Changeset - ce77f83608df
[Not reviewed]
0 8 0
MH - 4 years ago 2021-05-26 20:32:57
contact@maxhenger.nl
Integrate with old runtime, pending some tiny fixes
8 files changed with 264 insertions and 61 deletions:
0 comments (0 inline, 0 general)
src/protocol/eval/executor.rs
Show inline comments
 
@@ -338,123 +338,144 @@ impl Prompt {
 
                            cur_frame.expr_values.push_back(result);
 
                            self.store.drop_value(val.get_heap_pos());
 
                        },
 
                        Expression::Indexing(expr) => {
 
                            // Evaluate index. Never heap allocated so we do
 
                            // not have to drop it.
 
                            let index = cur_frame.expr_values.pop_back().unwrap();
 
                            let index = self.store.maybe_read_ref(&index);
 

	
 
                            debug_assert!(index.is_integer());
 
                            let index = if index.is_signed_integer() {
 
                                index.as_signed_integer() as i64
 
                            } else {
 
                                index.as_unsigned_integer() as i64
 
                            };
 

	
 
                            let subject = cur_frame.expr_values.pop_back().unwrap();
 

	
 
                            let (deallocate_heap_pos, value_to_push, subject_heap_pos) = match subject {
 
                                Value::Ref(value_ref) => {
 
                                    // Our expression stack value is a reference to something that
 
                                    // exists in the normal stack/heap. We don't want to deallocate
 
                                    // this thing. Rather we want to return a reference to it.
 
                                    let subject = self.store.read_ref(value_ref);
 
                                    let subject_heap_pos = subject.as_array();
 
                                    let subject_heap_pos = match subject {
 
                                        Value::String(v) => *v,
 
                                        Value::Array(v) => *v,
 
                                        Value::Message(v) => *v,
 
                                        _ => unreachable!(),
 
                                    };
 

	
 
                                    if array_inclusive_index_is_invalid(&self.store, subject_heap_pos, index) {
 
                                        return Err(construct_array_error(self, modules, heap, expr_id, subject_heap_pos, index));
 
                                    }
 

	
 
                                    (None, Value::Ref(ValueId::Heap(subject_heap_pos, index as u32)), subject_heap_pos)
 
                                },
 
                                _ => {
 
                                    // Our value lives on the expression stack, hence we need to
 
                                    // clone whatever we're referring to. Then drop the subject.
 
                                    let subject_heap_pos = subject.as_array();
 
                                    let subject_heap_pos = match &subject {
 
                                        Value::String(v) => *v,
 
                                        Value::Array(v) => *v,
 
                                        Value::Message(v) => *v,
 
                                        _ => unreachable!(),
 
                                    };
 

	
 
                                    if array_inclusive_index_is_invalid(&self.store, subject_heap_pos, index) {
 
                                        return Err(construct_array_error(self, modules, heap, expr_id, subject_heap_pos, index));
 
                                    }
 

	
 
                                    let subject_indexed = Value::Ref(ValueId::Heap(subject_heap_pos, index as u32));
 
                                    (Some(subject_heap_pos), self.store.clone_value(subject_indexed), subject_heap_pos)
 
                                },
 
                            };
 

	
 
                            cur_frame.expr_values.push_back(value_to_push);
 
                            self.store.drop_value(deallocate_heap_pos);
 
                        },
 
                        Expression::Slicing(expr) => {
 
                            // Evaluate indices
 
                            let from_index = cur_frame.expr_values.pop_back().unwrap();
 
                            let from_index = self.store.maybe_read_ref(&from_index);
 
                            let to_index = cur_frame.expr_values.pop_back().unwrap();
 
                            let to_index = self.store.maybe_read_ref(&to_index);
 

	
 
                            debug_assert!(from_index.is_integer() && to_index.is_integer());
 
                            let from_index = if from_index.is_signed_integer() {
 
                                from_index.as_signed_integer()
 
                            } else {
 
                                from_index.as_unsigned_integer() as i64
 
                            };
 
                            let to_index = if to_index.is_signed_integer() {
 
                                to_index.as_signed_integer()
 
                            } else {
 
                                to_index.as_unsigned_integer() as i64
 
                            };
 

	
 
                            // Dereference subject if needed
 
                            let subject = cur_frame.expr_values.pop_back().unwrap();
 
                            let deref_subject = self.store.maybe_read_ref(&subject);
 

	
 
                            // Slicing needs to produce a copy anyway (with the
 
                            // current evaluator implementation)
 
                            let array_heap_pos = deref_subject.as_array();
 
                            enum ValueKind{ Array, String, Message }
 
                            let (value_kind, array_heap_pos) = match deref_subject {
 
                                Value::Array(v) => (ValueKind::Array, *v),
 
                                Value::String(v) => (ValueKind::String, *v),
 
                                Value::Message(v) => (ValueKind::Message, *v),
 
                                _ => unreachable!()
 
                            };
 

	
 
                            if array_inclusive_index_is_invalid(&self.store, array_heap_pos, from_index) {
 
                                return Err(construct_array_error(self, modules, heap, expr.from_index, array_heap_pos, from_index));
 
                            }
 
                            if array_exclusive_index_is_invalid(&self.store, array_heap_pos, to_index) {
 
                                return Err(construct_array_error(self, modules, heap, expr.to_index, array_heap_pos, to_index));
 
                            }
 

	
 
                            // Again: would love to push directly, but rust...
 
                            let new_heap_pos = self.store.alloc_heap();
 
                            debug_assert!(self.store.heap_regions[new_heap_pos as usize].values.is_empty());
 
                            if to_index > from_index {
 
                                let from_index = from_index as usize;
 
                                let to_index = to_index as usize;
 
                                let mut values = Vec::with_capacity(to_index - from_index);
 
                                for idx in from_index..to_index {
 
                                    let value = self.store.heap_regions[array_heap_pos as usize].values[idx].clone();
 
                                    values.push(self.store.clone_value(value));
 
                                }
 

	
 
                                self.store.heap_regions[new_heap_pos as usize].values = values;
 

	
 
                            } // else: empty range
 

	
 
                            cur_frame.expr_values.push_back(Value::Array(new_heap_pos));
 
                            cur_frame.expr_values.push_back(match value_kind {
 
                                ValueKind::Array => Value::Array(new_heap_pos),
 
                                ValueKind::String => Value::String(new_heap_pos),
 
                                ValueKind::Message => Value::Message(new_heap_pos),
 
                            });
 

	
 
                            // Dropping the original subject, because we don't
 
                            // want to drop something on the stack
 
                            self.store.drop_value(subject.get_heap_pos());
 
                        },
 
                        Expression::Select(expr) => {
 
                            let subject= cur_frame.expr_values.pop_back().unwrap();
 
                            let mono_data = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
 
                            let field_idx = mono_data.expr_data[expr.unique_id_in_definition as usize].field_or_monomorph_idx as u32;
 

	
 
                            // Note: same as above: clone if value lives on expr stack, simply
 
                            // refer to it if it already lives on the stack/heap.
 
                            let (deallocate_heap_pos, value_to_push) = match subject {
 
                                Value::Ref(value_ref) => {
 
                                    let subject = self.store.read_ref(value_ref);
 
                                    let subject_heap_pos = subject.as_struct();
 

	
 
                                    (None, Value::Ref(ValueId::Heap(subject_heap_pos, field_idx)))
 
                                },
 
                                _ => {
 
                                    let subject_heap_pos = subject.as_struct();
 
                                    let subject_indexed = Value::Ref(ValueId::Heap(subject_heap_pos, field_idx));
 
                                    (Some(subject_heap_pos), self.store.clone_value(subject_indexed))
 
                                },
 
@@ -524,99 +545,180 @@ impl Prompt {
 

	
 
                            cur_frame.expr_values.push_back(value);
 
                        },
 
                        Expression::Cast(expr) => {
 
                            let mono_data = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
 
                            let output_type = &mono_data.expr_data[expr.unique_id_in_definition as usize].expr_type;
 

	
 
                            // Typechecking reduced this to two cases: either we
 
                            // have casting noop (same types), or we're casting
 
                            // between integer/bool/char types.
 
                            let subject = cur_frame.expr_values.pop_back().unwrap();
 
                            match apply_casting(&mut self.store, output_type, &subject) {
 
                                Ok(value) => cur_frame.expr_values.push_back(value),
 
                                Err(msg) => {
 
                                    return Err(EvalError::new_error_at_expr(self, modules, heap, expr.this.upcast(), msg));
 
                                }
 
                            }
 

	
 
                            self.store.drop_value(subject.get_heap_pos());
 
                        }
 
                        Expression::Call(expr) => {
 
                            // If we're dealing with a builtin we don't do any
 
                            // fancy shenanigans at all, just push the result.
 
                            match expr.method {
 
                                Method::Get => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value = self.store.maybe_read_ref(&value).clone();
 

	
 
                                    match ctx.get(value.clone(), &mut self.store) {
 
                                        Some(result) => {
 
                                            cur_frame.expr_values.push_back(result)
 
                                        },
 
                                        None => {
 
                                            cur_frame.expr_values.push_front(value.clone());
 
                                            cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                            return Ok(EvalContinuation::BlockGet(value));
 
                                        }
 
                                    }
 
                                },
 
                                Method::Put => {
 
                                    let port_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let deref_port_value = self.store.maybe_read_ref(&port_value).clone();
 
                                    let msg_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let deref_msg_value = self.store.maybe_read_ref(&msg_value).clone();
 

	
 
                                    if ctx.did_put(deref_port_value.clone()) {
 
                                        // We're fine, deallocate in case the expression value stack
 
                                        // held an owned value
 
                                        self.store.drop_value(msg_value.get_heap_pos());
 
                                    } else {
 
                                        cur_frame.expr_values.push_front(msg_value);
 
                                        cur_frame.expr_values.push_front(port_value);
 
                                        cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                        return Ok(EvalContinuation::Put(deref_port_value, deref_msg_value));
 
                                    }
 
                                },
 
                                Method::Fires => {
 
                                    let port_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let port_value_deref = self.store.maybe_read_ref(&port_value).clone();
 
                                    match ctx.fires(port_value_deref.clone()) {
 
                                        None => {
 
                                            cur_frame.expr_values.push_front(port_value);
 
                                            cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                            return Ok(EvalContinuation::BlockFires(port_value_deref));
 
                                        },
 
                                        Some(value) => {
 
                                            cur_frame.expr_values.push_back(value);
 
                                        }
 
                                    }
 
                                },
 
                                Method::Create => {
 
                                    let length_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let length_value = self.store.maybe_read_ref(&length_value);
 
                                    let length = if length_value.is_signed_integer() {
 
                                        let length_value = length_value.as_signed_integer();
 
                                        if length_value < 0 {
 
                                            return Err(EvalError::new_error_at_expr(
 
                                                self, modules, heap, expr_id,
 
                                                format!("got length '{}', can only create a message with a non-negative length", length_value)
 
                                            ));
 
                                        }
 

	
 
                                        length_value as u64
 
                                    } else {
 
                                        debug_assert!(length_value.is_unsigned_integer());
 
                                        length_value.as_unsigned_integer()
 
                                    };
 

	
 
                                    let heap_pos = self.store.alloc_heap();
 
                                    let values = &mut self.store.heap_regions[heap_pos as usize].values;
 
                                    debug_assert!(values.is_empty());
 
                                    values.resize(length as usize, Value::UInt8(0));
 
                                    cur_frame.expr_values.push_back(Value::Message(heap_pos));
 
                                },
 
                                Method::Length => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value_heap_pos = value.get_heap_pos();
 
                                    let value = self.store.maybe_read_ref(&value);
 

	
 
                                    let heap_pos = match value {
 
                                        Value::Array(pos) => *pos,
 
                                        Value::String(pos) => *pos,
 
                                        _ => unreachable!("length(...) on {:?}", value),
 
                                    };
 

	
 
                                    let len = self.store.heap_regions[heap_pos as usize].values.len();
 

	
 
                                    // TODO: @PtrInt
 
                                    cur_frame.expr_values.push_back(Value::UInt32(len as u32));
 
                                    self.store.drop_value(value_heap_pos);
 
                                },
 
                                Method::UserComponent => todo!("component creation"),
 
                                Method::Assert => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value = self.store.maybe_read_ref(&value).clone();
 
                                    if !value.as_bool() {
 
                                        return Ok(EvalContinuation::Inconsistent)
 
                                    }
 
                                },
 
                                Method::UserComponent => {
 
                                    // This is actually handled by the evaluation
 
                                    // of the statement.
 
                                    debug_assert_eq!(heap[expr.definition].parameters().len(), cur_frame.expr_values.len());
 
                                    debug_assert_eq!(heap[cur_frame.position].as_new().expression, expr.this)
 
                                },
 
                                Method::UserFunction => {
 
                                    // Push a new frame. Note that all expressions have
 
                                    // been pushed to the front, so they're in the order
 
                                    // of the definition.
 
                                    let num_args = expr.arguments.len();
 

	
 
                                    // Determine stack boundaries
 
                                    let cur_stack_boundary = self.store.cur_stack_boundary;
 
                                    let new_stack_boundary = self.store.stack.len();
 

	
 
                                    // Push new boundary and function arguments for new frame
 
                                    self.store.stack.push(Value::PrevStackBoundary(cur_stack_boundary as isize));
 
                                    for _ in 0..num_args {
 
                                        let argument = self.store.read_take_ownership(cur_frame.expr_values.pop_front().unwrap());
 
                                        self.store.stack.push(argument);
 
                                    }
 

	
 
                                    // Determine the monomorph index of the function we're calling
 
                                    let mono_data = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
 
                                    let call_data = &mono_data.expr_data[expr.unique_id_in_definition as usize];
 

	
 
                                    // Push the new frame and reserve its stack size
 
                                    let new_frame = Frame::new(heap, expr.definition, call_data.field_or_monomorph_idx);
 
                                    let new_stack_size = new_frame.max_stack_size;
 
                                    self.frames.push(new_frame);
 
                                    self.store.cur_stack_boundary = new_stack_boundary;
 
                                    self.store.reserve_stack(new_stack_size);
 

	
 
                                    // To simplify the logic a little bit we will now
 
                                    // return and ask our caller to call us again
 
                                    return Ok(EvalContinuation::Stepping);
 
                                },
 
                                _ => todo!("other builtins"),
 
                            }
 
                        },
 
                        Expression::Variable(expr) => {
 
                            let variable = &heap[expr.declaration.unwrap()];
 
                            let ref_value = if expr.used_as_binding_target {
 
                                Value::Binding(variable.unique_id_in_scope as StackPos)
 
                            } else {
 
                                Value::Ref(ValueId::Stack(variable.unique_id_in_scope as StackPos))
 
                            };
 
                            cur_frame.expr_values.push_back(ref_value);
 
                        }
 
                    }
 
                }
 
            }
 
        }
 

	
 
        debug_log!("Frame [{:?}] at {:?}", cur_frame.definition, cur_frame.position);
 
        if debug_enabled!() {
 
            debug_log!("Expression value stack (size = {}):", cur_frame.expr_values.len());
 
            for (stack_idx, stack_val) in cur_frame.expr_values.iter().enumerate() {
 
                debug_log!("  [{:03}] {:?}", stack_idx, stack_val);
 
            }
 

	
 
            debug_log!("Stack (size = {}):", self.store.stack.len());
 
@@ -650,67 +752,69 @@ impl Prompt {
 
                    LocalStatement::Memory(stmt) => {
 
                        let variable = &heap[stmt.variable];
 
                        self.store.write(ValueId::Stack(variable.unique_id_in_scope as u32), Value::Unassigned);
 

	
 
                        cur_frame.position = stmt.next;
 
                    },
 
                    LocalStatement::Channel(stmt) => {
 
                        let [from_value, to_value] = ctx.new_channel();
 
                        self.store.write(ValueId::Stack(heap[stmt.from].unique_id_in_scope as u32), from_value);
 
                        self.store.write(ValueId::Stack(heap[stmt.to].unique_id_in_scope as u32), to_value);
 

	
 
                        cur_frame.position = stmt.next;
 
                    }
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Labeled(stmt) => {
 
                cur_frame.position = stmt.body;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::If(stmt) => {
 
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for if statement");
 
                let test_value = cur_frame.expr_values.pop_back().unwrap().as_bool();
 
                let test_value = cur_frame.expr_values.pop_back().unwrap();
 
                let test_value = self.store.maybe_read_ref(&test_value).as_bool();
 
                if test_value {
 
                    cur_frame.position = stmt.true_body.upcast();
 
                } else if let Some(false_body) = stmt.false_body {
 
                    cur_frame.position = false_body.upcast();
 
                } else {
 
                    // Not true, and no false body
 
                    cur_frame.position = stmt.end_if.upcast();
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndIf(stmt) => {
 
                cur_frame.position = stmt.next;
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::While(stmt) => {
 
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for while statement");
 
                let test_value = cur_frame.expr_values.pop_back().unwrap().as_bool();
 
                let test_value = cur_frame.expr_values.pop_back().unwrap();
 
                let test_value = self.store.maybe_read_ref(&test_value).as_bool();
 
                if test_value {
 
                    cur_frame.position = stmt.body.upcast();
 
                } else {
 
                    cur_frame.position = stmt.end_while.upcast();
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndWhile(stmt) => {
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Break(stmt) => {
 
                cur_frame.position = stmt.target.unwrap().upcast();
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Continue(stmt) => {
 
                cur_frame.position = stmt.target.unwrap().upcast();
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Synchronous(stmt) => {
 
@@ -777,55 +881,54 @@ impl Prompt {
 
                    "mismatch in expr stack size and number of arguments for new statement"
 
                );
 

	
 
                let mono_data = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
 
                let expr_data = &mono_data.expr_data[call_expr.unique_id_in_definition as usize];
 

	
 
                // Note that due to expression value evaluation they exist in
 
                // reverse order on the stack.
 
                // TODO: Revise this code, keep it as is to be compatible with current runtime
 
                let mut args = Vec::new();
 
                while let Some(value) = cur_frame.expr_values.pop_front() {
 
                    args.push(value);
 
                }
 

	
 
                // Construct argument group, thereby copying heap regions
 
                let argument_group = ValueGroup::from_store(&self.store, &args);
 

	
 
                // Clear any heap regions
 
                for arg in &args {
 
                    self.store.drop_value(arg.get_heap_pos());
 
                }
 

	
 
                cur_frame.position = stmt.next;
 

	
 
                todo!("Make sure this is handled correctly, transfer 'heap' values to another Prompt");
 
                Ok(EvalContinuation::NewComponent(call_expr.definition, expr_data.field_or_monomorph_idx, argument_group))
 
            },
 
            Statement::Expression(stmt) => {
 
                // The expression has just been completely evaluated. Some
 
                // values might have remained on the expression value stack.
 
                cur_frame.expr_values.clear();
 
                // cur_frame.expr_values.clear(); PROPER CLEARING
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
        };
 

	
 
        assert!(
 
            cur_frame.expr_values.is_empty(),
 
            "This is a debugging assertion that will fail if you perform expressions without \
 
            assigning to anything. This should be completely valid, and this assertion should be \
 
            replaced by something that clears the expression values if needed, but I'll keep this \
 
            in for now for debugging purposes."
 
        );
 

	
 
        // If the next statement requires evaluating expressions then we push
 
        // these onto the expression stack. This way we will evaluate this
 
        // stack in the next loop, then evaluate the statement using the result
 
        // from the expression evaluation.
 
        if !cur_frame.position.is_invalid() {
 
            let stmt = &heap[cur_frame.position];
 

	
 
            match stmt {
 
                Statement::If(stmt) => cur_frame.prepare_single_expression(heap, stmt.test),
 
                Statement::While(stmt) => cur_frame.prepare_single_expression(heap, stmt.test),
src/protocol/eval/value.rs
Show inline comments
 
@@ -169,48 +169,49 @@ impl ValueGroup {
 
        debug_assert!(values.iter().all(|v| v.get_heap_pos().is_none()));
 
        Self{
 
            values,
 
            regions: Vec::new(),
 
        }
 
    }
 
    pub(crate) fn from_store(store: &Store, values: &[Value]) -> Self {
 
        let mut group = ValueGroup{
 
            values: Vec::with_capacity(values.len()),
 
            regions: Vec::with_capacity(values.len()), // estimation
 
        };
 

	
 
        for value in values {
 
            let transferred = group.retrieve_value(value, store);
 
            group.values.push(transferred);
 
        }
 

	
 
        group
 
    }
 

	
 
    /// Transfers a provided value from a store into a local value with its
 
    /// heap allocations (if any) stored in the ValueGroup. Calling this
 
    /// function will not store the returned value in the `values` member.
 
    fn retrieve_value(&mut self, value: &Value, from_store: &Store) -> Value {
 
        let value = from_store.maybe_read_ref(value);
 
        if let Some(heap_pos) = value.get_heap_pos() {
 
            // Value points to a heap allocation, so transfer the heap values
 
            // internally.
 
            let from_region = &from_store.heap_regions[heap_pos as usize].values;
 
            let mut new_region = Vec::with_capacity(from_region.len());
 
            for value in from_region {
 
                let transferred = self.retrieve_value(value, from_store);
 
                new_region.push(transferred);
 
            }
 

	
 
            // Region is constructed, store internally and return the new value.
 
            let new_region_idx = self.regions.len() as HeapPos;
 
            self.regions.push(new_region);
 

	
 
            return match value {
 
                Value::Message(_)    => Value::Message(new_region_idx),
 
                Value::String(_)     => Value::String(new_region_idx),
 
                Value::Array(_)      => Value::Array(new_region_idx),
 
                Value::Union(tag, _) => Value::Union(*tag, new_region_idx),
 
                Value::Struct(_)     => Value::Struct(new_region_idx),
 
                _ => unreachable!(),
 
            };
 
        } else {
 
            return value.clone();
src/protocol/mod.rs
Show inline comments
 
@@ -321,54 +321,53 @@ impl EvalContext<'_> {
 
            EvalContext::Sync(_) => unreachable!(),
 
        }
 
    }
 
    fn fires(&mut self, port: Value) -> Option<Value> {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(_) => unreachable!(),
 
            EvalContext::Sync(context) => match port {
 
                Value::Output(port) => context.is_firing(port).map(Value::Bool),
 
                Value::Input(port) => context.is_firing(port).map(Value::Bool),
 
                _ => unreachable!(),
 
            },
 
        }
 
    }
 
    fn get(&mut self, port: Value, store: &mut Store) -> Option<Value> {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(_) => unreachable!(),
 
            EvalContext::Sync(context) => match port {
 
                Value::Output(port) => {
 
                    debug_assert!(false, "Getting from an output port? Am I mad?");
 
                    unreachable!();
 
                }
 
                Value::Input(port) => {
 
                    let heap_pos = store.alloc_heap();
 
                    let heap_pos_usize = heap_pos as usize;
 

	
 
                    let payload = context.read_msg(port);
 
                    if payload.is_none() { return None; }
 

	
 
                    let heap_pos = store.alloc_heap();
 
                    let heap_pos_usize = heap_pos as usize;
 
                    let payload = payload.unwrap();
 
                    store.heap_regions[heap_pos_usize].values.reserve(payload.0.len());
 
                    for value in payload.0.iter() {
 
                        store.heap_regions[heap_pos_usize].values.push(Value::UInt8(*value));
 
                    }
 

	
 
                    return Some(Value::Message(heap_pos));
 
                }
 
                _ => unreachable!(),
 
            },
 
        }
 
    }
 
    fn did_put(&mut self, port: Value) -> bool {
 
        match self {
 
            EvalContext::None => unreachable!("did_put in None context"),
 
            EvalContext::Nonsync(_) => unreachable!("did_put in nonsync context"),
 
            EvalContext::Sync(context) => match port {
 
                Value::Output(port) => {
 
                    context.did_put_or_get(port)
 
                },
 
                Value::Input(_) => unreachable!("did_put on input port"),
 
                _ => unreachable!("did_put on non-port value")
 
            }
 
        }
src/protocol/parser/pass_definitions.rs
Show inline comments
 
@@ -672,87 +672,95 @@ impl PassDefinitions {
 
            }
 
        }
 

	
 
        if !valid {
 
            return Err(ParseError::new_error_str_at_span(
 
                &module.source, InputSpan::from_positions(start_pos, iter.last_valid_pos()), "expected a call expression"
 
            ));
 
        }
 
        consume_token(&module.source, iter, TokenKind::SemiColon)?;
 

	
 
        debug_assert!(!call_id.is_invalid());
 
        Ok(ctx.heap.alloc_new_statement(|this| NewStatement{
 
            this,
 
            span: new_span,
 
            expression: call_id,
 
            next: StatementId::new_invalid(),
 
        }))
 
    }
 

	
 
    fn consume_channel_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<ChannelStatementId, ParseError> {
 
        // Consume channel specification
 
        let channel_span = consume_exact_ident(&module.source, iter, KW_STMT_CHANNEL)?;
 
        let channel_type = if Some(TokenKind::OpenAngle) == iter.next() {
 
        let inner_port_type = if Some(TokenKind::OpenAngle) == iter.next() {
 
            // Retrieve the type of the channel, we're cheating a bit here by
 
            // consuming the first '<' and setting the initial angle depth to 1
 
            // such that our final '>' will be consumed as well.
 
            iter.consume();
 
            let definition_id = self.cur_definition;
 
            let poly_vars = ctx.heap[definition_id].poly_vars();
 
            consume_parser_type(
 
                &module.source, iter, &ctx.symbols, &ctx.heap,
 
                poly_vars, SymbolScope::Module(module.root_id), definition_id,
 
                true, 1
 
            )?
 
        } else {
 
            // Assume inferred
 
            ParserType{ elements: vec![ParserTypeElement{
 
                full_span: channel_span, // TODO: @Span fix
 
                variant: ParserTypeVariant::Inferred
 
            }]}
 
        };
 

	
 
        let from_identifier = consume_ident_interned(&module.source, iter, ctx)?;
 
        consume_token(&module.source, iter, TokenKind::ArrowRight)?;
 
        let to_identifier = consume_ident_interned(&module.source, iter, ctx)?;
 
        consume_token(&module.source, iter, TokenKind::SemiColon)?;
 

	
 
        // Construct ports
 
        let port_type_len = inner_port_type.elements.len() + 1;
 
        let mut from_port_type = ParserType{ elements: Vec::with_capacity(port_type_len) };
 
        from_port_type.elements.push(ParserTypeElement{ full_span: channel_span, variant: ParserTypeVariant::Output });
 
        from_port_type.elements.extend_from_slice(&inner_port_type.elements);
 
        let from = ctx.heap.alloc_variable(|this| Variable{
 
            this,
 
            kind: VariableKind::Local,
 
            identifier: from_identifier,
 
            parser_type: channel_type.clone(),
 
            parser_type: from_port_type,
 
            relative_pos_in_block: 0,
 
            unique_id_in_scope: -1,
 
        });
 

	
 
        let mut to_port_type = ParserType{ elements: Vec::with_capacity(port_type_len) };
 
        to_port_type.elements.push(ParserTypeElement{ full_span: channel_span, variant: ParserTypeVariant::Input });
 
        to_port_type.elements.extend_from_slice(&inner_port_type.elements);
 
        let to = ctx.heap.alloc_variable(|this|Variable{
 
            this,
 
            kind: VariableKind::Local,
 
            identifier: to_identifier,
 
            parser_type: channel_type,
 
            parser_type: to_port_type,
 
            relative_pos_in_block: 0,
 
            unique_id_in_scope: -1,
 
        });
 

	
 
        // Construct the channel
 
        Ok(ctx.heap.alloc_channel_statement(|this| ChannelStatement{
 
            this,
 
            span: channel_span,
 
            from, to,
 
            relative_pos_in_block: 0,
 
            next: StatementId::new_invalid(),
 
        }))
 
    }
 

	
 
    fn consume_labeled_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx, section: &mut ScopedSection<StatementId>
 
    ) -> Result<(), ParseError> {
 
        let label = consume_ident_interned(&module.source, iter, ctx)?;
 
        consume_token(&module.source, iter, TokenKind::Colon)?;
 

	
 
        // Not pretty: consume_statement may produce more than one statement.
 
        // The values in the section need to be in the correct order if some
 
        // kind of outer block is consumed, so we take another section, push
 
        // the expressions in that one, and then allocate the labeled statement.
src/protocol/parser/pass_validation_linking.rs
Show inline comments
 
@@ -382,48 +382,49 @@ impl Visitor2 for PassValidationLinking {
 
        self.visit_call_expr(ctx, call_expr_id)?;
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_expr_stmt(&mut self, ctx: &mut Ctx, id: ExpressionStatementId) -> VisitorResult {
 
        let expr_id = ctx.heap[id].expression;
 

	
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        self.expr_parent = ExpressionParent::ExpressionStmt(id);
 
        self.visit_expr(ctx, expr_id)?;
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        Ok(())
 
    }
 

	
 

	
 
    //--------------------------------------------------------------------------
 
    // Expression visitors
 
    //--------------------------------------------------------------------------
 

	
 
    fn visit_assignment_expr(&mut self, ctx: &mut Ctx, id: AssignmentExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 

	
 
        let assignment_expr = &mut ctx.heap[id];
 

	
 
        let left_expr_id = assignment_expr.left;
 
        let right_expr_id = assignment_expr.right;
 
        let old_expr_parent = self.expr_parent;
 
        assignment_expr.parent = old_expr_parent;
 
        assignment_expr.unique_id_in_definition = self.next_expr_index;
 
        self.next_expr_index += 1;
 

	
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
 
        self.must_be_assignable = Some(assignment_expr.span);
 
        self.visit_expr(ctx, left_expr_id)?;
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
 
        self.must_be_assignable = None;
 
        self.visit_expr(ctx, right_expr_id)?;
 
        self.expr_parent = old_expr_parent;
 
        Ok(())
 
    }
 

	
 
    fn visit_binding_expr(&mut self, ctx: &mut Ctx, id: BindingExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        let binding_expr = &mut ctx.heap[id];
 

	
 
        // Check for valid context of binding expression
 
@@ -565,74 +566,82 @@ impl Visitor2 for PassValidationLinking {
 
        unary_expr.unique_id_in_definition = self.next_expr_index;
 
        self.next_expr_index += 1;
 

	
 
        self.expr_parent = ExpressionParent::Expression(id.upcast(), 0);
 
        self.visit_expr(ctx, expr_id)?;
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_indexing_expr(&mut self, ctx: &mut Ctx, id: IndexingExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        let indexing_expr = &mut ctx.heap[id];
 

	
 
        let subject_expr_id = indexing_expr.subject;
 
        let index_expr_id = indexing_expr.index;
 

	
 
        let old_expr_parent = self.expr_parent;
 
        indexing_expr.parent = old_expr_parent;
 
        indexing_expr.unique_id_in_definition = self.next_expr_index;
 
        self.next_expr_index += 1;
 

	
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
 
        self.visit_expr(ctx, subject_expr_id)?;
 

	
 
        let old_assignable = self.must_be_assignable.take();
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
 
        self.visit_expr(ctx, index_expr_id)?;
 

	
 
        self.must_be_assignable = old_assignable;
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_slicing_expr(&mut self, ctx: &mut Ctx, id: SlicingExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        let slicing_expr = &mut ctx.heap[id];
 

	
 
        let subject_expr_id = slicing_expr.subject;
 
        let from_expr_id = slicing_expr.from_index;
 
        let to_expr_id = slicing_expr.to_index;
 

	
 
        let old_expr_parent = self.expr_parent;
 
        slicing_expr.parent = old_expr_parent;
 
        slicing_expr.unique_id_in_definition = self.next_expr_index;
 
        self.next_expr_index += 1;
 

	
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
 
        self.visit_expr(ctx, subject_expr_id)?;
 

	
 
        let old_assignable = self.must_be_assignable.take();
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
 
        self.visit_expr(ctx, from_expr_id)?;
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 2);
 
        self.visit_expr(ctx, to_expr_id)?;
 

	
 
        self.must_be_assignable = old_assignable;
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_select_expr(&mut self, ctx: &mut Ctx, id: SelectExpressionId) -> VisitorResult {
 
        let select_expr = &mut ctx.heap[id];
 
        let expr_id = select_expr.subject;
 

	
 
        let old_expr_parent = self.expr_parent;
 
        select_expr.parent = old_expr_parent;
 
        select_expr.unique_id_in_definition = self.next_expr_index;
 
        self.next_expr_index += 1;
 

	
 
        self.expr_parent = ExpressionParent::Expression(id.upcast(), 0);
 
        self.visit_expr(ctx, expr_id)?;
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_literal_expr(&mut self, ctx: &mut Ctx, id: LiteralExpressionId) -> VisitorResult {
 
        let literal_expr = &mut ctx.heap[id];
 
        let old_expr_parent = self.expr_parent;
 
@@ -844,93 +853,93 @@ impl Visitor2 for PassValidationLinking {
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_call_expr(&mut self, ctx: &mut Ctx, id: CallExpressionId) -> VisitorResult {
 
        let call_expr = &mut ctx.heap[id];
 

	
 
        if let Some(span) = self.must_be_assignable {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module.source, span, "cannot assign to the result from a call expression"
 
            ))
 
        }
 

	
 
        // Check whether the method is allowed to be called within the code's
 
        // context (in sync, definition type, etc.)
 
        let mut expected_wrapping_new_stmt = false;
 
        match &mut call_expr.method {
 
            Method::Get => {
 
                if !self.def_type.is_primitive() {
 
                    return Err(ParseError::new_error_str_at_span(
 
                        &ctx.module.source, call_expr.span,
 
                        "a call to 'get' may only occur in primitive component definitions"
 
                    ));
 
                }
 
                if !self.in_sync.is_invalid() {
 
                if self.in_sync.is_invalid() {
 
                    return Err(ParseError::new_error_str_at_span(
 
                        &ctx.module.source, call_expr.span,
 
                        "a call to 'get' may only occur inside synchronous blocks"
 
                    ));
 
                }
 
            },
 
            Method::Put => {
 
                if !self.def_type.is_primitive() {
 
                    return Err(ParseError::new_error_str_at_span(
 
                        &ctx.module.source, call_expr.span,
 
                        "a call to 'put' may only occur in primitive component definitions"
 
                    ));
 
                }
 
                if !self.in_sync.is_invalid() {
 
                if self.in_sync.is_invalid() {
 
                    return Err(ParseError::new_error_str_at_span(
 
                        &ctx.module.source, call_expr.span,
 
                        "a call to 'put' may only occur inside synchronous blocks"
 
                    ));
 
                }
 
            },
 
            Method::Fires => {
 
                if !self.def_type.is_primitive() {
 
                    return Err(ParseError::new_error_str_at_span(
 
                        &ctx.module.source, call_expr.span,
 
                        "a call to 'fires' may only occur in primitive component definitions"
 
                    ));
 
                }
 
                if !self.in_sync.is_invalid() {
 
                if self.in_sync.is_invalid() {
 
                    return Err(ParseError::new_error_str_at_span(
 
                        &ctx.module.source, call_expr.span,
 
                        "a call to 'fires' may only occur inside synchronous blocks"
 
                    ));
 
                }
 
            },
 
            Method::Create => {},
 
            Method::Length => {},
 
            Method::Assert => {
 
                if self.def_type.is_function() {
 
                    return Err(ParseError::new_error_str_at_span(
 
                        &ctx.module.source, call_expr.span,
 
                        "assert statement may only occur in components"
 
                    ));
 
                }
 
                if !self.in_sync.is_invalid() {
 
                if self.in_sync.is_invalid() {
 
                    return Err(ParseError::new_error_str_at_span(
 
                        &ctx.module.source, call_expr.span,
 
                        "assert statements may only occur inside synchronous blocks"
 
                    ));
 
                }
 
            },
 
            Method::UserFunction => {},
 
            Method::UserComponent => {
 
                expected_wrapping_new_stmt = true;
 
            },
 
        }
 

	
 
        if expected_wrapping_new_stmt {
 
            if !self.expr_parent.is_new() {
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module.source, call_expr.span,
 
                    "cannot call a component, it can only be instantiated by using 'new'"
 
                ));
 
            }
 
        } else {
 
            if self.expr_parent.is_new() {
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module.source, call_expr.span,
 
                    "only components can be instantiated, this is a function"
src/protocol/tests/eval_binding.rs
Show inline comments
 
@@ -61,48 +61,95 @@ fn test_binding_from_array() {
 
                success1 = binding_one == 1 && binding_two == 2 && binding_three == 3;
 
            }
 

	
 
            // Matching with literals
 
            bool success2 = false;
 
            if (let {binding_one, 2, 3} = vals && let {1, binding_two, 3} = vals && let {1, 2, binding_three} = vals) {
 
                success2 = binding_one == 1 && binding_two == 2 && binding_three == 3;
 
            }
 

	
 
            // Matching all
 
            bool success3 = false;
 
            if (let {binding_one, binding_two, binding_three} = vals && let {1, 2, 3} = vals) {
 
                success3 = true;
 
            }
 

	
 
            return
 
                !failure1 && !failure2 && !failure3 && !failure4 &&
 
                success1 && success2 && success3;
 
        }
 
    ").for_function("foo", |f| { f
 
        .call_ok(Some(Value::Bool(true)));
 
    });
 
}
 

	
 
#[test]
 
fn test_binding_from_union() {
 
    Tester::new_single_source_expect_ok("option type", "
 
        union Option<T> { Some(T), None }
 

	
 
        func is_some<T>(Option<T> opt) -> bool {
 
            if (let Option::Some(throwaway) = opt) return true;
 
            else                                   return false;
 
        }
 
        func is_none<T>(Option<T> opt) -> bool {
 
            if (let Option::Some(throwaway) = opt) return false;
 
            else                                   return true;
 
        }
 

	
 
        func foo() -> u32 {
 
            // Hey look, we're so modern, we have algebraic discriminated sum datauniontypes
 
            auto something = Option::Some(5);
 
            auto nonething = Option<u32>::None;
 

	
 
            bool success1 = false;
 
            if (let Option::Some(value) = something && let Option::None = nonething) {
 
                success1 = value == 5;
 
            }
 

	
 
            bool success2 = false;
 
            if (is_some(something) && is_none(nonething)) {
 
                success2 = true;
 
            }
 

	
 
            bool success3 = true;
 
            if (let Option::None = something) success3 = false;
 
            if (let Option::Some(value) = nonething) success3 = false;
 

	
 
            bool success4 = true;
 
            if (is_none(something) || is_some(nonething)) success4 = false;
 

	
 
            if (success1 && success2 && success3 && success4) {
 
                if (let Option::Some(value) = something) return value;
 
            }
 

	
 
            return 0;
 
        }
 
    ").for_function("foo", |f| { f
 
        .call_ok(Some(Value::UInt32(5)));
 
    });
 
}
 

	
 
#[test]
 
fn test_binding_fizz_buzz() {
 
    Tester::new_single_source_expect_ok("am I employable?", "
 
        union Fizzable { Number(u32), FizzBuzz, Fizz, Buzz }
 

	
 
        func construct_fizz_buzz(u32 num) -> Fizzable[] {
 
            u32 counter = 1;
 
            auto result = {};
 
            while (counter <= num) {
 
                auto value = Fizzable::Number(counter);
 
                if (counter % 5 == 0) {
 
                    if (counter % 3 == 0) {
 
                        value = Fizzable::FizzBuzz;
 
                    } else {
 
                        value = Fizzable::Buzz;
 
                    }
 
                } else if (counter % 3 == 0) {
 
                    value = Fizzable::Fizz;
 
                }
 

	
 
                result = result @ { value }; // woohoo, no array builtins!
 
                counter += 1;
 
            }
 

	
src/protocol/tests/eval_silly.rs
Show inline comments
 
@@ -189,45 +189,45 @@ fn test_field_selection_polymorphism() {
 
        struct VecZXY<T> { T z, T x, T y }
 

	
 
        func modify_x<T>(T input) -> T {
 
            input.x = 1337;
 
            return input;
 
        }
 

	
 
        func foo() -> bool {
 
            auto xyz = VecXYZ<u16>{ x: 1, y: 2, z: 3 };
 
            auto yzx = VecYZX<u32>{ y: 2, z: 3, x: 1 };
 
            auto zxy = VecZXY<u64>{ x: 1, y: 2, z: 3 }; // different initialization order
 

	
 
            auto mod_xyz = modify_x(xyz);
 
            auto mod_yzx = modify_x(yzx);
 
            auto mod_zxy = modify_x(zxy);
 

	
 
            return
 
                xyz.x == 1 && xyz.y == 2 && xyz.z == 3 &&
 
                yzx.x == 1 && yzx.y == 2 && yzx.z == 3 &&
 
                zxy.x == 1 && zxy.y == 2 && zxy.z == 3 &&
 
                mod_xyz.x == 1337 && mod_xyz.y == 2 && mod_xyz.z == 3 &&
 
                mod_yzx.x == 1337 && mod_yzx.y == 2 && mod_yzx.z == 3 &&
 
                mod_zxy.x == 1337 && mod_zxy.y == 2 && mod_zxy.z == 3;
 
        }
 
").for_function("foo", |f| {
 
    ").for_function("foo", |f| {
 
        f.call_ok(Some(Value::Bool(true)));
 
    });
 
}
 

	
 
#[test]
 
fn test_index_error() {
 
    Tester::new_single_source_expect_ok("indexing error", "
 
        func check_array(u32[] vals, u32 idx) -> u32 {
 
            return vals[idx];
 
        }
 

	
 
        func foo() -> u32 {
 
            auto array = {1, 2, 3, 4, 5, 6, 7};
 
            check_array(array, 7);
 
            return array[0];
 
        }
 
    ").for_function("foo", |f| {
 
        f.call_err("index 7 is out of bounds: array length is 7");
 
    });
 
}
 
\ No newline at end of file
src/runtime/tests.rs
Show inline comments
 
@@ -16,48 +16,61 @@ const SEC15: Option<Duration> = Some(Duration::from_secs(15));
 
fn next_test_addr() -> SocketAddr {
 
    use std::{
 
        net::{Ipv4Addr, SocketAddrV4},
 
        sync::atomic::{AtomicU16, Ordering::SeqCst},
 
    };
 
    static TEST_PORT: AtomicU16 = AtomicU16::new(5_000);
 
    let port = TEST_PORT.fetch_add(1, SeqCst);
 
    SocketAddrV4::new(Ipv4Addr::LOCALHOST, port).into()
 
}
 
fn file_logged_connector(connector_id: ConnectorId, dir_path: &Path) -> Connector {
 
    file_logged_configured_connector(connector_id, dir_path, MINIMAL_PROTO.clone())
 
}
 
fn file_logged_configured_connector(
 
    connector_id: ConnectorId,
 
    dir_path: &Path,
 
    pd: Arc<ProtocolDescription>,
 
) -> Connector {
 
    let _ = std::fs::create_dir_all(dir_path).expect("Failed to create log output dir");
 
    let path = dir_path.join(format!("cid_{:?}.txt", connector_id));
 
    let file = File::create(path).expect("Failed to create log output file!");
 
    let file_logger = Box::new(FileLogger::new(connector_id, file));
 
    Connector::new(file_logger, pd, connector_id)
 
}
 
static MINIMAL_PDL: &'static [u8] = b"
 
primitive sync(in<msg> a, out<msg> b) {
 
    while (true) {
 
        synchronous {
 
            if (fires(a) && fires(b)) {
 
            	msg x = get(a);
 
            	put(b, x);
 
            } else {
 
                assert(!fires(a) && !fires(b));
 
            }
 
        }
 
    }
 
}
 

	
 
primitive together(in<msg> ia, in<msg> ib, out<msg> oa, out<msg> ob){
 
  while(true) synchronous {
 
    if(fires(ia)) {
 
      put(oa, get(ia));
 
      put(ob, get(ib));
 
    }
 
  } 
 
}
 
";
 
lazy_static::lazy_static! {
 
    static ref MINIMAL_PROTO: Arc<ProtocolDescription> = {
 
        Arc::new(reowolf::ProtocolDescription::parse(MINIMAL_PDL).unwrap())
 
    };
 
}
 
static TEST_MSG_BYTES: &'static [u8] = b"hello";
 
lazy_static::lazy_static! {
 
    static ref TEST_MSG: Payload = {
 
        Payload::from(TEST_MSG_BYTES)
 
    };
 
}
 
fn new_u8_buffer(cap: usize) -> Vec<u8> {
 
    let mut v = Vec::with_capacity(cap);
 
    // Safe! len will cover owned bytes in valid state
 
    unsafe { v.set_len(cap) }
 
@@ -949,163 +962,179 @@ fn pdl_reo_lossy() {
 

	
 
#[test]
 
fn pdl_reo_fifo1() {
 
    let pdl = b"
 
    primitive fifo1(in<msg> a, out<msg> b) {
 
        msg m = null;
 
        while(true) synchronous {
 
            if(m == null) {
 
                if(fires(a)) m=get(a);
 
            } else {
 
                if(fires(b)) put(b, m);
 
                m = null;
 
            }
 
        }
 
    }
 
    ";
 
    reowolf::ProtocolDescription::parse(pdl).unwrap();
 
}
 

	
 
#[test]
 
fn pdl_reo_fifo1full() {
 
    let test_log_path = Path::new("./logs/pdl_reo_fifo1full");
 
    let pdl = b"
 
    primitive fifo1full(in<msg> a, out<msg> b) {
 
        bool is_set = true;
 
        msg m = create(0);
 
        while(true) synchronous {
 
            if(m == null) {
 
            if(!is_set) {
 
                if(fires(a)) m=get(a);
 
                is_set = false;
 
            } else {
 
                if(fires(b)) put(b, m);
 
                m = null;
 
                is_set = true;
 
            }
 
        }
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 
    let [_p0, g0] = c.new_port_pair();
 
    let [p1, g1] = c.new_port_pair();
 
    c.add_component(b"", b"fifo1full", &[g0, p1]).unwrap();
 
    c.connect(None).unwrap();
 
    c.get(g1).unwrap();
 
    c.sync(None).unwrap();
 
    assert_eq!(0, c.gotten(g1).unwrap().len());
 
}
 

	
 
#[test]
 
fn pdl_msg_consensus() {
 
    let test_log_path = Path::new("./logs/pdl_msg_consensus");
 
    let pdl = b"
 
    primitive msgconsensus(in<msg> a, in<msg> b) {
 
        while(true) synchronous {
 
            msg x = get(a);
 
            msg y = get(b);
 
            assert(x == y);
 
        }
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 
    let [p0, g0] = c.new_port_pair();
 
    let [p1, g1] = c.new_port_pair();
 
    c.add_component(b"", b"msgconsensus", &[g0, g1]).unwrap();
 
    c.connect(None).unwrap();
 
    c.put(p0, Payload::from(b"HELLO" as &[_])).unwrap();
 
    c.put(p1, Payload::from(b"HELLO" as &[_])).unwrap();
 
    c.sync(SEC1).unwrap();
 

	
 
    c.put(p0, Payload::from(b"HEY" as &[_])).unwrap();
 
    c.put(p1, Payload::from(b"HELLO" as &[_])).unwrap();
 
    c.sync(SEC1).unwrap_err();
 
}
 

	
 
#[test]
 
fn sequencer3_prim() {
 
    let test_log_path = Path::new("./logs/sequencer3_prim");
 
    let pdl = b"
 
    primitive sequencer3(out<msg> a, out<msg> b, out<msg> c) {
 
        int i = 0;
 
        u32 i = 0;
 
        while(true) synchronous {
 
            out to = a;
 
            if     (i==1) to = b;
 
            else if(i==2) to = c;
 
            if(fires(to)) {
 
                put(to, create(0));
 
                i = (i + 1)%3;
 
            }
 
        }
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 

	
 
    // setup a session between (a) native, and (b) sequencer3, connected by 3 ports.
 
    let [p0, g0] = c.new_port_pair();
 
    let [p1, g1] = c.new_port_pair();
 
    let [p2, g2] = c.new_port_pair();
 
    c.add_component(b"", b"sequencer3", &[p0, p1, p2]).unwrap();
 
    c.connect(None).unwrap();
 

	
 
    let which_of_three = move |c: &mut Connector| {
 
        // setup three sync batches. sync. return which succeeded
 
        c.get(g0).unwrap();
 
        c.next_batch().unwrap();
 
        c.get(g1).unwrap();
 
        c.next_batch().unwrap();
 
        c.get(g2).unwrap();
 
        c.sync(None).unwrap()
 
    };
 

	
 
    const TEST_ROUNDS: usize = 50;
 
    // check that the batch index for rounds 0..TEST_ROUNDS are [0, 1, 2, 0, 1, 2, ...]
 
    for expected_batch_idx in (0..=2).cycle().take(TEST_ROUNDS) {
 
        // silent round
 
        assert_eq!(0, c.sync(None).unwrap());
 
        // non silent round
 
        assert_eq!(expected_batch_idx, which_of_three(&mut c));
 
    }
 
}
 

	
 
#[test]
 
fn sequencer3_comp() {
 
    let test_log_path = Path::new("./logs/sequencer3_comp");
 
    let pdl = b"
 
    primitive fifo1_init<T>(T m, in<T> a, out<T> b) {
 
    primitive replicator<T>(in<T> a, out<T> b, out<T> c) {
 
        while (true) {
 
            synchronous {
 
                if (fires(a) && fires(b) && fires(c)) {
 
                    msg x = get(a);
 
                    put(b, x);
 
                    put(c, x);
 
                } else {
 
                    assert(!fires(a) && !fires(b) && !fires(c));
 
                }
 
            }
 
        }
 
    }
 
    primitive fifo1_init<T>(bool has_value, T m, in<T> a, out<T> b) {
 
        while(true) synchronous {
 
            if(m != null && fires(b)) {
 
            if(has_value && fires(b)) {
 
                put(b, m);
 
                m = null;
 
            } else if (m == null && fires(a)) {
 
                has_value = false;
 
            } else if (!has_value && fires(a)) {
 
                m = get(a);
 
                has_value = true;
 
            }
 
        }
 
    }
 
    composite fifo1_full<T>(in<T> a, out<T> b) {
 
        new fifo1_init(create(0), a, b);
 
        new fifo1_init(true, create(0), a, b);
 
    }
 
    composite fifo1<T>(in<T> a, out<T> b) {
 
        new fifo1_init(null, a, b);
 
        new fifo1_init(false, create(0), a, b);
 
    }
 
    composite sequencer3(out<msg> a, out<msg> b, out<msg> c) {
 
        channel d -> e;
 
        channel f -> g;
 
        channel h -> i;
 
        channel j -> k;
 
        channel l -> m;
 
        channel n -> o;
 

	
 
        new fifo1_full(o, d);
 
        new replicator(e, f, a);
 
        new fifo1(g, h);
 
        new replicator(i, j, b);
 
        new fifo1(k, l);
 
        new replicator(m, n, c);
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 

	
 
    // setup a session between (a) native, and (b) sequencer3, connected by 3 ports.
 
    let [p0, g0] = c.new_port_pair();
 
    let [p1, g1] = c.new_port_pair();
 
    let [p2, g2] = c.new_port_pair();
 
@@ -1170,61 +1199,89 @@ fn xrouter_prim() {
 
    c.add_component(b"", b"xrouter", &[g0, p1, p2]).unwrap();
 
    c.connect(None).unwrap();
 

	
 
    let now = std::time::Instant::now();
 
    for item in XROUTER_ITEMS.iter() {
 
        match item {
 
            XRouterItem::Silent => {}
 
            XRouterItem::GetA => {
 
                c.put(p0, TEST_MSG.clone()).unwrap();
 
                c.get(g1).unwrap();
 
            }
 
            XRouterItem::GetB => {
 
                c.put(p0, TEST_MSG.clone()).unwrap();
 
                c.get(g2).unwrap();
 
            }
 
        }
 
        assert_eq!(0, c.sync(SEC1).unwrap());
 
    }
 
    println!("PRIM {:?}", now.elapsed());
 
}
 
#[test]
 
fn xrouter_comp() {
 
    let test_log_path = Path::new("./logs/xrouter_comp");
 
    let pdl = b"
 
    primitive replicator<T>(in<T> a, out<T> b, out<T> c) {
 
        while (true) {
 
            synchronous {
 
                if (fires(a) && fires(b) && fires(c)) {
 
                    msg x = get(a);
 
                    put(b, x);
 
                    put(c, x);
 
                } else {
 
                    assert(!fires(a) && !fires(b) && !fires(c));
 
                }
 
            }
 
        }
 
    }
 

	
 
    primitive merger(in<msg> a, in<msg> b, out<msg> c) {
 
        while (true) {
 
            synchronous {
 
                if (fires(a) && !fires(b) && fires(c)) {
 
                    put(c, get(a));
 
                } else if (!fires(a) && fires(b) && fires(c)) {
 
                    put(c, get(b));
 
                } else {
 
                    assert(!fires(a) && !fires(b) && !fires(c));
 
                }
 
            }
 
        }
 
    }
 

	
 
    primitive lossy<T>(in<T> a, out<T> b) {
 
        while(true) synchronous {
 
            if(fires(a)) {
 
                auto m = get(a);
 
                if(fires(b)) put(b, m);
 
            }
 
        }
 
    }
 
    primitive sync_drain<T>(in<T> a, in<T> b) {
 
        while(true) synchronous {
 
            if(fires(a)) {
 
                get(a);
 
                get(b);
 
                msg drop_it = get(a);
 
                msg on_the_floor = get(b);
 
            }
 
        }
 
    }
 
    composite xrouter(in<msg> a, out<msg> b, out<msg> c) {
 
        channel d -> e;
 
        channel f -> g;
 
        channel h -> i;
 
        channel j -> k;
 
        channel l -> m;
 
        channel n -> o;
 
        channel p -> q;
 
        channel r -> s;
 
        channel t -> u;
 

	
 
        new replicator(a, d, f);
 
        new replicator(g, t, h);
 
        new lossy(e, l);
 
        new lossy(i, j);
 
        new replicator(m, b, p);
 
        new replicator(k, n, c);
 
        new merger(q, o, r);
 
        new sync_drain(u, s);
 
    }
 
    ";
 
@@ -1268,81 +1325,81 @@ fn count_stream() {
 
            m[0] += 1;
 
        }
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 

	
 
    // setup a session between (a) native, and (b) sequencer3, connected by 3 ports.
 
    let [p0, g0] = c.new_port_pair();
 
    c.add_component(b"", b"count_stream", &[p0]).unwrap();
 
    c.connect(None).unwrap();
 

	
 
    for expecting in 0u8..16 {
 
        c.get(g0).unwrap();
 
        c.sync(None).unwrap();
 
        assert_eq!(&[expecting], c.gotten(g0).unwrap().as_slice());
 
    }
 
}
 

	
 
#[test]
 
fn for_msg_byte() {
 
    let test_log_path = Path::new("./logs/for_msg_byte");
 
    let pdl = b"
 
    primitive for_msg_byte(out<msg> o) {
 
        byte i = 0;
 
        int idx = 0;
 
        u8 i = 0;
 
        u32 idx = 0;
 
        while(i<8) {
 
            msg m = create(1);
 
            m[idx] = i;
 
            synchronous put(o, m);
 
            i++;
 
            i += 1;
 
        }
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 

	
 
    // setup a session between (a) native, and (b) sequencer3, connected by 3 ports.
 
    let [p0, g0] = c.new_port_pair();
 
    c.add_component(b"", b"for_msg_byte", &[p0]).unwrap();
 
    c.connect(None).unwrap();
 

	
 
    for expecting in 0u8..8 {
 
        c.get(g0).unwrap();
 
        c.sync(None).unwrap();
 
        assert_eq!(&[expecting], c.gotten(g0).unwrap().as_slice());
 
    }
 
    c.sync(None).unwrap();
 
}
 

	
 
#[test]
 
fn eq_causality() {
 
    let test_log_path = Path::new("./logs/eq_causality");
 
    let pdl = b"
 
    primitive eq(in<msg> a, in<msg> b, out<msg> c) {
 
        msg ma = null;
 
        msg mb = null;
 
        msg ma = create(0);
 
        msg mb = create(0);
 
        while(true) synchronous {
 
            if(fires(a)) {
 
                // b and c also fire!
 
                // left first!
 
                ma = get(a);
 
                put(c, ma);
 
                mb = get(b);
 
                assert(ma == mb);
 
            }
 
        }
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 

	
 
    /*
 
    [native]p0-->g0[eq]p1--.
 
                 g1        |
 
                 ^---------`
 
    */
 
    let [p0, g0] = c.new_port_pair();
 
    let [p1, g1] = c.new_port_pair();
 
    c.add_component(b"", b"eq", &[g0, g1, p1]).unwrap();
 

	
 
@@ -1355,93 +1412,72 @@ fn eq_causality() {
 
    let [p3, g3] = c.new_port_pair();
 
    c.add_component(b"", b"eq", &[g3, g2, p3]).unwrap();
 
    c.connect(None).unwrap();
 

	
 
    for _ in 0..4 {
 
        // everything is fine with LEFT FIRST
 
        c.put(p0, TEST_MSG.clone()).unwrap();
 
        c.sync(MS100).unwrap();
 

	
 
        // no solution when left is NOT FIRST
 
        c.put(p2, TEST_MSG.clone()).unwrap();
 
        c.sync(MS100).unwrap_err();
 
    }
 
}
 

	
 
#[test]
 
fn eq_no_causality() {
 
    let test_log_path = Path::new("./logs/eq_no_causality");
 
    let pdl = b"
 
    composite eq(in<msg> a, in<msg> b, out<msg> c) {
 
        channel leftfirsto -> leftfirsti;
 
        new eqinner(a, b, c, leftfirsto, leftfirsti);
 
    }
 
    primitive eqinner(in<msg> a, in<msg> b, out<msg> c, out<msg> leftfirsto, in<msg> leftfirsti) {
 
        msg ma = null;
 
        msg mb = null;
 
        msg ma = create(0);
 
        msg mb = create(0);
 
        while(true) synchronous {
 
            if(fires(a)) {
 
                // b and c also fire!
 
                if(fires(leftfirsti)) {
 
                    // left first! DO USE DUMMY
 
                    ma = get(a);
 
                    put(c, ma);
 
                    mb = get(b);
 

	
 
                    // using dummy!
 
                    put(leftfirsto, ma);
 
                    get(leftfirsti);
 
                    auto drop_it = get(leftfirsti);
 
                } else {
 
                    // right first! DON'T USE DUMMY
 
                    mb = get(b);
 
                    put(c, mb);
 
                    ma = get(a);
 
                }
 
                assert(ma == mb);
 
            }
 
        }
 
    }
 
    T some_function<T>(int a, int b) {
 
        T something = a;
 
        return something;
 
    }
 
    primitive quick_test(in<int> a, in<int> b) {
 
        // msg ma = null;
 
        auto test1 = 0;
 
        auto test2 = 0;
 
        auto ma = some_function(test1, test2);
 
        while(true) synchronous {
 
            if (fires(a)) {
 
                ma = get(a);
 
            }
 
            if (fires(b)) {
 
                ma = get(b);
 
            }
 
            if (fires(a) && fires(b)) {
 
                ma = get(a) + get(b);
 
            }
 
        }
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 

	
 
    /*
 
    [native]p0-->g0[eq]p1--.
 
                 g1        |
 
                 ^---------`
 
    */
 
    let [p0, g0] = c.new_port_pair();
 
    let [p1, g1] = c.new_port_pair();
 
    c.add_component(b"", b"eq", &[g0, g1, p1]).unwrap();
 

	
 
    /*
 
                  V--------.
 
                 g2        |
 
    [native]p2-->g3[eq]p3--`
 
    */
 
    let [p2, g2] = c.new_port_pair();
 
    let [p3, g3] = c.new_port_pair();
 
    c.add_component(b"", b"eq", &[g3, g2, p3]).unwrap();
 
    c.connect(None).unwrap();
 

	
 
    for _ in 0..32 {
0 comments (0 inline, 0 general)