) => *pos,
 
                                        _ => unreachable!("length(...) on {:?}", value),
 
                                    };
 

	
 
                                    let len = self.store.heap_regions[heap_pos as usize].values.len();
 

	
 
                                    // TODO: @PtrInt
 
                                    cur_frame.expr_values.push_back(Value::UInt32(len as u32));
 
                                    self.store.drop_value(value_heap_pos);
 
                                },
 
                                Method::Assert => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value = self.store.maybe_read_ref(&value).clone();
 
                                    if !value.as_bool() {
 
                                        return Ok(EvalContinuation::Inconsistent)
 
                                    }
 
                                },
 
                                Method::UserComponent => {
 
                                    // This is actually handled by the evaluation
 
                                    // of the statement.
 
                                    debug_assert_eq!(heap[expr.definition].parameters().len(), cur_frame.expr_values.len());
 
                                    debug_assert_eq!(heap[cur_frame.position].as_new().expression, expr.this)
 
                                },
 
                                Method::UserFunction => {
 
                                    // Push a new frame. Note that all expressions have
 
                                    // been pushed to the front, so they're in the order
 
                                    // of the definition.
 
                                    let num_args = expr.arguments.len();
 

	
 
                                    // Determine stack boundaries
 
                                    let cur_stack_boundary = self.store.cur_stack_boundary;
 
                                    let new_stack_boundary = self.store.stack.len();
 

	
 
                                    // Push new boundary and function arguments for new frame
 
                                    self.store.stack.push(Value::PrevStackBoundary(cur_stack_boundary as isize));
 
                                    for _ in 0..num_args {
 
                                        let argument = self.store.read_take_ownership(cur_frame.expr_values.pop_front().unwrap());
 
                                        self.store.stack.push(argument);
 
                                    }
 

	
 
                                    // Determine the monomorph index of the function we're calling
 
                                    let mono_data = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
 
                                    let call_data = &mono_data.expr_data[expr.unique_id_in_definition as usize];
 

	
 
                                    // Push the new frame and reserve its stack size
 
                                    let new_frame = Frame::new(heap, expr.definition, call_data.field_or_monomorph_idx);
 
                                    let new_stack_size = new_frame.max_stack_size;
 
                                    self.frames.push(new_frame);
 
                                    self.store.cur_stack_boundary = new_stack_boundary;
 
                                    self.store.reserve_stack(new_stack_size);
 

	
 
                                    // To simplify the logic a little bit we will now
 
                                    // return and ask our caller to call us again
 
                                    return Ok(EvalContinuation::Stepping);
 
                                },
 
                            }
 
                        },
 
                        Expression::Variable(expr) => {
 
                            let variable = &heap[expr.declaration.unwrap()];
 
                            let ref_value = if expr.used_as_binding_target {
 
                                Value::Binding(variable.unique_id_in_scope as StackPos)
 
                            } else {
 
                                Value::Ref(ValueId::Stack(variable.unique_id_in_scope as StackPos))
 
                            };
 
                            cur_frame.expr_values.push_back(ref_value);
 
                        }
 
                    }
 
                }
 
            }
 
        }
 

	
 
        debug_log!("Frame [{:?}] at {:?}", cur_frame.definition, cur_frame.position);
 
        if debug_enabled!() {
 
            debug_log!("Expression value stack (size = {}):", cur_frame.expr_values.len());
 
            for (_stack_idx, _stack_val) in cur_frame.expr_values.iter().enumerate() {
 
                debug_log!("  [{:03}] {:?}", _stack_idx, _stack_val);
 
            }
 

	
 
            debug_log!("Stack (size = {}):", self.store.stack.len());
 
            for (_stack_idx, _stack_val) in self.store.stack.iter().enumerate() {
 
                debug_log!("  [{:03}] {:?}", _stack_idx, _stack_val);
 
            }
 

	
 
            debug_log!("Heap:");
 
            for (_heap_idx, _heap_region) in self.store.heap_regions.iter().enumerate() {
 
                let _is_free = self.store.free_regions.iter().any(|idx| *idx as usize == _heap_idx);
 
                debug_log!("  [{:03}] in_use: {}, len: {}, vals: {:?}", _heap_idx, !_is_free, _heap_region.values.len(), &_heap_region.values);
 
            }
 
        }
 
        // No (more) expressions to evaluate. So evaluate statement (that may
 
        // depend on the result on the last evaluated expression(s))
 
        let stmt = &heap[cur_frame.position];
 
        let return_value = match stmt {
 
            Statement::Block(stmt) => {
 
                debug_assert!(stmt.statements.is_empty() || stmt.next == stmt.statements[0]);
 
                cur_frame.position = stmt.next;
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndBlock(stmt) => {
 
                let block = &heap[stmt.start_block];
 
                self.store.clear_stack(block.first_unique_id_in_scope as usize);
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Local(stmt) => {
 
                match stmt {
 
                    LocalStatement::Memory(stmt) => {
 
                        let variable = &heap[stmt.variable];
 
                        self.store.write(ValueId::Stack(variable.unique_id_in_scope as u32), Value::Unassigned);
 

	
 
                        cur_frame.position = stmt.next;
 
                        Ok(EvalContinuation::Stepping)
 
                    },
 
                    LocalStatement::Channel(stmt) => {
 
                        let [from_value, to_value] = ctx.new_channel();
 
                        self.store.write(ValueId::Stack(heap[stmt.from].unique_id_in_scope as u32), from_value);
 
                        self.store.write(ValueId::Stack(heap[stmt.to].unique_id_in_scope as u32), to_value);
 

	
 
                        // Need to create a new channel by requesting it from
 
                        // the runtime.
 
                        match ctx.get_channel() {
 
                            None => {
 
                                // No channel is pending. So request one
 
                                Ok(EvalContinuation::NewChannel)
 
                            },
 
                            Some((put_port, get_port)) => {
 
                                self.store.write(ValueId::Stack(heap[stmt.from].unique_id_in_scope as u32), put_port);
 
                                self.store.write(ValueId::Stack(heap[stmt.to].unique_id_in_scope as u32), get_port);
 
                                cur_frame.position = stmt.next;
 
                                Ok(EvalContinuation::Stepping)
 
                            }
 
                        }
 
                    }
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Labeled(stmt) => {
 
                cur_frame.position = stmt.body;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::If(stmt) => {
 
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for if statement");
 
                let test_value = cur_frame.expr_values.pop_back().unwrap();
 
                let test_value = self.store.maybe_read_ref(&test_value).as_bool();
 
                if test_value {
 
                    cur_frame.position = stmt.true_body.upcast();
 
                } else if let Some(false_body) = stmt.false_body {
 
                    cur_frame.position = false_body.upcast();
 
                } else {
 
                    // Not true, and no false body
 
                    cur_frame.position = stmt.end_if.upcast();
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndIf(stmt) => {
 
                cur_frame.position = stmt.next;
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::While(stmt) => {
 
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for while statement");
 
                let test_value = cur_frame.expr_values.pop_back().unwrap();
 
                let test_value = self.store.maybe_read_ref(&test_value).as_bool();
 
                if test_value {
 
                    cur_frame.position = stmt.body.upcast();
 
                } else {
 
                    cur_frame.position = stmt.end_while.upcast();
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndWhile(stmt) => {
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Break(stmt) => {
 
                cur_frame.position = stmt.target.unwrap().upcast();
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Continue(stmt) => {
 
                cur_frame.position = stmt.target.unwrap().upcast();
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Synchronous(stmt) => {
 
                cur_frame.position = stmt.body.upcast();
 

	
 
                Ok(EvalContinuation::SyncBlockStart)
 
            },
 
            Statement::EndSynchronous(stmt) => {
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::SyncBlockEnd)
 
            },
 
            Statement::Return(_stmt) => {
 
                debug_assert!(heap[cur_frame.definition].is_function());
 
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for return statement");
 

	
 
                // The preceding frame has executed a call, so is expecting the
 
                // return expression on its expression value stack. Note that
 
                // we may be returning a reference to something on our stack,
 
                // so we need to read that value and clone it.
 
                let return_value = cur_frame.expr_values.pop_back().unwrap();
 
                let return_value = match return_value {
 
                    Value::Ref(value_id) => self.store.read_copy(value_id),
 
                    _ => return_value,
 
                };
 

	
 
                // Pre-emptively pop our stack frame
 
                self.frames.pop();
 

	
 
                // Clean up our section of the stack
 
                self.store.clear_stack(0);
 
                self.store.stack.truncate(self.store.cur_stack_boundary + 1);
 
                let prev_stack_idx = self.store.stack.pop().unwrap().as_stack_boundary();
 

	
 
                // TODO: Temporary hack for testing, remove at some point
 
                if self.frames.is_empty() {
 
                    debug_assert!(prev_stack_idx == -1);
 
                    debug_assert!(self.store.stack.len() == 0);
 
                    self.store.stack.push(return_value);
 
                    return Ok(EvalContinuation::Terminal);
 
                }
 

	
 
                debug_assert!(prev_stack_idx >= 0);
 
                // Return to original state of stack frame
 
                self.store.cur_stack_boundary = prev_stack_idx as usize;
 
                let cur_frame = self.frames.last_mut().unwrap();
 
                cur_frame.expr_values.push_back(return_value);
 

	
 
                // We just returned to the previous frame, which might be in
 
                // the middle of evaluating expressions for a particular
 
                // statement. So we don't want to enter the code below.
 
                return Ok(EvalContinuation::Stepping);
 
            },
 
            Statement::Goto(stmt) => {
 
                cur_frame.position = stmt.target.unwrap().upcast();
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::New(stmt) => {
 
                let call_expr = &heap[stmt.expression];
 
                debug_assert!(heap[call_expr.definition].is_component());
 
                debug_assert_eq!(
 
                    cur_frame.expr_values.len(), heap[call_expr.definition].parameters().len(),
 
                    "mismatch in expr stack size and number of arguments for new statement"
 
                );
 

	
 
                let mono_data = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
 
                let expr_data = &mono_data.expr_data[call_expr.unique_id_in_definition as usize];
 

	
 
                // Note that due to expression value evaluation they exist in
 
                // reverse order on the stack.
 
                // TODO: Revise this code, keep it as is to be compatible with current runtime
 
                let mut args = Vec::new();
 
                while let Some(value) = cur_frame.expr_values.pop_front() {
 
                    args.push(value);
 
                }
 

	
 
                // Construct argument group, thereby copying heap regions
 
                let argument_group = ValueGroup::from_store(&self.store, &args);
 

	
 
                // Clear any heap regions
 
                for arg in &args {
 
                    self.store.drop_value(arg.get_heap_pos());
 
                }
 

	
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::NewComponent(call_expr.definition, expr_data.field_or_monomorph_idx, argument_group))
 
            },
 
            Statement::Expression(stmt) => {
 
                // The expression has just been completely evaluated. Some
 
                // values might have remained on the expression value stack.
 
                // cur_frame.expr_values.clear(); PROPER CLEARING
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
        };
 

	
 
        assert!(
 
            cur_frame.expr_values.is_empty(),
 
            "This is a debugging assertion that will fail if you perform expressions without \
 
            assigning to anything. This should be completely valid, and this assertion should be \
 
            replaced by something that clears the expression values if needed, but I'll keep this \
 
            in for now for debugging purposes."
 
        );
 

	
 
        // If the next statement requires evaluating expressions then we push
 
        // these onto the expression stack. This way we will evaluate this
 
        // stack in the next loop, then evaluate the statement using the result
 
        // from the expression evaluation.
 
        if !cur_frame.position.is_invalid() {
 
            let stmt = &heap[cur_frame.position];
 

	
 
            match stmt {
 
                Statement::If(stmt) => cur_frame.prepare_single_expression(heap, stmt.test),
 
                Statement::While(stmt) => cur_frame.prepare_single_expression(heap, stmt.test),
 
                Statement::Return(stmt) => {
 
                    debug_assert_eq!(stmt.expressions.len(), 1); // TODO: @ReturnValues
 
                    cur_frame.prepare_single_expression(heap, stmt.expressions[0]);
 
                },
 
                Statement::New(stmt) => {
 
                    // Note that we will end up not evaluating the call itself.
 
                    // Rather we will evaluate its expressions and then
 
                    // instantiate the component upon reaching the "new" stmt.
 
                    let call_expr = &heap[stmt.expression];
 
                    cur_frame.prepare_multiple_expressions(heap, &call_expr.arguments);
 
                },
 
                Statement::Expression(stmt) => {
 
                    cur_frame.prepare_single_expression(heap, stmt.expression);
 
                }
 
                _ => {},
 
            }
 
        }
 

	
 
        return_value
 
    }
 
}
 
\ No newline at end of file
src/protocol/mod.rs
Show inline comments
 
mod arena;
 
pub(crate) mod eval;
 
pub(crate) mod input_source;
 
mod parser;
 
#[cfg(test)] mod tests;
 

	
 
pub(crate) mod ast;
 
pub(crate) mod ast_printer;
 

	
 
use std::sync::Mutex;
 

	
 
use crate::collections::{StringPool, StringRef};
 
use crate::common::*;
 
use crate::protocol::ast::*;
 
use crate::protocol::eval::*;
 
use crate::protocol::input_source::*;
 
use crate::protocol::parser::*;
 
use crate::protocol::type_table::*;
 

	
 
/// A protocol description module
 
pub struct Module {
 
    pub(crate) source: InputSource,
 
    pub(crate) root_id: RootId,
 
    pub(crate) name: Option<StringRef<'static>>,
 
}
 
/// Description of a protocol object, used to configure new connectors.
 
#[repr(C)]
 
pub struct ProtocolDescription {
 
    modules: Vec<Module>,
 
    heap: Heap,
 
    types: TypeTable,
 
    pool: Mutex<StringPool>,
 
    pub(crate) modules: Vec<Module>,
 
    pub(crate) heap: Heap,
 
    pub(crate) types: TypeTable,
 
    pub(crate) pool: Mutex<StringPool>,
 
}
 
#[derive(Debug, Clone)]
 
pub(crate) struct ComponentState {
 
    prompt: Prompt,
 
    pub(crate) prompt: Prompt,
 
}
 

	
 
#[allow(dead_code)]
 
pub(crate) enum EvalContext<'a> {
 
    Nonsync(&'a mut NonsyncProtoContext<'a>),
 
    Sync(&'a mut SyncProtoContext<'a>),
 
    None,
 
}
 
//////////////////////////////////////////////
 

	
 
impl std::fmt::Debug for ProtocolDescription {
 
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
 
        write!(f, "(An opaque protocol description)")
 
    }
 
}
 
impl ProtocolDescription {
 
    // TODO: Allow for multi-file compilation
 
    pub fn parse(buffer: &[u8]) -> Result<Self, String> {
 
        // TODO: @fixme, keep code compilable, but needs support for multiple
 
        //  input files.
 
        let source = InputSource::new(String::new(), Vec::from(buffer));
 
        let mut parser = Parser::new();
 
        parser.feed(source).expect("failed to feed source");
 
        
 
        if let Err(err) = parser.parse() {
 
            println!("ERROR:\n{}", err);
 
            return Err(format!("{}", err))
 
        }
 

	
 
        debug_assert_eq!(parser.modules.len(), 1, "only supporting one module here for now");
 
        let modules: Vec<Module> = parser.modules.into_iter()
 
            .map(|module| Module{
 
                source: module.source,
 
                root_id: module.root_id,
 
                name: module.name.map(|(_, name)| name)
 
            })
 
            .collect();
 

	
 
        return Ok(ProtocolDescription {
 
            modules,
 
            heap: parser.heap,
 
            types: parser.type_table,
 
            pool: Mutex::new(parser.string_pool),
 
        });
 
    }
 
    pub(crate) fn component_polarities(
 
        &self,
 
        module_name: &[u8],
 
        identifier: &[u8],
 
    ) -> Result<Vec<Polarity>, AddComponentError> {
 
        use AddComponentError::*;
 

	
 
        let module_root = self.lookup_module_root(module_name);
 
        if module_root.is_none() {
 
            return Err(AddComponentError::NoSuchModule);
 
        }
 
        let module_root = module_root.unwrap();
 

	
 
        let root = &self.heap[module_root];
 
        let def = root.get_definition_ident(&self.heap, identifier);
 
        if def.is_none() {
 
            return Err(NoSuchComponent);
 
        }
 

	
 
        let def = &self.heap[def.unwrap()];
 
        if !def.is_component() {
 
            return Err(NoSuchComponent);
 
        }
 

	
 
        for &param in def.parameters().iter() {
 
            let param = &self.heap[param];
 
            let first_element = &param.parser_type.elements[0];
 

	
 
            match first_element.variant {
 
                ParserTypeVariant::Input | ParserTypeVariant::Output => continue,
 
                _ => {
 
                    return Err(NonPortTypeParameters);
 
                }
 
            }
 
        }
 

	
 
        let mut result = Vec::new();
 
        for &param in def.parameters().iter() {
 
            let param = &self.heap[param];
 
            let first_element = &param.parser_type.elements[0];
 

	
 
            if first_element.variant == ParserTypeVariant::Input {
 
                result.push(Polarity::Getter)
 
            } else if first_element.variant == ParserTypeVariant::Output {
 
                result.push(Polarity::Putter)
 
            } else {
 
                unreachable!()
 
            }
 
        }
 
        Ok(result)
 
    }
 
    // expects port polarities to be correct
 
    pub(crate) fn new_component(&self, module_name: &[u8], identifier: &[u8], ports: &[PortId]) -> ComponentState {
 
        let mut args = Vec::new();
 
        for (&x, y) in ports.iter().zip(self.component_polarities(module_name, identifier).unwrap()) {
 
            match y {
 
                Polarity::Getter => args.push(Value::Input(x)),
 
                Polarity::Putter => args.push(Value::Output(x)),
 
            }
 
        }
 

	
 
        let module_root = self.lookup_module_root(module_name).unwrap();
 
        let root = &self.heap[module_root];
 
        let def = root.get_definition_ident(&self.heap, identifier).unwrap();
 
        // TODO: Check for polymorph
 
        ComponentState { prompt: Prompt::new(&self.types, &self.heap, def, 0, ValueGroup::new_stack(args)) }
 
    }
 

	
 
    fn lookup_module_root(&self, module_name: &[u8]) -> Option<RootId> {
 
        for module in self.modules.iter() {
 
            match &module.name {
 
                Some(name) => if name.as_bytes() == module_name {
 
                    return Some(module.root_id);
 
                },
 
                None => if module_name.is_empty() {
 
                    return Some(module.root_id);
 
                }
 
            }
 
        }
 

	
 
        return None;
 
    }
 
}
 

	
 
// TODO: @temp Should just become a concrete thing that is passed in
 
pub trait RunContext {
 
    fn did_put(&self, port: PortId) -> bool;
 
    fn get(&self, port: PortId) -> Option<Value>; // None if still waiting on message
 
    fn fires(&self, port: PortId) -> Option<Value>; // None if not yet branched
 
    fn get_channel(&self) -> Option<(Value, Value)>; // None if not yet prepared
 
}
 

	
 
#[derive(Debug)]
 
pub enum RunResult {
 
    // Can only occur outside sync blocks
 
    ComponentTerminated, // component has exited its procedure
 
    ComponentAtSyncStart,
 
    NewComponent(DefinitionId, i32, ValueGroup), // should also be possible inside sync
 
    NewChannel, // should also be possible inside sync
 
    // Can only occur inside sync blocks
 
    BranchInconsistent, // branch has inconsistent behaviour
 
    BranchMissingPortState(PortId), // branch doesn't know about port firing
 
    BranchMissingPortValue(PortId), // branch hasn't received message on input port yet
 
    BranchAtSyncEnd,
 
    BranchPut(PortId, ValueGroup),
 
}
 

	
 
impl ComponentState {
 
    pub(crate) fn run(&mut self, ctx: &mut impl RunContext, pd: &ProtocolDescription) -> RunResult {
 
        use EvalContinuation as EC;
 
        use RunResult as RR;
 

	
 
        loop {
 
            let step_result = self.prompt.step(&pd.types, &pd.heap, &pd.modules, ctx);
 
            match step_result {
 
                Err(reason) => {
 
                    // TODO: @temp
 
                    println!("Evaluation error:\n{}", reason);
 
                    todo!("proper error handling/bubbling up");
 
                },
 
                Ok(continuation) => match continuation {
 
                    // TODO: Probably want to remove this translation
 
                    EC::Stepping => continue,
 
                    EC::Inconsistent => return RR::BranchInconsistent,
 
                    EC::Terminal => return RR::ComponentTerminated,
 
                    EC::SyncBlockStart => return RR::ComponentAtSyncStart,
 
                    EC::SyncBlockEnd => return RR::BranchAtSyncEnd,
 
                    EC::NewComponent(definition_id, monomorph_idx, args) =>
 
                        return RR::NewComponent(definition_id, monomorph_idx, arg),
 
                    EC::NewChannel =>
 
                        return RR::NewChannel,
 
                    EC::BlockFires(port_id) => return RR::BranchMissingPortState(port_id),
 
                    EC::BlockGet(port_id) => return RR::BranchMissingPortValue(port_id),
 
                    EC::Put(port_id, value) => {
 
                        let value_group = ValueGroup::from_store(&self.prompt.store, &[value]);
 
                        return RR::BranchPut(port_id, value_group);
 
                    },
 
                }
 
            }
 
        }
 
    }
 
}
 

	
 
// TODO: @remove the old stuff
 
impl ComponentState {
 
    pub(crate) fn nonsync_run<'a: 'b, 'b>(
 
        &'a mut self,
 
        context: &'b mut NonsyncProtoContext<'b>,
 
        pd: &'a ProtocolDescription,
 
    ) -> NonsyncBlocker {
 
        let mut context = EvalContext::Nonsync(context);
 
        loop {
 
            let result = self.prompt.step(&pd.types, &pd.heap, &pd.modules, &mut context);
 
            match result {
 
                Err(err) => {
 
                    println!("Evaluation error:\n{}", err);
 
                    panic!("proper error handling when component fails");
 
                },
 
                Ok(cont) => match cont {
 
                    EvalContinuation::Stepping => continue,
 
                    EvalContinuation::Inconsistent => return NonsyncBlocker::Inconsistent,
 
                    EvalContinuation::Terminal => return NonsyncBlocker::ComponentExit,
 
                    EvalContinuation::SyncBlockStart => return NonsyncBlocker::SyncBlockStart,
 
                    // Not possible to end sync block if never entered one
 
                    EvalContinuation::SyncBlockEnd => unreachable!(),
 
                    EvalContinuation::NewComponent(definition_id, monomorph_idx, args) => {
 
                        // Look up definition (TODO for now, assume it is a definition)
 
                        let mut moved_ports = HashSet::new();
 
                        for arg in args.values.iter() {
 
                            match arg {
 
                                Value::Output(port) => {
 
                                    moved_ports.insert(*port);
 
                                }
 
                                Value::Input(port) => {
 
                                    moved_ports.insert(*port);
 
                                }
 
                                _ => {}
 
                            }
 
                        }
 
                        for region in args.regions.iter() {
 
                            for arg in region {
 
                                match arg {
 
                                    Value::Output(port) => { moved_ports.insert(*port); },
 
                                    Value::Input(port) => { moved_ports.insert(*port); },
 
                                    _ => {},
 
                                }
 
                            }
 
                        }
 
                        let init_state = ComponentState { prompt: Prompt::new(&pd.types, &pd.heap, definition_id, monomorph_idx, args) };
 
                        context.new_component(moved_ports, init_state);
 
                        // Continue stepping
 
                        continue;
 
                    }
 
                    // Outside synchronous blocks, no fires/get/put happens
 
                    EvalContinuation::BlockFires(_) => unreachable!(),
 
                    EvalContinuation::BlockGet(_) => unreachable!(),
 
                    EvalContinuation::Put(_, _) => unreachable!(),
 
                },
 
            }
 
        }
 
    }
 

	
 
    pub(crate) fn sync_run<'a: 'b, 'b>(
 
        &'a mut self,
 
        context: &'b mut SyncProtoContext<'b>,
 
        pd: &'a ProtocolDescription,
 
    ) -> SyncBlocker {
 
        let mut context = EvalContext::Sync(context);
 
        loop {
 
            let result = self.prompt.step(&pd.types, &pd.heap, &pd.modules, &mut context);
 
            match result {
 
                Err(err) => {
 
                    println!("Evaluation error:\n{}", err);
 
                    panic!("proper error handling when component fails");
 
                },
 
                Ok(cont) => match cont {
 
                    EvalContinuation::Stepping => continue,
 
                    EvalContinuation::Inconsistent => return SyncBlocker::Inconsistent,
 
                    // First need to exit synchronous block before definition may end
 
                    EvalContinuation::Terminal => unreachable!(),
 
                    // No nested synchronous blocks
 
                    EvalContinuation::SyncBlockStart => unreachable!(),
 
                    EvalContinuation::SyncBlockEnd => return SyncBlocker::SyncBlockEnd,
 
                    // Not possible to create component in sync block
 
                    EvalContinuation::NewComponent(_, _, _) => unreachable!(),
 
                    EvalContinuation::BlockFires(port) => match port {
 
                        Value::Output(port) => {
 
                            return SyncBlocker::CouldntCheckFiring(port);
 
                        }
 
                        Value::Input(port) => {
 
                            return SyncBlocker::CouldntCheckFiring(port);
 
                        }
 
                        _ => unreachable!(),
 
                    },
 
                    EvalContinuation::BlockGet(port) => match port {
 
                        Value::Output(port) => {
 
                            return SyncBlocker::CouldntReadMsg(port);
 
                        }
 
                        Value::Input(port) => {
 
                            return SyncBlocker::CouldntReadMsg(port);
 
                        }
 
                        _ => unreachable!(),
 
                    },
 
                    EvalContinuation::Put(port, message) => {
 
                        let value;
 
                        match port {
 
                            Value::Output(port_value) => {
 
                                value = port_value;
 
                            }
 
                            Value::Input(port_value) => {
 
                                value = port_value;
 
                            }
 
                            _ => unreachable!(),
 
                        }
 
                        let payload;
 
                        match message {
 
                            Value::Null => {
 
                                return SyncBlocker::Inconsistent;
 
                            },
 
                            Value::Message(heap_pos) => {
 
                                // Create a copy of the payload
 
                                let values = &self.prompt.store.heap_regions[heap_pos as usize].values;
 
                                let mut bytes = Vec::with_capacity(values.len());
 
                                for value in values {
 
                                    bytes.push(value.as_uint8());
 
                                }
 
                                payload = Payload(Arc::new(bytes));
 
                            }
 
                            _ => unreachable!(),
 
                        }
 
                        return SyncBlocker::PutMsg(value, payload);
 
                        return SyncBlocker::PutMsg(port, payload);
 
                    }
 
                },
 
            }
 
        }
 
    }
 
}
 
impl EvalContext<'_> {
 
    // fn random(&mut self) -> LongValue {
 
    //     match self {
 
    //         // EvalContext::None => unreachable!(),
 
    //         EvalContext::Nonsync(_context) => todo!(),
 
    //         EvalContext::Sync(_) => unreachable!(),
 
    //     }
 
    // }
 
    fn new_component(&mut self, moved_ports: HashSet<PortId>, init_state: ComponentState) -> () {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(context) => {
 
                context.new_component(moved_ports, init_state)
 
            }
 
            EvalContext::Sync(_) => unreachable!(),
 
        }
 
    }
 
    fn new_channel(&mut self) -> [Value; 2] {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(context) => {
 
                let [from, to] = context.new_port_pair();
 
                let from = Value::Output(from);
 
                let to = Value::Input(to);
 
                return [from, to];
 
            }
 
            EvalContext::Sync(_) => unreachable!(),
 
        }
 
    }
 
    fn fires(&mut self, port: Value) -> Option<Value> {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(_) => unreachable!(),
 
            EvalContext::Sync(context) => match port {
 
                Value::Output(port) => context.is_firing(port).map(Value::Bool),
 
                Value::Input(port) => context.is_firing(port).map(Value::Bool),
 
                _ => unreachable!(),
 
            },
 
        }
 
    }
 
    fn get(&mut self, port: Value, store: &mut Store) -> Option<Value> {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(_) => unreachable!(),
 
            EvalContext::Sync(context) => match port {
 
                Value::Input(port) => {
 
                    let payload = context.read_msg(port);
 
                    if payload.is_none() { return None; }
 

	
 
                    let heap_pos = store.alloc_heap();
 
                    let heap_pos_usize = heap_pos as usize;
 
                    let payload = payload.unwrap();
 
                    store.heap_regions[heap_pos_usize].values.reserve(payload.0.len());
 
                    for value in payload.0.iter() {
 
                        store.heap_regions[heap_pos_usize].values.push(Value::UInt8(*value));
 
                    }
 

	
 
                    return Some(Value::Message(heap_pos));
 
                }
 
                _ => unreachable!(),
 
            },
 
        }
 
    }
 
    fn did_put(&mut self, port: Value) -> bool {
 
        match self {
 
            EvalContext::None => unreachable!("did_put in None context"),
 
            EvalContext::Nonsync(_) => unreachable!("did_put in nonsync context"),
 
            EvalContext::Sync(context) => match port {
 
                Value::Output(port) => {
 
                    context.did_put_or_get(port)
 
                },
 
                _ => unreachable!("did_put on non-output port value")
 
            }
 
        }
 
    }
 
}
src/runtime2/mod.rs
Show inline comments
 
mod runtime;
 
\ No newline at end of file
 
mod registry;
 
\ No newline at end of file
src/runtime2/registry.rs
Show inline comments
 
deleted file
src/runtime2/runtime.rs
Show inline comments
 
use std::sync::Arc;
 
use std::collections::{HashMap, VecDeque};
 
use std::collections::hash_map::{Entry};
 

	
 
use crate::runtime::error as old_error;
 

	
 
use crate::Polarity;
 
use crate::{Polarity, PortId};
 
use crate::common::Id;
 
use crate::protocol::*;
 
use crate::protocol::eval::*;
 

	
 
use super::registry::Registry;
 

	
 
enum AddComponentError {
 
    ModuleDoesNotExist,
 
    ConnectorDoesNotExist,
 
    InvalidArgumentType(usize), // value is index of (first) invalid argument
 
}
 

	
 
struct PortDesc {
 
    id: u32,
 
    peer_id: u32,
 
    owning_connector_id: Option<u32>,
 
    is_getter: bool, // otherwise one can only call `put`
 
}
 

	
 
// Message received from some kind of peer
 
struct BufferedMessage {
 
    // If in inbox, then sender is the connector's peer. If in the outbox, then
 
    // the sender is the connector itself.
 
    sending_port: PortId,
 
    receiving_port: PortId,
 
    peer_prev_branch_id: Option<u32>, // of the sender
 
    peer_cur_branch_id: u32, // of the sender
 
    message: ValueGroup,
 
}
 

	
 
struct ConnectorDesc {
 
    id: u32,
 
    in_sync: bool,
 
    branches: Vec<BranchDesc>, // first one is always non-speculative one
 
    branch_id_counter: u32,
 
    spec_branches_active: VecDeque<u32>, // branches that can be run immediately
 
    spec_branches_pending_receive: HashMap<PortId, u32>, // from port_id to branch index
 
    global_inbox: HashMap<(PortId, u32), BufferedMessage>,
 
    global_outbox: HashMap<(PortId, u32), BufferedMessage>,
 
}
 

	
 
impl ConnectorDesc {
 
    /// Creates a new connector description. Implicit assumption is that there
 
    /// is one (non-sync) branch that can be immediately executed.
 
    fn new(id: u32, component_state: ComponentState, owned_ports: Vec<u32>) -> Self {
 
        let mut branches_active = VecDeque::new();
 
        branches_active.push_back(0);
 

	
 
        Self{
 
            id,
 
            in_sync: false,
 
            branches: vec![BranchDesc::new_non_sync(component_state, owned_ports)],
 
            branch_id_counter: 1,
 
            spec_branches_active: branches_active,
 
            spec_branches_pending_receive: HashMap::new(),
 
            global_inbox: HashMap::new(),
 
            global_outbox: HashMap::new(),
 
        }
 
    }
 
}
 

	
 
enum BranchState {
 
    RunningNonSync, // regular running non-speculative branch
 
    RunningSync, // regular running speculative branch
 
    BranchPoint, // branch which ended up being a branching point
 
    ReachedEndSync, // branch that successfully reached the end-sync point, is a possible local solution
 
    Failed, // branch that became inconsistent
 
}
 

	
 
struct BranchPortDesc {
 
    last_registered_identifier: Option<u32>, // if putter, then last sent branch ID, if getter, then last received branch ID
 
    num_times_fired: u32, // number of puts/gets on this port
 
}
 

	
 
struct BranchDesc {
 
    index: u32,
 
    parent_index: Option<u32>,
 
    identifier: u32,
 
    code_state: ComponentState,
 
    branch_state: BranchState,
 
    owned_ports: Vec<u32>,
 
    message_inbox: HashMap<(PortId, u32), ValueGroup>, // from (port id, 1-based recv index) to received value
 
    port_mapping: HashMap<PortId, BranchPortDesc>,
 
}
 

	
 
impl BranchDesc {
 
    /// Creates the first non-sync branch of a connector
 
    fn new_non_sync(component_state: ComponentState, owned_ports: Vec<u32>) -> Self {
 
        Self{
 
            index: 0,
 
            parent_index: None,
 
            identifier: 0,
 
            code_state: component_state,
 
            branch_state: BranchState::RunningNonSync,
 
            owned_ports,
 
            message_inbox: HashMap::new(),
 
            port_mapping: HashMap::new(),
 
        }
 
    }
 

	
 
    /// Creates a sync branch based on the supplied branch. This supplied branch
 
    /// is the branching point for the new one, i.e. the parent in the branching
 
    /// tree.
 
    fn new_sync_from(index: u32, identifier: u32, branch_state: &BranchDesc) -> Self {
 
        Self{
 
            index,
 
            parent_index: Some(branch_state.index),
 
            identifier,
 
            code_state: branch_state.code_state.clone(),
 
            branch_state: BranchState::RunningSync,
 
            owned_ports: branch_state.owned_ports.clone(),
 
            message_inbox: branch_state.message_inbox.clone(),
 
            port_mapping: branch_state.port_mapping.clone(),
 
        }
 
    }
 
}
 

	
 
// Separate from Runtime for borrowing reasons
 
struct Registry {
 
    ports: HashMap<u32, PortDesc>,
 
    port_counter: u32,
 
    connectors: HashMap<u32, ConnectorDesc>,
 
    connector_counter: u32,
 
}
 

	
 
impl Registry {
 
    fn new() -> Self {
 
        Self{
 
            ports: HashMap::new(),
 
            port_counter: 0,
 
            connectors: HashMap::new(),
 
            connector_counter: 0,
 
        }
 
    }
 

	
 
    /// Returns (putter_port, getter_port)
 
    pub fn add_channel(&mut self, owning_connector_id: Option<u32>) -> (u32, u32) {
 
        let get_id = self.generate_port_id();
 
        let put_id = self.generate_port_id();
 

	
 
        self.ports.insert(get_id, PortDesc{
 
            id: get_id,
 
            peer_id: put_id,
 
            owning_connector_id,
 
            is_getter: true,
 
        });
 
        self.ports.insert(put_id, PortDesc{
 
            id: put_id,
 
            peer_id: get_id,
 
            owning_connector_id,
 
            is_getter: false,
 
        });
 

	
 
        return (put_id, get_id);
 
    }
 

	
 
    fn generate_port_id(&mut self) -> u32 {
 
        let id = self.port_counter;
 
        self.port_counter += 1;
 
        return id;
 
    }
 
}
 

	
 
// TODO: @performance, use freelists+ids instead of HashMaps
 
struct Runtime {
 
    protocol: Arc<ProtocolDescription>,
 

	
 
    registry: Registry,
 
    connectors_active: VecDeque<u32>,
 
}
 

	
 
impl Runtime {
 
    pub fn new(pd: Arc<ProtocolDescription>) -> Self {
 
        Self{ protocol: pd }
 
        Self{
 
            protocol: pd,
 
            registry: Registry::new(),
 
            connectors_active: VecDeque::new(),
 
        }
 
    }
 

	
 
    /// Creates a new channel that is not owned by any connector and returns its
 
    /// endpoints. The returned values are of the (putter port, getter port)
 
    /// respectively.
 
    pub fn add_channel(&mut self) -> (Value, Value) {
 
        let (put_id, get_id) = self.registry.add_channel(None);
 
        return (
 
            port_value_from_id(None, put_id, true),
 
            port_value_from_id(None, get_id, false)
 
        );
 
    }
 

	
 
    pub fn add_component(&mut self, module: &str, procedure: &str, values: ValueGroup) -> Result<(), AddComponentError> {
 
        use AddComponentError as ACE;
 
        use old_error::AddComponentError as OldACE;
 
        use crate::runtime::error::AddComponentError as OldACE;
 

	
 
        // TODO: Allow the ValueGroup to contain any kind of value
 
        // TODO: Remove the responsibility of adding a component from the PD
 

	
 
        // Lookup module and the component
 
        // TODO: Remove this error enum translation
 
        // TODO: Remove this error enum translation. Note that for now this
 
        //  function forces port-only arguments
 
        let port_polarities = match self.protocol.component_polarities(module.as_bytes(), procedure.as_bytes()) {
 
            Ok(polarities) => polarities,
 
            Err(reason) => match reason {
 
                OldACE::NonPortTypeParameters => return Err(ACE::InvalidArgumentType(0)),
 
                OldACE::NoSuchModule => return Err(ACE::ModuleDoesNotExist),
 
                OldACE::NoSuchComponent => return Err(ACE::ModuleDoesNotExist),
 
                _ => unreachable!(),
 
            }
 
        };
 

	
 
        // Make sure supplied values (and types) are correct
 
        let mut ports = Vec::with_capacity(values.values.len());
 
        
 
        for (value_idx, value) in values.values.iter().enumerate() {
 
            let polarity = &port_polarities[value_idx];
 

	
 
            match value {
 
                Value::Input(port_id) => {
 
                    if *polarity != Polarity::Getter {
 
                        return Err(ACE::InvalidArgumentType(value_idx))
 
                    }
 

	
 
                    ports.push(*port_id);
 
                },
 
                Value::Output(port_id) => {
 
                    if *polarity != Polarity::Putter {
 
                        return Err(ACE::InvalidArgumentType(value_idx))
 
                    }
 

	
 
                    ports.push(*port_id);
 
                },
 
                _ => return Err(ACE::InvalidArgumentType(value_idx))
 
            }
 
        }
 

	
 
        // Instantiate the component
 
        let component_id = self.generate_connector_id();
 
        let component_state = self.protocol.new_component(module.as_bytes(), procedure.as_bytes(), &ports);
 
        let ports = ports.into_iter().map(|v| v.0.u32_suffix).collect();
 

	
 
        self.registry.connectors.insert(component_id, ConnectorDesc::new(component_id, component_state, ports));
 
        self.connectors_active.push_back(component_id);
 

	
 
        Ok(())
 
    }
 

	
 
    pub fn run(&mut self) {
 
        // Go through all active connectors
 
        while !self.connectors_active.is_empty() {
 
            let next_id = self.connectors_active.pop_front().unwrap();
 
            self.run_connector(next_id);
 
        }
 
    }
 

	
 
    /// Runs a connector for as long as sensible, then returns `true` if the
 
    /// connector should be run again in the future, and return `false` if the
 
    /// connector has terminated. Note that a terminated connector still 
 
    /// requires cleanup.
 
    pub fn run_connector(&mut self, id: u32) -> bool {
 
        let desc = self.registry.connectors.get_mut(&id).unwrap();
 
        let mut run_context = Context{
 
            connector_id: id,
 
            branch_id: None,
 
            pending_channel: None,
 
        };
 

	
 
        let mut call_again = false;
 

	
 
        while call_again {
 
            call_again = false; // bit of a silly pattern, maybe revise
 

	
 
            if desc.in_sync {
 
                // Running in synchronous mode, so run all branches until their
 
                // blocking point
 
                debug_assert!(!desc.spec_branches_active.is_empty());
 
                let branch_index = desc.spec_branches_active.pop_front().unwrap();
 

	
 
                let branch = &mut desc.branches[branch_index as usize];
 
                let run_result = branch.code_state.run(&mut run_context, &self.protocol);
 

	
 
                match run_result {
 
                    RunResult::BranchInconsistent => {
 
                        // Speculative branch became inconsistent. So we don't
 
                        // run it again
 
                        branch.branch_state = BranchState::Failed;
 
                    },
 
                    RunResult::BranchMissingPortState(port_id) => {
 
                        // Branch called `fires()` on a port that did not have a
 
                        // value assigned yet. So branch and keep running
 
                        debug_assert!(branch.owned_ports.contains(&port_id.0.u32_suffix));
 
                        debug_assert!(branch.port_mapping.get(&port_id).is_none());
 

	
 
                        let copied_index = Self::duplicate_branch(desc, branch_index);
 

	
 
                        // Need to re-borrow to assign changed port state
 
                        let original_branch = &mut desc.branches[branch_index as usize];
 
                        original_branch.port_mapping.insert(port_id, BranchPortDesc{
 
                            last_registered_identifier: None,
 
                            num_times_fired: 0,
 
                        });
 

	
 
                        let copied_branch = &mut desc.branches[copied_index as usize];
 
                        copied_branch.port_mapping.insert(port_id, BranchPortDesc{
 
                            last_registered_identifier: None,
 
                            num_times_fired: 1,
 
                        });
 

	
 
                        // Run both again
 
                        desc.spec_branches_active.push_back(branch_index);
 
                        desc.spec_branches_active.push_back(copied_index);
 
                    },
 
                    RunResult::BranchMissingPortValue(port_id) => {
 
                        // Branch just performed a `get()` on a port that did
 
                        // not yet receive a value.
 

	
 
                        // First check if a port value is assigned to the
 
                        // current branch. If so, check if it is consistent.
 
                        debug_assert!(branch.owned_ports.contains(&port_id.0.u32_suffix));
 
                        match branch.port_mapping.entry(port_id) {
 
                            Entry::Vacant(entry) => {
 
                                // No entry yet, so force to firing
 
                                entry.insert(BranchPortDesc{
 
                                    last_registered_identifier: None,
 
                                    num_times_fired: 1,
 
                                });
 
                                branch.branch_state = BranchState::BranchPoint;
 
                                desc.spec_branches_pending_receive.insert(port_id, branch_index);
 
                            },
 
                            Entry::Occupied(entry) => {
 
                                // Have an entry, check if it is consistent
 
                                let entry = entry.get();
 
                                if entry.num_times_fired == 0 {
 
                                    // Inconsistent
 
                                    branch.branch_state = BranchState::Failed;
 
                                } else {
 
                                    // Perfectly fine, add to queue
 
                                    branch.branch_state = BranchState::BranchPoint;
 
                                    desc.spec_branches_pending_receive.insert(port_id, branch_index);
 
                                }
 
                            }
 
                        }
 
                    },
 
                    RunResult::BranchAtSyncEnd => {
 
                        branch.branch_state = BranchState::ReachedEndSync;
 
                        todo!("somehow propose solution");
 
                    },
 
                    RunResult::BranchPut(port_id, value_group) => {
 
                        debug_assert!(branch.owned_ports.contains(&port_id.0.u32_suffix));
 
                        debug_assert_eq!(value_group.values.len(), 1)
 
                    },
 
                    _ => unreachable!("got result '{:?}' from running component in sync mode", run_result),
 
                }
 
            } else {
 
                // Running in non-synchronous mode
 
                let branch = &mut desc.branches[0];
 
                let run_result = branch.code_state.run(&mut run_context, &self.protocol);
 

	
 
                match run_result {
 
                    RunResult::ComponentTerminated => return false,
 
                    RunResult::ComponentAtSyncStart => {
 
                        // Prepare for sync execution
 
                        Self::prepare_branch_for_sync(desc);
 
                        call_again = true;
 
                    },
 
                    RunResult::NewComponent(definition_id, monomorph_idx, arguments) => {
 
                        // Generate a new connector with its own state
 
                        let new_component_id = self.generate_connector_id();
 
                        let new_component_state = ComponentState {
 
                            prompt: Prompt::new(&self.protocol.types, &self.protocol.heap, definition_id, monomorph_idx, arguments)
 
                        };
 

	
 
                        // Transfer the ownership of any ports to the new connector
 
                        let mut ports = Vec::with_capacity(arguments.values.len());
 
                        find_ports_in_value_group(&arguments, &mut ports);
 
                        for port_id in &ports {
 
                            let port = self.registry.ports.get_mut(&port_id.0.u32_suffix).unwrap();
 
                            debug_assert_eq!(port.owning_connector_id.unwrap(), run_context.connector_id);
 
                            port.owning_connector_id = Some(new_component_id)
 
                        }
 

	
 
                        // Finally push the new connector into the registry
 
                        let ports = ports.into_iter().map(|v| v.0.u32_suffix).collect();
 
                        self.registry.connectors.insert(new_component_id, ConnectorDesc::new(new_component_id, new_component_state, ports));
 
                        self.connectors_active.push_back(new_component_id);
 
                    },
 
                    RunResult::NewChannel => {
 
                        // Prepare channel
 
                        debug_assert!(run_context.pending_channel.is_none());
 
                        let (put_id, get_id) = self.registry.add_channel(Some(run_context.connector_id));
 
                        run_context.pending_channel = Some((
 
                            port_value_from_id(Some(run_context.connector_id), put_id, true),
 
                            port_value_from_id(Some(run_context.connector_id), get_id, false)
 
                        ));
 

	
 
                        // Call again so it is retrieved from the context
 
                        call_again = true;
 
                    },
 
                    _ => unreachable!("got result '{:?}' from running component in non-sync mode", run_result),
 
                }
 
            }
 
        }
 

	
 
        return true;
 
    }
 

	
 
    fn generate_connector_id(&mut self) -> u32 {
 
        let id = self.registry.connector_counter;
 
        self.registry.connector_counter += 1;
 
        return id;
 
    }
 

	
 
    // -------------------------------------------------------------------------
 
    // Helpers for branch management
 
    // -------------------------------------------------------------------------
 

	
 
    /// Prepares a speculative branch for further execution from the connector's
 
    /// non-speculative base branch.
 
    fn prepare_branch_for_sync(desc: &mut ConnectorDesc) {
 
        // Ensure only one branch is active, the non-sync branch
 
        debug_assert!(!desc.in_sync);
 
        debug_assert_eq!(desc.branches.len(), 1);
 
        debug_assert!(desc.spec_branches_active.is_empty());
 
        let new_branch_index = 1;
 
        let new_branch_identifier = desc.branch_id_counter;
 
        desc.branch_id_counter += 1;
 

	
 
        // Push first speculative branch as active branch
 
        let new_branch = BranchDesc::new_sync_from(new_branch_index, new_branch_identifier, &desc.branches[0]);
 
        desc.branches.push(new_branch);
 
        desc.spec_branches_active.push_back(new_id);
 
        desc.in_sync = true;
 
    }
 

	
 
    /// Duplicates a particular (speculative) branch and returns its index.
 
    fn duplicate_branch(desc: &mut ConnectorDesc, original_branch_idx: u32) -> u32 {
 
        let original_branch = &desc.branches[original_branch_idx as usize];
 
        debug_assert!(desc.in_sync);
 

	
 
        let copied_index = desc.branches.len() as u32;
 
        let copied_id = desc.branch_id_counter;
 
        desc.branch_id_counter += 1;
 

	
 
        let copied_branch = BranchDesc::new_sync_from(copied_index, copied_id, original_branch);
 
        desc.branches.push(copied_branch);
 

	
 
        return copied_index;
 
    }
 
}
 

	
 
/// Context accessible by the code while being executed by the runtime. When the
 
/// code is being executed by the runtime it sometimes needs to interact with 
 
/// the runtime. This is achieved by the "code throwing an error code", after 
 
/// which the runtime modifies the appropriate variables and continues executing
 
/// the code again. 
 
struct Context<'a> {
 
    // Properties of currently running connector/branch
 
    connector_id: u32,
 
    branch_id: Option<u32>,
 
    // Resources ready to be retrieved by running code
 
    pending_channel: Option<(Value, Value)>, // (put, get) ports
 
}
 

	
 
impl<'a> crate::protocol::RunContext for Context<'a> {
 
    fn did_put(&self, port: PortId) -> bool {
 
        todo!()
 
    }
 

	
 
    fn get(&self, port: PortId) -> Option<Value> {
 
        todo!()
 
    }
 

	
 
    fn fires(&self, port: PortId) -> Option<Value> {
 
        todo!()
 
    }
 

	
 
    fn get_channel(&mut self) -> Option<(Value, Value)> {
 
        self.pending_channel.take()
 
    }
 
}
 

	
 
/// Recursively goes through the value group, attempting to find ports. 
 
/// Duplicates will only be added once.
 
fn find_ports_in_value_group(value_group: &ValueGroup, ports: &mut Vec<PortId>) {
 
    // Helper to check a value for a port and recurse if needed.
 
    fn find_port_in_value(group: &ValueGroup, value: &Value, ports: &mut Vec<PortId>) {
 
        match value {
 
            Value::Input(port_id) | Value::Output(port_id) => {
 
                // This is an actual port
 
                for prev_port in ports {
 
                    if prev_port == port_id {
 
                        // Already added
 
                        return;
 
                    }
 
                }
 
                
 
                ports.push(*port_id);
 
            },
 
            Value::Array(heap_pos) | 
 
            Value::Message(heap_pos) |
 
            Value::String(heap_pos) |
 
            Value::Struct(heap_pos) |
 
            Value::Union(_, heap_pos) => {
 
                // Reference to some dynamic thing which might contain ports,
 
                // so recurse
 
                let heap_region = &group.regions[*heap_pos as usize];
 
                for embedded_value in heap_region {
 
                    find_port_in_value(group, embedded_value, ports);
 
                }
 
            },
 
            _ => {}, // values we don't care about
 
        }
 
    }
 
    
 
    // Clear the ports, then scan all the available values
 
    ports.clear();
 
    for value in &value_group.values {
 
        find_port_in_value(value_group, value, ports);
 
    }
 
}
 

	
 
fn port_value_from_id(connector_id: Option<u32>, port_id: u32, is_output: bool) -> Value {
 
    let connector_id = connector_id.unwrap_or(u32::MAX); // TODO: @hack, review entire PortId/ConnectorId/Id system
 
    if is_output {
 
        return Value::Output(PortId(Id{
 
            connector_id,
 
            u32_suffix: port_id
 
        }));
 
    } else {
 
        return Value::Input(PortId(Id{
 
            connector_id,
 
            u32_suffix: port_id,
 
        }));
 
    }
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)