Changeset - d25df42a65d3
[Not reviewed]
1 6 0
MH - 4 years ago 2021-03-08 09:55:18
contact@maxhenger.nl
remove concept of declaration AST nodes
7 files changed with 1 insertions and 444 deletions:
0 comments (0 inline, 0 general)
src/protocol/ast.rs
Show inline comments
 
use std::fmt;
 
use std::fmt::{Debug, Display, Formatter};
 
use std::ops::{Index, IndexMut};
 

	
 
use super::arena::{Arena, Id};
 
// use super::containers::StringAllocator;
 

	
 
// TODO: @cleanup, transform wrapping types into type aliases where possible
 
use crate::protocol::inputsource::*;
 

	
 
/// Helper macro that defines a type alias for a AST element ID. In this case 
 
/// only used to alias the `Id<T>` types.
 
macro_rules! define_aliased_ast_id {
 
    ($name:ident, $parent:ty) => {
 
        pub type $name = $parent;
 
    }
 
}
 

	
 
/// Helper macro that defines a subtype for a particular variant of an AST 
 
/// element ID.
 
macro_rules! define_new_ast_id {
 
    ($name:ident, $parent:ty) => {
 
        #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, serde::Serialize, serde::Deserialize)]
 
        pub struct $name (pub(crate) $parent);
 

	
 
        impl $name {
 
            pub fn upcast(self) -> $parent {
 
                self.0
 
            }
 
        }
 
    };
 
}
 

	
 
define_aliased_ast_id!(RootId, Id<Root>);
 
define_aliased_ast_id!(PragmaId, Id<Pragma>);
 
define_aliased_ast_id!(ImportId, Id<Import>);
 
define_aliased_ast_id!(TypeAnnotationId, Id<TypeAnnotation>);
 

	
 
define_aliased_ast_id!(VariableId, Id<Variable>);
 
define_new_ast_id!(ParameterId, VariableId);
 
define_new_ast_id!(LocalId, VariableId);
 

	
 
define_aliased_ast_id!(DefinitionId, Id<Definition>);
 
define_new_ast_id!(StructId, DefinitionId);
 
define_new_ast_id!(EnumId, DefinitionId);
 
define_new_ast_id!(ComponentId, DefinitionId);
 
define_new_ast_id!(FunctionId, DefinitionId);
 

	
 
define_aliased_ast_id!(StatementId, Id<Statement>);
 
define_new_ast_id!(BlockStatementId, StatementId);
 
define_new_ast_id!(LocalStatementId, StatementId);
 
define_new_ast_id!(MemoryStatementId, LocalStatementId);
 
define_new_ast_id!(ChannelStatementId, LocalStatementId);
 
define_new_ast_id!(SkipStatementId, StatementId);
 
define_new_ast_id!(LabeledStatementId, StatementId);
 
define_new_ast_id!(IfStatementId, StatementId);
 
define_new_ast_id!(EndIfStatementId, StatementId);
 
define_new_ast_id!(WhileStatementId, StatementId);
 
define_new_ast_id!(EndWhileStatementId, StatementId);
 
define_new_ast_id!(BreakStatementId, StatementId);
 
define_new_ast_id!(ContinueStatementId, StatementId);
 
define_new_ast_id!(SynchronousStatementId, StatementId);
 
define_new_ast_id!(EndSynchronousStatementId, StatementId);
 
define_new_ast_id!(ReturnStatementId, StatementId);
 
define_new_ast_id!(AssertStatementId, StatementId);
 
define_new_ast_id!(GotoStatementId, StatementId);
 
define_new_ast_id!(NewStatementId, StatementId);
 
define_new_ast_id!(PutStatementId, StatementId);
 
define_new_ast_id!(ExpressionStatementId, StatementId);
 

	
 
define_aliased_ast_id!(ExpressionId, Id<Expression>);
 
define_new_ast_id!(AssignmentExpressionId, ExpressionId);
 
define_new_ast_id!(ConditionalExpressionId, ExpressionId);
 
define_new_ast_id!(BinaryExpressionId, ExpressionId);
 
define_new_ast_id!(UnaryExpressionId, ExpressionId);
 
define_new_ast_id!(IndexingExpressionId, ExpressionId);
 
define_new_ast_id!(SlicingExpressionId, ExpressionId);
 
define_new_ast_id!(SelectExpressionId, ExpressionId);
 
define_new_ast_id!(ArrayExpressionId, ExpressionId);
 
define_new_ast_id!(ConstantExpressionId, ExpressionId);
 
define_new_ast_id!(CallExpressionId, ExpressionId);
 
define_new_ast_id!(VariableExpressionId, ExpressionId);
 

	
 
define_aliased_ast_id!(DeclarationId, Id<Declaration>); // TODO: @cleanup
 
define_new_ast_id!(DefinedDeclarationId, DeclarationId);
 
define_new_ast_id!(ImportedDeclarationId, DeclarationId);
 

	
 
// TODO: @cleanup - pub qualifiers can be removed once done
 
#[derive(Debug, serde::Serialize, serde::Deserialize)]
 
pub struct Heap {
 
    // Allocators
 
    // #[serde(skip)] string_alloc: StringAllocator,
 
    // Root arena, contains the entry point for different modules. Each root
 
    // contains lists of IDs that correspond to the other arenas.
 
    pub(crate) protocol_descriptions: Arena<Root>,
 
    // Contents of a file, these are the elements the `Root` elements refer to
 
    pragmas: Arena<Pragma>,
 
    pub(crate) imports: Arena<Import>,
 
    identifiers: Arena<Identifier>,
 
    pub(crate) type_annotations: Arena<TypeAnnotation>,
 
    pub(crate) variables: Arena<Variable>,
 
    pub(crate) definitions: Arena<Definition>,
 
    pub(crate) statements: Arena<Statement>,
 
    pub(crate) expressions: Arena<Expression>,
 
    declarations: Arena<Declaration>,
 
}
 

	
 
impl Heap {
 
    pub fn new() -> Heap {
 
        Heap {
 
            // string_alloc: StringAllocator::new(),
 
            protocol_descriptions: Arena::new(),
 
            pragmas: Arena::new(),
 
            imports: Arena::new(),
 
            identifiers: Arena::new(),
 
            type_annotations: Arena::new(),
 
            variables: Arena::new(),
 
            definitions: Arena::new(),
 
            statements: Arena::new(),
 
            expressions: Arena::new(),
 
            declarations: Arena::new(),
 
        }
 
    }
 
    pub fn alloc_type_annotation(
 
        &mut self,
 
        f: impl FnOnce(TypeAnnotationId) -> TypeAnnotation,
 
    ) -> TypeAnnotationId {
 
        self.type_annotations.alloc_with_id(|id| f(id))
 
    }
 
    pub fn alloc_parameter(&mut self, f: impl FnOnce(ParameterId) -> Parameter) -> ParameterId {
 
        ParameterId(
 
            self.variables.alloc_with_id(|id| Variable::Parameter(f(ParameterId(id)))),
 
        )
 
    }
 
    pub fn alloc_local(&mut self, f: impl FnOnce(LocalId) -> Local) -> LocalId {
 
        LocalId(
 
            self.variables.alloc_with_id(|id| Variable::Local(f(LocalId(id)))),
 
        )
 
    }
 
    pub fn alloc_assignment_expression(
 
        &mut self,
 
        f: impl FnOnce(AssignmentExpressionId) -> AssignmentExpression,
 
    ) -> AssignmentExpressionId {
 
        AssignmentExpressionId(
 
            self.expressions.alloc_with_id(|id| {
 
                Expression::Assignment(f(AssignmentExpressionId(id)))
 
            })
 
        )
 
    }
 
    pub fn alloc_conditional_expression(
 
        &mut self,
 
        f: impl FnOnce(ConditionalExpressionId) -> ConditionalExpression,
 
    ) -> ConditionalExpressionId {
 
        ConditionalExpressionId(
 
            self.expressions.alloc_with_id(|id| {
 
                Expression::Conditional(f(ConditionalExpressionId(id)))
 
            })
 
        )
 
    }
 
    pub fn alloc_binary_expression(
 
        &mut self,
 
        f: impl FnOnce(BinaryExpressionId) -> BinaryExpression,
 
    ) -> BinaryExpressionId {
 
        BinaryExpressionId(
 
            self.expressions
 
                .alloc_with_id(|id| Expression::Binary(f(BinaryExpressionId(id)))),
 
        )
 
    }
 
    pub fn alloc_unary_expression(
 
        &mut self,
 
        f: impl FnOnce(UnaryExpressionId) -> UnaryExpression,
 
    ) -> UnaryExpressionId {
 
        UnaryExpressionId(
 
            self.expressions
 
                .alloc_with_id(|id| Expression::Unary(f(UnaryExpressionId(id)))),
 
        )
 
    }
 
    pub fn alloc_slicing_expression(
 
        &mut self,
 
        f: impl FnOnce(SlicingExpressionId) -> SlicingExpression,
 
    ) -> SlicingExpressionId {
 
        SlicingExpressionId(
 
            self.expressions
 
                .alloc_with_id(|id| Expression::Slicing(f(SlicingExpressionId(id)))),
 
        )
 
    }
 
    pub fn alloc_indexing_expression(
 
        &mut self,
 
        f: impl FnOnce(IndexingExpressionId) -> IndexingExpression,
 
    ) -> IndexingExpressionId {
 
        IndexingExpressionId(
 
            self.expressions.alloc_with_id(|id| {
 
                Expression::Indexing(f(IndexingExpressionId(id)))
 
            }),
 
        )
 
    }
 
    pub fn alloc_select_expression(
 
        &mut self,
 
        f: impl FnOnce(SelectExpressionId) -> SelectExpression,
 
    ) -> SelectExpressionId {
 
        SelectExpressionId(
 
            self.expressions
 
                .alloc_with_id(|id| Expression::Select(f(SelectExpressionId(id)))),
 
        )
 
    }
 
    pub fn alloc_array_expression(
 
        &mut self,
 
        f: impl FnOnce(ArrayExpressionId) -> ArrayExpression,
 
    ) -> ArrayExpressionId {
 
        ArrayExpressionId(
 
            self.expressions
 
                .alloc_with_id(|id| Expression::Array(f(ArrayExpressionId(id)))),
 
        )
 
    }
 
    pub fn alloc_constant_expression(
 
        &mut self,
 
        f: impl FnOnce(ConstantExpressionId) -> ConstantExpression,
 
@@ -347,210 +341,192 @@ impl Heap {
 
        EndSynchronousStatementId(self.statements.alloc_with_id(|id| {
 
            Statement::EndSynchronous(f(EndSynchronousStatementId(id)))
 
        }))
 
    }
 
    pub fn alloc_return_statement(
 
        &mut self,
 
        f: impl FnOnce(ReturnStatementId) -> ReturnStatement,
 
    ) -> ReturnStatementId {
 
        ReturnStatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::Return(f(ReturnStatementId(id)))),
 
        )
 
    }
 
    pub fn alloc_assert_statement(
 
        &mut self,
 
        f: impl FnOnce(AssertStatementId) -> AssertStatement,
 
    ) -> AssertStatementId {
 
        AssertStatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::Assert(f(AssertStatementId(id)))),
 
        )
 
    }
 
    pub fn alloc_goto_statement(
 
        &mut self,
 
        f: impl FnOnce(GotoStatementId) -> GotoStatement,
 
    ) -> GotoStatementId {
 
        GotoStatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::Goto(f(GotoStatementId(id)))),
 
        )
 
    }
 
    pub fn alloc_new_statement(
 
        &mut self,
 
        f: impl FnOnce(NewStatementId) -> NewStatement,
 
    ) -> NewStatementId {
 
        NewStatementId(
 
            self.statements.alloc_with_id(|id| Statement::New(f(NewStatementId(id)))),
 
        )
 
    }
 
    pub fn alloc_put_statement(
 
        &mut self,
 
        f: impl FnOnce(PutStatementId) -> PutStatement,
 
    ) -> PutStatementId {
 
        PutStatementId(
 
            self.statements.alloc_with_id(|id| Statement::Put(f(PutStatementId(id)))),
 
        )
 
    }
 
    pub fn alloc_labeled_statement(
 
        &mut self,
 
        f: impl FnOnce(LabeledStatementId) -> LabeledStatement,
 
    ) -> LabeledStatementId {
 
        LabeledStatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::Labeled(f(LabeledStatementId(id)))),
 
        )
 
    }
 
    pub fn alloc_expression_statement(
 
        &mut self,
 
        f: impl FnOnce(ExpressionStatementId) -> ExpressionStatement,
 
    ) -> ExpressionStatementId {
 
        ExpressionStatementId(
 
            self.statements.alloc_with_id(|id| {
 
                Statement::Expression(f(ExpressionStatementId(id)))
 
            }),
 
        )
 
    }
 
    pub fn alloc_struct_definition(&mut self, f: impl FnOnce(StructId) -> StructDefinition) -> StructId {
 
        StructId(self.definitions.alloc_with_id(|id| {
 
            Definition::Struct(f(StructId(id)))
 
        }))
 
    }
 
    pub fn alloc_enum_definition(&mut self, f: impl FnOnce(EnumId) -> EnumDefinition) -> EnumId {
 
        EnumId(self.definitions.alloc_with_id(|id| {
 
            Definition::Enum(f(EnumId(id)))
 
        }))
 
    }
 
    pub fn alloc_component(&mut self, f: impl FnOnce(ComponentId) -> Component) -> ComponentId {
 
        ComponentId(self.definitions.alloc_with_id(|id| {
 
            Definition::Component(f(ComponentId(id)))
 
        }))
 
    }
 
    pub fn alloc_function(&mut self, f: impl FnOnce(FunctionId) -> Function) -> FunctionId {
 
        FunctionId(
 
            self.definitions
 
                .alloc_with_id(|id| Definition::Function(f(FunctionId(id)))),
 
        )
 
    }
 
    pub fn alloc_pragma(&mut self, f: impl FnOnce(PragmaId) -> Pragma) -> PragmaId {
 
        self.pragmas.alloc_with_id(|id| f(id))
 
    }
 
    pub fn alloc_import(&mut self, f: impl FnOnce(ImportId) -> Import) -> ImportId {
 
        self.imports.alloc_with_id(|id| f(id))
 
    }
 
    pub fn alloc_protocol_description(&mut self, f: impl FnOnce(RootId) -> Root) -> RootId {
 
        self.protocol_descriptions.alloc_with_id(|id| f(id))
 
    }
 
    pub fn alloc_imported_declaration(
 
        &mut self,
 
        f: impl FnOnce(ImportedDeclarationId) -> ImportedDeclaration,
 
    ) -> ImportedDeclarationId {
 
        ImportedDeclarationId(self.declarations.alloc_with_id(|id| {
 
            Declaration::Imported(f(ImportedDeclarationId(id)))
 
        }))
 
    }
 
    pub fn alloc_defined_declaration(
 
        &mut self,
 
        f: impl FnOnce(DefinedDeclarationId) -> DefinedDeclaration,
 
    ) -> DefinedDeclarationId {
 
        DefinedDeclarationId(
 
            self.declarations.alloc_with_id(|id| {
 
                Declaration::Defined(f(DefinedDeclarationId(id)))
 
            }),
 
        )
 
    }
 
}
 

	
 
impl Index<RootId> for Heap {
 
    type Output = Root;
 
    fn index(&self, index: RootId) -> &Self::Output {
 
        &self.protocol_descriptions[index]
 
    }
 
}
 

	
 
impl IndexMut<RootId> for Heap {
 
    fn index_mut(&mut self, index: RootId) -> &mut Self::Output {
 
        &mut self.protocol_descriptions[index]
 
    }
 
}
 

	
 
impl Index<PragmaId> for Heap {
 
    type Output = Pragma;
 
    fn index(&self, index: PragmaId) -> &Self::Output {
 
        &self.pragmas[index]
 
    }
 
}
 

	
 
impl Index<ImportId> for Heap {
 
    type Output = Import;
 
    fn index(&self, index: ImportId) -> &Self::Output {
 
        &self.imports[index]
 
    }
 
}
 

	
 
impl IndexMut<ImportId> for Heap {
 
    fn index_mut(&mut self, index: ImportId) -> &mut Self::Output {
 
        &mut self.imports[index]
 
    }
 
}
 

	
 
impl Index<TypeAnnotationId> for Heap {
 
    type Output = TypeAnnotation;
 
    fn index(&self, index: TypeAnnotationId) -> &Self::Output {
 
        &self.type_annotations[index]
 
    }
 
}
 

	
 
impl Index<VariableId> for Heap {
 
    type Output = Variable;
 
    fn index(&self, index: VariableId) -> &Self::Output {
 
        &self.variables[index]
 
    }
 
}
 

	
 
impl Index<ParameterId> for Heap {
 
    type Output = Parameter;
 
    fn index(&self, index: ParameterId) -> &Self::Output {
 
        &self.variables[index.0].as_parameter()
 
    }
 
}
 

	
 
impl Index<LocalId> for Heap {
 
    type Output = Local;
 
    fn index(&self, index: LocalId) -> &Self::Output {
 
        &self.variables[index.0].as_local()
 
    }
 
}
 

	
 
impl IndexMut<LocalId> for Heap {
 
    fn index_mut(&mut self, index: LocalId) -> &mut Self::Output {
 
        self.variables[index.0].as_local_mut()
 
    }
 
}
 

	
 
impl Index<DefinitionId> for Heap {
 
    type Output = Definition;
 
    fn index(&self, index: DefinitionId) -> &Self::Output {
 
        &self.definitions[index]
 
    }
 
}
 

	
 
impl Index<ComponentId> for Heap {
 
    type Output = Component;
 
    fn index(&self, index: ComponentId) -> &Self::Output {
 
        &self.definitions[index.0].as_component()
 
    }
 
}
 

	
 
impl Index<FunctionId> for Heap {
 
    type Output = Function;
 
    fn index(&self, index: FunctionId) -> &Self::Output {
 
        &self.definitions[index.0].as_function()
 
    }
 
}
 

	
 
impl Index<StatementId> for Heap {
 
    type Output = Statement;
 
    fn index(&self, index: StatementId) -> &Self::Output {
 
        &self.statements[index]
 
    }
 
}
 
@@ -745,239 +721,211 @@ impl Index<ExpressionStatementId> for Heap {
 
impl Index<ExpressionId> for Heap {
 
    type Output = Expression;
 
    fn index(&self, index: ExpressionId) -> &Self::Output {
 
        &self.expressions[index]
 
    }
 
}
 

	
 
impl Index<AssignmentExpressionId> for Heap {
 
    type Output = AssignmentExpression;
 
    fn index(&self, index: AssignmentExpressionId) -> &Self::Output {
 
        &self.expressions[index.0].as_assignment()
 
    }
 
}
 

	
 
impl Index<ConditionalExpressionId> for Heap {
 
    type Output = ConditionalExpression;
 
    fn index(&self, index: ConditionalExpressionId) -> &Self::Output {
 
        &self.expressions[index.0].as_conditional()
 
    }
 
}
 

	
 
impl Index<BinaryExpressionId> for Heap {
 
    type Output = BinaryExpression;
 
    fn index(&self, index: BinaryExpressionId) -> &Self::Output {
 
        &self.expressions[index.0].as_binary()
 
    }
 
}
 

	
 
impl Index<UnaryExpressionId> for Heap {
 
    type Output = UnaryExpression;
 
    fn index(&self, index: UnaryExpressionId) -> &Self::Output {
 
        &self.expressions[index.0].as_unary()
 
    }
 
}
 

	
 
impl Index<IndexingExpressionId> for Heap {
 
    type Output = IndexingExpression;
 
    fn index(&self, index: IndexingExpressionId) -> &Self::Output {
 
        &self.expressions[index.0].as_indexing()
 
    }
 
}
 

	
 
impl Index<SlicingExpressionId> for Heap {
 
    type Output = SlicingExpression;
 
    fn index(&self, index: SlicingExpressionId) -> &Self::Output {
 
        &self.expressions[index.0].as_slicing()
 
    }
 
}
 

	
 
impl Index<SelectExpressionId> for Heap {
 
    type Output = SelectExpression;
 
    fn index(&self, index: SelectExpressionId) -> &Self::Output {
 
        &self.expressions[index.0].as_select()
 
    }
 
}
 

	
 
impl Index<ArrayExpressionId> for Heap {
 
    type Output = ArrayExpression;
 
    fn index(&self, index: ArrayExpressionId) -> &Self::Output {
 
        &self.expressions[index.0].as_array()
 
    }
 
}
 

	
 
impl Index<ConstantExpressionId> for Heap {
 
    type Output = ConstantExpression;
 
    fn index(&self, index: ConstantExpressionId) -> &Self::Output {
 
        &self.expressions[index.0].as_constant()
 
    }
 
}
 

	
 
impl Index<CallExpressionId> for Heap {
 
    type Output = CallExpression;
 
    fn index(&self, index: CallExpressionId) -> &Self::Output {
 
        &self.expressions[index.0].as_call()
 
    }
 
}
 

	
 
impl IndexMut<CallExpressionId> for Heap {
 
    fn index_mut(&mut self, index: CallExpressionId) -> &mut Self::Output {
 
        (&mut self.expressions[index.0]).as_call_mut()
 
    }
 
}
 

	
 
impl Index<VariableExpressionId> for Heap {
 
    type Output = VariableExpression;
 
    fn index(&self, index: VariableExpressionId) -> &Self::Output {
 
        &self.expressions[index.0].as_variable()
 
    }
 
}
 

	
 
impl IndexMut<VariableExpressionId> for Heap {
 
    fn index_mut(&mut self, index: VariableExpressionId) -> &mut Self::Output {
 
        (&mut self.expressions[index.0]).as_variable_mut()
 
    }
 
}
 

	
 
impl Index<DeclarationId> for Heap {
 
    type Output = Declaration;
 
    fn index(&self, index: DeclarationId) -> &Self::Output {
 
        &self.declarations[index]
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct Root {
 
    pub this: RootId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub pragmas: Vec<PragmaId>,
 
    pub imports: Vec<ImportId>,
 
    pub definitions: Vec<DefinitionId>,
 
    // Pase 2: linker
 
    pub declarations: Vec<DeclarationId>,
 
}
 

	
 
impl Root {
 
    pub fn get_definition_ident(&self, h: &Heap, id: &[u8]) -> Option<DefinitionId> {
 
        for &def in self.definitions.iter() {
 
            if h[def].identifier().value == id {
 
                return Some(def);
 
            }
 
        }
 
        None
 
    }
 
    pub fn get_declaration(&self, h: &Heap, id: &Identifier) -> Option<DeclarationId> {
 
        for declaration_id in self.declarations.iter() {
 
            let declaration = &h[*declaration_id];
 
            if declaration.identifier().value == id.value {
 
                return Some(*declaration_id);
 
            }
 
        }
 
        None
 
    }
 
    pub fn get_declaration_namespaced(&self, h: &Heap, id: &NamespacedIdentifier) -> Option<DeclarationId> {
 
        for declaration_id in self.declarations.iter() {
 
            let declaration = &h[*declaration_id];
 
            // TODO: @fixme
 
            if declaration.identifier().value == id.value {
 
                return Some(*declaration_id);
 
            }
 
        }
 
        None
 
    }
 
}
 

	
 
impl SyntaxElement for Root {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Pragma {
 
    Version(PragmaVersion),
 
    Module(PragmaModule)
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct PragmaVersion {
 
    pub this: PragmaId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub version: u64,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct PragmaModule {
 
    pub this: PragmaId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub value: Vec<u8>,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct PragmaOld {
 
    pub this: PragmaId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub value: Vec<u8>,
 
}
 

	
 
impl SyntaxElement for PragmaOld {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Import {
 
    Module(ImportModule),
 
    Symbols(ImportSymbols)
 
}
 

	
 
impl Import {
 
    pub(crate) fn as_module(&self) -> &ImportModule {
 
        match self {
 
            Import::Module(m) => m,
 
            _ => panic!("Unable to cast 'Import' to 'ImportModule'")
 
        }
 
    }
 
    pub(crate) fn as_symbols(&self) -> &ImportSymbols {
 
        match self {
 
            Import::Symbols(m) => m,
 
            _ => panic!("Unable to cast 'Import' to 'ImportSymbols'")
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for Import {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            Import::Module(m) => m.position,
 
            Import::Symbols(m) => m.position
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct ImportModule {
 
    pub this: ImportId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub module_name: Vec<u8>,
 
    pub alias: Vec<u8>,
 
    // Phase 2: module resolving
 
    pub module_id: Option<RootId>,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct AliasedSymbol {
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub name: Vec<u8>,
 
    pub alias: Vec<u8>,
 
    // Phase 2: symbol resolving
 
    pub definition_id: Option<DefinitionId>,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
@@ -1462,238 +1410,192 @@ impl SyntaxElement for Definition {
 
}
 

	
 
impl VariableScope for Definition {
 
    fn parent_scope(&self, _h: &Heap) -> Option<Scope> {
 
        None
 
    }
 
    fn get_variable(&self, h: &Heap, id: &Identifier) -> Option<VariableId> {
 
        for &parameter_id in self.parameters().iter() {
 
            let parameter = &h[parameter_id];
 
            if parameter.identifier.value == id.value {
 
                return Some(parameter_id.0);
 
            }
 
        }
 
        None
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct StructFieldDefinition {
 
    pub position: InputPosition,
 
    pub field: Identifier,
 
    pub the_type: TypeAnnotationId,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct StructDefinition {
 
    pub this: StructId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub identifier: Identifier,
 
    pub fields: Vec<StructFieldDefinition>
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize, PartialEq)]
 
pub enum EnumVariantValue {
 
    None,
 
    Integer(i64),
 
    Type(TypeAnnotationId),
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct EnumVariantDefinition {
 
    pub position: InputPosition,
 
    pub identifier: Identifier,
 
    pub value: EnumVariantValue,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct EnumDefinition {
 
    pub this: EnumId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub identifier: Identifier,
 
    pub variants: Vec<EnumVariantDefinition>,
 
}
 

	
 
#[derive(Debug, Clone, Copy, serde::Serialize, serde::Deserialize)]
 
pub enum ComponentVariant {
 
    Primitive,
 
    Composite,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct Component {
 
    pub this: ComponentId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub variant: ComponentVariant,
 
    pub identifier: Identifier,
 
    pub parameters: Vec<ParameterId>,
 
    pub body: StatementId,
 
}
 

	
 
impl SyntaxElement for Component {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct Function {
 
    pub this: FunctionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub return_type: TypeAnnotationId,
 
    pub identifier: Identifier,
 
    pub parameters: Vec<ParameterId>,
 
    pub body: StatementId,
 
}
 

	
 
impl SyntaxElement for Function {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Declaration {
 
    Defined(DefinedDeclaration),
 
    Imported(ImportedDeclaration),
 
}
 

	
 
impl Declaration {
 
    pub fn signature(&self) -> &Signature {
 
        match self {
 
            Declaration::Defined(decl) => &decl.signature,
 
            Declaration::Imported(decl) => &decl.signature,
 
        }
 
    }
 
    pub fn identifier(&self) -> &Identifier {
 
        self.signature().identifier()
 
    }
 
    pub fn is_component(&self) -> bool {
 
        self.signature().is_component()
 
    }
 
    pub fn is_function(&self) -> bool {
 
        self.signature().is_function()
 
    }
 
    pub fn as_defined(&self) -> &DefinedDeclaration {
 
        match self {
 
            Declaration::Defined(result) => result,
 
            _ => panic!("Unable to cast `Declaration` to `DefinedDeclaration`"),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct DefinedDeclaration {
 
    pub this: DefinedDeclarationId,
 
    // Phase 2: linker
 
    pub definition: DefinitionId,
 
    pub signature: Signature,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct ImportedDeclaration {
 
    pub this: ImportedDeclarationId,
 
    // Phase 2: linker
 
    pub import: ImportId,
 
    pub signature: Signature,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Signature {
 
    Component(ComponentSignature),
 
    Function(FunctionSignature),
 
}
 

	
 
impl Signature {
 
    pub fn from_definition(h: &Heap, def: DefinitionId) -> Signature {
 
        // TODO: Fix this
 
        match &h[def] {
 
            Definition::Component(com) => Signature::Component(ComponentSignature {
 
                identifier: com.identifier.clone(), // TODO: @fix
 
                arity: Signature::convert_parameters(h, &com.parameters),
 
            }),
 
            Definition::Function(fun) => Signature::Function(FunctionSignature {
 
                return_type: h[fun.return_type].the_type.clone(),
 
                identifier: fun.identifier.clone(), // TODO: @fix
 
                arity: Signature::convert_parameters(h, &fun.parameters),
 
            }),
 
            _ => panic!("cannot retrieve signature (for StructDefinition or EnumDefinition)")
 
        }
 
    }
 
    fn convert_parameters(h: &Heap, params: &Vec<ParameterId>) -> Vec<Type> {
 
        let mut result = Vec::new();
 
        for &param in params.iter() {
 
            result.push(h[h[param].type_annotation].the_type.clone());
 
        }
 
        result
 
    }
 
    fn identifier(&self) -> &Identifier {
 
        match self {
 
            Signature::Component(com) => &com.identifier,
 
            Signature::Function(fun) => &fun.identifier,
 
        }
 
    }
 
    pub fn is_component(&self) -> bool {
 
        match self {
 
            Signature::Component(_) => true,
 
            Signature::Function(_) => false,
 
        }
 
    }
 
    pub fn is_function(&self) -> bool {
 
        match self {
 
            Signature::Component(_) => false,
 
            Signature::Function(_) => true,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct ComponentSignature {
 
    pub identifier: Identifier,
 
    pub arity: Vec<Type>,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct FunctionSignature {
 
    pub return_type: Type,
 
    pub identifier: Identifier,
 
    pub arity: Vec<Type>,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Statement {
 
    Block(BlockStatement),
 
    Local(LocalStatement),
 
    Skip(SkipStatement),
 
    Labeled(LabeledStatement),
 
    If(IfStatement),
 
    EndIf(EndIfStatement),
 
    While(WhileStatement),
 
    EndWhile(EndWhileStatement),
 
    Break(BreakStatement),
 
    Continue(ContinueStatement),
 
    Synchronous(SynchronousStatement),
 
    EndSynchronous(EndSynchronousStatement),
 
    Return(ReturnStatement),
 
    Assert(AssertStatement),
 
    Goto(GotoStatement),
 
    New(NewStatement),
 
    Put(PutStatement),
 
    Expression(ExpressionStatement),
 
}
 

	
 
impl Statement {
 
    pub fn as_block(&self) -> &BlockStatement {
 
        match self {
 
            Statement::Block(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `BlockStatement`"),
 
        }
 
    }
 
    pub fn as_block_mut(&mut self) -> &mut BlockStatement {
 
        match self {
 
            Statement::Block(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `BlockStatement`"),
 
        }
src/protocol/ast_printer.rs
Show inline comments
 
use std::fmt::{Debug, Display, Write};
 
use std::io::Write as IOWrite;
 

	
 
use super::ast::*;
 
use std::borrow::Borrow;
 

	
 
const INDENT: usize = 2;
 

	
 
const PREFIX_EMPTY: &'static str = "    ";
 
const PREFIX_ROOT_ID: &'static str = "Root";
 
const PREFIX_PRAGMA_ID: &'static str = "Prag";
 
const PREFIX_IMPORT_ID: &'static str = "Imp ";
 
const PREFIX_TYPE_ANNOT_ID: &'static str = "TyAn";
 
const PREFIX_VARIABLE_ID: &'static str = "Var ";
 
const PREFIX_PARAMETER_ID: &'static str = "Par ";
 
const PREFIX_LOCAL_ID: &'static str = "Loc ";
 
const PREFIX_DEFINITION_ID: &'static str = "Def ";
 
const PREFIX_STRUCT_ID: &'static str = "DefS";
 
const PREFIX_ENUM_ID: &'static str = "DefE";
 
const PREFIX_COMPONENT_ID: &'static str = "DefC";
 
const PREFIX_FUNCTION_ID: &'static str = "DefF";
 
const PREFIX_STMT_ID: &'static str = "Stmt";
 
const PREFIX_BLOCK_STMT_ID: &'static str = "SBl ";
 
const PREFIX_LOCAL_STMT_ID: &'static str = "SLoc";
 
const PREFIX_MEM_STMT_ID: &'static str = "SMem";
 
const PREFIX_CHANNEL_STMT_ID: &'static str = "SCha";
 
const PREFIX_SKIP_STMT_ID: &'static str = "SSki";
 
const PREFIX_LABELED_STMT_ID: &'static str = "SLab";
 
const PREFIX_IF_STMT_ID: &'static str = "SIf ";
 
const PREFIX_ENDIF_STMT_ID: &'static str = "SEIf";
 
const PREFIX_WHILE_STMT_ID: &'static str = "SWhi";
 
const PREFIX_ENDWHILE_STMT_ID: &'static str = "SEWh";
 
const PREFIX_BREAK_STMT_ID: &'static str = "SBre";
 
const PREFIX_CONTINUE_STMT_ID: &'static str = "SCon";
 
const PREFIX_SYNC_STMT_ID: &'static str = "SSyn";
 
const PREFIX_ENDSYNC_STMT_ID: &'static str = "SESy";
 
const PREFIX_RETURN_STMT_ID: &'static str = "SRet";
 
const PREFIX_ASSERT_STMT_ID: &'static str = "SAsr";
 
const PREFIX_GOTO_STMT_ID: &'static str = "SGot";
 
const PREFIX_NEW_STMT_ID: &'static str = "SNew";
 
const PREFIX_PUT_STMT_ID: &'static str = "SPut";
 
const PREFIX_EXPR_STMT_ID: &'static str = "SExp";
 
const PREFIX_ASSIGNMENT_EXPR_ID: &'static str = "EAsi";
 
const PREFIX_CONDITIONAL_EXPR_ID: &'static str = "ECnd";
 
const PREFIX_BINARY_EXPR_ID: &'static str = "EBin";
 
const PREFIX_UNARY_EXPR_ID: &'static str = "EUna";
 
const PREFIX_INDEXING_EXPR_ID: &'static str = "EIdx";
 
const PREFIX_SLICING_EXPR_ID: &'static str = "ESli";
 
const PREFIX_SELECT_EXPR_ID: &'static str = "ESel";
 
const PREFIX_ARRAY_EXPR_ID: &'static str = "EArr";
 
const PREFIX_CONST_EXPR_ID: &'static str = "ECns";
 
const PREFIX_CALL_EXPR_ID: &'static str = "ECll";
 
const PREFIX_VARIABLE_EXPR_ID: &'static str = "EVar";
 

	
 
struct KV<'a> {
 
    buffer: &'a mut String,
 
    prefix: Option<(&'static str, u32)>,
 
    indent: usize,
 
    temp_key: &'a mut String,
 
    temp_val: &'a mut String,
 
}
 

	
 
impl<'a> KV<'a> {
 
    fn new(buffer: &'a mut String, temp_key: &'a mut String, temp_val: &'a mut String, indent: usize) -> Self {
 
        temp_key.clear();
 
        temp_val.clear();
 
        KV{
 
            buffer,
 
            prefix: None,
 
            indent,
 
            temp_key,
 
            temp_val
 
        }
 
    }
 

	
 
    fn with_id(mut self, prefix: &'static str, id: u32) -> Self {
 
        self.prefix = Some((prefix, id));
 
        self
 
    }
 

	
 
    fn with_s_key(self, key: &str) -> Self {
 
        self.temp_key.push_str(key);
 
        self
 
    }
 

	
 
    fn with_d_key<D: Display>(mut self, key: &D) -> Self {
 
        write!(&mut self.temp_key, "{}", key);
 
        self
 
    }
 

	
 
    fn with_s_val(self, val: &str) -> Self {
 
        self.temp_val.push_str(val);
 
        self
 
    }
 

	
 
    fn with_disp_val<D: Display>(mut self, val: &D) -> Self {
 
        write!(&mut self.temp_val, "{}", val);
 
        self
 
    }
 

	
 
    fn with_debug_val<D: Debug>(mut self, val: &D) -> Self {
src/protocol/lexer.rs
Show inline comments
 
@@ -1957,201 +1957,200 @@ impl Lexer<'_> {
 
                            definition_id: None,
 
                        });
 
                    }
 

	
 
                    // A comma indicates that we may have another symbol coming
 
                    // up (not necessary), but if not present then we expect the
 
                    // end of the symbol list
 
                    self.consume_whitespace(false)?;
 

	
 
                    next = self.source.next();
 
                    if let Some(b',') = next {
 
                        self.source.consume();
 
                        self.consume_whitespace(false)?;
 
                        next = self.source.next();
 
                    } else {
 
                        break;
 
                    }
 
                }
 

	
 
                if let Some(b'}') = next {
 
                    // We are fine, push the imported symbols
 
                    self.source.consume();
 
                    if symbols.is_empty() {
 
                        return Err(ParseError2::new_error(self.source, position, "empty symbol import list"));
 
                    }
 

	
 
                    h.alloc_import(|this| Import::Symbols(ImportSymbols{
 
                        this,
 
                        position,
 
                        module_name: value,
 
                        module_id: None,
 
                        symbols,
 
                    }))
 
                } else {
 
                    return Err(self.error_at_pos("Expected '}'"));
 
                }
 
            } else if let Some(b'*') = self.source.next() {
 
                // Import all symbols without alias
 
                self.source.consume();
 
                h.alloc_import(|this| Import::Symbols(ImportSymbols{
 
                    this,
 
                    position,
 
                    module_name: value,
 
                    module_id: None,
 
                    symbols: Vec::new()
 
                }))
 
            } else {
 
                return Err(self.error_at_pos("Expected '*' or '{'"));
 
            }
 
        } else {
 
            // No explicit alias or subimports, so implicit alias
 
            let alias = Vec::from(&value[last_ident_start..]);
 
            h.alloc_import(|this| Import::Module(ImportModule{
 
                this,
 
                position,
 
                module_name: value,
 
                alias,
 
                module_id: None,
 
            }))
 
        };
 

	
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b";")?;
 
        Ok(import)
 
    }
 
    pub fn consume_protocol_description(&mut self, h: &mut Heap) -> Result<RootId, ParseError2> {
 
        let position = self.source.pos();
 
        let mut pragmas = Vec::new();
 
        let mut imports = Vec::new();
 
        let mut definitions = Vec::new();
 
        self.consume_whitespace(false)?;
 
        while self.has_pragma() {
 
            let pragma = self.consume_pragma(h)?;
 
            pragmas.push(pragma);
 
            self.consume_whitespace(false)?;
 
        }
 
        while self.has_import() {
 
            let import = self.consume_import(h)?;
 
            imports.push(import);
 
            self.consume_whitespace(false)?;
 
        }
 
        while self.has_symbol_definition() {
 
            let def = self.consume_symbol_definition(h)?;
 
            definitions.push(def);
 
            self.consume_whitespace(false)?;
 
        }
 
        // end of file
 
        if !self.source.is_eof() {
 
            return Err(self.error_at_pos("Expected end of file"));
 
        }
 
        Ok(h.alloc_protocol_description(|this| Root {
 
            this,
 
            position,
 
            pragmas,
 
            imports,
 
            definitions,
 
            declarations: Vec::new(),
 
        }))
 
    }
 
}
 

	
 
#[cfg(test)]
 
mod tests {
 
    use crate::protocol::ast::*;
 
    use crate::protocol::{ast, lexer::*};
 
    use crate::protocol::lexer::*;
 
    use crate::protocol::inputsource::*;
 

	
 
    #[test]
 
    fn test_pragmas() {
 
        let mut h = Heap::new();
 
        let mut input = InputSource::from_string("
 
        #version 0o7777
 
        #module something.dot.separated
 
        ").expect("new InputSource");
 
        let mut lex = Lexer::new(&mut input);
 
        let lexed = lex.consume_protocol_description(&mut h)
 
            .expect("lex input source");
 
        let root = &h[lexed];
 
        assert_eq!(root.pragmas.len(), 2);
 
        let pv = &h[root.pragmas[0]];
 
        let pm = &h[root.pragmas[1]];
 

	
 
        if let Pragma::Version(v) = pv {
 
            assert_eq!(v.version, 0o7777)
 
        } else {
 
            assert!(false, "first pragma not version");
 
        }
 
        if let Pragma::Module(m) = pm {
 
            assert_eq!(m.value, b"something.dot.separated");
 
        } else {
 
            assert!(false, "second pragma not module");
 
        }
 
    }
 

	
 
    #[test]
 
    fn test_import() {
 
        let mut h = Heap::new();
 
        let mut input = InputSource::from_string("
 
        // Module imports, with optional and explicit aliasing
 
        import single_module;
 
        import std.reo;
 
        import something.other as alias;
 
        // Symbol imports
 
        import some_module::*;
 
        import some_module::{Foo as Bar, Qux, Dix as Flu};
 
        import std.reo::{
 
            Foo as Bar, // because thing
 
            Qux as Mox, // more explanations
 
            Dix, /* yesh, import me */
 
        };
 
        ").unwrap();
 
        let mut lex = Lexer::new(&mut input);
 
        let lexed = lex.consume_protocol_description(&mut h).unwrap();
 
        let root = &h[lexed];
 
        assert_eq!(root.imports.len(), 6);
 
        let no_alias_single = h[root.imports[0]].as_module();
 
        let no_alias_multi = h[root.imports[1]].as_module();
 
        let with_alias = h[root.imports[2]].as_module();
 

	
 
        assert_eq!(no_alias_single.module_name, b"single_module");
 
        assert_eq!(no_alias_single.alias, b"single_module");
 
        assert_eq!(no_alias_multi.module_name, b"std.reo");
 
        assert_eq!(no_alias_multi.alias, b"reo");
 
        assert_eq!(with_alias.module_name, b"something.other");
 
        assert_eq!(with_alias.alias, b"alias");
 

	
 
        let all_symbols = h[root.imports[3]].as_symbols();
 
        let single_line_symbols = h[root.imports[4]].as_symbols();
 
        let multi_line_symbols = h[root.imports[5]].as_symbols();
 

	
 
        assert_eq!(all_symbols.module_name, b"some_module");
 
        assert!(all_symbols.symbols.is_empty());
 
        assert_eq!(single_line_symbols.module_name, b"some_module");
 
        assert_eq!(single_line_symbols.symbols.len(), 3);
 
        assert_eq!(single_line_symbols.symbols[0].name, b"Foo");
 
        assert_eq!(single_line_symbols.symbols[0].alias, b"Bar");
 
        assert_eq!(single_line_symbols.symbols[1].name, b"Qux");
 
        assert_eq!(single_line_symbols.symbols[1].alias, b"Qux");
 
        assert_eq!(single_line_symbols.symbols[2].name, b"Dix");
 
        assert_eq!(single_line_symbols.symbols[2].alias, b"Flu");
 
        assert_eq!(multi_line_symbols.module_name, b"std.reo");
 
        assert_eq!(multi_line_symbols.symbols.len(), 3);
 
        assert_eq!(multi_line_symbols.symbols[0].name, b"Foo");
 
        assert_eq!(multi_line_symbols.symbols[0].alias, b"Bar");
 
        assert_eq!(multi_line_symbols.symbols[1].name, b"Qux");
 
        assert_eq!(multi_line_symbols.symbols[1].alias, b"Mox");
 
        assert_eq!(multi_line_symbols.symbols[2].name, b"Dix");
 
        assert_eq!(multi_line_symbols.symbols[2].alias, b"Dix");
 
    }
 

	
 
    #[test]
 
    fn test_struct_definition() {
 
        let mut h = Heap::new();
 
        let mut input = InputSource::from_string("
 
        struct Foo {
 
            byte one,
 
            short two,
 
            Bar three,
 
        }
 
        struct Bar{int[] one, int[] two, Qux[] three}
 
        ").unwrap();
src/protocol/library.rs
Show inline comments
 
deleted file
src/protocol/mod.rs
Show inline comments
 
mod arena;
 
// mod ast;
 
mod eval;
 
pub(crate) mod inputsource;
 
// mod lexer;
 
mod library;
 
mod parser;
 

	
 
// TODO: Remove when not benchmarking
 
pub(crate) mod ast;
 
pub(crate) mod ast_printer;
 
pub(crate) mod lexer;
 

	
 
lazy_static::lazy_static! {
 
    /// Conveniently-provided protocol description initialized with a zero-length PDL string.
 
    /// Exposed to minimize repeated initializations of this common protocol description.
 
    pub static ref TRIVIAL_PD: std::sync::Arc<ProtocolDescription> = {
 
        std::sync::Arc::new(ProtocolDescription::parse(b"").unwrap())
 
    };
 
}
 

	
 
use crate::common::*;
 
use crate::protocol::ast::*;
 
use crate::protocol::eval::*;
 
use crate::protocol::inputsource::*;
 
use crate::protocol::parser::*;
 

	
 
/// Description of a protocol object, used to configure new connectors.
 
/// (De)serializable.
 
#[derive(serde::Serialize, serde::Deserialize)]
 
#[repr(C)]
 
pub struct ProtocolDescription {
 
    heap: Heap,
 
    source: InputSource,
 
    root: RootId,
 
}
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub(crate) struct ComponentState {
 
    prompt: Prompt,
 
}
 
pub(crate) enum EvalContext<'a> {
 
    Nonsync(&'a mut NonsyncProtoContext<'a>),
 
    Sync(&'a mut SyncProtoContext<'a>),
 
    // None,
 
}
 
//////////////////////////////////////////////
 

	
 
impl std::fmt::Debug for ProtocolDescription {
 
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
 
        write!(f, "(An opaque protocol description)")
 
    }
 
}
 
impl ProtocolDescription {
 
    pub fn parse(buffer: &[u8]) -> Result<Self, String> {
 
        // TODO: @fixme, keep code compilable, but needs support for multiple
 
        //  input files.
 
        let source = InputSource::from_buffer(buffer).unwrap();
 
        let mut parser = Parser::new();
 
        parser.feed(source).expect("failed to parse source");
 
        match parser.parse() {
 
            Ok(root) => {
 
                return Ok(ProtocolDescription { heap: parser.heap, source: parser.modules[0].source.clone(), root });
 
            }
 
            Err(err) => {
 
                println!("ERROR:\n{}", err);
 
                Err(format!("{}", err))
 
            }
 
        }
 
    }
 
    pub(crate) fn component_polarities(
 
        &self,
 
        identifier: &[u8],
 
    ) -> Result<Vec<Polarity>, AddComponentError> {
 
        use AddComponentError::*;
 
        let h = &self.heap;
 
        let root = &h[self.root];
 
        let def = root.get_definition_ident(h, identifier);
 
        if def.is_none() {
 
            return Err(NoSuchComponent);
 
        }
 
        let def = &h[def.unwrap()];
 
        if !def.is_component() {
 
            return Err(NoSuchComponent);
 
        }
 
        for &param in def.parameters().iter() {
 
            let param = &h[param];
 
            let type_annot = &h[param.type_annotation];
 
            if type_annot.the_type.array {
 
                return Err(NonPortTypeParameters);
 
            }
 
            match type_annot.the_type.primitive {
 
                PrimitiveType::Input | PrimitiveType::Output => continue,
 
                _ => {
 
                    return Err(NonPortTypeParameters);
 
                }
 
            }
 
        }
 
        let mut result = Vec::new();
 
        for &param in def.parameters().iter() {
 
            let param = &h[param];
 
            let type_annot = &h[param.type_annotation];
 
            let ptype = &type_annot.the_type.primitive;
src/protocol/parser/depth_visitor.rs
Show inline comments
 
use crate::protocol::ast::*;
 
use crate::protocol::inputsource::*;
 
use crate::protocol::library;
 

	
 
// The following indirection is needed due to a bug in the cbindgen tool.
 
type Unit = ();
 
pub(crate) type VisitorError = (InputPosition, String); // TODO: Revise when multi-file compiling is in place
 
pub(crate) type VisitorResult = Result<Unit, VisitorError>;
 

	
 
pub(crate) trait Visitor: Sized {
 
    fn visit_protocol_description(&mut self, h: &mut Heap, pd: RootId) -> VisitorResult {
 
        recursive_protocol_description(self, h, pd)
 
    }
 
    fn visit_pragma(&mut self, _h: &mut Heap, _pragma: PragmaId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_import(&mut self, _h: &mut Heap, _import: ImportId) -> VisitorResult {
 
        Ok(())
 
    }
 

	
 
    fn visit_symbol_definition(&mut self, h: &mut Heap, def: DefinitionId) -> VisitorResult {
 
        recursive_symbol_definition(self, h, def)
 
    }
 
    fn visit_struct_definition(&mut self, _h: &mut Heap, _def: StructId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_enum_definition(&mut self, _h: &mut Heap, _def: EnumId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_component_definition(&mut self, h: &mut Heap, def: ComponentId) -> VisitorResult {
 
        recursive_component_definition(self, h, def)
 
    }
 
    fn visit_composite_definition(&mut self, h: &mut Heap, def: ComponentId) -> VisitorResult {
 
        recursive_composite_definition(self, h, def)
 
    }
 
    fn visit_primitive_definition(&mut self, h: &mut Heap, def: ComponentId) -> VisitorResult {
 
        recursive_primitive_definition(self, h, def)
 
    }
 
    fn visit_function_definition(&mut self, h: &mut Heap, def: FunctionId) -> VisitorResult {
 
        recursive_function_definition(self, h, def)
 
    }
 

	
 
    fn visit_variable_declaration(&mut self, h: &mut Heap, decl: VariableId) -> VisitorResult {
 
        recursive_variable_declaration(self, h, decl)
 
    }
 
    fn visit_parameter_declaration(&mut self, _h: &mut Heap, _decl: ParameterId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_local_declaration(&mut self, _h: &mut Heap, _decl: LocalId) -> VisitorResult {
 
        Ok(())
 
    }
 

	
 
    fn visit_statement(&mut self, h: &mut Heap, stmt: StatementId) -> VisitorResult {
 
        recursive_statement(self, h, stmt)
 
    }
 
    fn visit_local_statement(&mut self, h: &mut Heap, stmt: LocalStatementId) -> VisitorResult {
 
        recursive_local_statement(self, h, stmt)
 
    }
 
    fn visit_memory_statement(&mut self, h: &mut Heap, stmt: MemoryStatementId) -> VisitorResult {
 
        recursive_memory_statement(self, h, stmt)
 
    }
 
    fn visit_channel_statement(
 
        &mut self,
 
        _h: &mut Heap,
 
        _stmt: ChannelStatementId,
 
    ) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_block_statement(&mut self, h: &mut Heap, stmt: BlockStatementId) -> VisitorResult {
 
        recursive_block_statement(self, h, stmt)
 
    }
 
    fn visit_labeled_statement(&mut self, h: &mut Heap, stmt: LabeledStatementId) -> VisitorResult {
 
        recursive_labeled_statement(self, h, stmt)
 
    }
 
    fn visit_skip_statement(&mut self, _h: &mut Heap, _stmt: SkipStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_if_statement(&mut self, h: &mut Heap, stmt: IfStatementId) -> VisitorResult {
 
        recursive_if_statement(self, h, stmt)
 
    }
 
    fn visit_end_if_statement(&mut self, _h: &mut Heap, _stmt: EndIfStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_while_statement(&mut self, h: &mut Heap, stmt: WhileStatementId) -> VisitorResult {
 
        recursive_while_statement(self, h, stmt)
 
    }
 
    fn visit_end_while_statement(&mut self, _h: &mut Heap, _stmt: EndWhileStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_break_statement(&mut self, _h: &mut Heap, _stmt: BreakStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_continue_statement(
 
        &mut self,
 
        _h: &mut Heap,
 
        _stmt: ContinueStatementId,
 
    ) -> VisitorResult {
 
        Ok(())
 
    }
 
@@ -687,519 +686,244 @@ impl Visitor for FunctionStatementReturns {
 
    }
 
}
 

	
 
pub(crate) struct ComponentStatementReturnNew {
 
    illegal_new: bool,
 
    illegal_return: bool,
 
}
 

	
 
impl ComponentStatementReturnNew {
 
    pub(crate) fn new() -> Self {
 
        ComponentStatementReturnNew { illegal_new: false, illegal_return: false }
 
    }
 
}
 

	
 
impl Visitor for ComponentStatementReturnNew {
 
    fn visit_component_definition(&mut self, h: &mut Heap, def: ComponentId) -> VisitorResult {
 
        assert!(!(self.illegal_new || self.illegal_return));
 
        self.illegal_return = true;
 
        recursive_component_definition(self, h, def)?;
 
        self.illegal_return = false;
 
        Ok(())
 
    }
 
    fn visit_primitive_definition(&mut self, h: &mut Heap, def: ComponentId) -> VisitorResult {
 
        assert!(!self.illegal_new);
 
        self.illegal_new = true;
 
        recursive_primitive_definition(self, h, def)?;
 
        self.illegal_new = false;
 
        Ok(())
 
    }
 
    fn visit_function_definition(&mut self, h: &mut Heap, def: FunctionId) -> VisitorResult {
 
        assert!(!(self.illegal_new || self.illegal_return));
 
        self.illegal_new = true;
 
        recursive_function_definition(self, h, def)?;
 
        self.illegal_new = false;
 
        Ok(())
 
    }
 
    fn visit_variable_declaration(&mut self, _h: &mut Heap, _decl: VariableId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_return_statement(&mut self, h: &mut Heap, stmt: ReturnStatementId) -> VisitorResult {
 
        if self.illegal_return {
 
            Err((h[stmt].position, "Component definition must not return".to_string()))
 
        } else {
 
            recursive_return_statement(self, h, stmt)
 
        }
 
    }
 
    fn visit_new_statement(&mut self, h: &mut Heap, stmt: NewStatementId) -> VisitorResult {
 
        if self.illegal_new {
 
            Err((
 
                h[stmt].position,
 
                "Symbol definition contains illegal new statement".to_string(),
 
            ))
 
        } else {
 
            recursive_new_statement(self, h, stmt)
 
        }
 
    }
 
    fn visit_expression(&mut self, _h: &mut Heap, _expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
pub(crate) struct CheckBuiltinOccurrences {
 
    legal: bool,
 
}
 

	
 
impl CheckBuiltinOccurrences {
 
    pub(crate) fn new() -> Self {
 
        CheckBuiltinOccurrences { legal: false }
 
    }
 
}
 

	
 
impl Visitor for CheckBuiltinOccurrences {
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        assert!(!self.legal);
 
        self.legal = true;
 
        recursive_synchronous_statement(self, h, stmt)?;
 
        self.legal = false;
 
        Ok(())
 
    }
 
    fn visit_call_expression(&mut self, h: &mut Heap, expr: CallExpressionId) -> VisitorResult {
 
        match h[expr].method {
 
            Method::Get | Method::Fires => {
 
                if !self.legal {
 
                    return Err((h[expr].position, "Illegal built-in occurrence".to_string()));
 
                }
 
            }
 
            _ => {}
 
        }
 
        recursive_call_expression(self, h, expr)
 
    }
 
}
 

	
 
pub(crate) struct BuildSymbolDeclarations {
 
    declarations: Vec<DeclarationId>,
 
}
 

	
 
impl BuildSymbolDeclarations {
 
    pub(crate) fn new() -> Self {
 
        BuildSymbolDeclarations { declarations: Vec::new() }
 
    }
 
    fn checked_add(&mut self, h: &mut Heap, decl: DeclarationId) -> VisitorResult {
 
        for &old in self.declarations.iter() {
 
            let id = h[decl].identifier();
 
            if id.value == h[old].identifier().value {
 
                return match h[decl].clone() {
 
                    Declaration::Defined(defined) => Err((
 
                        h[defined.definition].position(),
 
                        format!("Defined symbol clash: {}", String::from_utf8_lossy(&id.value)),
 
                    )),
 
                    Declaration::Imported(imported) => Err((
 
                        h[imported.import].position(),
 
                        format!("Imported symbol clash: {}", String::from_utf8_lossy(&id.value)),
 
                    )),
 
                };
 
            }
 
        }
 
        self.declarations.push(decl);
 
        Ok(())
 
    }
 
}
 

	
 
impl Visitor for BuildSymbolDeclarations {
 
    fn visit_protocol_description(&mut self, h: &mut Heap, pd: RootId) -> VisitorResult {
 
        recursive_protocol_description(self, h, pd)?;
 
        // Move all collected declarations to the protocol description
 
        h[pd].declarations.append(&mut self.declarations);
 
        Ok(())
 
    }
 
    fn visit_import(&mut self, h: &mut Heap, import: ImportId) -> VisitorResult {
 
        // println!("DEBUG: Warning (at {}:{}), import actually not yet implemented", file!(), line!());
 
        // TODO: Implement
 
        let vec = library::get_declarations(h, import);
 
        if let Err(_err)= vec {
 
            return Err((h[import].position(), "Failed to perform import".to_string()))
 
        }
 

	
 
        // Destructively iterate over the vector
 
        for decl in vec.unwrap() {
 
            self.checked_add(h, decl)?;
 
        }
 
        Ok(())
 
    }
 
    fn visit_symbol_definition(&mut self, h: &mut Heap, definition: DefinitionId) -> VisitorResult {
 
        let signature = Signature::from_definition(h, definition);
 
        let decl = h
 
            .alloc_defined_declaration(|this| DefinedDeclaration { this, definition, signature })
 
            .upcast();
 
        self.checked_add(h, decl)?;
 
        Ok(())
 
    }
 
}
 

	
 
pub(crate) struct LinkCallExpressions {
 
    pd: Option<RootId>,
 
    composite: bool,
 
    new_statement: bool,
 
}
 

	
 
impl LinkCallExpressions {
 
    pub(crate) fn new() -> Self {
 
        LinkCallExpressions { pd: None, composite: false, new_statement: false }
 
    }
 
    fn get_declaration(
 
        &self,
 
        h: &Heap,
 
        id: &Identifier,
 
    ) -> Result<DeclarationId, VisitorError> {
 
        match h[self.pd.unwrap()].get_declaration(h, &id) {
 
            Some(id) => Ok(id),
 
            None => Err((id.position, "Unresolved method".to_string())),
 
        }
 
    }
 
    fn get_declaration_namespaced(
 
        &self, h: &Heap, id: &NamespacedIdentifier
 
    ) -> Result<DeclarationId, VisitorError> {
 
        // TODO: @fixme
 
        match h[self.pd.unwrap()].get_declaration_namespaced(h, id) {
 
            Some(id) => Ok(id),
 
            None => Err((id.position, "Unresolved method".to_string()))
 
        }
 
    }
 
}
 

	
 
impl Visitor for LinkCallExpressions {
 
    fn visit_protocol_description(&mut self, h: &mut Heap, pd: RootId) -> VisitorResult {
 
        self.pd = Some(pd);
 
        recursive_protocol_description(self, h, pd)?;
 
        self.pd = None;
 
        Ok(())
 
    }
 
    fn visit_composite_definition(&mut self, h: &mut Heap, def: ComponentId) -> VisitorResult {
 
        assert!(!self.composite);
 
        self.composite = true;
 
        recursive_composite_definition(self, h, def)?;
 
        self.composite = false;
 
        Ok(())
 
    }
 
    fn visit_new_statement(&mut self, h: &mut Heap, stmt: NewStatementId) -> VisitorResult {
 
        assert!(self.composite);
 
        assert!(!self.new_statement);
 
        self.new_statement = true;
 
        recursive_new_statement(self, h, stmt)?;
 
        self.new_statement = false;
 
        Ok(())
 
    }
 
    fn visit_call_expression(&mut self, h: &mut Heap, expr: CallExpressionId) -> VisitorResult {
 
        if let Method::Symbolic(id) = &h[expr].method {
 
            // TODO: @symbol_table
 
            let decl = self.get_declaration_namespaced(h, &id.identifier)?;
 
            if self.new_statement && h[decl].is_function() {
 
                return Err((id.identifier.position, "Illegal call expression".to_string()));
 
            }
 
            if !self.new_statement && h[decl].is_component() {
 
                return Err((id.identifier.position, "Illegal call expression".to_string()));
 
            }
 
            // Set the corresponding declaration of the call
 
            // TODO: This should not be necessary anymore once parser is rewritten
 
            // h[expr]. = Some(decl);
 
        }
 
        // A new statement's call expression may have as arguments function calls
 
        let old = self.new_statement;
 
        self.new_statement = false;
 
        recursive_call_expression(self, h, expr)?;
 
        self.new_statement = old;
 
        Ok(())
 
    }
 
}
 

	
 
pub(crate) struct BuildScope {
 
    scope: Option<Scope>,
 
}
 

	
 
impl BuildScope {
 
    pub(crate) fn new() -> Self {
 
        BuildScope { scope: None }
 
    }
 
}
 

	
 
impl Visitor for BuildScope {
 
    fn visit_symbol_definition(&mut self, h: &mut Heap, def: DefinitionId) -> VisitorResult {
 
        assert!(self.scope.is_none());
 
        self.scope = Some(Scope::Definition(def));
 
        recursive_symbol_definition(self, h, def)?;
 
        self.scope = None;
 
        Ok(())
 
    }
 
    fn visit_block_statement(&mut self, h: &mut Heap, stmt: BlockStatementId) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let old = self.scope;
 
        // First store the current scope
 
        h[stmt].parent_scope = self.scope;
 
        // Then move scope down to current block
 
        self.scope = Some(Scope::Regular(stmt));
 
        recursive_block_statement(self, h, stmt)?;
 
        // Move scope back up
 
        self.scope = old;
 
        Ok(())
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let old = self.scope;
 
        // First store the current scope
 
        h[stmt].parent_scope = self.scope;
 
        // Then move scope down to current sync
 
        // TODO: Should be legal-ish, but very wrong
 
        self.scope = Some(Scope::Synchronous((stmt, BlockStatementId(stmt.upcast()))));
 
        recursive_synchronous_statement(self, h, stmt)?;
 
        // Move scope back up
 
        self.scope = old;
 
        Ok(())
 
    }
 
    fn visit_expression(&mut self, _h: &mut Heap, _expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
pub(crate) struct ResolveVariables {
 
    scope: Option<Scope>,
 
}
 

	
 
impl ResolveVariables {
 
    pub(crate) fn new() -> Self {
 
        ResolveVariables { scope: None }
 
    }
 
    fn get_variable(&self, h: &Heap, id: &Identifier) -> Result<VariableId, VisitorError> {
 
        if let Some(var) = self.find_variable(h, id) {
 
            Ok(var)
 
        } else {
 
            Err((id.position, "Unresolved variable".to_string()))
 
        }
 
    }
 
    fn find_variable(&self, h: &Heap, id: &Identifier) -> Option<VariableId> {
 
        ResolveVariables::find_variable_impl(h, self.scope, id)
 
    }
 
    fn find_variable_impl(
 
        h: &Heap,
 
        scope: Option<Scope>,
 
        id: &Identifier,
 
    ) -> Option<VariableId> {
 
        if let Some(scope) = scope {
 
            // The order in which we check for variables is important:
 
            // otherwise, two variables with the same name are shadowed.
 
            if let Some(var) = ResolveVariables::find_variable_impl(h, scope.parent_scope(h), id) {
 
                Some(var)
 
            } else {
 
                scope.get_variable(h, id)
 
            }
 
        } else {
 
            None
 
        }
 
    }
 
}
 

	
 
impl Visitor for ResolveVariables {
 
    fn visit_symbol_definition(&mut self, h: &mut Heap, def: DefinitionId) -> VisitorResult {
 
        assert!(self.scope.is_none());
 
        self.scope = Some(Scope::Definition(def));
 
        recursive_symbol_definition(self, h, def)?;
 
        self.scope = None;
 
        Ok(())
 
    }
 
    fn visit_variable_declaration(&mut self, h: &mut Heap, decl: VariableId) -> VisitorResult {
 
        // This is only called for parameters of definitions and synchronous statements,
 
        // since the local variables of block statements are still empty
 
        // the moment it is traversed. After resolving variables, this
 
        // function is also called for every local variable declaration.
 

	
 
        // We want to make sure that the resolved variable is the variable declared itself;
 
        // otherwise, there is some variable defined in the parent scope. This check
 
        // imposes that the order in which find_variable looks is significant!
 
        let id = h[decl].identifier();
 
        let check_same = self.find_variable(h, id);
 
        if let Some(check_same) = check_same {
 
            if check_same != decl {
 
                return Err((id.position, "Declared variable clash".to_string()));
 
            }
 
        }
 
        recursive_variable_declaration(self, h, decl)
 
    }
 
    fn visit_memory_statement(&mut self, h: &mut Heap, stmt: MemoryStatementId) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let var = h[stmt].variable;
 
        let id = &h[var].identifier;
 
        // First check whether variable with same identifier is in scope
 
        let check_duplicate = self.find_variable(h, id);
 
        if check_duplicate.is_some() {
 
            return Err((id.position, "Declared variable clash".to_string()));
 
        }
 
        // Then check the expression's variables (this should not refer to own variable)
 
        recursive_memory_statement(self, h, stmt)?;
 
        // Finally, we may add the variable to the scope, which is guaranteed to be a block
 
        {
 
            let block = &mut h[self.scope.unwrap().to_block()];
 
            block.locals.push(var);
 
        }
 
        Ok(())
 
    }
 
    fn visit_channel_statement(&mut self, h: &mut Heap, stmt: ChannelStatementId) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        // First handle the from variable
 
        {
 
            let var = h[stmt].from;
 
            let id = &h[var].identifier;
 
            let check_duplicate = self.find_variable(h, id);
 
            if check_duplicate.is_some() {
 
                return Err((id.position, "Declared variable clash".to_string()));
 
            }
 
            let block = &mut h[self.scope.unwrap().to_block()];
 
            block.locals.push(var);
 
        }
 
        // Then handle the to variable (which may not be the same as the from)
 
        {
 
            let var = h[stmt].to;
 
            let id = &h[var].identifier;
 
            let check_duplicate = self.find_variable(h, id);
 
            if check_duplicate.is_some() {
 
                return Err((id.position, "Declared variable clash".to_string()));
 
            }
 
            let block = &mut h[self.scope.unwrap().to_block()];
 
            block.locals.push(var);
 
        }
 
        Ok(())
 
    }
 
    fn visit_block_statement(&mut self, h: &mut Heap, stmt: BlockStatementId) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let old = self.scope;
 
        self.scope = Some(Scope::Regular(stmt));
 
        recursive_block_statement(self, h, stmt)?;
 
        self.scope = old;
 
        Ok(())
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let old = self.scope;
 
        self.scope = Some(Scope::Synchronous((stmt, BlockStatementId(stmt.upcast())))); // TODO: WRONG!
 
        recursive_synchronous_statement(self, h, stmt)?;
 
        self.scope = old;
 
        Ok(())
 
    }
 
    fn visit_variable_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: VariableExpressionId,
 
    ) -> VisitorResult {
 
        let ident = Identifier{ position: Default::default(), value: h[expr].identifier.value.clone() };
 
        let var = self.get_variable(h, &ident)?;
 
        h[expr].declaration = Some(var);
 
        Ok(())
 
    }
 
}
 

	
 
pub(crate) struct UniqueStatementId(StatementId);
 

	
 
pub(crate) struct LinkStatements {
 
    prev: Option<UniqueStatementId>,
 
}
 

	
 
impl LinkStatements {
 
    pub(crate) fn new() -> Self {
 
        LinkStatements { prev: None }
 
    }
 
}
 

	
 
impl Visitor for LinkStatements {
 
    fn visit_symbol_definition(&mut self, h: &mut Heap, def: DefinitionId) -> VisitorResult {
 
        assert!(self.prev.is_none());
 
        recursive_symbol_definition(self, h, def)?;
 
        // Clear out last statement
 
        self.prev = None;
 
        Ok(())
 
    }
 
    fn visit_statement(&mut self, h: &mut Heap, stmt: StatementId) -> VisitorResult {
 
        if let Some(UniqueStatementId(prev)) = self.prev.take() {
 
            h[prev].link_next(stmt);
 
        }
 
        recursive_statement(self, h, stmt)
 
    }
 
    fn visit_local_statement(&mut self, _h: &mut Heap, stmt: LocalStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_labeled_statement(&mut self, h: &mut Heap, stmt: LabeledStatementId) -> VisitorResult {
 
        recursive_labeled_statement(self, h, stmt)
 
    }
 
    fn visit_skip_statement(&mut self, _h: &mut Heap, stmt: SkipStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_if_statement(&mut self, h: &mut Heap, stmt: IfStatementId) -> VisitorResult {
 
        // Link the two branches to the corresponding EndIf pseudo-statement
 
        let end_if_id = h[stmt].end_if;
 
        assert!(end_if_id.is_some());
 
        let end_if_id = end_if_id.unwrap();
 

	
 
        assert!(self.prev.is_none());
 
        self.visit_statement(h, h[stmt].true_body)?;
 
        if let Some(UniqueStatementId(prev)) = self.prev.take() {
 
            h[prev].link_next(end_if_id.upcast());
 
        }
 

	
 
        assert!(self.prev.is_none());
 
        self.visit_statement(h, h[stmt].false_body)?;
 
        if let Some(UniqueStatementId(prev)) = self.prev.take() {
 
            h[prev].link_next(end_if_id.upcast());
 
        }
 

	
 
        // Use the pseudo-statement as the statement where to update the next pointer
 
        // self.prev = Some(UniqueStatementId(end_if_id.upcast()));
 
        Ok(())
 
    }
 
    fn visit_end_if_statement(&mut self, _h: &mut Heap, stmt: EndIfStatementId) -> VisitorResult {
 
        assert!(self.prev.is_none());
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_while_statement(&mut self, h: &mut Heap, stmt: WhileStatementId) -> VisitorResult {
 
        // We allocate a pseudo-statement, to which the break statement finds its target
 
        // Update the while's next statement to point to the pseudo-statement
 
        let end_while_id = h[stmt].end_while;
 
        assert!(end_while_id.is_some());
 
        let end_while_id = end_while_id.unwrap();
 

	
 
        assert!(self.prev.is_none());
 
        self.visit_statement(h, h[stmt].body)?;
 
        // The body's next statement loops back to the while statement itself
 
        // Note: continue statements also loop back to the while statement itself
 
        if let Some(UniqueStatementId(prev)) = self.prev.take() {
 
            h[prev].link_next(stmt.upcast());
 
        }
 
        // Use the while statement as the statement where the next pointer is updated
 
        // self.prev = Some(UniqueStatementId(end_while_id.upcast()));
 
        Ok(())
 
    }
 
    fn visit_end_while_statement(&mut self, _h: &mut Heap, stmt: EndWhileStatementId) -> VisitorResult {
 
        assert!(self.prev.is_none());
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_break_statement(&mut self, _h: &mut Heap, _stmt: BreakStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_continue_statement(
 
        &mut self,
 
        _h: &mut Heap,
 
        _stmt: ContinueStatementId,
 
    ) -> VisitorResult {
 
        Ok(())
src/protocol/parser/mod.rs
Show inline comments
 
mod depth_visitor;
 
mod symbol_table;
 
mod type_table;
 
mod type_resolver;
 
mod visitor;
 
mod visitor_linker;
 

	
 
use depth_visitor::*;
 
use symbol_table::SymbolTable;
 
use visitor::Visitor2;
 
use visitor_linker::ValidityAndLinkerVisitor;
 
use type_table::TypeTable;
 

	
 
use crate::protocol::ast::*;
 
use crate::protocol::inputsource::*;
 
use crate::protocol::lexer::*;
 

	
 
use std::collections::HashMap;
 
use crate::protocol::parser::visitor::Ctx;
 
use crate::protocol::ast_printer::ASTWriter;
 

	
 
// TODO: @fixme, pub qualifier
 
pub(crate) struct LexedModule {
 
    pub(crate) source: InputSource,
 
    module_name: Vec<u8>,
 
    version: Option<u64>,
 
    root_id: RootId,
 
}
 

	
 
pub struct Parser {
 
    pub(crate) heap: Heap,
 
    pub(crate) modules: Vec<LexedModule>,
 
    pub(crate) module_lookup: HashMap<Vec<u8>, usize>, // from (optional) module name to `modules` idx
 
}
 

	
 
impl Parser {
 
    pub fn new() -> Self {
 
        Parser{
 
            heap: Heap::new(),
 
            modules: Vec::new(),
 
            module_lookup: HashMap::new()
 
        }
 
    }
 

	
 
    // TODO: @fix, temporary implementation to keep code compilable
 
    pub fn new_with_source(source: InputSource) -> Result<Self, ParseError2> {
 
        let mut parser = Parser::new();
 
        parser.feed(source)?;
 
        Ok(parser)
 
    }
 

	
 
    pub fn feed(&mut self, mut source: InputSource) -> Result<RootId, ParseError2> {
 
        // Lex the input source
 
        let mut lex = Lexer::new(&mut source);
 
        let pd = lex.consume_protocol_description(&mut self.heap)?;
 

	
 
        // Seek the module name and version
 
        let root = &self.heap[pd];
 
        let mut module_name_pos = InputPosition::default();
 
        let mut module_name = Vec::new();
 
        let mut module_version_pos = InputPosition::default();
 
        let mut module_version = None;
 

	
 
        for pragma in &root.pragmas {
 
            match &self.heap[*pragma] {
 
                Pragma::Module(module) => {
 
                    if !module_name.is_empty() {
 
                        return Err(
 
                            ParseError2::new_error(&source, module.position, "Double definition of module name in the same file")
 
                                .with_postfixed_info(&source, module_name_pos, "Previous definition was here")
 
                        )
 
                    }
 

	
 
                    module_name_pos = module.position.clone();
 
                    module_name = module.value.clone();
 
                },
 
                Pragma::Version(version) => {
 
                    if module_version.is_some() {
 
                        return Err(
 
                            ParseError2::new_error(&source, version.position, "Double definition of module version")
 
                                .with_postfixed_info(&source, module_version_pos, "Previous definition was here")
 
                        )
 
                    }
 

	
 
                    module_version_pos = version.position.clone();
 
                    module_version = Some(version.version);
 
                },
 
            }
 
        }
 

	
 
        // Add module to list of modules and prevent naming conflicts
 
        let cur_module_idx = self.modules.len();
 
        if let Some(prev_module_idx) = self.module_lookup.get(&module_name) {
 
            // Find `#module` statement in other module again
 
            let prev_module = &self.modules[*prev_module_idx];
 
            let prev_module_pos = self.heap[prev_module.root_id].pragmas
 
                .iter()
 
                .find_map(|p| {
 
                    match &self.heap[*p] {
 
                        Pragma::Module(module) => Some(module.position.clone()),
 
                        _ => None
 
                    }
 
                })
 
                .unwrap_or(InputPosition::default());
 

	
 
            let module_name_msg = if module_name.is_empty() {
 
                format!("a nameless module")
 
            } else {
 
                format!("module '{}'", String::from_utf8_lossy(&module_name))
 
            };
 

	
 
            return Err(
 
                ParseError2::new_error(&source, module_name_pos, &format!("Double definition of {} across files", module_name_msg))
 
                    .with_postfixed_info(&prev_module.source, prev_module_pos, "Other definition was here")
 
            );
0 comments (0 inline, 0 general)