Changeset - e24c723760cb
[Not reviewed]
0 6 1
MH - 4 years ago 2021-03-26 17:28:33
contact@maxhenger.nl
struct field access and inference seems to be implemented
7 files changed with 574 insertions and 115 deletions:
0 comments (0 inline, 0 general)
src/protocol/ast.rs
Show inline comments
 
@@ -1022,7 +1022,7 @@ pub struct MethodSymbolic {
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Field {
 
    Length,
 
    Symbolic(Identifier),
 
    Symbolic(FieldSymbolic),
 
}
 
impl Field {
 
    pub fn is_length(&self) -> bool {
 
@@ -1033,6 +1033,15 @@ impl Field {
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct FieldSymbolic {
 
    // Phase 1: Parser
 
    pub(crate) identifier: Identifier,
 
    // Phase 3: Typing
 
    pub(crate) definition: Option<DefinitionId>,
 
    pub(crate) field_idx: usize,
 
}
 

	
 
#[derive(Debug, Clone, Copy, serde::Serialize, serde::Deserialize)]
 
pub enum Scope {
 
    Definition(DefinitionId),
src/protocol/ast_printer.rs
Show inline comments
 
@@ -591,7 +591,9 @@ impl ASTWriter {
 
                        self.kv(indent2).with_s_key("Field").with_s_val("length");
 
                    },
 
                    Field::Symbolic(field) => {
 
                        self.kv(indent2).with_s_key("Field").with_ascii_val(&field.value);
 
                        self.kv(indent2).with_s_key("Field").with_ascii_val(&field.identifier.value);
 
                        self.kv(indent3).with_s_key("Definition").with_opt_disp_val(field.definition.as_ref().map(|v| &v.index));
 
                        self.kv(indent3).with_s_key("Index").with_disp_val(&field.field_idx);
 
                    }
 
                }
 
                self.kv(indent2).with_s_key("Parent")
src/protocol/lexer.rs
Show inline comments
 
@@ -1307,7 +1307,12 @@ impl Lexer<'_> {
 
                    self.consume_keyword(b"length")?;
 
                    field = Field::Length;
 
                } else {
 
                    field = Field::Symbolic(self.consume_identifier()?);
 
                    let identifier = self.consume_identifier()?;
 
                    field = Field::Symbolic(FieldSymbolic{
 
                        identifier,
 
                        definition: None,
 
                        field_idx: 0,
 
                    });
 
                }
 
                result = h
 
                    .alloc_select_expression(|this| SelectExpression {
src/protocol/parser/type_resolver.rs
Show inline comments
 
@@ -33,7 +33,10 @@
 
///     types of the arguments. But it seems to appear more-and-more that the 
 
///     expressions may need their own little datastructures. Using some kind of
 
///     scratch allocator and proper considerations for dependencies might lead 
 
///     to a much more efficient algorithm
 
///     to a much more efficient algorithm.
 
/// Also: Perhaps instead of this serialized tree with markers, we could 
 
///     investigate writing it as a graph, where ocurrences of polymorphic 
 
///     variables all point to the same type.
 
/// TODO: Disallow `Void` types in various expressions (and other future types)
 
/// TODO: Maybe remove msg type?
 

	
 
@@ -274,8 +277,24 @@ impl InferenceType {
 
        self.is_done = self.parts.iter().all(|v| v.is_concrete());
 
    }
 

	
 
    /// Seeks a body marker starting at the specified position. If a marker is
 
    /// found then its value and the index of the type subtree that follows it
 
    /// is returned.
 
    fn find_body_marker(&self, mut start_idx: usize) -> Option<(usize, usize)> {
 
        while start_idx < self.parts.len() {
 
            if let InferenceTypePart::MarkerBody(marker) = &self.parts[start_idx] {
 
                return Some((*marker, start_idx + 1))
 
            }
 

	
 
            start_idx += 1;
 
        }
 

	
 
        None
 
    }
 

	
 
    /// Returns an iterator over all body markers and the partial type tree that
 
    /// follows those markers.
 
    /// follows those markers. If it is a problem that `InferenceType` is 
 
    /// borrowed by the iterator, then use `find_body_marker`.
 
    fn body_marker_iter(&self) -> InferenceTypeMarkerIter {
 
        InferenceTypeMarkerIter::new(&self.parts)
 
    }
 
@@ -809,7 +828,7 @@ pub(crate) struct TypeResolvingVisitor {
 
    // specify these types until we're stuck or we've fully determined the type.
 
    var_types: HashMap<VariableId, VarData>,      // types of variables
 
    expr_types: HashMap<ExpressionId, InferenceType>,   // types of expressions
 
    extra_data: HashMap<ExpressionId, ExtraData>,       // data for function call inference
 
    extra_data: HashMap<ExpressionId, ExtraData>,       // data for polymorph inference
 
    // Keeping track of which expressions need to be reinferred because the
 
    // expressions they're linked to made progression on an associated type
 
    expr_queued: HashSet<ExpressionId>,
 
@@ -1300,56 +1319,72 @@ impl TypeResolvingVisitor {
 

	
 
        // Check all things we need to monomorphize
 
        // TODO: Struct/enum/union monomorphization
 
        for (call_expr_id, extra_data) in self.extra_data.iter() {
 
        for (expr_id, extra_data) in self.extra_data.iter() {
 
            if extra_data.poly_vars.is_empty() { continue; }
 

	
 
            // Retrieve polymorph variable specification
 
            let mut monomorph_types = Vec::with_capacity(extra_data.poly_vars.len());
 
            for (poly_idx, poly_type) in extra_data.poly_vars.iter().enumerate() {
 
                if !poly_type.is_done {
 
                    // TODO: Single clean function for function signatures and polyvars.
 
                    // TODO: Better error message
 
                    let expr = &ctx.heap[*call_expr_id];
 
                    return Err(ParseError2::new_error(
 
                        &ctx.module.source, expr.position(),
 
                        &format!(
 
                            "Could not fully infer the type of polymorphic variable {} of this expression (got '{}')",
 
                            poly_idx, poly_type.display_name(&ctx.heap)
 
                        )
 
                    ))
 
                }
 
            // Retrieve polymorph variable specification. Those of struct 
 
            // literals and those of procedure calls need to be fully inferred
 
            let needs_full_inference = match &ctx.heap[*expr_id] {
 
                Expression::Call(_) => true,
 
                Expression::Literal(_) => true,
 
                _ => false
 
            };
 

	
 
                let mut concrete_type = ConcreteType::default();
 
                poly_type.write_concrete_type(&mut concrete_type);
 
                monomorph_types.insert(poly_idx, concrete_type);
 
            }
 
            if needs_full_inference {
 
                let mut monomorph_types = Vec::with_capacity(extra_data.poly_vars.len());
 
                for (poly_idx, poly_type) in extra_data.poly_vars.iter().enumerate() {
 
                    if !poly_type.is_done {
 
                        // TODO: Single clean function for function signatures and polyvars.
 
                        // TODO: Better error message
 
                        let expr = &ctx.heap[*expr_id];
 
                        return Err(ParseError2::new_error(
 
                            &ctx.module.source, expr.position(),
 
                            &format!(
 
                                "Could not fully infer the type of polymorphic variable {} of this expression (got '{}')",
 
                                poly_idx, poly_type.display_name(&ctx.heap)
 
                            )
 
                        ))
 
                    }
 

	
 
            // Resolve to call expression's definition
 
            let call_expr = if let Expression::Call(call_expr) = &ctx.heap[*call_expr_id] {
 
                call_expr
 
            } else {
 
                todo!("implement different kinds of polymorph expressions");
 
            };
 
                    let mut concrete_type = ConcreteType::default();
 
                    poly_type.write_concrete_type(&mut concrete_type);
 
                    monomorph_types.insert(poly_idx, concrete_type);
 
                }
 

	
 
            // Add to type table if not yet typechecked
 
            if let Method::Symbolic(symbolic) = &call_expr.method {
 
                let definition_id = symbolic.definition.unwrap();
 
                if !ctx.types.has_monomorph(&definition_id, &monomorph_types) {
 
                    let root_id = ctx.types
 
                        .get_base_definition(&definition_id)
 
                        .unwrap()
 
                        .ast_root;
 

	
 
                    // Pre-emptively add the monomorph to the type table, but
 
                    // we still need to perform typechecking on it
 
                    ctx.types.add_monomorph(&definition_id, monomorph_types.clone());
 
                    queue.push(ResolveQueueElement {
 
                        root_id,
 
                        definition_id,
 
                        monomorph_types,
 
                    })
 
                // Resolve to the appropriate expression and instantiate 
 
                // monomorphs.
 
                match &ctx.heap[*expr_id] {
 
                    Expression::Call(call_expr) => {
 
                        // Add to type table if not yet typechecked
 
                        if let Method::Symbolic(symbolic) = &call_expr.method {
 
                            let definition_id = symbolic.definition.unwrap();
 
                            if !ctx.types.has_monomorph(&definition_id, &monomorph_types) {
 
                                let root_id = ctx.types
 
                                    .get_base_definition(&definition_id)
 
                                    .unwrap()
 
                                    .ast_root;
 

	
 
                                // Pre-emptively add the monomorph to the type table, but
 
                                // we still need to perform typechecking on it
 
                                ctx.types.add_monomorph(&definition_id, monomorph_types.clone());
 
                                queue.push(ResolveQueueElement {
 
                                    root_id,
 
                                    definition_id,
 
                                    monomorph_types,
 
                                })
 
                            }
 
                        }
 
                    },
 
                    Expression::Literal(lit_expr) => {
 
                        let lit_struct = lit_expr.value.as_struct();
 
                        let definition_id = lit_struct.definition.as_ref().unwrap();
 
                        if !ctx.types.has_monomorph(definition_id, &monomorph_types) {
 
                            ctx.types.add_monomorph(definition_id, monomorph_types);
 
                        }
 
                    },
 
                    _ => unreachable!("needs fully inference, but not a struct literal or call expression")
 
                }
 
            }
 
            } // else: was just a helper structure...
 
        }
 

	
 
        Ok(())
 
@@ -1678,81 +1713,175 @@ impl TypeResolvingVisitor {
 

	
 
    fn progress_select_expr(&mut self, ctx: &mut Ctx, id: SelectExpressionId) -> Result<(), ParseError2> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let subject_id = expr.subject;
 

	
 
        
 
        debug_log!("Select expr: {}", upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Subject type: {}", self.expr_types.get(&subject_id).unwrap().display_name(&ctx.heap));
 
        debug_log!("   - Subject type: {}", self.expr_types.get(&ctx.heap[id].subject).unwrap().display_name(&ctx.heap));
 
        debug_log!("   - Expr    type: {}", self.expr_types.get(&upcast_id).unwrap().display_name(&ctx.heap));
 

	
 
        let (progress_subject, progress_expr) = match &expr.field {
 
        let expr = &mut ctx.heap[id];
 
        let subject_id = expr.subject;
 

	
 
        fn determine_inference_type_instance<'a>(types: &'a TypeTable, infer_type: &InferenceType) -> Result<Option<&'a DefinedType>, ()> {
 
            for part in &infer_type.parts {
 
                if part.is_marker() || !part.is_concrete() {
 
                    continue;
 
                }
 

	
 
                // Part is concrete, check if it is an instance of something
 
                if let InferenceTypePart::Instance(definition_id, _num_sub) = part {
 
                    // Lookup type definition and ensure the specified field 
 
                    // name exists on the struct
 
                    let definition = types.get_base_definition(definition_id);
 
                    debug_assert!(definition.is_some());
 
                    let definition = definition.unwrap();
 

	
 
                    return Ok(Some(definition))
 
                } else {
 
                    // Expected an instance of something
 
                    return Err(())
 
                }
 
            }
 

	
 
            // Nothing is concrete yet
 
            Ok(None)
 
        }
 

	
 
        let (progress_subject, progress_expr) = match &mut expr.field {
 
            Field::Length => {
 
                let progress_subject = self.apply_forced_constraint(ctx, subject_id, &ARRAYLIKE_TEMPLATE)?;
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &INTEGERLIKE_TEMPLATE)?;
 

	
 
                (progress_subject, progress_expr)
 
            },
 
            Field::Symbolic(field) => {
 
                // Check if we already know the definition ID of the subject
 
                let mut definition_and_field = None;
 
                let subject_type = self.expr_types.get(&subject_id).unwrap();
 
                'type_loop: for part in &subject_type.parts {
 
                    if part.is_marker() || !part.is_concrete() { continue; }
 

	
 
                    if let InferenceTypePart::Instance(definition_id, _) = part {
 
                        // Make sure we're accessing a struct of some sort
 
                        let definition_type = ctx.types.get_base_definition(definition_id).unwrap();
 
                        if let DefinedTypeVariant::Struct(definition) = &definition_type.definition {
 
                            // Make sure the struct has the specified field
 
                            let mut field_found = false;
 
                            for (def_field_idx, def_field) in definition.fields.iter().enumerate() {
 
                                if def_field.identifier == *field {
 
                                    definition_and_field = Some((*definition_id, def_field_idx));
 
                                    break 'type_loop;
 
                // Retrieve the struct definition id and field index if possible 
 
                // and not previously determined
 
                if field.definition.is_none() {
 
                    // Not yet known, check if we can determine it
 
                    let subject_type = self.expr_types.get(&subject_id).unwrap();
 
                    let type_def = determine_inference_type_instance(&ctx.types, subject_type);
 

	
 
                    match type_def {
 
                        Ok(Some(type_def)) => {
 
                            // Subject type is known, check if it is a 
 
                            // struct and the field exists on the struct
 
                            let struct_def = if let DefinedTypeVariant::Struct(struct_def) = &type_def.definition {
 
                                struct_def
 
                            } else {
 
                                return Err(ParseError2::new_error(
 
                                    &ctx.module.source, field.identifier.position,
 
                                    &format!(
 
                                        "Can only apply field access to structs, got a subject of type '{}'",
 
                                        subject_type.display_name(&ctx.heap)
 
                                    )
 
                                ));
 
                            };
 

	
 
                            for (field_def_idx, field_def) in struct_def.fields.iter().enumerate() {
 
                                if field_def.identifier == field.identifier {
 
                                    // Set field definition and index
 
                                    field.definition = Some(type_def.ast_definition);
 
                                    field.field_idx = field_def_idx;
 
                                    break;
 
                                }
 
                            }
 

	
 
                            // If here then field was not found
 
                            if !field_found {
 
                                let definition = &ctx.heap[*definition_id];
 
                            if field.definition.is_none() {
 
                                let field_position = field.identifier.position;
 
                                let ast_struct_def = ctx.heap[type_def.ast_definition].as_struct();
 
                                return Err(ParseError2::new_error(
 
                                    &ctx.module.source, field.position,
 
                                    &ctx.module.source, field_position,
 
                                    &format!(
 
                                        "The field '{}' does not exist on the struct '{}'",
 
                                        &String::from_utf8_lossy(&field.value),
 
                                        &String::from_utf8_lossy(&definition.identifier().value)
 
                                        "This field does not exist on the struct '{}'",
 
                                        &String::from_utf8_lossy(&ast_struct_def.identifier.value)
 
                                    )
 
                                ))
 
                            }
 

	
 
                            // Encountered definition and field index for the
 
                            // first time
 
                            self.insert_initial_select_polymorph_data(ctx, id);
 
                        },
 
                        Ok(None) => {
 
                            // Type of subject is not yet known, so we 
 
                            // cannot make any progress yet
 
                            return Ok(())
 
                        },
 
                        Err(()) => {
 
                            return Err(ParseError2::new_error(
 
                                &ctx.module.source, field.identifier.position,
 
                                &format!(
 
                                    "Can only apply field access to structs, got a subject of type '{}'",
 
                                    subject_type.display_name(&ctx.heap)
 
                                )
 
                            ));
 
                        }
 
                    }
 
                }
 

	
 
                // If here then field definition and index are known, and the
 
                // initial type (based on the struct's definition) has been
 
                // applied.
 
                // Check to see if we can infer anything about the subject's and
 
                // the field's polymorphic variables
 
                let poly_data = self.extra_data.get_mut(&upcast_id).unwrap();
 
                let mut poly_progress = HashSet::new();
 
                
 
                // Apply to struct's type
 
                let signature_type: *mut _ = &mut poly_data.embedded[0];
 
                let subject_type: *mut _ = self.expr_types.get_mut(&subject_id).unwrap();
 

	
 
                let (_, progress_subject) = Self::apply_equal2_signature_constraint(
 
                    ctx, upcast_id, Some(subject_id), poly_data, &mut poly_progress,
 
                    signature_type, 0, subject_type, 0
 
                )?;
 

	
 
                if progress_subject {
 
                    self.expr_queued.insert(subject_id);
 
                }
 
                
 
                // Apply to field's type
 
                let signature_type: *mut _ = &mut poly_data.returned;
 
                let expr_type: *mut _ = self.expr_types.get_mut(&upcast_id).unwrap();
 

	
 
                let (_, progress_expr) = Self::apply_equal2_signature_constraint(
 
                    ctx, upcast_id, None, poly_data, &mut poly_progress, 
 
                    signature_type, 0, expr_type, 0
 
                )?;
 

	
 
                        // Else, fall through and complain about not being a struct
 
                if progress_expr {
 
                    if let Some(parent_id) = ctx.heap[upcast_id].parent_expr_id() {
 
                        self.expr_queued.insert(parent_id);
 
                    }
 
                    
 
                    // Concrete part that is not an instance of a struct,
 
                    // select expression cannot possibly be correct
 
                    return Err(ParseError2::new_error(
 
                        &ctx.module.source, ctx.heap[subject_id].position(),
 
                        &format!(
 
                            "Expected to find a struct instance to access a field from, found a '{}'",
 
                            subject_type.display_name(&ctx.heap)
 
                        )
 
                    ))
 
                }
 

	
 
                // If here then we have our definition and field idx
 
                let (definition_id, field_idx) = definition_and_field.unwrap();
 
                (false, false)
 
                // Reapply progress in polymorphic variables to struct's type
 
                let signature_type: *mut _ = &mut poly_data.embedded[0];
 
                let subject_type: *mut _ = self.expr_types.get_mut(&subject_id).unwrap();
 
                
 
                let progress_subject = Self::apply_equal2_polyvar_constraint(
 
                    poly_data, &poly_progress, signature_type, subject_type
 
                );
 

	
 
                let signature_type: *mut _ = &mut poly_data.returned;
 
                let expr_type: *mut _ = self.expr_types.get_mut(&upcast_id).unwrap();
 

	
 
                let progress_expr = Self::apply_equal2_polyvar_constraint(
 
                    poly_data, &poly_progress, signature_type, expr_type
 
                );
 

	
 
                (progress_subject, progress_expr)
 
            }
 
        };
 

	
 
        if progress_subject { self.queue_expr(subject_id); }
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Subject type [{}]: {}", progress_subject, self.expr_types.get(&subject_id).unwrap().display_name(&ctx.heap));
 
        debug_log!("   - Expr    type [{}]: {}", progress_expr, self.expr_types.get(&upcast_id).unwrap().display_name(&ctx.heap));
 

	
 
        if progress_subject { self.queue_expr(subject_id); }
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 

	
 
        Ok(())
 
    }
 

	
 
@@ -2291,26 +2420,20 @@ impl TypeResolvingVisitor {
 
        let mut seek_idx = 0;
 
        let mut modified_sig = false;
 
        
 
        while seek_idx < signature_type.parts.len() {
 
            if let InferenceTypePart::MarkerBody(poly_idx) = &signature_type.parts[seek_idx] {
 
                let poly_idx = *poly_idx;
 
                if polymorph_progress.contains(&poly_idx) {
 
                    // Need to match subtrees
 
                    let polymorph_type = &polymorph_data.poly_vars[poly_idx];
 
                    let start_idx = seek_idx + 1;
 
                    let end_idx = InferenceType::find_subtree_end_idx(&signature_type.parts, start_idx);
 
                    let modified_at_marker = Self::apply_forced_constraint_types(
 
                        signature_type, start_idx, 
 
                        &polymorph_type.parts, 0
 
                    ).expect("no failure when applying polyvar constraints");
 

	
 
                    modified_sig = modified_sig || modified_at_marker;
 
                    seek_idx = end_idx;
 
                    continue;
 
                }
 
        while let Some((poly_idx, start_idx)) = signature_type.find_body_marker(seek_idx) {
 
            let end_idx = InferenceType::find_subtree_end_idx(&signature_type.parts, start_idx);
 
            if polymorph_progress.contains(&poly_idx) {
 
                // Need to match subtrees
 
                let polymorph_type = &polymorph_data.poly_vars[poly_idx];
 
                let modified_at_marker = Self::apply_forced_constraint_types(
 
                    signature_type, start_idx, 
 
                    &polymorph_type.parts, 0
 
                ).expect("no failure when applying polyvar constraints");
 

	
 
                modified_sig = modified_sig || modified_at_marker;
 
            }
 

	
 
            seek_idx += 1;
 
            seek_idx = end_idx;
 
        }
 

	
 
        // If we made any progress on the signature's type, then we also need to
 
@@ -2441,8 +2564,6 @@ impl TypeResolvingVisitor {
 
    /// expression parent. Note that if the parent is another expression, we do
 
    /// not take special action, instead we let parent expressions fix the type
 
    /// of subexpressions before they have a chance to call this function.
 
    /// Hence: if the expression type is already set, this function doesn't do
 
    /// anything.
 
    fn insert_initial_expr_inference_type(
 
        &mut self, ctx: &mut Ctx, expr_id: ExpressionId
 
    ) -> Result<(), ParseError2> {
 
@@ -2661,6 +2782,52 @@ impl TypeResolvingVisitor {
 
        });
 
    }
 

	
 
    /// Inserts the extra polymorphic data struct. Assumes that the select
 
    /// expression's referenced (definition_id, field_idx) has been resolved.
 
    fn insert_initial_select_polymorph_data(
 
        &mut self, ctx: &Ctx, select_id: SelectExpressionId
 
    ) {
 
        use InferenceTypePart as ITP;
 

	
 
        // Retrieve relevant data
 
        let expr = &ctx.heap[select_id];
 
        let field = match &expr.field {
 
            Field::Symbolic(field) => field,
 
            _ => unreachable!(),
 
        };
 

	
 
        let definition_id = field.definition.unwrap();
 
        let definition = ctx.heap[definition_id].as_struct();
 
        let field_idx = field.field_idx;
 

	
 
        // Generate initial polyvar types and struct type
 
        let num_poly_vars = definition.poly_vars.len();
 
        let mut poly_vars = Vec::with_capacity(num_poly_vars);
 
        let struct_parts_reserved = 1 + 2 * num_poly_vars;
 
        let mut struct_parts = Vec::with_capacity(struct_parts_reserved);
 
        struct_parts.push(ITP::Instance(definition_id, num_poly_vars));        
 

	
 
        for poly_idx in 0..num_poly_vars {
 
            poly_vars.push(InferenceType::new(true, false, vec![
 
                ITP::MarkerBody(poly_idx), ITP::Unknown,
 
            ]));
 
            struct_parts.push(ITP::MarkerBody(poly_idx));
 
            struct_parts.push(ITP::Unknown);
 
        }
 
        debug_assert_eq!(struct_parts.len(), struct_parts_reserved);
 

	
 
        // Generate initial field type
 
        let field_type = self.determine_inference_type_from_parser_type(
 
            ctx, definition.fields[field_idx].parser_type, false
 
        );
 

	
 
        self.extra_data.insert(select_id.upcast(), ExtraData{
 
            poly_vars,
 
            embedded: vec![InferenceType::new(true, false, struct_parts)],
 
            returned: field_type
 
        });
 
    }
 

	
 
    /// Determines the initial InferenceType from the provided ParserType. This
 
    /// may be called with two kinds of intentions:
 
    /// 1. To resolve a ParserType within the body of a function, or on
src/protocol/tests/parser_inference.rs
Show inline comments
 
new file 100644
src/protocol/tests/parser_validation.rs
Show inline comments
 
@@ -30,4 +30,59 @@ fn test_correct_struct_instance() {
 
        Foo<int> bar(int arg) { return Foo<int>{ field: arg }; }
 
        "
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "single field, implicit polymorph",
 
        "
 
        struct Foo<T>{ T field }
 
        int bar(int arg) {
 
            auto thingo = Foo{ field: arg };
 
            return arg;
 
        }
 
        "
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "multiple fields, same explicit polymorph",
 
        "
 
        struct Pair<T1, T2>{ T1 first, T2 second }
 
        int bar(int arg) {
 
            auto qux = Pair<int, int>{ first: arg, second: arg };
 
            return arg;
 
        }
 
        "
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "multiple fields, same implicit polymorph", 
 
        "
 
        struct Pair<T1, T2>{ T1 first, T2 second }
 
        int bar(int arg) {
 
            auto wup = Pair{ first: arg, second: arg };
 
            return arg;
 
        }
 
        "
 
    );
 

	
 
    Tester::new_single_source_expr_ok(
 
        "multiple fields, different explicit polymorph",
 
        "
 
        struct Pair<T1, T2>{ T1 first, T2 second }
 
        int bar(int arg1, byte arg2) {
 
            auto shoo = Pair<int, byte>{ first: arg1, second: arg2 };
 
            return arg1;
 
        }
 
        "
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "multiple fields, different implicit polymorph",
 
        "
 
        struct Pair<T1, T2>{ T1 first, T2 second }
 
        int bar(int arg1, byte arg2) {
 
            auto shrubbery = Pair{ first: arg1, second: arg2 };
 
            return arg1;
 
        }
 
        "
 
    );
 
}
 
\ No newline at end of file
src/protocol/tests/utils.rs
Show inline comments
 
@@ -139,6 +139,31 @@ impl AstOkTester {
 
        );
 
        unreachable!()
 
    }
 

	
 
    pub(crate) fn for_function<F: Fn(FunctionTester)>(self, name: &str, f: F) -> Self {
 
        let mut found = false;
 
        for definition in self.heap.definitions.iter() {
 
            if let Definition::Function(definition) = definition {
 
                if String::from_utf8_lossy(&definition.identifier.value) != name {
 
                    continue;
 
                }
 

	
 
                // Found function
 
                let tester = FunctionTester::new(&self.test_name, definition, &self.heap);
 
                f(tester);
 
                found = true;
 
                break;
 
            }
 
        }
 

	
 
        if found { return self }
 

	
 
        assert!(
 
            false, "[{}] failed to find definition for function '{}'",
 
            self.test_name, name
 
        );
 
        unreachable!();
 
    }
 
}
 

	
 
//------------------------------------------------------------------------------
 
@@ -228,6 +253,55 @@ impl<'a> StructFieldTester<'a> {
 
    }
 
}
 

	
 
pub(crate) struct FunctionTester<'a> {
 
    test_name: &'a str,
 
    def: &'a Function,
 
    heap: &'a Heap,
 
}
 

	
 
impl<'a> FunctionTester<'a> {
 
    fn new(test_name: &'a str, def: &'a Function, heap: &'a Heap) -> Self {
 
        Self{ test_name, def, heap }
 
    }
 

	
 
    pub(crate) fn for_variable<F: Fn(VariableTester)>(self, name: &str, f: F) -> Self {
 
        let mem_stmt_id = seek_stmt(
 
            self.heap, self.def.body,
 
            |stmt| {
 
                if let Statement::Local(local) = stmt {
 
                    if let LocalStatement::Memory(memory) = local {
 
                        let local = &self.heap[memory.variable];
 
                        if local.identifier.value == name.as_bytes() {
 
                            return true;
 
                        }
 
                    }
 
                }
 

	
 
                false
 
            }
 
        );
 

	
 
        match mem_stmt_id {
 
            Some(mem_stmt_id) => {
 
                // TODO: Retrieve shit
 
            },
 
            None => {
 
                // TODO: Throw error
 
            }
 
        }
 
    }
 
}
 

	
 

	
 
pub(crate) struct VariableTester<'a> {
 
    test_name: &'a str,
 
    def: &'a Local,
 
    assignment: &'a AssignmentExpression,
 
    heap: &'a Heap,
 
}
 

	
 

	
 

	
 
//------------------------------------------------------------------------------
 
// Interface for failed compilation
 
//------------------------------------------------------------------------------
 
@@ -368,4 +442,151 @@ fn serialize_parser_type(buffer: &mut String, heap: &Heap, id: ParserTypeId) {
 
            }
 
        }
 
    }
 
}
 

	
 
fn seek_stmt<F: Fn(&Statement) -> bool>(heap: &Heap, start: StatementId, f: F) -> Option<StatementId> {
 
    let stmt = &heap[start];
 
    if f(stmt) { return Some(start); }
 

	
 
    // This statement wasn't it, try to recurse
 
    let matched = match stmt {
 
        Statement::Block(block) => {
 
            for sub_id in &block.statements {
 
                if let Some(id) = seek_stmt(heap, *sub_id, f) {
 
                    return Some(id);
 
                }
 
            }
 

	
 
            None
 
        },
 
        Statement::Labeled(stmt) => seek_stmt(heap, stmt.body, f),
 
        Statement::If(stmt) => {
 
            if let Some(id) = seek_stmt(heap,stmt.true_body, f) {
 
                return Some(id);
 
            } else if let Some(id) = seek_stmt(heap, stmt.false_body, f) {
 
                return Some(id);
 
            }
 
            None
 
        },
 
        Statement::While(stmt) => seek_stmt(heap, stmt.body, f),
 
        Statement::Synchronous(stmt) => seek_stmt(heap, stmt.body, f),
 
        _ => None
 
    };
 

	
 
    matched
 
}
 

	
 
fn seek_expr_in_expr<F: Fn(&Expression) -> bool>(heap: &Heap, start: ExpressionId, f: F) -> Option<ExpressionId> {
 
    let expr = &heap[start];
 
    if f(expr) { return Some(start); }
 

	
 
    match expr {
 
        Expression::Assignment(expr) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, expr.left, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.right, f))
 
        },
 
        Expression::Conditional(expr) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, expr.test, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.true_expression, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.false_expression, f))
 
        },
 
        Expression::Binary(expr) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, expr.left, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.right, f))
 
        },
 
        Expression::Unary(expr) => {
 
            seek_expr_in_expr(heap, expr.expression, f)
 
        },
 
        Expression::Indexing(expr) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, expr.subject, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.index, f))
 
        },
 
        Expression::Slicing(expr) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, expr.subject, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.from_index, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.to_index, f))
 
        },
 
        Expression::Select(expr) => {
 
            seek_expr_in_expr(heap, expr.subject, f)
 
        },
 
        Expression::Array(expr) => {
 
            for element in &expr.elements {
 
                if let Some(id) = seek_expr_in_expr(heap, *element, f) {
 
                    return Some(id)
 
                }
 
            }
 
            None
 
        },
 
        Expression::Literal(expr) => {
 
            if let Literal::Struct(lit) = expr.value {
 
                for field in &lit.fields {
 
                    if let Some(id) = seek_expr_in_expr(heap, field.value, f) {
 
                        return Some(id)
 
                    }
 
                }
 
            }
 
            None
 
        },
 
        Expression::Call(expr) => {
 
            for arg in &expr.arguments {
 
                if let Some(id) = seek_expr_in_expr(heap, *arg, f) {
 
                    return Some(id)
 
                }
 
            }
 
            None
 
        },
 
        Expression::Variable(expr) => {
 
            None
 
        }
 
    }
 
}
 

	
 
fn seek_expr_in_stmt<F: Fn(&Expression) -> bool>(heap: &Heap, start: StatementId, f: F) -> Option<ExpressionId> {
 
    let stmt = &heap[start];
 

	
 
    match stmt {
 
        Statement::Block(stmt) => {
 
            for stmt_id in &stmt.statements {
 
                if let Some(id) = seek_expr_in_stmt(heap, *stmt_id, f) {
 
                    return Some(id)
 
                }
 
            }
 
            None
 
        },
 
        Statement::Labeled(stmt) => {
 
            seek_expr_in_stmt(heap, stmt.body, f)
 
        },
 
        Statement::If(stmt) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, stmt.test, f))
 
            .or_else(|| seek_expr_in_stmt(heap, stmt.true_body, f))
 
            .or_else(|| seek_expr_in_stmt(heap, stmt.false_body, f))
 
        },
 
        Statement::While(stmt) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, stmt.test, f))
 
            .or_else(|| seek_expr_in_stmt(heap, stmt.body, f))
 
        },
 
        Statement::Synchronous(stmt) => {
 
            seek_expr_in_stmt(heap, stmt.body, f)
 
        },
 
        Statement::Return(stmt) => {
 
            seek_expr_in_expr(heap, stmt.expression, f)
 
        },
 
        Statement::Assert(stmt) => {
 
            seek_expr_in_expr(heap, stmt.expression, f)
 
        },
 
        Statement::New(stmt) => {
 
            seek_expr_in_expr(heap, stmt.expression.upcast(), f)
 
        },
 
        Statement::Expression(stmt) => {
 
            seek_expr_in_expr(heap, stmt.expression, f)
 
        },
 
        _ => None
 
    }
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)