Changeset - d72289ecc27b
[Not reviewed]
0 1 0
Christopher Esterhuyse - 5 years ago 2020-02-12 18:17:07
christopheresterhuyse@gmail.com
playing around with new predicate=>state,payload storages. toward faster querying but also toward deviation detection by way of intelligible error handling
1 file changed with 8 insertions and 3 deletions:
0 comments (0 inline, 0 general)
src/runtime/polyp.rs
Show inline comments
 
use crate::common::*;
 
use crate::runtime::{Predicate, ProtocolS};
 
use core::ops::{Index, IndexMut};
 
use std::collections::HashMap;
 
use std::num::NonZeroU32;
 

	
 
// struct SpeculationBranch {
 
//     inbox: HashMap<Key, Payload>,
 
//     outbox: HashMap<Key, Payload>,
 
//     inner: SpeculationBranchInner,
 
//     known: HashMap<ChannelId, bool>,
 
// }
 
// enum SpeculationBranchInner {
 
//     Leaf(ProtocolS),
 

	
 
//     // invariant: channel_id branching is redundantly represented by true_false branches' known assignments
 
//     // => true_false[0].known[channel_id] == Some(true)
 
//     // => true_false[1].known[channel_id] == Some(false)
 
//     Fork { channel_id: ChannelId, true_false: Box<[SpeculationBranch; 2]> },
 
// }
 

	
 
// impl SpeculationBranch {
 
//     fn new_tree(init: ProtocolS) -> Self {
 
//         SpeculationBranch {
 
//             inbox: Default::default(),
 
//             outbox: Default::default(),
 
//             known: Default::default(),
 
//             inner: SpeculationBranchInner::Leaf(init),
 
//         }
 
//     }
 

	
 
//     fn feed_msg(
 
//         &mut self,
 
//         ekey: Key,
 
//         payload: &Payload,
 
//         predicate: &Predicate,
 
//         pred: Option<Pred>,
 
//     ) {
 
//         use SpeculationBranchInner as Sbi;
 
//         let next_pred = Some(Pred { known: &self.known, prev: pred.as_ref() });
 
//         match &mut self.inner {
 
//             Sbi::Leaf(_state) => {
 
//                 if self.inbox.insert(ekey, payload.clone()).is_none() {
 
//                     // run this machine
 
//                 }
 
//             }
 
//             Sbi::Fork { channel_id, true_false } => match predicate.query(*channel_id) {
 
//                 Some(true) => true_false[0].feed_msg(ekey, payload, predicate, next_pred), // feed true
 
//                 Some(false) => true_false[1].feed_msg(ekey, payload, predicate, next_pred), // feed false
 
//                 None => {
 
//                     // feed to both true and false branches
 
//                     for x in true_false.iter_mut() {
 
//                         x.feed_msg(ekey, payload, predicate, next_pred);
 
//                     }
 
//                 }
 
//             },
 
//         }
 
//     }
 
// }
 

	
 
// #[derive(Copy, Clone)]
 
// struct Pred<'a> {
 
//     known: &'a HashMap<ChannelId, bool>,
 
//     prev: Option<&'a Pred<'a>>,
 
// }
 

	
 
struct Branch {
 
    state: Option<StateKey>,
 
    speculation: Option<Speculation>,
 
}
 
struct Speculation {
 
    on: ChannelId,
 
    t: Option<BranchKey>,
 
    f: Option<BranchKey>,
 
}
 

	
 
struct Tree {
 
    branches: Vec<Branch>, // invariant: non-empty. root at index 0
 
    states: Vec<ProtocolS>,
 
}
 
impl Tree {
 
    /// determine where in the tree the given message should be inserted (based on the predicate).
 
    /// run all machines
 
    fn feed_and_run(&mut self, predicate: Predicate, payload: &Payload) {
 
        let q = Queryable::new(&predicate);
 
        let mut qs = QueryableSubset::new(&q);
 
        self.branches[0].feed_and_run(payload, &q, &mut qs);
 
    }
 
}
 

	
 
struct Queryable(Vec<(ChannelId, bool)>);
 
impl Queryable {
 
    fn new(predicate: &Predicate) -> Self {
 
        let mut vec: Vec<_> = predicate.assigned.iter().map(|(&k, &v)| (k, v)).collect();
 
        vec.sort_by(|(a, _), (b, _)| a.cmp(b));
 
        Self(vec)
 
    }
 
    fn query(&self, channel_id: ChannelId) -> Option<(usize, bool)> {
 
        self.0
 
            .binary_search_by(|(cid, _)| cid.cmp(&channel_id))
 
            .ok()
 
            .map(|index| (index, self.0[index].1))
 
    }
 
}
 
struct QueryableSubset {
 
    buf: Vec<usize>,
 
    prefix_end: usize,
 
}
 
impl QueryableSubset {
 
    fn new(q: &Queryable) -> Self {
 
        let prefix_end = q.0.len();
 
        Self { buf: (0..prefix_end).collect(), prefix_end }
 
    }
 
    fn remove(&mut self, at: usize) {
 
        self.prefix_end -= 1;
 
        self.buf.swap(self.prefix_end, at);
 
    }
 
    fn undo_remove(&mut self, at: usize) {
 
        self.buf.swap(self.prefix_end, at);
 
        self.prefix_end += 1;
 
    }
 
    fn iter_q<'a: 'b, 'b>(
 
        &'a self,
 
        q: &'b Queryable,
 
    ) -> impl Iterator<Item = &'b (ChannelId, bool)> {
 
        self.buf[..self.prefix_end].iter().map(move |&index| &q.0[index])
 
    }
 
}
 

	
 
impl Branch {
 
    // invariant: q.0 is sorted
 
    //
 
    // invariant: qs.buf[0..qs.prefix_end] is a slice that encodes the set of INDICES in q.0
 
    // which the path to this branch has NOT queried.
 
    //
 
    // ie. for a given predicate {X=>true, Z=>true, Y=>false}
 
    // => q is [(X,true), (Y,false), (Z,true)]
 
    // => qs is initially [0,1,2]
 
    // and if this branch queries 1, the subtree will receive qs as [0,2]
 
    fn feed_and_run(&mut self, payload: &Payload, q: &Queryable, qs: &mut QueryableSubset) {
 
        match &mut self.speculation {
 
            Some(Speculation { on, t, f }) => {
 
                if let Some((index, assignment)) = q.query(*on) {
 
                    // if assignment
 
                } else {
 
                }
 
                todo!()
 
            }
 
            None => {
 
                //
 
                todo!()
 
            }
 
        }
 
    }
 
}
 
impl Index<BranchKey> for Tree {
 
    type Output = Branch;
 
    fn index(&self, k: BranchKey) -> &Self::Output {
 
        &self.branches[(k.index_plus_one.get() - 1) as usize]
 
    }
 
}
 
impl IndexMut<BranchKey> for Tree {
 
    fn index_mut(&mut self, k: BranchKey) -> &mut Self::Output {
 
        &mut self.branches[(k.index_plus_one.get() - 1) as usize]
 
    }
 
}
 
impl Index<StateKey> for Tree {
 
    type Output = ProtocolS;
 
    fn index(&self, k: StateKey) -> &Self::Output {
 
        &self.states[(k.index_plus_one.get() - 1) as usize]
 
    }
 
}
 
impl IndexMut<StateKey> for Tree {
 
    fn index_mut(&mut self, k: StateKey) -> &mut Self::Output {
 
        &mut self.states[(k.index_plus_one.get() - 1) as usize]
 
    }
 
}
 

	
 
struct BranchKey {
 
    index_plus_one: NonZeroU32,
 
}
 
struct StateKey {
 
    index_plus_one: NonZeroU32,
 
}
 

	
 
struct Bitset {
 
    bits: Vec<u32>,
 
}
 

	
 
struct Polyp {
 
    inbox: Vec<Payload>,
 
    inbox_masks: BitMasks,
 
    states: Vec<ProtocolS>,
 
    states_masks: BitMasks,
 
}
 

	
 
// invariant: last element is not zero.
 
// => all values out of bounds are implicitly absent
 
#[derive(Debug, Default)]
 
struct BitSet(Vec<u32>);
 

	
 
#[derive(Debug, Default)]
 
struct BitMasks(HashMap<(ChannelId, bool), BitSet>);
 

	
 
struct BitSetAndIter<'a> {
 
    // this value is immutable
 
    // invariant: !sets.is_empty()
 
    sets: &'a [&'a [u32]],
 
    next_u32_index: usize, // invariant: in 0..32 while iterating
 
    next_bit_index: usize,
 
    cached: Option<u32>, // None <=> iterator is done
 
}
 
impl<'a> BitSetAndIter<'a> {
 
    /// a set of bitsets. the u32s of each are in ascending order of significant digits
 
    /// i.e., &[0,1] means {1<<32, 0} while &[0,1] is identical to &[1] and means {1}.
 
    fn new(sets: &'a [&'a [u32]]) -> Self {
 
        const EMPTY_SINGLETON: &[&[u32]] = &[&[]];
 
        let sets = if sets.is_empty() { EMPTY_SINGLETON } else { sets };
 
        Self { sets, next_u32_index: 0, next_bit_index: 0, cached: Self::nth_u32(sets, 0) }
 
    }
 
    fn nth_u32(sets: &'a [&'a [u32]], index: usize) -> Option<u32> {
 
        sets.iter().fold(Some(!0), |a, b| {
 
            let b = b.get(index)?;
 
            Some(a? & b)
 
        })
 
    }
 
    fn next_chunk(&mut self) {
 
        self.next_bit_index = 0;
 
        self.next_u32_index += 1;
 
        self.cached = Self::nth_u32(self.sets, self.next_u32_index);
 
    }
 
}
 
impl Iterator for BitSetAndIter<'_> {
 
    type Item = usize;
 
    fn next(&mut self) -> Option<Self::Item> {
 
        loop {
 
            println!("LOOP");
 
            // get cached chunk. If none exists, iterator is done.
 
            let mut chunk = self.cached?;
 
            if chunk == 0 {
 
                self.next_chunk();
 
                continue;
 
            }
 
            // this chunk encodes 1+ Items to yield
 
            // shift the contents of chunk until the least significant bit is 1
 

	
 
            #[inline(always)]
 
            fn shifty(chunk: &mut u32, shift_by: usize, next_bit_index: &mut usize) {
 
                if *chunk & ((1 << shift_by) - 1) == 0 {
 
                    *next_bit_index += shift_by;
 
                    *chunk >>= shift_by;
 
                }
 
                println!("{:#032b}", *chunk);
 
            }
 
            shifty(&mut chunk, 16, &mut self.next_bit_index);
 
            shifty(&mut chunk, 08, &mut self.next_bit_index);
 
            shifty(&mut chunk, 04, &mut self.next_bit_index);
 
            shifty(&mut chunk, 02, &mut self.next_bit_index);
 
            shifty(&mut chunk, 01, &mut self.next_bit_index);
 
            // assert(chunk & 1 == 1)
 

	
 
            self.next_bit_index += 1;
 
            self.cached = Some(chunk >> 1);
 
            if chunk > 0 {
 
                let index = self.next_u32_index * 32 + (self.next_bit_index - 1);
 
                // assert((self.next_bit_index-1) < 32)
 
                // because if chunk was shifted 32+ places, its contents would be zero.
 
                return Some(index);
 
            }
 
        }
 
    }
 
}
 

	
 
#[test]
 
fn test_bit_iter() {
 
    static SETS: &[&[u32]] = &[
 
        //
 
        &[0b100011000000100101101],
 
        &[0b100001000000000110100],
 
        &[0b100001000100010100110],
 
        &[0b1, 0b1, 0b1, 0b1, 0b1],
 
        &[0b1, 0b1, 0b1],
 
        &[0b1, 0b1, 0b0, 0b1],
 
        &[0b1, 0b1, 0b1, 0b1],
 
    ];
 
    let indices = BitSetAndIter::new(SETS).collect::<Vec<_>>();
 
    println!("indices {:?}", indices);
 
}
0 comments (0 inline, 0 general)