Changeset - d67249fd4593
[Not reviewed]
0 8 0
Christopher Esterhuyse - 5 years ago 2020-07-02 12:35:40
christopher.esterhuyse@gmail.com
logging using hex, less glob imports, and endpoint_logging feature flag
8 files changed with 119 insertions and 91 deletions:
0 comments (0 inline, 0 general)
.gitignore
Show inline comments
 
target
 
/.idea
 
**/*.rs.bk
 
Cargo.lock
 
main
 
examples/*/*.exe
 
examples/*.dll
 
examples/reowolf*
 
examples/*.txt
 
logs
 
logs/*
 
logs/*/*
Cargo.toml
Show inline comments
 
[package]
 
name = "reowolf_rs"
 
version = "0.1.4"
 
authors = [
 
	"Christopher Esterhuyse <esterhuy@cwi.nl, christopher.esterhuyse@gmail.com>",
 
	"Hans-Dieter Hiep <hdh@cwi.nl>"
 
]
 
edition = "2018"
 

	
 
[dependencies]
 
# convenience macros
 
maplit = "1.0.2"
 
derive_more = "0.99.2"
 

	
 
# runtime
 
bincode = "1.3.1"
 
serde = { version = "1.0.114", features = ["derive"] }
 
getrandom = "0.1.14" # tiny crate. used to guess controller-id
 

	
 
# network
 
# integer-encoding = "1.1.5"
 
# byteorder = "1.3.4"
 
mio = { version = "0.7.0", package = "mio", features = ["tcp", "os-poll"] }
 

	
 
# protocol
 
backtrace = "0.3"
 

	
 
[dev-dependencies]
 
# test-generator = "0.3.0"
 
crossbeam-utils = "0.7.2"
 
lazy_static = "1.4.0"
 

	
 
[lib]
 
# compile target: dynamically linked library using C ABI
 
crate-type = ["cdylib"]
 

	
 
[features]
 
default = ["ffi"]
 
ffi = [] # no feature dependencies
 
\ No newline at end of file
 
ffi = [] # no feature dependencies
 
endpoint_logging = [] # see src/macros where a conditional check include endpoint logging
 
\ No newline at end of file
src/common.rs
Show inline comments
 
///////////////////// PRELUDE /////////////////////
 

	
 
pub(crate) use crate::protocol::{ComponentState, ProtocolDescription};
 
pub(crate) use crate::runtime::{error::AddComponentError, NonsyncProtoContext, SyncProtoContext};
 

	
 
pub(crate) use core::{
 
    cmp::Ordering,
 
    fmt::{Debug, Formatter},
 
    hash::Hash,
 
    ops::Range,
 
    time::Duration,
 
};
 
// pub(crate) use indexmap::IndexSet;
 
pub(crate) use maplit::hashmap;
 
pub(crate) use mio::{
 
    net::{TcpListener, TcpStream},
 
    Events, Interest, Poll, Token,
 
};
 
pub(crate) use std::{
 
    collections::{BTreeMap, HashMap, HashSet},
 
    convert::TryInto,
 
    io::{Read, Write},
 
    net::SocketAddr,
 
    sync::Arc,
 
    time::Instant,
 
};
 
pub(crate) use Polarity::*;
 

	
 
pub type ConnectorId = u32;
 
pub type PortSuffix = u32;
 
#[derive(
 
    Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
// acquired via error in the Rust API
 
pub struct ProtoComponentId(Id);
 
#[derive(
 
    Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
#[repr(C)]
 
pub struct Id {
 
    pub(crate) connector_id: ConnectorId,
 
    pub(crate) u32_suffix: PortSuffix,
 
}
 
#[derive(Debug, Default)]
 
pub struct U32Stream {
 
    next: u32,
 
}
 
#[derive(
 
    Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
#[repr(transparent)]
 
pub struct PortId(Id);
 
#[derive(Default, Clone, Eq, PartialEq, Ord, PartialOrd)]
 
pub struct Payload(Arc<Vec<u8>>);
 
#[derive(
 
    Debug, Eq, PartialEq, Clone, Hash, Copy, Ord, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
#[repr(C)]
 
pub enum Polarity {
 
    Putter, // output port (from the perspective of the component)
 
    Getter, // input port (from the perspective of the component)
 
}
 
#[derive(
 
    Debug, Eq, PartialEq, Clone, Hash, Copy, Ord, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
#[repr(C)]
 
pub enum EndpointPolarity {
 
    Active,  // calls connect()
 
    Passive, // calls bind() listen() accept()
 
}
 
#[derive(
 
    Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
pub(crate) struct FiringVar(pub(crate) PortId);
 

	
 
#[derive(Debug, Clone)]
 
pub(crate) enum NonsyncBlocker {
 
    Inconsistent,
 
    ComponentExit,
 
    SyncBlockStart,
 
}
 
#[derive(Debug, Clone)]
 
pub(crate) enum SyncBlocker {
 
    Inconsistent,
 
    SyncBlockEnd,
 
    CouldntReadMsg(PortId),
 
    CouldntCheckFiring(PortId),
 
    PutMsg(PortId, Payload),
 
}
 
pub(crate) struct DenseDebugHex<'a>(pub &'a [u8]);
 

	
 
///////////////////// IMPL /////////////////////
 
impl U32Stream {
 
    pub(crate) fn next(&mut self) -> u32 {
 
        if self.next == u32::MAX {
 
            panic!("NO NEXT!")
 
        }
 
        self.next += 1;
 
        self.next - 1
 
    }
 
}
 
impl From<Id> for PortId {
 
    fn from(id: Id) -> PortId {
 
        Self(id)
 
    }
 
}
 
impl From<Id> for ProtoComponentId {
 
    fn from(id: Id) -> ProtoComponentId {
 
        Self(id)
 
    }
 
}
 
impl From<&[u8]> for Payload {
 
    fn from(s: &[u8]) -> Payload {
 
        Payload(Arc::new(s.to_vec()))
 
    }
 
}
 
impl Payload {
 
    pub fn new(len: usize) -> Payload {
 
        let mut v = Vec::with_capacity(len);
 
        unsafe {
 
            v.set_len(len);
 
        }
 
        Payload(Arc::new(v))
 
    }
 
    pub fn len(&self) -> usize {
 
        self.0.len()
 
    }
 
    pub fn as_slice(&self) -> &[u8] {
 
        &self.0
 
    }
 
    pub fn as_mut_slice(&mut self) -> &mut [u8] {
 
        Arc::make_mut(&mut self.0) as _
 
    }
 
    pub fn concatenate_with(&mut self, other: &Self) {
 
        let bytes = other.as_slice().iter().copied();
 
        let me = Arc::make_mut(&mut self.0);
 
        me.extend(bytes);
 
    }
 
}
 
impl serde::Serialize for Payload {
 
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
 
    where
 
        S: serde::Serializer,
 
    {
 
        let inner: &Vec<u8> = &self.0;
 
        inner.serialize(serializer)
 
    }
 
}
 
impl<'de> serde::Deserialize<'de> for Payload {
 
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
 
    where
 
        D: serde::Deserializer<'de>,
 
    {
 
        let inner: Vec<u8> = Vec::deserialize(deserializer)?;
 
        Ok(Self(Arc::new(inner)))
 
    }
 
}
 
impl From<Vec<u8>> for Payload {
 
    fn from(s: Vec<u8>) -> Self {
 
        Self(s.into())
 
    }
 
}
 
impl Debug for PortId {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        write!(f, "ptID({}'{})", self.0.connector_id, self.0.u32_suffix)
 
    }
 
}
 
impl Debug for FiringVar {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        write!(f, "fvID({}'{})", (self.0).0.connector_id, (self.0).0.u32_suffix)
 
    }
 
}
 
impl Debug for ProtoComponentId {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        write!(f, "pcID({}'{})", self.0.connector_id, self.0.u32_suffix)
 
    }
 
}
 
impl Debug for Payload {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        write!(f, "Payload{:x?}", self.as_slice())
 
        write!(f, "Payload[{:?}]", DenseDebugHex(self.as_slice()))
 
    }
 
}
 
impl std::ops::Not for Polarity {
 
    type Output = Self;
 
    fn not(self) -> Self::Output {
 
        use Polarity::*;
 
        match self {
 
            Putter => Getter,
 
            Getter => Putter,
 
        }
 
    }
 
}
 
impl Debug for DenseDebugHex<'_> {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        for b in self.0 {
 
            write!(f, "{:02X?}", b)?;
 
        }
 
        Ok(())
 
    }
 
}
src/macros.rs
Show inline comments
 
macro_rules! endptlog {
 
    ($logger:expr, $($arg:tt)*) => {{
 
        // let w = $logger.line_writer();
 
        // let _ = writeln!(w, $($arg)*);
 
    	if cfg!(feature = "endpoint_logging") {
 
	        let w = $logger.line_writer();
 
	        let _ = writeln!(w, $($arg)*);
 
	    }
 
    }};
 
}
 
macro_rules! log {
 
    ($logger:expr, $($arg:tt)*) => {{
 
        let _ = writeln!($logger.line_writer(), $($arg)*);
 
    }};
 
}
src/runtime/communication.rs
Show inline comments
 
use super::*;
 
use crate::common::*;
 

	
 
////////////////
 
struct BranchingNative {
 
    branches: HashMap<Predicate, NativeBranch>,
 
}
 
#[derive(Clone, Debug)]
 
struct NativeBranch {
 
    index: usize,
 
    gotten: HashMap<PortId, Payload>,
 
    to_get: HashSet<PortId>, // native branch is ended iff to_get.is_empty()
 
}
 
#[derive(Debug)]
 
struct SolutionStorage {
 
    old_local: HashSet<Predicate>,
 
    new_local: HashSet<Predicate>,
 
    // this pair acts as Route -> HashSet<Predicate> which is friendlier to iteration
 
    subtree_solutions: Vec<HashSet<Predicate>>,
 
    subtree_id_to_index: HashMap<Route, usize>,
 
}
 
#[derive(Debug)]
 
struct BranchingProtoComponent {
 
    ports: HashSet<PortId>,
 
    branches: HashMap<Predicate, ProtoComponentBranch>,
 
}
 
#[derive(Debug, Clone)]
 
struct ProtoComponentBranch {
 
    inbox: HashMap<PortId, Payload>,
 
    state: ComponentState,
 
    ended: bool,
 
}
 
struct CyclicDrainer<'a, K: Eq + Hash, V> {
 
    input: &'a mut HashMap<K, V>,
 
    inner: CyclicDrainInner<'a, K, V>,
 
}
 
struct CyclicDrainInner<'a, K: Eq + Hash, V> {
 
    swap: &'a mut HashMap<K, V>,
 
    output: &'a mut HashMap<K, V>,
 
}
 
trait PayloadMsgSender {
 
    fn putter_send(
 
        &mut self,
 
        cu: &mut ConnectorUnphased,
 
        putter: PortId,
 
        msg: SendPayloadMsg,
 
    ) -> Result<(), SyncError>;
 
}
 
trait ReplaceBoolTrue {
 
    fn replace_with_true(&mut self) -> bool;
 
}
 
impl ReplaceBoolTrue for bool {
 
    fn replace_with_true(&mut self) -> bool {
 
        let was = *self;
 
        *self = true;
 
        !was
 
    }
 
}
 

	
 
////////////////
 
impl Connector {
 
    pub fn gotten(&mut self, port: PortId) -> Result<&Payload, GottenError> {
 
        use GottenError::*;
 
        use GottenError as Ge;
 
        let Self { phased, .. } = self;
 
        match phased {
 
            ConnectorPhased::Setup { .. } => Err(NoPreviousRound),
 
            ConnectorPhased::Setup { .. } => Err(Ge::NoPreviousRound),
 
            ConnectorPhased::Communication(comm) => match &comm.round_result {
 
                Err(_) => Err(PreviousSyncFailed),
 
                Ok(None) => Err(NoPreviousRound),
 
                Ok(Some(round_ok)) => round_ok.gotten.get(&port).ok_or(PortDidntGet),
 
                Err(_) => Err(Ge::PreviousSyncFailed),
 
                Ok(None) => Err(Ge::NoPreviousRound),
 
                Ok(Some(round_ok)) => round_ok.gotten.get(&port).ok_or(Ge::PortDidntGet),
 
            },
 
        }
 
    }
 
    pub fn next_batch(&mut self) -> Result<usize, NextBatchError> {
 
        // returns index of new batch
 
        use NextBatchError::*;
 
        use NextBatchError as Nbe;
 
        let Self { phased, .. } = self;
 
        match phased {
 
            ConnectorPhased::Setup { .. } => Err(NotConnected),
 
            ConnectorPhased::Setup { .. } => Err(Nbe::NotConnected),
 
            ConnectorPhased::Communication(comm) => {
 
                comm.native_batches.push(Default::default());
 
                Ok(comm.native_batches.len() - 1)
 
            }
 
        }
 
    }
 
    fn port_op_access(
 
        &mut self,
 
        port: PortId,
 
        expect_polarity: Polarity,
 
    ) -> Result<&mut NativeBatch, PortOpError> {
 
        use PortOpError::*;
 
        use PortOpError as Poe;
 
        let Self { unphased, phased } = self;
 
        if !unphased.native_ports.contains(&port) {
 
            return Err(PortUnavailable);
 
            return Err(Poe::PortUnavailable);
 
        }
 
        match unphased.port_info.polarities.get(&port) {
 
            Some(p) if *p == expect_polarity => {}
 
            Some(_) => return Err(WrongPolarity),
 
            None => return Err(UnknownPolarity),
 
            Some(_) => return Err(Poe::WrongPolarity),
 
            None => return Err(Poe::UnknownPolarity),
 
        }
 
        match phased {
 
            ConnectorPhased::Setup { .. } => Err(NotConnected),
 
            ConnectorPhased::Setup { .. } => Err(Poe::NotConnected),
 
            ConnectorPhased::Communication(comm) => {
 
                let batch = comm.native_batches.last_mut().unwrap(); // length >= 1 is invariant
 
                Ok(batch)
 
            }
 
        }
 
    }
 
    pub fn put(&mut self, port: PortId, payload: Payload) -> Result<(), PortOpError> {
 
        use PortOpError::*;
 
        use PortOpError as Poe;
 
        let batch = self.port_op_access(port, Putter)?;
 
        if batch.to_put.contains_key(&port) {
 
            Err(MultipleOpsOnPort)
 
            Err(Poe::MultipleOpsOnPort)
 
        } else {
 
            batch.to_put.insert(port, payload);
 
            Ok(())
 
        }
 
    }
 
    pub fn get(&mut self, port: PortId) -> Result<(), PortOpError> {
 
        use PortOpError::*;
 
        use PortOpError as Poe;
 
        let batch = self.port_op_access(port, Getter)?;
 
        if batch.to_get.insert(port) {
 
            Ok(())
 
        } else {
 
            Err(MultipleOpsOnPort)
 
            Err(Poe::MultipleOpsOnPort)
 
        }
 
    }
 
    // entrypoint for caller. overwrites round result enum, and returns what happened
 
    pub fn sync(&mut self, timeout: Option<Duration>) -> Result<usize, SyncError> {
 
        let Self { unphased, phased } = self;
 
        match phased {
 
            ConnectorPhased::Setup { .. } => Err(SyncError::NotConnected),
 
            ConnectorPhased::Communication(comm) => {
 
                comm.round_result = Self::connected_sync(unphased, comm, timeout);
 
                match &comm.round_result {
 
                    Ok(None) => unreachable!(),
 
                    Ok(Some(ok_result)) => Ok(ok_result.batch_index),
 
                    Err(sync_error) => Err(sync_error.clone()),
 
                }
 
            }
 
        }
 
    }
 
    // private function. mutates state but returns with round
 
    // result ASAP (allows for convenient error return with ?)
 
    fn connected_sync(
 
        cu: &mut ConnectorUnphased,
 
        comm: &mut ConnectorCommunication,
 
        timeout: Option<Duration>,
 
    ) -> Result<Option<RoundOk>, SyncError> {
 
        use SyncError as Se;
 
        let deadline = timeout.map(|to| Instant::now() + to);
 
        log!(
 
            cu.logger,
 
            "~~~ SYNC called with timeout {:?}; starting round {}",
 
            &timeout,
 
            comm.round_index
 
        );
 

	
 
        // 1. run all proto components to Nonsync blockers
 
        let mut branching_proto_components =
 
            HashMap::<ProtoComponentId, BranchingProtoComponent>::default();
 
        let mut unrun_components: Vec<(ProtoComponentId, ProtoComponent)> =
 
            cu.proto_components.iter().map(|(&k, v)| (k, v.clone())).collect();
 
        log!(cu.logger, "Nonsync running {} proto components...", unrun_components.len());
 
        while let Some((proto_component_id, mut component)) = unrun_components.pop() {
 
            // TODO coalesce fields
 
            log!(
 
                cu.logger,
 
                "Nonsync running proto component with ID {:?}. {} to go after this",
 
                proto_component_id,
 
                unrun_components.len()
 
            );
 
            let mut ctx = NonsyncProtoContext {
 
                logger: &mut *cu.logger,
 
                port_info: &mut cu.port_info,
 
                id_manager: &mut cu.id_manager,
 
                proto_component_id,
 
                unrun_components: &mut unrun_components,
 
                proto_component_ports: &mut cu
 
                    .proto_components
 
                    .get_mut(&proto_component_id)
 
                    .unwrap() // unrun_components' keys originate from proto_components
 
                    .ports,
 
            };
 
            let blocker = component.state.nonsync_run(&mut ctx, &cu.proto_description);
 
            log!(
 
                cu.logger,
 
                "proto component {:?} ran to nonsync blocker {:?}",
 
                proto_component_id,
 
                &blocker
 
            );
 
            use NonsyncBlocker as B;
 
            match blocker {
 
                B::ComponentExit => drop(component),
 
                B::Inconsistent => return Err(Se::InconsistentProtoComponent(proto_component_id)),
 
                B::SyncBlockStart => {
 
                    branching_proto_components
 
                        .insert(proto_component_id, BranchingProtoComponent::initial(component));
 
                }
 
            }
 
        }
 
        log!(
 
            cu.logger,
 
            "All {} proto components are now done with Nonsync phase",
 
            branching_proto_components.len(),
 
        );
 

	
 
        // NOTE: all msgs in outbox are of form (Getter, Payload)
 
        let mut payloads_to_get: Vec<(PortId, SendPayloadMsg)> = vec![];
 

	
 
        // create the solution storage
 
        let mut solution_storage = {
 
            let n = std::iter::once(Route::LocalComponent(ComponentId::Native));
 
            let c =
 
                cu.proto_components.keys().map(|&id| Route::LocalComponent(ComponentId::Proto(id)));
 
            let e = comm.neighborhood.children.iter().map(|&index| Route::Endpoint { index });
 
            SolutionStorage::new(n.chain(c).chain(e))
 
        };
 
        log!(cu.logger, "Solution storage initialized");
 

	
 
        // 2. kick off the native
 
        log!(
 
            cu.logger,
 
            "Translating {} native batches into branches...",
 
            comm.native_batches.len()
 
        );
 
        let mut branching_native = BranchingNative { branches: Default::default() };
 
        'native_branches: for (index, NativeBatch { to_get, to_put }) in
 
            comm.native_batches.drain(..).enumerate()
 
        {
 
            let predicate = {
 
                let mut predicate = Predicate::default();
 
                // assign trues for ports that fire
 
                let firing_ports: HashSet<PortId> =
 
                    to_get.iter().chain(to_put.keys()).copied().collect();
 
                for &port in to_get.iter().chain(to_put.keys()) {
 
                    let var = cu.port_info.firing_var_for(port);
 
                    predicate.assigned.insert(var, true);
 
                }
 
                // assign falses for silent ports
 
                for &port in cu.native_ports.difference(&firing_ports) {
 
                    let var = cu.port_info.firing_var_for(port);
 
                    if let Some(true) = predicate.assigned.insert(var, false) {
 
                        log!(cu.logger, "Native branch index={} contains internal inconsistency wrt. {:?}. Skipping", index, var);
 
                        continue 'native_branches;
 
                    }
 
                }
 
                predicate
 
            };
 
            log!(cu.logger, "Native branch index={:?} has consistent {:?}", index, &predicate);
 

	
 
            // put all messages
 
            for (putter, payload) in to_put {
 
                let msg = SendPayloadMsg { predicate: predicate.clone(), payload };
 
                log!(cu.logger, "Native branch {} sending msg {:?}", index, &msg);
 
                payloads_to_get.putter_send(cu, putter, msg)?;
 
            }
 
            if to_get.is_empty() {
 
                log!(
 
                    cu.logger,
 
                    "Native submitting solution for batch {} with {:?}",
 
                    index,
 
                    &predicate
 
                );
 
                solution_storage.submit_and_digest_subtree_solution(
 
                    &mut *cu.logger,
 
                    Route::LocalComponent(ComponentId::Native),
 
                    predicate.clone(),
 
                );
 
            }
 
            let branch = NativeBranch { index, gotten: Default::default(), to_get };
 
            if let Some(existing) = branching_native.branches.insert(predicate, branch) {
 
                return Err(Se::IndistinguishableBatches([index, existing.index]));
 
            }
 
        }
 
        // restore the invariant
 
        comm.native_batches.push(Default::default());
 
        let decision = Self::sync_reach_decision(
 
            cu,
 
            comm,
 
            &mut branching_native,
 
            &mut branching_proto_components,
 
            solution_storage,
 
            payloads_to_get,
 
            deadline,
 
        )?;
 
        log!(cu.logger, "Committing to decision {:?}!", &decision);
 

	
 
        // propagate the decision to children
 
        let msg = Msg::CommMsg(CommMsg {
 
            round_index: comm.round_index,
 
            contents: CommMsgContents::Announce { decision: decision.clone() },
 
        });
 
        log!(
 
            cu.logger,
 
            "Announcing decision {:?} through child endpoints {:?}",
 
            &msg,
 
            &comm.neighborhood.children
 
        );
 
        for &child in comm.neighborhood.children.iter() {
 
            comm.endpoint_manager.send_to_comms(child, &msg)?;
 
        }
 
        let ret = match decision {
 
            Decision::Failure => {
 
                // dropping {branching_proto_components, branching_native}
 
                Err(Se::RoundFailure)
 
            }
 
            Decision::Success(predicate) => {
 
                // commit changes to component states
 
                cu.proto_components.clear();
 
                cu.proto_components.extend(
 
                    // consume branching proto components
 
                    branching_proto_components
 
                        .into_iter()
 
                        .map(|(id, bpc)| (id, bpc.collapse_with(&predicate))),
 
                );
 
                log!(
 
                    cu.logger,
 
                    "End round with (updated) component states {:?}",
 
                    cu.proto_components.keys()
 
                );
 
                // consume native
 
                Ok(Some(branching_native.collapse_with(&mut *cu.logger, &predicate)))
 
            }
 
        };
 
        log!(cu.logger, "Sync round ending! Cleaning up");
 
        // dropping {solution_storage, payloads_to_get}
 
        ret
 
    }
 

	
 
    fn sync_reach_decision(
 
        cu: &mut ConnectorUnphased,
 
        comm: &mut ConnectorCommunication,
 
        branching_native: &mut BranchingNative,
 
        branching_proto_components: &mut HashMap<ProtoComponentId, BranchingProtoComponent>,
 
        mut solution_storage: SolutionStorage,
 
        mut payloads_to_get: Vec<(PortId, SendPayloadMsg)>,
 
        mut deadline: Option<Instant>,
 
    ) -> Result<Decision, SyncError> {
 
        let mut already_requested_failure = false;
 
        if branching_native.branches.is_empty() {
 
            log!(cu.logger, "Native starts with no branches! Failure!");
 
            match comm.neighborhood.parent {
 
                Some(parent) => {
 
                    if already_requested_failure.replace_with_true() {
 
                        Self::request_failure(cu, comm, parent)?
 
                    } else {
 
                        log!(cu.logger, "Already requested failure");
 
                    }
 
                }
 
                None => {
 
                    log!(cu.logger, "No parent. Deciding on failure");
 
                    return Ok(Decision::Failure);
 
                }
 
            }
 
        }
 
        log!(cu.logger, "Done translating native batches into branches");
 

	
 
        // run all proto components to their sync blocker
 
        log!(
 
            cu.logger,
 
            "Running all {} proto components to their sync blocker...",
 
            branching_proto_components.len()
 
        );
 
        for (&proto_component_id, proto_component) in branching_proto_components.iter_mut() {
 
            let BranchingProtoComponent { ports, branches } = proto_component;
 
            let mut swap = HashMap::default();
 
            // initially, no components have .ended==true
 
            let mut blocked = HashMap::default();
 
            // drain from branches --> blocked
 
            let cd = CyclicDrainer::new(branches, &mut swap, &mut blocked);
 
            BranchingProtoComponent::drain_branches_to_blocked(
 
                cd,
 
                cu,
 
                &mut solution_storage,
 
                &mut payloads_to_get,
 
                proto_component_id,
 
                ports,
 
            )?;
 
            // swap the blocked branches back
 
            std::mem::swap(&mut blocked, branches);
 
            if branches.is_empty() {
 
                log!(cu.logger, "{:?} has become inconsistent!", proto_component_id);
 
                if let Some(parent) = comm.neighborhood.parent {
 
                    if already_requested_failure.replace_with_true() {
 
                        Self::request_failure(cu, comm, parent)?
 
                    } else {
 
                        log!(cu.logger, "Already requested failure");
 
                    }
 
                } else {
 
                    log!(cu.logger, "As the leader, deciding on timeout");
 
                    return Ok(Decision::Failure);
 
                }
 
            }
 
        }
 
        log!(cu.logger, "All proto components are blocked");
 

	
 
        log!(cu.logger, "Entering decision loop...");
 
        comm.endpoint_manager.undelay_all();
 
        'undecided: loop {
 
            // drain payloads_to_get, sending them through endpoints / feeding them to components
 
            log!(cu.logger, "Decision loop! have {} messages to recv", payloads_to_get.len());
 
            while let Some((getter, send_payload_msg)) = payloads_to_get.pop() {
 
                assert!(cu.port_info.polarities.get(&getter).copied() == Some(Getter));
 
                let route = cu.port_info.routes.get(&getter);
 
                log!(cu.logger, "Routing msg {:?} to {:?}", &send_payload_msg, &route);
 
                match route {
 
                    None => {
 
                        log!(
 
                            cu.logger,
 
                            "Delivery to getter {:?} msg {:?} failed. Physical route unmapped!",
 
                            getter,
 
                            &send_payload_msg
 
                        );
 
                    }
 
                    Some(Route::Endpoint { index }) => {
 
                        let msg = Msg::CommMsg(CommMsg {
 
                            round_index: comm.round_index,
 
                            contents: CommMsgContents::SendPayload(send_payload_msg),
 
                        });
 
                        comm.endpoint_manager.send_to_comms(*index, &msg)?;
 
                    }
 
                    Some(Route::LocalComponent(ComponentId::Native)) => branching_native.feed_msg(
 
                        cu,
 
                        &mut solution_storage,
 
                        // &mut Pay
 
                        getter,
 
                        &send_payload_msg,
 
                    ),
 
                    Some(Route::LocalComponent(ComponentId::Proto(proto_component_id))) => {
 
                        if let Some(branching_component) =
 
                            branching_proto_components.get_mut(proto_component_id)
 
                        {
 
                            let proto_component_id = *proto_component_id;
 
                            // let ConnectorUnphased { port_info, proto_description, .. } = cu;
 
                            branching_component.feed_msg(
 
                                cu,
 
                                &mut solution_storage,
 
                                proto_component_id,
 
                                &mut payloads_to_get,
 
                                getter,
 
                                &send_payload_msg,
 
                            )?;
 
                            if branching_component.branches.is_empty() {
 
                                log!(
 
                                    cu.logger,
 
                                    "{:?} has become inconsistent!",
 
                                    proto_component_id
 
                                );
 
                                if let Some(parent) = comm.neighborhood.parent {
 
                                    if already_requested_failure.replace_with_true() {
 
                                        Self::request_failure(cu, comm, parent)?
 
                                    } else {
 
                                        log!(cu.logger, "Already requested failure");
 
                                    }
 
                                } else {
 
                                    log!(cu.logger, "As the leader, deciding on timeout");
 
                                    return Ok(Decision::Failure);
 
                                }
 
                            }
 
                        } else {
 
                            log!(
 
                                cu.logger,
 
                                "Delivery to getter {:?} msg {:?} failed because {:?} isn't here",
 
                                getter,
 
                                &send_payload_msg,
 
                                proto_component_id
 
                            );
 
                        }
 
                    }
 
                }
 
            }
 

	
 
            // check if we have a solution yet
 
            log!(cu.logger, "Check if we have any local decisions...");
 
            for solution in solution_storage.iter_new_local_make_old() {
 
                log!(cu.logger, "New local decision with solution {:?}...", &solution);
 
                match comm.neighborhood.parent {
 
                    Some(parent) => {
 
                        log!(cu.logger, "Forwarding to my parent {:?}", parent);
 
                        let suggestion = Decision::Success(solution);
 
                        let msg = Msg::CommMsg(CommMsg {
 
                            round_index: comm.round_index,
 
                            contents: CommMsgContents::Suggest { suggestion },
 
                        });
 
                        comm.endpoint_manager.send_to_comms(parent, &msg)?;
 
                    }
 
                    None => {
 
                        log!(cu.logger, "No parent. Deciding on solution {:?}", &solution);
 
                        return Ok(Decision::Success(solution));
 
                    }
 
                }
 
            }
 

	
 
            // stuck! make progress by receiving a msg
 
            // try recv messages arriving through endpoints
 
            log!(cu.logger, "No decision yet. Let's recv an endpoint msg...");
 
            {
 
                let (endpoint_index, msg) = loop {
 
                    match comm.endpoint_manager.try_recv_any_comms(&mut *cu.logger, deadline)? {
 
                        None => {
 
                            log!(cu.logger, "Reached user-defined deadling without decision...");
 
                            if let Some(parent) = comm.neighborhood.parent {
 
                                if already_requested_failure.replace_with_true() {
 
                                    Self::request_failure(cu, comm, parent)?
 
                                } else {
 
                                    log!(cu.logger, "Already requested failure");
 
                                }
 
                            } else {
 
                                log!(cu.logger, "As the leader, deciding on timeout");
 
                                return Ok(Decision::Failure);
 
                            }
 
                            deadline = None;
 
                        }
 
                        Some((endpoint_index, msg)) => break (endpoint_index, msg),
 
                    }
 
                };
 
                log!(cu.logger, "Received from endpoint {} msg {:?}", endpoint_index, &msg);
 
                let comm_msg_contents = match msg {
 
                    Msg::SetupMsg(..) => {
 
                        log!(cu.logger, "Discarding setup message; that phase is over");
 
                        continue 'undecided;
 
                    }
 
                    Msg::CommMsg(comm_msg) => match comm_msg.round_index.cmp(&comm.round_index) {
 
                        Ordering::Equal => comm_msg.contents,
 
                        Ordering::Less => {
 
                            log!(
 
                                cu.logger,
 
                                "We are in round {}, but msg is for round {}. Discard",
 
                                comm_msg.round_index,
 
                                comm.round_index,
 
                            );
 
                            drop(comm_msg);
 
                            continue 'undecided;
 
                        }
 
                        Ordering::Greater => {
 
                            log!(
 
                                cu.logger,
 
                                "We are in round {}, but msg is for round {}. Buffer",
 
                                comm_msg.round_index,
 
                                comm.round_index,
 
                            );
 
                            comm.endpoint_manager
 
                                .delayed_messages
 
                                .push((endpoint_index, Msg::CommMsg(comm_msg)));
 
                            continue 'undecided;
 
                        }
 
                    },
 
                };
 
                match comm_msg_contents {
 
                    CommMsgContents::SendPayload(send_payload_msg) => {
 
                        let getter =
 
                            comm.endpoint_manager.endpoint_exts[endpoint_index].getter_for_incoming;
 
                        assert!(cu.port_info.polarities.get(&getter) == Some(&Getter));
 
                        log!(
 
                            cu.logger,
 
                            "Msg routed to getter port {:?}. Buffer for recv loop",
 
                            getter,
 
                        );
 
                        payloads_to_get.push((getter, send_payload_msg));
 
                    }
 
                    CommMsgContents::Suggest { suggestion } => {
 
                        // only accept this control msg through a child endpoint
 
                        if comm.neighborhood.children.contains(&endpoint_index) {
 
                            match suggestion {
 
                                Decision::Success(predicate) => {
 
                                    // child solution contributes to local solution
 
                                    log!(cu.logger, "Child provided solution {:?}", &predicate);
 
                                    let route = Route::Endpoint { index: endpoint_index };
 
                                    solution_storage.submit_and_digest_subtree_solution(
 
                                        &mut *cu.logger,
 
                                        route,
 
                                        predicate,
 
                                    );
 
                                }
 
                                Decision::Failure => {
 
                                    match comm.neighborhood.parent {
 
                                        None => {
 
                                            log!(cu.logger, "I decide on my child's failure");
 
                                            break 'undecided Ok(Decision::Failure);
 
                                        }
 
                                        Some(parent) => {
 
                                            log!(cu.logger, "Forwarding failure through my parent endpoint {:?}", parent);
 
                                            if already_requested_failure.replace_with_true() {
 
                                                Self::request_failure(cu, comm, parent)?
 
                                            } else {
 
                                                log!(cu.logger, "Already requested failure");
 
                                            }
 
                                        }
 
                                    }
 
                                }
 
                            }
 
                        } else {
 
                            log!(
 
                                cu.logger,
 
                                "Discarding suggestion {:?} from non-child endpoint idx {:?}",
 
                                &suggestion,
 
                                endpoint_index
 
                            );
 
                        }
 
                    }
 
                    CommMsgContents::Announce { decision } => {
 
                        if Some(endpoint_index) == comm.neighborhood.parent {
 
                            // adopt this decision
 
                            return Ok(decision);
 
                        } else {
 
                            log!(
 
                                cu.logger,
 
                                "Discarding announcement {:?} from non-parent endpoint idx {:?}",
 
                                &decision,
 
                                endpoint_index
 
                            );
 
                        }
 
                    }
 
                }
 
            }
 
            log!(cu.logger, "Endpoint msg recv done");
 
        }
 
    }
 
    fn request_failure(
 
        cu: &mut ConnectorUnphased,
 
        comm: &mut ConnectorCommunication,
 
        parent: usize,
 
    ) -> Result<(), SyncError> {
 
        log!(cu.logger, "Forwarding to my parent {:?}", parent);
 
        let suggestion = Decision::Failure;
 
        let msg = Msg::CommMsg(CommMsg {
src/runtime/endpoints.rs
Show inline comments
 
use super::*;
 

	
 
struct MonitoredReader<R: Read> {
 
    bytes: usize,
 
    r: R,
 
}
 
#[derive(Debug)]
 
enum TryRecyAnyError {
 
    Timeout,
 
    PollFailed,
 
    EndpointError { error: EndpointError, index: usize },
 
}
 

	
 
/////////////////////
 
impl Endpoint {
 
    fn bincode_opts() -> impl bincode::config::Options {
 
        bincode::config::DefaultOptions::default()
 
    }
 
    pub(super) fn try_recv<T: serde::de::DeserializeOwned>(
 
        &mut self,
 
        logger: &mut dyn Logger,
 
    ) -> Result<Option<T>, EndpointError> {
 
        use EndpointError::*;
 
        use EndpointError as Ee;
 
        // populate inbox as much as possible
 
        let before_len = self.inbox.len();
 
        'read_loop: loop {
 
            let res = self.stream.read_to_end(&mut self.inbox);
 
            endptlog!(logger, "Stream read to end {:?}", &res);
 
            match res {
 
                Err(e) if would_block(&e) => break 'read_loop,
 
                Ok(0) => break 'read_loop,
 
                Ok(_) => (),
 
                Err(_e) => return Err(BrokenEndpoint),
 
                Err(_e) => return Err(Ee::BrokenEndpoint),
 
            }
 
        }
 
        endptlog!(logger, "Inbox bytes {:x?}", &self.inbox);
 
        endptlog!(
 
            logger,
 
            "Inbox bytes [{:x?}| {:x?}]",
 
            DenseDebugHex(&self.inbox[..before_len]),
 
            DenseDebugHex(&self.inbox[before_len..]),
 
        );
 
        let mut monitored = MonitoredReader::from(&self.inbox[..]);
 
        use bincode::config::Options;
 
        match Self::bincode_opts().deserialize_from(&mut monitored) {
 
            Ok(msg) => {
 
                let msg_size = monitored.bytes_read();
 
                self.inbox.drain(0..(msg_size.try_into().unwrap()));
 
                endptlog!(
 
                    logger,
 
                    "Yielding msg. Inbox len {}-{}=={}: [{:?}]",
 
                    self.inbox.len() + msg_size,
 
                    msg_size,
 
                    self.inbox.len(),
 
                    DenseDebugHex(&self.inbox[..]),
 
                );
 
                Ok(Some(msg))
 
            }
 
            Err(e) => match *e {
 
                bincode::ErrorKind::Io(k) if k.kind() == std::io::ErrorKind::UnexpectedEof => {
 
                    Ok(None)
 
                }
 
                _ => Err(MalformedMessage),
 
                _ => Err(Ee::MalformedMessage),
 
            },
 
        }
 
    }
 
    pub(super) fn send<T: serde::ser::Serialize>(&mut self, msg: &T) -> Result<(), EndpointError> {
 
        use bincode::config::Options;
 
        Self::bincode_opts()
 
            .serialize_into(&mut self.stream, msg)
 
            .map_err(|_| EndpointError::BrokenEndpoint)
 
        use EndpointError as Ee;
 
        Self::bincode_opts().serialize_into(&mut self.stream, msg).map_err(|_| Ee::BrokenEndpoint)
 
    }
 
}
 

	
 
impl EndpointManager {
 
    pub(super) fn index_iter(&self) -> Range<usize> {
 
        0..self.num_endpoints()
 
    }
 
    pub(super) fn num_endpoints(&self) -> usize {
 
        self.endpoint_exts.len()
 
    }
 
    pub(super) fn send_to_comms(&mut self, index: usize, msg: &Msg) -> Result<(), SyncError> {
 
        let endpoint = &mut self.endpoint_exts[index].endpoint;
 
        endpoint.send(msg).map_err(|_| SyncError::BrokenEndpoint(index))
 
    }
 
    pub(super) fn send_to_setup(&mut self, index: usize, msg: &Msg) -> Result<(), ConnectError> {
 
        let endpoint = &mut self.endpoint_exts[index].endpoint;
 
        endpoint.send(msg).map_err(|err| {
 
            ConnectError::EndpointSetupError(endpoint.stream.local_addr().unwrap(), err)
 
        })
 
    }
 
    pub(super) fn send_to(&mut self, index: usize, msg: &Msg) -> Result<(), EndpointError> {
 
        self.endpoint_exts[index].endpoint.send(msg)
 
    }
 
    pub(super) fn try_recv_any_comms(
 
        &mut self,
 
        logger: &mut dyn Logger,
 
        deadline: Option<Instant>,
 
    ) -> Result<Option<(usize, Msg)>, SyncError> {
 
        use {SyncError as Se, TryRecyAnyError as Trae};
 
        match self.try_recv_any(logger, deadline) {
 
            Ok(tup) => Ok(Some(tup)),
 
            Err(Trae::Timeout) => Ok(None),
 
            Err(Trae::PollFailed) => Err(Se::PollFailed),
 
            Err(Trae::EndpointError { error: _, index }) => Err(Se::BrokenEndpoint(index)),
 
        }
 
    }
 
    pub(super) fn try_recv_any_setup(
 
        &mut self,
 
        logger: &mut dyn Logger,
 
        deadline: Option<Instant>,
 
    ) -> Result<(usize, Msg), ConnectError> {
 
        use {ConnectError as Ce, TryRecyAnyError as Trae};
 
        self.try_recv_any(logger, deadline).map_err(|err| match err {
 
            Trae::Timeout => Ce::Timeout,
 
            Trae::PollFailed => Ce::PollFailed,
 
            Trae::EndpointError { error, index } => Ce::EndpointSetupError(
 
                self.endpoint_exts[index].endpoint.stream.local_addr().unwrap(),
 
                error,
 
            ),
 
        })
 
    }
 
    fn try_recv_any(
 
        &mut self,
 
        logger: &mut dyn Logger,
 
        deadline: Option<Instant>,
 
    ) -> Result<(usize, Msg), TryRecyAnyError> {
 
        use TryRecyAnyError as Trea;
 
        // 1. try messages already buffered
 
        if let Some(x) = self.undelayed_messages.pop() {
 
            endptlog!(logger, "RECV undelayed_msg {:?}", &x);
 
            return Ok(x);
 
        }
 
        loop {
 
            // 2. try read a message from an endpoint that raised an event with poll() but wasn't drained
 
            while let Some(index) = self.polled_undrained.pop() {
 
                let endpoint = &mut self.endpoint_exts[index].endpoint;
 
                if let Some(msg) = endpoint
 
                    .try_recv(logger)
 
                    .map_err(|error| Trea::EndpointError { error, index })?
 
                {
 
                    endptlog!(logger, "RECV polled_undrained {:?}", &msg);
 
                    if !endpoint.inbox.is_empty() {
 
                        // there may be another message waiting!
 
                        self.polled_undrained.insert(index);
 
                    }
 
                    return Ok((index, msg));
 
                }
 
            }
 
            // 3. No message yet. Do we have enough time to poll?
 
            let remaining = if let Some(deadline) = deadline {
 
                Some(deadline.checked_duration_since(Instant::now()).ok_or(Trea::Timeout)?)
 
            } else {
 
                None
 
            };
 
            self.poll.poll(&mut self.events, remaining).map_err(|_| Trea::PollFailed)?;
 
            for event in self.events.iter() {
 
                let Token(index) = event.token();
 
                self.polled_undrained.insert(index);
 
                endptlog!(
 
                    logger,
 
                    "RECV poll event {:?} for endpoint index {:?}. undrained: {:?}",
 
                    &event,
 
                    index,
 
                    self.polled_undrained.iter()
 
                );
 
            }
 
            self.events.clear();
 
        }
 
    }
 
    pub(super) fn undelay_all(&mut self) {
 
        if self.undelayed_messages.is_empty() {
 
            // fast path
 
            std::mem::swap(&mut self.delayed_messages, &mut self.undelayed_messages);
 
            return;
 
        }
 
        // slow path
 
        self.undelayed_messages.extend(self.delayed_messages.drain(..));
 
    }
 
}
 
impl Debug for Endpoint {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        f.debug_struct("Endpoint").field("inbox", &self.inbox).finish()
 
    }
 
}
 
impl<R: Read> From<R> for MonitoredReader<R> {
 
    fn from(r: R) -> Self {
 
        Self { r, bytes: 0 }
 
    }
 
}
 
impl<R: Read> MonitoredReader<R> {
 
    pub(super) fn bytes_read(&self) -> usize {
 
        self.bytes
 
    }
 
}
 
impl<R: Read> Read for MonitoredReader<R> {
 
    fn read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error> {
 
        let n = self.r.read(buf)?;
 
        self.bytes += n;
 
        Ok(n)
 
    }
 
}
 

	
 
impl Into<Msg> for SetupMsg {
 
    fn into(self) -> Msg {
 
        Msg::SetupMsg(self)
 
    }
 
}
src/runtime/mod.rs
Show inline comments
 
/// cbindgen:ignore
 
mod communication;
 
/// cbindgen:ignore
 
mod endpoints;
 
pub mod error;
 
/// cbindgen:ignore
 
mod logging;
 
/// cbindgen:ignore
 
mod setup;
 

	
 
#[cfg(feature = "ffi")]
 
pub mod ffi;
 

	
 
#[cfg(test)]
 
mod tests;
 

	
 
use crate::common::*;
 
use error::*;
 

	
 
#[derive(Debug)]
 
pub struct Connector {
 
    unphased: ConnectorUnphased,
 
    phased: ConnectorPhased,
 
}
 
pub trait Logger: Debug {
 
    fn line_writer(&mut self) -> &mut dyn std::io::Write;
 
}
 
#[derive(Debug)]
 
pub struct VecLogger(ConnectorId, Vec<u8>);
 
#[derive(Debug)]
 
pub struct DummyLogger;
 
#[derive(Debug)]
 
pub struct FileLogger(ConnectorId, std::fs::File);
 
pub(crate) struct NonsyncProtoContext<'a> {
 
    logger: &'a mut dyn Logger,
 
    proto_component_id: ProtoComponentId,
 
    port_info: &'a mut PortInfo,
 
    id_manager: &'a mut IdManager,
 
    proto_component_ports: &'a mut HashSet<PortId>,
 
    unrun_components: &'a mut Vec<(ProtoComponentId, ProtoComponent)>,
 
}
 
pub(crate) struct SyncProtoContext<'a> {
 
    logger: &'a mut dyn Logger,
 
    predicate: &'a Predicate,
 
    port_info: &'a PortInfo,
 
    inbox: &'a HashMap<PortId, Payload>,
 
}
 
#[derive(Debug)]
 
struct RoundOk {
 
    batch_index: usize,
 
    gotten: HashMap<PortId, Payload>,
 
}
 
#[derive(Default)]
 
struct VecSet<T: std::cmp::Ord> {
 
    // invariant: ordered, deduplicated
 
    vec: Vec<T>,
 
}
 
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
 
enum ComponentId {
 
    Native,
 
    Proto(ProtoComponentId),
 
}
 
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
 
enum Route {
 
    LocalComponent(ComponentId),
 
    Endpoint { index: usize },
 
}
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct MyPortInfo {
 
    polarity: Polarity,
 
    port: PortId,
 
}
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
enum Decision {
 
    Failure,
 
    Success(Predicate),
 
}
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
enum Msg {
 
    SetupMsg(SetupMsg),
 
    CommMsg(CommMsg),
 
}
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
enum SetupMsg {
 
    MyPortInfo(MyPortInfo),
 
    LeaderWave { wave_leader: ConnectorId },
 
    LeaderAnnounce { tree_leader: ConnectorId },
 
    YouAreMyParent,
 
    SessionGather { unoptimized_map: HashMap<ConnectorId, SessionInfo> },
 
    SessionScatter { optimized_map: HashMap<ConnectorId, SessionInfo> },
 
}
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct SessionInfo {
 
    serde_proto_description: SerdeProtocolDescription,
 
    port_info: PortInfo,
 
    getter_for_incoming: Vec<PortId>,
 
    endpoint_incoming_to_getter: Vec<PortId>,
 
    proto_components: HashMap<ProtoComponentId, ProtoComponent>,
 
}
 
#[derive(Debug, Clone)]
 
struct SerdeProtocolDescription(Arc<ProtocolDescription>);
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct CommMsg {
 
    round_index: usize,
 
    contents: CommMsgContents,
 
}
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
enum CommMsgContents {
 
    SendPayload(SendPayloadMsg),
 
    Suggest { suggestion: Decision }, // SINKWARD
 
    Announce { decision: Decision },  // SINKAWAYS
 
}
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct SendPayloadMsg {
 
    predicate: Predicate,
 
    payload: Payload,
 
}
 
#[derive(Debug, PartialEq)]
 
enum CommonSatResult {
 
    FormerNotLatter,
 
    LatterNotFormer,
 
    Equivalent,
 
    New(Predicate),
 
    Nonexistant,
 
}
 
struct Endpoint {
 
    inbox: Vec<u8>,
 
    stream: TcpStream,
 
}
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
struct ProtoComponent {
 
    state: ComponentState,
 
    ports: HashSet<PortId>,
 
}
 
#[derive(Debug, Clone)]
 
struct EndpointSetup {
 
    sock_addr: SocketAddr,
 
    endpoint_polarity: EndpointPolarity,
 
}
 
#[derive(Debug)]
 
struct EndpointExt {
 
    endpoint: Endpoint,
 
    getter_for_incoming: PortId,
 
}
 
#[derive(Debug)]
 
struct Neighborhood {
 
    parent: Option<usize>,
 
    children: VecSet<usize>,
 
}
 
#[derive(Debug)]
 
struct IdManager {
 
    connector_id: ConnectorId,
 
    port_suffix_stream: U32Stream,
 
    proto_component_suffix_stream: U32Stream,
 
}
 
#[derive(Debug)]
 
struct EndpointManager {
 
    // invariants:
 
    // 1. endpoint N is registered READ | WRITE with poller
 
    // 2. Events is empty
 
    poll: Poll,
 
    events: Events,
 
    polled_undrained: VecSet<usize>,
 
    delayed_messages: Vec<(usize, Msg)>,
 
    undelayed_messages: Vec<(usize, Msg)>,
 
    endpoint_exts: Vec<EndpointExt>,
 
}
 
#[derive(Clone, Debug, Default, serde::Serialize, serde::Deserialize)]
 
struct PortInfo {
 
    polarities: HashMap<PortId, Polarity>,
 
    peers: HashMap<PortId, PortId>,
 
    routes: HashMap<PortId, Route>,
 
}
 
#[derive(Debug)]
 
struct ConnectorCommunication {
 
    round_index: usize,
 
    endpoint_manager: EndpointManager,
 
    neighborhood: Neighborhood,
 
    native_batches: Vec<NativeBatch>,
 
    round_result: Result<Option<RoundOk>, SyncError>,
 
}
 
#[derive(Debug)]
 
struct ConnectorUnphased {
 
    proto_description: Arc<ProtocolDescription>,
 
    proto_components: HashMap<ProtoComponentId, ProtoComponent>,
 
    logger: Box<dyn Logger>,
 
    id_manager: IdManager,
 
    native_ports: HashSet<PortId>,
 
    port_info: PortInfo,
 
}
 
#[derive(Debug)]
 
enum ConnectorPhased {
 
    Setup { endpoint_setups: Vec<(PortId, EndpointSetup)>, surplus_sockets: u16 },
 
    Communication(Box<ConnectorCommunication>),
 
}
 
#[derive(Default, Clone, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
 
struct Predicate {
 
    assigned: BTreeMap<FiringVar, bool>,
 
}
 
#[derive(Debug, Default)]
 
struct NativeBatch {
 
    // invariant: putters' and getters' polarities respected
 
    to_put: HashMap<PortId, Payload>,
 
    to_get: HashSet<PortId>,
 
}
 
////////////////
 
pub fn would_block(err: &std::io::Error) -> bool {
 
    err.kind() == std::io::ErrorKind::WouldBlock
 
}
 
impl<T: std::cmp::Ord> VecSet<T> {
 
    fn new(mut vec: Vec<T>) -> Self {
 
        vec.sort();
 
        vec.dedup();
 
        Self { vec }
 
    }
 
    fn contains(&self, element: &T) -> bool {
 
        self.vec.binary_search(element).is_ok()
 
    }
 
    fn insert(&mut self, element: T) -> bool {
 
        match self.vec.binary_search(&element) {
 
            Ok(_) => false,
 
            Err(index) => {
 
                self.vec.insert(index, element);
 
                true
 
            }
 
        }
 
    }
 
    fn iter(&self) -> std::slice::Iter<T> {
 
        self.vec.iter()
 
    }
 
    fn pop(&mut self) -> Option<T> {
 
        self.vec.pop()
 
    }
 
}
 
impl PortInfo {
 
    fn firing_var_for(&self, port: PortId) -> FiringVar {
 
        FiringVar(match self.polarities.get(&port).unwrap() {
 
            Getter => port,
 
            Putter => *self.peers.get(&port).unwrap(),
 
        })
 
    }
 
}
 
impl IdManager {
 
    fn new(connector_id: ConnectorId) -> Self {
 
        Self {
 
            connector_id,
 
            port_suffix_stream: Default::default(),
 
            proto_component_suffix_stream: Default::default(),
 
        }
 
    }
 
    fn new_port_id(&mut self) -> PortId {
 
        Id { connector_id: self.connector_id, u32_suffix: self.port_suffix_stream.next() }.into()
 
    }
 
    fn new_proto_component_id(&mut self) -> ProtoComponentId {
 
        Id {
 
            connector_id: self.connector_id,
 
            u32_suffix: self.proto_component_suffix_stream.next(),
 
        }
 
        .into()
 
    }
 
}
 
impl Drop for Connector {
 
    fn drop(&mut self) {
 
        log!(&mut *self.unphased.logger, "Connector dropping. Goodbye!");
 
    }
 
}
 
impl Connector {
 
    fn random_id() -> ConnectorId {
 
        type Bytes8 = [u8; std::mem::size_of::<ConnectorId>()];
 
        unsafe {
 
            let mut bytes = std::mem::MaybeUninit::<Bytes8>::uninit();
 
            // getrandom is the canonical crate for a small, secure rng
 
            getrandom::getrandom(&mut *bytes.as_mut_ptr()).unwrap();
 
            // safe! representations of all valid Byte8 values are valid ConnectorId values
 
            std::mem::transmute::<_, _>(bytes.assume_init())
 
        }
 
    }
 
    pub fn swap_logger(&mut self, mut new_logger: Box<dyn Logger>) -> Box<dyn Logger> {
 
        std::mem::swap(&mut self.unphased.logger, &mut new_logger);
 
        new_logger
 
    }
 
    pub fn get_logger(&mut self) -> &mut dyn Logger {
 
        &mut *self.unphased.logger
 
    }
 
    pub fn new_port_pair(&mut self) -> [PortId; 2] {
 
        let cu = &mut self.unphased;
 
        // adds two new associated ports, related to each other, and exposed to the native
 
        let [o, i] = [cu.id_manager.new_port_id(), cu.id_manager.new_port_id()];
 
        cu.native_ports.insert(o);
 
        cu.native_ports.insert(i);
 
        // {polarity, peer, route} known. {} unknown.
 
        cu.port_info.polarities.insert(o, Putter);
 
        cu.port_info.polarities.insert(i, Getter);
 
        cu.port_info.peers.insert(o, i);
 
        cu.port_info.peers.insert(i, o);
 
        let route = Route::LocalComponent(ComponentId::Native);
 
        cu.port_info.routes.insert(o, route);
 
        cu.port_info.routes.insert(i, route);
 
        log!(cu.logger, "Added port pair (out->in) {:?} -> {:?}", o, i);
 
        [o, i]
 
    }
 
    pub fn add_component(
 
        &mut self,
 
        identifier: &[u8],
 
        ports: &[PortId],
 
    ) -> Result<(), AddComponentError> {
 
        // called by the USER. moves ports owned by the NATIVE
 
        use AddComponentError::*;
 
        use AddComponentError as Ace;
 
        // 1. check if this is OK
 
        let cu = &mut self.unphased;
 
        let polarities = cu.proto_description.component_polarities(identifier)?;
 
        if polarities.len() != ports.len() {
 
            return Err(WrongNumberOfParamaters { expected: polarities.len() });
 
            return Err(Ace::WrongNumberOfParamaters { expected: polarities.len() });
 
        }
 
        for (&expected_polarity, port) in polarities.iter().zip(ports.iter()) {
 
            if !cu.native_ports.contains(port) {
 
                return Err(UnknownPort(*port));
 
                return Err(Ace::UnknownPort(*port));
 
            }
 
            if expected_polarity != *cu.port_info.polarities.get(port).unwrap() {
 
                return Err(WrongPortPolarity { port: *port, expected_polarity });
 
                return Err(Ace::WrongPortPolarity { port: *port, expected_polarity });
 
            }
 
        }
 
        // 3. remove ports from old component & update port->route
 
        let new_id = cu.id_manager.new_proto_component_id();
 
        for port in ports.iter() {
 
            cu.port_info.routes.insert(*port, Route::LocalComponent(ComponentId::Proto(new_id)));
 
        }
 
        cu.native_ports.retain(|port| !ports.contains(port));
 
        // 4. add new component
 
        cu.proto_components.insert(
 
            new_id,
 
            ProtoComponent {
 
                state: cu.proto_description.new_main_component(identifier, ports),
 
                ports: ports.iter().copied().collect(),
 
            },
 
        );
 
        Ok(())
 
    }
 
}
 
impl Predicate {
 
    #[inline]
 
    pub fn inserted(mut self, k: FiringVar, v: bool) -> Self {
 
        self.assigned.insert(k, v);
 
        self
 
    }
 
    // returns true IFF self.unify would return Equivalent OR FormerNotLatter
 
    pub fn satisfies(&self, other: &Self) -> bool {
 
        let mut s_it = self.assigned.iter();
 
        let mut s = if let Some(s) = s_it.next() {
 
            s
 
        } else {
 
            return other.assigned.is_empty();
 
        };
 
        for (oid, ob) in other.assigned.iter() {
 
            while s.0 < oid {
 
                s = if let Some(s) = s_it.next() {
 
                    s
 
                } else {
 
                    return false;
 
                };
 
            }
 
            if s.0 > oid || s.1 != ob {
 
                return false;
 
            }
 
        }
 
        true
 
    }
 

	
 
    /// Given self and other, two predicates, return the most general Predicate possible, N
 
    /// such that n.satisfies(self) && n.satisfies(other).
 
    /// If none exists Nonexistant is returned.
 
    /// If the resulting predicate is equivlanet to self, other, or both,
 
    /// FormerNotLatter, LatterNotFormer and Equivalent are returned respectively.
 
    /// otherwise New(N) is returned.
 
    fn common_satisfier(&self, other: &Self) -> CommonSatResult {
 
        use CommonSatResult as Csr;
 
        // iterators over assignments of both predicates. Rely on SORTED ordering of BTreeMap's keys.
 
        let [mut s_it, mut o_it] = [self.assigned.iter(), other.assigned.iter()];
 
        let [mut s, mut o] = [s_it.next(), o_it.next()];
 
        // lists of assignments in self but not other and vice versa.
 
        let [mut s_not_o, mut o_not_s] = [vec![], vec![]];
 
        loop {
 
            match [s, o] {
 
                [None, None] => break,
 
                [None, Some(x)] => {
 
                    o_not_s.push(x);
 
                    o_not_s.extend(o_it);
 
                    break;
 
                }
 
                [Some(x), None] => {
 
                    s_not_o.push(x);
 
                    s_not_o.extend(s_it);
 
                    break;
 
                }
 
                [Some((sid, sb)), Some((oid, ob))] => {
 
                    if sid < oid {
 
                        // o is missing this element
 
                        s_not_o.push((sid, sb));
 
                        s = s_it.next();
 
                    } else if sid > oid {
 
                        // s is missing this element
 
                        o_not_s.push((oid, ob));
 
                        o = o_it.next();
 
                    } else if sb != ob {
 
                        assert_eq!(sid, oid);
 
                        // both predicates assign the variable but differ on the value
 
                        return Csr::Nonexistant;
 
                    } else {
 
                        // both predicates assign the variable to the same value
 
                        s = s_it.next();
 
                        o = o_it.next();
 
                    }
 
                }
 
            }
 
        }
 
        // Observed zero inconsistencies. A unified predicate exists...
 
        match [s_not_o.is_empty(), o_not_s.is_empty()] {
 
            [true, true] => Csr::Equivalent,       // ... equivalent to both.
 
            [false, true] => Csr::FormerNotLatter, // ... equivalent to self.
 
            [true, false] => Csr::LatterNotFormer, // ... equivalent to other.
 
            [false, false] => {
 
                // ... which is the union of the predicates' assignments but
 
                //     is equivalent to neither self nor other.
 
                let mut new = self.clone();
 
                for (&id, &b) in o_not_s {
 
                    new.assigned.insert(id, b);
 
                }
 
                Csr::New(new)
 
            }
 
        }
 
    }
 
    pub fn union_with(&self, other: &Self) -> Option<Self> {
 
        let mut res = self.clone();
 
        for (&channel_id, &assignment_1) in other.assigned.iter() {
 
            match res.assigned.insert(channel_id, assignment_1) {
 
                Some(assignment_2) if assignment_1 != assignment_2 => return None,
 
                _ => {}
 
            }
 
        }
 
        Some(res)
 
    }
 
    pub fn query(&self, var: FiringVar) -> Option<bool> {
 
        self.assigned.get(&var).copied()
 
    }
 
}
 
impl<T: Debug + std::cmp::Ord> Debug for VecSet<T> {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        f.debug_set().entries(self.vec.iter()).finish()
 
    }
 
}
 
impl Debug for Predicate {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        struct MySet<'a>(&'a Predicate, bool);
 
        impl Debug for MySet<'_> {
 
            fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
                let iter = self.0.assigned.iter().filter_map(|(port, &firing)| {
 
                    if firing == self.1 {
 
                        Some(port)
 
                    } else {
 
                        None
 
                    }
 
                });
 
                f.debug_set().entries(iter).finish()
 
            }
 
        }
 
        f.debug_struct("Predicate")
 
            .field("Trues", &MySet(self, true))
 
            .field("Falses", &MySet(self, false))
 
            .finish()
 
    }
 
}
 
impl serde::Serialize for SerdeProtocolDescription {
 
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
 
    where
 
        S: serde::Serializer,
 
    {
 
        let inner: &ProtocolDescription = &self.0;
 
        inner.serialize(serializer)
 
    }
 
}
 
impl<'de> serde::Deserialize<'de> for SerdeProtocolDescription {
 
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
 
    where
 
        D: serde::Deserializer<'de>,
 
    {
 
        let inner: ProtocolDescription = ProtocolDescription::deserialize(deserializer)?;
 
        Ok(Self(Arc::new(inner)))
 
    }
 
}
 

	
 
#[test]
 
fn bincode_serde() {
 
    let mut b = Vec::with_capacity(64);
 
    use bincode::config::Options;
 
    let opt = bincode::config::DefaultOptions::default();
 
    opt.serialize_into(&mut b, &Decision::Failure).unwrap();
 
    println!("failure  {:x?}", b);
 
    b.clear();
 

	
 
    opt.serialize_into(&mut b, &CommMsgContents::Suggest { suggestion: Decision::Failure })
 
        .unwrap();
 
    println!("decision {:x?}", b);
 
    b.clear();
 

	
 
    opt.serialize_into(
 
        &mut b,
 
        &CommMsg {
 
            round_index: 4,
 
            contents: CommMsgContents::Suggest { suggestion: Decision::Failure },
 
        },
 
    )
 
    .unwrap();
src/runtime/setup.rs
Show inline comments
 
use crate::common::*;
 
use crate::runtime::*;
 

	
 
impl Connector {
 
    pub fn new(
 
        mut logger: Box<dyn Logger>,
 
        proto_description: Arc<ProtocolDescription>,
 
        connector_id: ConnectorId,
 
        surplus_sockets: u16,
 
    ) -> Self {
 
        log!(&mut *logger, "Created with connector_id {:?}", connector_id);
 
        Self {
 
            unphased: ConnectorUnphased {
 
                proto_description,
 
                proto_components: Default::default(),
 
                logger,
 
                id_manager: IdManager::new(connector_id),
 
                native_ports: Default::default(),
 
                port_info: Default::default(),
 
            },
 
            phased: ConnectorPhased::Setup { endpoint_setups: Default::default(), surplus_sockets },
 
        }
 
    }
 
    pub fn new_net_port(
 
        &mut self,
 
        polarity: Polarity,
 
        sock_addr: SocketAddr,
 
        endpoint_polarity: EndpointPolarity,
 
    ) -> Result<PortId, NewNetPortError> {
 
        let Self { unphased: up, phased } = self;
 
        match phased {
 
            ConnectorPhased::Communication { .. } => Err(NewNetPortError::AlreadyConnected),
 
            ConnectorPhased::Setup { endpoint_setups, .. } => {
 
                let endpoint_setup = EndpointSetup { sock_addr, endpoint_polarity };
 
                let p = up.id_manager.new_port_id();
 
                up.native_ports.insert(p);
 
                // {polarity, route} known. {peer} unknown.
 
                up.port_info.polarities.insert(p, polarity);
 
                up.port_info.routes.insert(p, Route::LocalComponent(ComponentId::Native));
 
                log!(
 
                    up.logger,
 
                    "Added net port {:?} with polarity {:?} and endpoint setup {:?} ",
 
                    p,
 
                    polarity,
 
                    &endpoint_setup
 
                );
 
                endpoint_setups.push((p, endpoint_setup));
 
                Ok(p)
 
            }
 
        }
 
    }
 
    pub fn connect(&mut self, timeout: Option<Duration>) -> Result<(), ConnectError> {
 
        use ConnectError::*;
 
        use ConnectError as Ce;
 
        let Self { unphased: cu, phased } = self;
 
        match phased {
 
            ConnectorPhased::Communication { .. } => {
 
                log!(cu.logger, "Call to connecting in connected state");
 
                Err(AlreadyConnected)
 
                Err(Ce::AlreadyConnected)
 
            }
 
            ConnectorPhased::Setup { endpoint_setups, .. } => {
 
                log!(cu.logger, "~~~ CONNECT called timeout {:?}", timeout);
 
                let deadline = timeout.map(|to| Instant::now() + to);
 
                // connect all endpoints in parallel; send and receive peer ids through ports
 
                let mut endpoint_manager = new_endpoint_manager(
 
                    &mut *cu.logger,
 
                    endpoint_setups,
 
                    &mut cu.port_info,
 
                    deadline,
 
                )?;
 
                log!(
 
                    cu.logger,
 
                    "Successfully connected {} endpoints",
 
                    endpoint_manager.endpoint_exts.len()
 
                );
 
                // leader election and tree construction
 
                let neighborhood = init_neighborhood(
 
                    cu.id_manager.connector_id,
 
                    &mut *cu.logger,
 
                    &mut endpoint_manager,
 
                    deadline,
 
                )?;
 
                log!(cu.logger, "Successfully created neighborhood {:?}", &neighborhood);
 
                let mut comm = ConnectorCommunication {
 
                    round_index: 0,
 
                    endpoint_manager,
 
                    neighborhood,
 
                    native_batches: vec![Default::default()],
 
                    round_result: Ok(None),
 
                };
 
                session_optimize(cu, &mut comm, deadline)?;
 
                log!(cu.logger, "connect() finished. setup phase complete");
 
                self.phased = ConnectorPhased::Communication(Box::new(comm));
 
                Ok(())
 
            }
 
        }
 
    }
 
}
 
fn new_endpoint_manager(
 
    logger: &mut dyn Logger,
 
    endpoint_setups: &[(PortId, EndpointSetup)],
 
    port_info: &mut PortInfo,
 
    deadline: Option<Instant>,
 
) -> Result<EndpointManager, ConnectError> {
 
    ////////////////////////////////////////////
 
    use std::sync::atomic::AtomicBool;
 
    use ConnectError::*;
 
    use ConnectError as Ce;
 
    const BOTH: Interest = Interest::READABLE.add(Interest::WRITABLE);
 
    struct Todo {
 
        todo_endpoint: TodoEndpoint,
 
        endpoint_setup: EndpointSetup,
 
        local_port: PortId,
 
        sent_local_port: bool,          // true <-> I've sent my local port
 
        recv_peer_port: Option<PortId>, // Some(..) <-> I've received my peer's port
 
    }
 
    enum TodoEndpoint {
 
        Accepting(TcpListener),
 
        Endpoint(Endpoint),
 
    }
 
    fn init_todo(
 
        token: Token,
 
        local_port: PortId,
 
        endpoint_setup: &EndpointSetup,
 
        poll: &mut Poll,
 
    ) -> Result<Todo, ConnectError> {
 
        let todo_endpoint = if let EndpointPolarity::Active = endpoint_setup.endpoint_polarity {
 
            let mut stream = TcpStream::connect(endpoint_setup.sock_addr)
 
                .expect("mio::TcpStream connect should not fail!");
 
            poll.registry().register(&mut stream, token, BOTH).unwrap();
 
            TodoEndpoint::Endpoint(Endpoint { stream, inbox: vec![] })
 
        } else {
 
            let mut listener = TcpListener::bind(endpoint_setup.sock_addr)
 
                .map_err(|_| BindFailed(endpoint_setup.sock_addr))?;
 
                .map_err(|_| Ce::BindFailed(endpoint_setup.sock_addr))?;
 
            poll.registry().register(&mut listener, token, BOTH).unwrap();
 
            TodoEndpoint::Accepting(listener)
 
        };
 
        Ok(Todo {
 
            todo_endpoint,
 
            local_port,
 
            sent_local_port: false,
 
            recv_peer_port: None,
 
            endpoint_setup: endpoint_setup.clone(),
 
        })
 
    }
 
    ////////////////////////////////////////////
 

	
 
    // 1. Start to construct EndpointManager
 
    const WAKER_TOKEN: Token = Token(usize::MAX);
 
    const WAKER_PERIOD: Duration = Duration::from_millis(300);
 

	
 
    assert!(endpoint_setups.len() < WAKER_TOKEN.0); // using MAX usize as waker token
 

	
 
    let mut waker_continue_signal: Option<Arc<AtomicBool>> = None;
 
    let mut poll = Poll::new().map_err(|_| PollInitFailed)?;
 
    let mut poll = Poll::new().map_err(|_| Ce::PollInitFailed)?;
 
    let mut events = Events::with_capacity(endpoint_setups.len() * 2 + 4);
 
    let mut polled_undrained = VecSet::default();
 
    let mut delayed_messages = vec![];
 

	
 
    // 2. create a registered (TcpListener/Endpoint) for passive / active respectively
 
    let mut todos = endpoint_setups
 
        .iter()
 
        .enumerate()
 
        .map(|(index, (local_port, endpoint_setup))| {
 
            init_todo(Token(index), *local_port, endpoint_setup, &mut poll)
 
        })
 
        .collect::<Result<Vec<Todo>, ConnectError>>()?;
 

	
 
    // 3. Using poll to drive progress:
 
    //    - accept an incoming connection for each TcpListener (turning them into endpoints too)
 
    //    - for each endpoint, send the local PortId
 
    //    - for each endpoint, recv the peer's PortId, and
 

	
 
    // all in connect_failed are NOT registered with Poll
 
    let mut connect_failed: HashSet<usize> = Default::default();
 

	
 
    let mut setup_incomplete: HashSet<usize> = (0..todos.len()).collect();
 
    while !setup_incomplete.is_empty() {
 
        let remaining = if let Some(deadline) = deadline {
 
            Some(deadline.checked_duration_since(Instant::now()).ok_or(Timeout)?)
 
            Some(deadline.checked_duration_since(Instant::now()).ok_or(Ce::Timeout)?)
 
        } else {
 
            None
 
        };
 
        poll.poll(&mut events, remaining).map_err(|_| PollFailed)?;
 
        poll.poll(&mut events, remaining).map_err(|_| Ce::PollFailed)?;
 
        for event in events.iter() {
 
            let token = event.token();
 
            let Token(index) = token;
 
            if token == WAKER_TOKEN {
 
                log!(
 
                    logger,
 
                    "Notification from waker. connect_failed is {:?}",
 
                    connect_failed.iter()
 
                );
 
                assert!(waker_continue_signal.is_some());
 
                for index in connect_failed.drain() {
 
                    let todo: &mut Todo = &mut todos[index];
 
                    log!(
 
                        logger,
 
                        "Restarting connection with endpoint {:?} {:?}",
 
                        index,
 
                        todo.endpoint_setup.sock_addr
 
                    );
 
                    match &mut todo.todo_endpoint {
 
                        TodoEndpoint::Endpoint(endpoint) => {
 
                            let mut new_stream = TcpStream::connect(todo.endpoint_setup.sock_addr)
 
                                .expect("mio::TcpStream connect should not fail!");
 
                            std::mem::swap(&mut endpoint.stream, &mut new_stream);
 
                            poll.registry()
 
                                .register(&mut endpoint.stream, Token(index), BOTH)
 
                                .unwrap();
 
                        }
 
                        _ => unreachable!(),
 
                    }
 
                }
 
            } else {
 
                let todo: &mut Todo = &mut todos[index];
 
                // FIRST try convert this into an endpoint
 
                if let TodoEndpoint::Accepting(listener) = &mut todo.todo_endpoint {
 
                    match listener.accept() {
 
                        Ok((mut stream, peer_addr)) => {
 
                            poll.registry().deregister(listener).unwrap();
 
                            poll.registry().register(&mut stream, token, BOTH).unwrap();
 
                            log!(
 
                                logger,
 
                                "Endpoint[{}] accepted a connection from {:?}",
 
                                index,
 
                                peer_addr
 
                            );
 
                            let endpoint = Endpoint { stream, inbox: vec![] };
 
                            todo.todo_endpoint = TodoEndpoint::Endpoint(endpoint);
 
                        }
 
                        Err(e) if would_block(&e) => {
 
                            log!(logger, "Spurious wakeup on listener {:?}", index)
 
                        }
 
                        Err(_) => {
 
                            log!(logger, "accept() failure on index {}", index);
 
                            return Err(AcceptFailed(listener.local_addr().unwrap()));
 
                            return Err(Ce::AcceptFailed(listener.local_addr().unwrap()));
 
                        }
 
                    }
 
                }
 
                if let TodoEndpoint::Endpoint(endpoint) = &mut todo.todo_endpoint {
 
                    if event.is_error() {
 
                        if todo.endpoint_setup.endpoint_polarity == EndpointPolarity::Passive {
 
                            // right now you cannot retry an acceptor.
 
                            return Err(AcceptFailed(endpoint.stream.local_addr().unwrap()));
 
                            return Err(Ce::AcceptFailed(endpoint.stream.local_addr().unwrap()));
 
                        }
 
                        if connect_failed.insert(index) {
 
                            log!(
 
                                logger,
 
                                "Connection failed for {:?}. List is {:?}",
 
                                index,
 
                                connect_failed.iter()
 
                            );
 
                            poll.registry().deregister(&mut endpoint.stream).unwrap();
 
                        } else {
 
                            // spurious wakeup
 
                            continue;
 
                        }
 

	
 
                        if waker_continue_signal.is_none() {
 
                            log!(logger, "First connect failure. Starting waker thread");
 
                            let waker =
 
                                Arc::new(mio::Waker::new(poll.registry(), WAKER_TOKEN).unwrap());
 
                            let wcs = Arc::new(AtomicBool::from(true));
 
                            let wcs2 = wcs.clone();
 
                            std::thread::spawn(move || {
 
                                while wcs2.load(std::sync::atomic::Ordering::SeqCst) {
 
                                    std::thread::sleep(WAKER_PERIOD);
 
                                    let _ = waker.wake();
 
                                }
 
                            });
 
                            waker_continue_signal = Some(wcs);
 
                        }
 
                        continue;
 
                    }
 
                    if connect_failed.contains(&index) {
 
                        // spurious wakeup
 
                        continue;
 
                    }
 
                    if !setup_incomplete.contains(&index) {
 
                        // spurious wakeup
 
                        continue;
 
                    }
 
                    let local_polarity = *port_info.polarities.get(&todo.local_port).unwrap();
 
                    if event.is_writable() && !todo.sent_local_port {
 
                        let msg = Msg::SetupMsg(SetupMsg::MyPortInfo(MyPortInfo {
 
                            polarity: local_polarity,
 
                            port: todo.local_port,
 
                        }));
 
                        endpoint
 
                            .send(&msg)
 
                            .map_err(|e| {
 
                                EndpointSetupError(endpoint.stream.local_addr().unwrap(), e)
 
                                Ce::EndpointSetupError(endpoint.stream.local_addr().unwrap(), e)
 
                            })
 
                            .unwrap();
 
                        log!(logger, "endpoint[{}] sent msg {:?}", index, &msg);
 
                        todo.sent_local_port = true;
 
                    }
 
                    if event.is_readable() && todo.recv_peer_port.is_none() {
 
                        let maybe_msg = endpoint.try_recv(logger).map_err(|e| {
 
                            EndpointSetupError(endpoint.stream.local_addr().unwrap(), e)
 
                            Ce::EndpointSetupError(endpoint.stream.local_addr().unwrap(), e)
 
                        })?;
 
                        if maybe_msg.is_some() && !endpoint.inbox.is_empty() {
 
                            polled_undrained.insert(index);
 
                        }
 
                        match maybe_msg {
 
                            None => {} // msg deserialization incomplete
 
                            Some(Msg::SetupMsg(SetupMsg::MyPortInfo(peer_info))) => {
 
                                log!(logger, "endpoint[{}] got peer info {:?}", index, peer_info);
 
                                if peer_info.polarity == local_polarity {
 
                                    return Err(ConnectError::PortPeerPolarityMismatch(
 
                                        todo.local_port,
 
                                    ));
 
                                }
 
                                todo.recv_peer_port = Some(peer_info.port);
 
                                // 1. finally learned the peer of this port!
 
                                port_info.peers.insert(todo.local_port, peer_info.port);
 
                                // 2. learned the info of this peer port
 
                                port_info.polarities.insert(peer_info.port, peer_info.polarity);
 
                                port_info.peers.insert(peer_info.port, todo.local_port);
 
                                if let Some(route) = port_info.routes.get(&peer_info.port) {
 
                                    // check just for logging purposes
 
                                    log!(
 
                                        logger,
 
                                        "Special case! Route to peer {:?} already known to be {:?}. Leave untouched",
 
                                        peer_info.port,
 
                                        route
 
                                    );
 
                                }
 
                                port_info
 
                                    .routes
 
                                    .entry(peer_info.port)
 
                                    .or_insert(Route::Endpoint { index });
 
                            }
 
                            Some(inappropriate_msg) => {
 
                                log!(
 
                                    logger,
 
                                    "delaying msg {:?} during channel setup phase",
 
                                    inappropriate_msg
 
                                );
 
                                delayed_messages.push((index, inappropriate_msg));
 
                            }
 
                        }
 
                    }
 
                    if todo.sent_local_port && todo.recv_peer_port.is_some() {
 
                        setup_incomplete.remove(&index);
 
                        log!(logger, "endpoint[{}] is finished!", index);
 
                    }
 
                }
 
            }
 
        }
 
        events.clear();
 
    }
 
    let endpoint_exts = todos
 
        .into_iter()
 
        .enumerate()
 
        .map(|(index, Todo { todo_endpoint, local_port, .. })| EndpointExt {
 
            endpoint: match todo_endpoint {
 
                TodoEndpoint::Endpoint(mut endpoint) => {
 
                    poll.registry()
 
                        .reregister(&mut endpoint.stream, Token(index), Interest::READABLE)
 
                        .unwrap();
 
                    endpoint
 
                }
 
                _ => unreachable!(),
 
            },
 
            getter_for_incoming: local_port,
 
        })
 
        .collect();
 
    if let Some(wcs) = waker_continue_signal {
 
        log!(logger, "Sending waker the stop signal");
 
        wcs.store(false, std::sync::atomic::Ordering::SeqCst);
 
    }
 
    Ok(EndpointManager {
 
        poll,
 
        events,
 
        polled_undrained,
 
        undelayed_messages: delayed_messages, // no longer delayed
 
        delayed_messages: Default::default(),
 
        endpoint_exts,
 
    })
 
}
 

	
 
fn init_neighborhood(
 
    connector_id: ConnectorId,
 
    logger: &mut dyn Logger,
 
    em: &mut EndpointManager,
 
    deadline: Option<Instant>,
 
) -> Result<Neighborhood, ConnectError> {
 
    ////////////////////////////////
 
    use {ConnectError::*, Msg::SetupMsg as S, SetupMsg::*};
 
    use {ConnectError as Ce, Msg::SetupMsg as S, SetupMsg as Sm};
 
    #[derive(Debug)]
 
    struct WaveState {
 
        parent: Option<usize>,
 
        leader: ConnectorId,
 
    }
 
    fn do_wave(
 
        em: &mut EndpointManager,
 
        awaiting: &mut HashSet<usize>,
 
        ws: &WaveState,
 
    ) -> Result<(), ConnectError> {
 
        awaiting.clear();
 
        let msg = S(LeaderWave { wave_leader: ws.leader });
 
        let msg = S(Sm::LeaderWave { wave_leader: ws.leader });
 
        for index in em.index_iter() {
 
            if Some(index) != ws.parent {
 
                em.send_to_setup(index, &msg)?;
 
                awaiting.insert(index);
 
            }
 
        }
 
        Ok(())
 
    }
 
    ///////////////////////
 
    /*
 
    Conceptually, we have two distinct disstributed algorithms back-to-back
 
    1. Leader election using echo algorithm with extinction.
 
        - Each connector initiates a wave tagged with their ID
 
        - Connectors participate in waves of GREATER ID, abandoning previous waves
 
        - Only the wave of the connector with GREATEST ID completes, whereupon they are the leader
 
    2. Tree construction
 
        - The leader broadcasts their leadership with msg A
 
        - Upon receiving their first announcement, connectors reply B, and send A to all peers
 
        - A controller exits once they have received A or B from each neighbor
 

	
 
    The actual implementation is muddier, because non-leaders aren't aware of termiantion of algorithm 1,
 
    so they rely on receipt of the leader's announcement to realize that algorithm 2 has begun.
 

	
 
    NOTE the distinction between PARENT and LEADER
 
    */
 
    log!(logger, "beginning neighborhood construction");
 
    if em.num_endpoints() == 0 {
 
        log!(logger, "Edge case of no neighbors! No parent an no children!");
 
        return Ok(Neighborhood { parent: None, children: VecSet::new(vec![]) });
 
    }
 
    log!(logger, "Have {} endpoints. Must participate in distributed alg.", em.num_endpoints());
 
    let mut awaiting = HashSet::with_capacity(em.num_endpoints());
 
    // 1+ neighbors. Leader can only be learned by receiving messages
 
    // loop ends when I know my sink tree parent (implies leader was elected)
 
    let election_result: WaveState = {
 
        // initially: No parent, I'm the best leader.
 
        let mut best_wave = WaveState { parent: None, leader: connector_id };
 
        // start a wave for this initial state
 
        do_wave(em, &mut awaiting, &best_wave)?;
 
        // with 1+ neighbors, progress is only made in response to incoming messages
 
        em.undelay_all();
 
        'election: loop {
 
            log!(logger, "Election loop. awaiting {:?}...", awaiting.iter());
 
            let (recv_index, msg) = em.try_recv_any_setup(logger, deadline)?;
 
            log!(logger, "Received from index {:?} msg {:?}", &recv_index, &msg);
 
            match msg {
 
                S(LeaderAnnounce { tree_leader }) => {
 
                S(Sm::LeaderAnnounce { tree_leader }) => {
 
                    let election_result =
 
                        WaveState { leader: tree_leader, parent: Some(recv_index) };
 
                    log!(logger, "Election lost! Result {:?}", &election_result);
 
                    assert!(election_result.leader >= best_wave.leader);
 
                    assert_ne!(election_result.leader, connector_id);
 
                    break 'election election_result;
 
                }
 
                S(LeaderWave { wave_leader }) => {
 
                S(Sm::LeaderWave { wave_leader }) => {
 
                    use Ordering as O;
 
                    match wave_leader.cmp(&best_wave.leader) {
 
                        O::Less => log!(
 
                            logger,
 
                            "Ignoring wave with Id {:?}<{:?}",
 
                            wave_leader,
 
                            best_wave.leader
 
                        ),
 
                        O::Greater => {
 
                            log!(
 
                                logger,
 
                                "Joining wave with Id {:?}>{:?}",
 
                                wave_leader,
 
                                best_wave.leader
 
                            );
 
                            best_wave = WaveState { leader: wave_leader, parent: Some(recv_index) };
 
                            log!(logger, "New wave state {:?}", &best_wave);
 
                            do_wave(em, &mut awaiting, &best_wave)?;
 
                            if awaiting.is_empty() {
 
                                log!(logger, "Special case! Only neighbor is parent. Replying to {:?} msg {:?}", recv_index, &msg);
 
                                em.send_to_setup(recv_index, &msg)?;
 
                            }
 
                        }
 
                        O::Equal => {
 
                            assert!(awaiting.remove(&recv_index));
 
                            log!(
 
                                logger,
 
                                "Wave reply from index {:?} for leader {:?}. Now awaiting {} replies",
 
                                recv_index,
 
                                best_wave.leader,
 
                                awaiting.len()
 
                            );
 
                            if awaiting.is_empty() {
 
                                if let Some(parent) = best_wave.parent {
 
                                    log!(
 
                                        logger,
 
                                        "Sub-wave done! replying to parent {:?} msg {:?}",
 
                                        parent,
 
                                        &msg
 
                                    );
 
                                    em.send_to_setup(parent, &msg)?;
 
                                } else {
 
                                    let election_result: WaveState = best_wave;
 
                                    log!(logger, "Election won! Result {:?}", &election_result);
 
                                    break 'election election_result;
 
                                }
 
                            }
 
                        }
 
                    }
 
                }
 
                msg @ S(YouAreMyParent) | msg @ S(MyPortInfo(_)) => {
 
                msg @ S(Sm::YouAreMyParent) | msg @ S(Sm::MyPortInfo(_)) => {
 
                    log!(logger, "Endpont {:?} sent unexpected msg! {:?}", recv_index, &msg);
 
                    return Err(SetupAlgMisbehavior);
 
                    return Err(Ce::SetupAlgMisbehavior);
 
                }
 
                msg @ S(SessionScatter { .. })
 
                | msg @ S(SessionGather { .. })
 
                msg @ S(Sm::SessionScatter { .. })
 
                | msg @ S(Sm::SessionGather { .. })
 
                | msg @ Msg::CommMsg { .. } => {
 
                    log!(logger, "delaying msg {:?} during election algorithm", msg);
 
                    em.delayed_messages.push((recv_index, msg));
 
                }
 
            }
 
        }
 
    };
 

	
 
    // starting algorithm 2. Send a message to every neighbor
 
    log!(logger, "Starting tree construction. Step 1: send one msg per neighbor");
 
    awaiting.clear();
 
    for index in em.index_iter() {
 
        if Some(index) == election_result.parent {
 
            em.send_to_setup(index, &S(YouAreMyParent))?;
 
            em.send_to_setup(index, &S(Sm::YouAreMyParent))?;
 
        } else {
 
            awaiting.insert(index);
 
            em.send_to_setup(index, &S(LeaderAnnounce { tree_leader: election_result.leader }))?;
 
            em.send_to_setup(
 
                index,
 
                &S(Sm::LeaderAnnounce { tree_leader: election_result.leader }),
 
            )?;
 
        }
 
    }
 
    let mut children = vec![];
 
    em.undelay_all();
 
    while !awaiting.is_empty() {
 
        log!(logger, "Tree construction_loop loop. awaiting {:?}...", awaiting.iter());
 
        let (recv_index, msg) = em.try_recv_any_setup(logger, deadline)?;
 
        log!(logger, "Received from index {:?} msg {:?}", &recv_index, &msg);
 
        match msg {
 
            S(LeaderAnnounce { .. }) => {
 
            S(Sm::LeaderAnnounce { .. }) => {
 
                // not a child
 
                log!(
 
                    logger,
 
                    "Got reply from non-child index {:?}. Children: {:?}",
 
                    recv_index,
 
                    children.iter()
 
                );
 
                if !awaiting.remove(&recv_index) {
 
                    return Err(SetupAlgMisbehavior);
 
                    return Err(Ce::SetupAlgMisbehavior);
 
                }
 
            }
 
            S(YouAreMyParent) => {
 
            S(Sm::YouAreMyParent) => {
 
                if !awaiting.remove(&recv_index) {
 
                    log!(
 
                        logger,
 
                        "Got reply from child index {:?}. Children before... {:?}",
 
                        recv_index,
 
                        children.iter()
 
                    );
 
                    return Err(SetupAlgMisbehavior);
 
                    return Err(Ce::SetupAlgMisbehavior);
 
                }
 
                children.push(recv_index);
 
            }
 
            msg @ S(MyPortInfo(_)) | msg @ S(LeaderWave { .. }) => {
 
            msg @ S(Sm::MyPortInfo(_)) | msg @ S(Sm::LeaderWave { .. }) => {
 
                log!(logger, "discarding old message {:?} during election", msg);
 
            }
 
            msg @ S(SessionScatter { .. })
 
            | msg @ S(SessionGather { .. })
 
            msg @ S(Sm::SessionScatter { .. })
 
            | msg @ S(Sm::SessionGather { .. })
 
            | msg @ Msg::CommMsg { .. } => {
 
                log!(logger, "delaying msg {:?} during election", msg);
 
                em.delayed_messages.push((recv_index, msg));
 
            }
 
        }
 
    }
 
    children.shrink_to_fit();
 
    let neighborhood =
 
        Neighborhood { parent: election_result.parent, children: VecSet::new(children) };
 
    log!(logger, "Neighborhood constructed {:?}", &neighborhood);
 
    Ok(neighborhood)
 
}
 

	
 
fn session_optimize(
 
    cu: &mut ConnectorUnphased,
 
    comm: &mut ConnectorCommunication,
 
    deadline: Option<Instant>,
 
) -> Result<(), ConnectError> {
 
    ////////////////////////////////////////
 
    use {ConnectError::*, Msg::SetupMsg as S, SetupMsg::*};
 
    use {ConnectError as Ce, Msg::SetupMsg as S, SetupMsg as Sm};
 
    ////////////////////////////////////////
 
    log!(cu.logger, "Beginning session optimization");
 
    // populate session_info_map from a message per child
 
    let mut unoptimized_map: HashMap<ConnectorId, SessionInfo> = Default::default();
 
    let mut awaiting: HashSet<usize> = comm.neighborhood.children.iter().copied().collect();
 
    comm.endpoint_manager.undelay_all();
 
    while !awaiting.is_empty() {
 
        log!(
 
            cu.logger,
 
            "Session gather loop. awaiting info from children {:?}...",
 
            awaiting.iter()
 
        );
 
        let (recv_index, msg) =
 
            comm.endpoint_manager.try_recv_any_setup(&mut *cu.logger, deadline)?;
 
        log!(cu.logger, "Received from index {:?} msg {:?}", &recv_index, &msg);
 
        match msg {
 
            S(SessionGather { unoptimized_map: child_unoptimized_map }) => {
 
            S(Sm::SessionGather { unoptimized_map: child_unoptimized_map }) => {
 
                if !awaiting.remove(&recv_index) {
 
                    log!(
 
                        cu.logger,
 
                        "Wasn't expecting session info from {:?}. Got {:?}",
 
                        recv_index,
 
                        &child_unoptimized_map
 
                    );
 
                    return Err(SetupAlgMisbehavior);
 
                    return Err(Ce::SetupAlgMisbehavior);
 
                }
 
                unoptimized_map.extend(child_unoptimized_map.into_iter());
 
            }
 
            msg @ S(YouAreMyParent)
 
            | msg @ S(MyPortInfo(..))
 
            | msg @ S(LeaderAnnounce { .. })
 
            | msg @ S(LeaderWave { .. }) => {
 
            msg @ S(Sm::YouAreMyParent)
 
            | msg @ S(Sm::MyPortInfo(..))
 
            | msg @ S(Sm::LeaderAnnounce { .. })
 
            | msg @ S(Sm::LeaderWave { .. }) => {
 
                log!(cu.logger, "discarding old message {:?} during election", msg);
 
            }
 
            msg @ S(SessionScatter { .. }) => {
 
            msg @ S(Sm::SessionScatter { .. }) => {
 
                log!(
 
                    cu.logger,
 
                    "Endpoint {:?} sent unexpected scatter! {:?} I've not contributed yet!",
 
                    recv_index,
 
                    &msg
 
                );
 
                return Err(SetupAlgMisbehavior);
 
                return Err(Ce::SetupAlgMisbehavior);
 
            }
 
            msg @ Msg::CommMsg(..) => {
 
                log!(cu.logger, "delaying msg {:?} during session optimization", msg);
 
                comm.endpoint_manager.delayed_messages.push((recv_index, msg));
 
            }
 
        }
 
    }
 
    log!(
 
        cu.logger,
 
        "Gathered all children's maps. ConnectorId set is... {:?}",
 
        unoptimized_map.keys()
 
    );
 
    let my_session_info = SessionInfo {
 
        port_info: cu.port_info.clone(),
 
        proto_components: cu.proto_components.clone(),
 
        serde_proto_description: SerdeProtocolDescription(cu.proto_description.clone()),
 
        getter_for_incoming: comm
 
        endpoint_incoming_to_getter: comm
 
            .endpoint_manager
 
            .endpoint_exts
 
            .iter()
 
            .map(|ee| ee.getter_for_incoming)
 
            .collect(),
 
    };
 
    unoptimized_map.insert(cu.id_manager.connector_id, my_session_info);
 
    log!(cu.logger, "Inserting my own info. Unoptimized subtree map is {:?}", &unoptimized_map);
 

	
 
    // acquire the optimized info...
 
    let optimized_map = if let Some(parent) = comm.neighborhood.parent {
 
        // ... as a message from my parent
 
        log!(cu.logger, "Forwarding gathered info to parent {:?}", parent);
 
        let msg = S(SessionGather { unoptimized_map });
 
        let msg = S(Sm::SessionGather { unoptimized_map });
 
        comm.endpoint_manager.send_to_setup(parent, &msg)?;
 
        'scatter_loop: loop {
 
            log!(
 
                cu.logger,
 
                "Session scatter recv loop. awaiting info from children {:?}...",
 
                awaiting.iter()
 
            );
 
            let (recv_index, msg) =
 
                comm.endpoint_manager.try_recv_any_setup(&mut *cu.logger, deadline)?;
 
            log!(cu.logger, "Received from index {:?} msg {:?}", &recv_index, &msg);
 
            match msg {
 
                S(SessionScatter { optimized_map }) => {
 
                S(Sm::SessionScatter { optimized_map }) => {
 
                    if recv_index != parent {
 
                        log!(cu.logger, "I expected the scatter from my parent only!");
 
                        return Err(SetupAlgMisbehavior);
 
                        return Err(Ce::SetupAlgMisbehavior);
 
                    }
 
                    break 'scatter_loop optimized_map;
 
                }
 
                msg @ Msg::CommMsg { .. } => {
 
                    log!(cu.logger, "delaying msg {:?} during scatter recv", msg);
 
                    comm.endpoint_manager.delayed_messages.push((recv_index, msg));
 
                }
 
                msg @ S(SessionGather { .. })
 
                | msg @ S(YouAreMyParent)
 
                | msg @ S(MyPortInfo(..))
 
                | msg @ S(LeaderAnnounce { .. })
 
                | msg @ S(LeaderWave { .. }) => {
 
                msg @ S(Sm::SessionGather { .. })
 
                | msg @ S(Sm::YouAreMyParent)
 
                | msg @ S(Sm::MyPortInfo(..))
 
                | msg @ S(Sm::LeaderAnnounce { .. })
 
                | msg @ S(Sm::LeaderWave { .. }) => {
 
                    log!(cu.logger, "discarding old message {:?} during election", msg);
 
                }
 
            }
 
        }
 
    } else {
 
        // by computing it myself
 
        log!(cu.logger, "I am the leader! I will optimize this session");
 
        leader_session_map_optimize(&mut *cu.logger, unoptimized_map)?
 
    };
 
    log!(
 
        cu.logger,
 
        "Optimized info map is {:?}. Sending to children {:?}",
 
        &optimized_map,
 
        comm.neighborhood.children.iter()
 
    );
 
    log!(cu.logger, "All session info dumped!: {:#?}", &optimized_map);
 
    let optimized_info =
 
        optimized_map.get(&cu.id_manager.connector_id).expect("HEY NO INFO FOR ME?").clone();
 
    let msg = S(SessionScatter { optimized_map });
 
    let msg = S(Sm::SessionScatter { optimized_map });
 
    for &child in comm.neighborhood.children.iter() {
 
        comm.endpoint_manager.send_to_setup(child, &msg)?;
 
    }
 
    apply_optimizations(cu, comm, optimized_info)?;
 
    log!(cu.logger, "Session optimizations applied");
 
    Ok(())
 
}
 
fn leader_session_map_optimize(
 
    logger: &mut dyn Logger,
 
    unoptimized_map: HashMap<ConnectorId, SessionInfo>,
 
) -> Result<HashMap<ConnectorId, SessionInfo>, ConnectError> {
 
    log!(logger, "Session map optimize START");
 
    log!(logger, "Session map optimize END");
 
    Ok(unoptimized_map)
 
}
 
fn apply_optimizations(
 
    cu: &mut ConnectorUnphased,
 
    comm: &mut ConnectorCommunication,
 
    session_info: SessionInfo,
 
) -> Result<(), ConnectError> {
 
    let SessionInfo { proto_components, port_info, serde_proto_description, getter_for_incoming } =
 
        session_info;
 
    let SessionInfo {
 
        proto_components,
 
        port_info,
 
        serde_proto_description,
 
        endpoint_incoming_to_getter,
 
    } = session_info;
 
    // TODO some info which should be read-only can be mutated with the current scheme
 
    cu.port_info = port_info;
 
    cu.proto_components = proto_components;
 
    cu.proto_description = serde_proto_description.0;
 
    for (ee, getter) in comm.endpoint_manager.endpoint_exts.iter_mut().zip(getter_for_incoming) {
 
    for (ee, getter) in
 
        comm.endpoint_manager.endpoint_exts.iter_mut().zip(endpoint_incoming_to_getter)
 
    {
 
        ee.getter_for_incoming = getter;
 
    }
 
    Ok(())
 
}
0 comments (0 inline, 0 general)