Changeset - ed4fe8216eb0
[Not reviewed]
0 4 0
MH - 4 years ago 2021-05-27 16:48:06
contact@maxhenger.nl
Fix binding- and assignment-expression related typing issues.

Simpler solutions are better, so the typechecker is back to normal.
Instead we simply make sure that assignment expression is never
nested under another expression, and binding expressions may only
be nested under LogicalAnd-expressions. If only I knew why I thought
type shenanigans were a good idea in the first place...
4 files changed with 98 insertions and 39 deletions:
0 comments (0 inline, 0 general)
src/protocol/ast.rs
Show inline comments
 
@@ -1364,96 +1364,103 @@ pub struct ReturnStatement {
 
#[derive(Debug, Clone)]
 
pub struct GotoStatement {
 
    pub this: GotoStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "goto" keyword
 
    pub label: Identifier,
 
    // Phase 2: linker
 
    pub target: Option<LabeledStatementId>,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct NewStatement {
 
    pub this: NewStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "new" keyword
 
    pub expression: CallExpressionId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ExpressionStatement {
 
    pub this: ExpressionStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan,
 
    pub expression: ExpressionId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
 
pub enum ExpressionParent {
 
    None, // only set during initial parsing
 
    If(IfStatementId),
 
    While(WhileStatementId),
 
    Return(ReturnStatementId),
 
    New(NewStatementId),
 
    ExpressionStmt(ExpressionStatementId),
 
    Expression(ExpressionId, u32) // index within expression (e.g LHS or RHS of expression)
 
}
 

	
 
impl ExpressionParent {
 
    pub fn is_new(&self) -> bool {
 
        match self {
 
            ExpressionParent::New(_) => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    pub fn as_expression(&self) -> ExpressionId {
 
        match self {
 
            ExpressionParent::Expression(id, _) => *id,
 
            _ => panic!("called as_expression() on {:?}", self),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Expression {
 
    Assignment(AssignmentExpression),
 
    Binding(BindingExpression),
 
    Conditional(ConditionalExpression),
 
    Binary(BinaryExpression),
 
    Unary(UnaryExpression),
 
    Indexing(IndexingExpression),
 
    Slicing(SlicingExpression),
 
    Select(SelectExpression),
 
    Literal(LiteralExpression),
 
    Cast(CastExpression),
 
    Call(CallExpression),
 
    Variable(VariableExpression),
 
}
 

	
 
impl Expression {
 
    pub fn as_assignment(&self) -> &AssignmentExpression {
 
        match self {
 
            Expression::Assignment(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `AssignmentExpression`"),
 
        }
 
    }
 
    pub fn as_conditional(&self) -> &ConditionalExpression {
 
        match self {
 
            Expression::Conditional(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `ConditionalExpression`"),
 
        }
 
    }
 
    pub fn as_binary(&self) -> &BinaryExpression {
 
        match self {
 
            Expression::Binary(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `BinaryExpression`"),
 
        }
 
    }
 
    pub fn as_unary(&self) -> &UnaryExpression {
 
        match self {
 
            Expression::Unary(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `UnaryExpression`"),
 
        }
 
    }
 
    pub fn as_indexing(&self) -> &IndexingExpression {
 
        match self {
 
            Expression::Indexing(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `IndexingExpression`"),
 
        }
src/protocol/parser/pass_typing.rs
Show inline comments
 
@@ -21,229 +21,223 @@
 
///
 
/// TODO: Needs a thorough rewrite:
 
///  0. polymorph_progress is intentionally broken at the moment. Make it work
 
///     again and use a normal VecSomething.
 
///  1. The foundation for doing all of the work with predetermined indices
 
///     instead of with HashMaps is there, but it is not really used because of
 
///     time constraints. When time is available, rewrite the system such that
 
///     AST IDs are not needed, and only indices into arrays are used.
 
///  2. We're doing a lot of extra work. It seems better to apply the initial
 
///     type based on expression parents, and immediately apply forced
 
///     constraints (arg to a fires() call must be port-like). All of the \
 
///     progress_xxx calls should then only be concerned with "transmitting"
 
///     type inference across their parent/child expressions.
 
///  3. Remove the `msg` type?
 
///  4. Disallow certain types in certain operations (e.g. `Void`).
 

	
 
macro_rules! debug_log_enabled {
 
    () => { false };
 
}
 

	
 
macro_rules! debug_log {
 
    ($format:literal) => {
 
        enabled_debug_print!(false, "types", $format);
 
    };
 
    ($format:literal, $($args:expr),*) => {
 
        enabled_debug_print!(false, "types", $format, $($args),*);
 
    };
 
}
 

	
 
use std::collections::{HashMap, HashSet};
 

	
 
use crate::collections::DequeSet;
 
use crate::protocol::ast::*;
 
use crate::protocol::input_source::ParseError;
 
use crate::protocol::parser::ModuleCompilationPhase;
 
use crate::protocol::parser::type_table::*;
 
use crate::protocol::parser::token_parsing::*;
 
use super::visitor::{
 
    STMT_BUFFER_INIT_CAPACITY,
 
    EXPR_BUFFER_INIT_CAPACITY,
 
    Ctx,
 
    Visitor2,
 
    VisitorResult
 
};
 

	
 
const VOID_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::Void ];
 
const MESSAGE_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::Message, InferenceTypePart::UInt8 ];
 
const BOOL_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::Bool ];
 
const BOOLLIKE_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::BoolLike ];
 
const BINDING_BOOL_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::BindingBool ];
 
const CHARACTER_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::Character ];
 
const STRING_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::String ];
 
const NUMBERLIKE_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::NumberLike ];
 
const INTEGERLIKE_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::IntegerLike ];
 
const ARRAY_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::Array, InferenceTypePart::Unknown ];
 
const SLICE_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::Slice, InferenceTypePart::Unknown ];
 
const ARRAYLIKE_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::ArrayLike, InferenceTypePart::Unknown ];
 

	
 
/// TODO: @performance Turn into PartialOrd+Ord to simplify checks
 
#[derive(Debug, Clone, Eq, PartialEq)]
 
pub(crate) enum InferenceTypePart {
 
    // When we infer types of AST elements that support polymorphic arguments,
 
    // then we might have the case that multiple embedded types depend on the
 
    // polymorphic type (e.g. func bla(T a, T[] b) -> T[][]). If we can infer
 
    // the type in one place (e.g. argument a), then we may propagate this
 
    // information to other types (e.g. argument b and the return type). For
 
    // this reason we place markers in the `InferenceType` instances such that
 
    // we know which part of the type was originally a polymorphic argument.
 
    Marker(u32),
 
    // Completely unknown type, needs to be inferred
 
    Unknown,
 
    // Partially known type, may be inferred to to be the appropriate related 
 
    // type.
 
    // IndexLike,      // index into array/slice
 
    BoolLike,       // boolean or binding boolean
 
    NumberLike,     // any kind of integer/float
 
    IntegerLike,    // any kind of integer
 
    ArrayLike,      // array or slice. Note that this must have a subtype
 
    PortLike,       // input or output port
 
    // Special types that cannot be instantiated by the user
 
    Void, // For builtin functions that do not return anything
 
    // Concrete types without subtypes
 
    BindingBool,    // boolean result from a binding expression
 
    Bool,
 
    UInt8,
 
    UInt16,
 
    UInt32,
 
    UInt64,
 
    SInt8,
 
    SInt16,
 
    SInt32,
 
    SInt64,
 
    Character,
 
    String,
 
    // One subtype
 
    Message,
 
    Array,
 
    Slice,
 
    Input,
 
    Output,
 
    // A user-defined type with any number of subtypes
 
    Instance(DefinitionId, u32)
 
}
 

	
 
impl InferenceTypePart {
 
    fn is_marker(&self) -> bool {
 
        match self {
 
            InferenceTypePart::Marker(_) => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    /// Checks if the type is concrete, markers are interpreted as concrete
 
    /// types.
 
    fn is_concrete(&self) -> bool {
 
        use InferenceTypePart as ITP;
 
        match self {
 
            ITP::Unknown | ITP::BoolLike | ITP::NumberLike |
 
            ITP::Unknown | ITP::NumberLike |
 
            ITP::IntegerLike | ITP::ArrayLike | ITP::PortLike => false,
 
            _ => true
 
        }
 
    }
 

	
 
    fn is_concrete_number(&self) -> bool {
 
        use InferenceTypePart as ITP;
 
        match self {
 
            ITP::UInt8 | ITP::UInt16 | ITP::UInt32 | ITP::UInt64 |
 
            ITP::SInt8 | ITP::SInt16 | ITP::SInt32 | ITP::SInt64 => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    fn is_concrete_integer(&self) -> bool {
 
        use InferenceTypePart as ITP;
 
        match self {
 
            ITP::UInt8 | ITP::UInt16 | ITP::UInt32 | ITP::UInt64 |
 
            ITP::SInt8 | ITP::SInt16 | ITP::SInt32 | ITP::SInt64 => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    fn is_concrete_msg_array_or_slice(&self) -> bool {
 
        use InferenceTypePart as ITP;
 
        match self {
 
            ITP::Array | ITP::Slice | ITP::Message => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    fn is_concrete_port(&self) -> bool {
 
        use InferenceTypePart as ITP;
 
        match self {
 
            ITP::Input | ITP::Output => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    /// Checks if a part is less specific than the argument. Only checks for 
 
    /// single-part inference (i.e. not the replacement of an `Unknown` variant 
 
    /// with the argument)
 
    fn may_be_inferred_from(&self, arg: &InferenceTypePart) -> bool {
 
        use InferenceTypePart as ITP;
 

	
 
        (*self == ITP::IntegerLike && arg.is_concrete_integer()) ||
 
        (*self == ITP::NumberLike && (arg.is_concrete_number() || *arg == ITP::IntegerLike)) ||
 
        (*self == ITP::ArrayLike && arg.is_concrete_msg_array_or_slice()) ||
 
        (*self == ITP::PortLike && arg.is_concrete_port()) ||
 
        (*self == ITP::BoolLike && (*arg == ITP::Bool || *arg == ITP::BindingBool)) ||
 
        (*self == ITP::Bool && *arg == ITP::BindingBool)
 
        (*self == ITP::PortLike && arg.is_concrete_port())
 
    }
 

	
 
    /// Checks if a part is more specific
 

	
 
    /// Returns the change in "iteration depth" when traversing this particular
 
    /// part. The iteration depth is used to traverse the tree in a linear 
 
    /// fashion. It is basically `number_of_subtypes - 1`
 
    fn depth_change(&self) -> i32 {
 
        use InferenceTypePart as ITP;
 
        match &self {
 
            ITP::Unknown | ITP::NumberLike | ITP::IntegerLike |
 
            ITP::Void | ITP::BoolLike | ITP::Bool | ITP::BindingBool |
 
            ITP::Void | ITP::Bool |
 
            ITP::UInt8 | ITP::UInt16 | ITP::UInt32 | ITP::UInt64 |
 
            ITP::SInt8 | ITP::SInt16 | ITP::SInt32 | ITP::SInt64 |
 
            ITP::Character | ITP::String => {
 
                -1
 
            },
 
            ITP::Marker(_) |
 
            ITP::ArrayLike | ITP::Message | ITP::Array | ITP::Slice |
 
            ITP::PortLike | ITP::Input | ITP::Output => {
 
                // One subtype, so do not modify depth
 
                0
 
            },
 
            ITP::Instance(_, num_args) => {
 
                (*num_args as i32) - 1
 
            }
 
        }
 
    }
 
}
 

	
 
impl From<ConcreteTypePart> for InferenceTypePart {
 
    fn from(v: ConcreteTypePart) -> InferenceTypePart {
 
        use ConcreteTypePart as CTP;
 
        use InferenceTypePart as ITP;
 

	
 
        match v {
 
            CTP::Void => ITP::Void,
 
            CTP::Message => ITP::Message,
 
            CTP::Bool => ITP::Bool,
 
            CTP::UInt8 => ITP::UInt8,
 
            CTP::UInt16 => ITP::UInt16,
 
            CTP::UInt32 => ITP::UInt32,
 
            CTP::UInt64 => ITP::UInt64,
 
            CTP::SInt8 => ITP::SInt8,
 
            CTP::SInt16 => ITP::SInt16,
 
            CTP::SInt32 => ITP::SInt32,
 
            CTP::SInt64 => ITP::SInt64,
 
            CTP::Character => ITP::Character,
 
            CTP::String => ITP::String,
 
            CTP::Array => ITP::Array,
 
            CTP::Slice => ITP::Slice,
 
            CTP::Input => ITP::Input,
 
            CTP::Output => ITP::Output,
 
            CTP::Instance(id, num) => ITP::Instance(id, num),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
struct InferenceType {
 
@@ -446,98 +440,97 @@ impl InferenceType {
 
            if part_a == part_b {
 
                let depth_change = part_a.depth_change();
 
                depth += depth_change;
 
                debug_assert_eq!(depth_change, part_b.depth_change());
 
                idx_a += 1;
 
                idx_b += 1;
 
                continue;
 
            }
 
            if part_a.is_marker() { idx_a += 1; continue; }
 
            if part_b.is_marker() { idx_b += 1; continue; }
 

	
 
            // Types are not equal and are both not markers
 
            if let Some(depth_change) = Self::infer_part_for_single_type(type_a, &mut idx_a, &type_b.parts, &mut idx_b) {
 
                depth += depth_change;
 
                modified_a = true;
 
                continue;
 
            }
 
            if let Some(depth_change) = Self::infer_part_for_single_type(type_b, &mut idx_b, &type_a.parts, &mut idx_a) {
 
                depth += depth_change;
 
                modified_b = true;
 
                continue;
 
            }
 

	
 
            // Types can not be inferred in any way: types must be incompatible
 
            return DualInferenceResult::Incompatible;
 
        }
 

	
 
        if modified_a { type_a.recompute_is_done(); }
 
        if modified_b { type_b.recompute_is_done(); }
 

	
 
        // If here then we completely inferred the subtrees.
 
        match (modified_a, modified_b) {
 
            (false, false) => DualInferenceResult::Neither,
 
            (false, true) => DualInferenceResult::Second,
 
            (true, false) => DualInferenceResult::First,
 
            (true, true) => DualInferenceResult::Both
 
        }
 
    }
 

	
 
    /// Attempts to infer the first subtree based on the template. Like
 
    /// `infer_subtrees_for_both_types`, but now only applying inference to
 
    /// `to_infer` based on the type information in `template`.
 
    ///
 
    /// The `forced_template` flag controls whether `to_infer` is considered
 
    /// valid if it is more specific then the template. When `forced_template`
 
    /// is false, then as long as the `to_infer` and `template` types are
 
    /// compatible the inference will succeed. If `forced_template` is true,
 
    /// then `to_infer` MUST be less specific than `template` (e.g.
 
    /// `IntegerLike` is less specific than `UInt32`. Likewise `Bool` is less
 
    /// specific than `BindingBool`)
 
    /// `IntegerLike` is less specific than `UInt32`)
 
    fn infer_subtree_for_single_type(
 
        to_infer: &mut InferenceType, mut to_infer_idx: usize,
 
        template: &[InferenceTypePart], mut template_idx: usize,
 
        forced_template: bool,
 
    ) -> SingleInferenceResult {
 
        let mut modified = false;
 
        let mut depth = 1;
 

	
 
        while depth > 0 {
 
            let to_infer_part = &to_infer.parts[to_infer_idx];
 
            let template_part = &template[template_idx];
 

	
 
            if to_infer_part == template_part {
 
                let depth_change = to_infer_part.depth_change();
 
                depth += depth_change;
 
                debug_assert_eq!(depth_change, template_part.depth_change());
 
                to_infer_idx += 1;
 
                template_idx += 1;
 
                continue;
 
            }
 
            if to_infer_part.is_marker() { to_infer_idx += 1; continue; }
 
            if template_part.is_marker() { template_idx += 1; continue; }
 

	
 
            // Types are not equal and not markers. So check if we can infer 
 
            // anything
 
            if let Some(depth_change) = Self::infer_part_for_single_type(
 
                to_infer, &mut to_infer_idx, template, &mut template_idx
 
            ) {
 
                depth += depth_change;
 
                modified = true;
 
                continue;
 
            }
 

	
 
            if !forced_template {
 
                // We cannot infer anything, but the template may still be
 
                // compatible with the type we're inferring
 
                if let Some(depth_change) = Self::check_part_for_single_type(
 
                    template, &mut template_idx, &to_infer.parts, &mut to_infer_idx
 
                ) {
 
                    depth += depth_change;
 
                    continue;
 
                }
 
            }
 

	
 
            return SingleInferenceResult::Incompatible
 
        }
 

	
 
        if modified {
 
@@ -568,158 +561,155 @@ impl InferenceType {
 
                idx_a += 1;
 
                idx_b += 1;
 
                continue;
 
            }
 
            
 
            if part_a.is_marker() { idx_a += 1; continue; }
 
            if part_b.is_marker() { idx_b += 1; continue; }
 

	
 
            if let Some(depth_change) = Self::check_part_for_single_type(
 
                type_parts_a, &mut idx_a, type_parts_b, &mut idx_b
 
            ) {
 
                depth += depth_change;
 
                continue;
 
            }
 
            if let Some(depth_change) = Self::check_part_for_single_type(
 
                type_parts_b, &mut idx_b, type_parts_a, &mut idx_a
 
            ) {
 
                depth += depth_change;
 
                continue;
 
            }
 

	
 
            return false;
 
        }
 

	
 
        true
 
    }
 

	
 
    /// Performs the conversion of the inference type into a concrete type.
 
    /// By calling this function you must make sure that no unspecified types
 
    /// (e.g. Unknown or IntegerLike) exist in the type.
 
    fn write_concrete_type(&self, concrete_type: &mut ConcreteType) {
 
        use InferenceTypePart as ITP;
 
        use ConcreteTypePart as CTP;
 

	
 
        // Make sure inference type is specified but concrete type is not yet specified
 
        debug_assert!(!self.parts.is_empty());
 
        debug_assert!(concrete_type.parts.is_empty());
 
        concrete_type.parts.reserve(self.parts.len());
 

	
 
        let mut idx = 0;
 
        while idx < self.parts.len() {
 
            let part = &self.parts[idx];
 
            let converted_part = match part {
 
                ITP::Marker(_) => {
 
                    // Markers are removed when writing to the concrete type.
 
                    idx += 1;
 
                    continue;
 
                },
 
                ITP::Unknown | ITP::BoolLike | ITP::NumberLike |
 
                ITP::Unknown | ITP::NumberLike |
 
                ITP::IntegerLike | ITP::ArrayLike | ITP::PortLike => {
 
                    // Should not happen if type inferencing works correctly: we
 
                    // should have returned a programmer-readable error or have
 
                    // inferred all types.
 
                    unreachable!("attempted to convert inference type part {:?} into concrete type", part);
 
                },
 
                ITP::Void => CTP::Void,
 
                ITP::Message => CTP::Message,
 
                ITP::BindingBool => CTP::Bool,
 
                ITP::Bool => CTP::Bool,
 
                ITP::UInt8 => CTP::UInt8,
 
                ITP::UInt16 => CTP::UInt16,
 
                ITP::UInt32 => CTP::UInt32,
 
                ITP::UInt64 => CTP::UInt64,
 
                ITP::SInt8 => CTP::SInt8,
 
                ITP::SInt16 => CTP::SInt16,
 
                ITP::SInt32 => CTP::SInt32,
 
                ITP::SInt64 => CTP::SInt64,
 
                ITP::Character => CTP::Character,
 
                ITP::String => CTP::String,
 
                ITP::Array => CTP::Array,
 
                ITP::Slice => CTP::Slice,
 
                ITP::Input => CTP::Input,
 
                ITP::Output => CTP::Output,
 
                ITP::Instance(id, num) => CTP::Instance(*id, *num),
 
            };
 

	
 
            concrete_type.parts.push(converted_part);
 
            idx += 1;
 
        }
 
    }
 

	
 
    /// Writes a human-readable version of the type to a string. This is used
 
    /// to display error messages
 
    fn write_display_name(
 
        buffer: &mut String, heap: &Heap, parts: &[InferenceTypePart], mut idx: usize
 
    ) -> usize {
 
        use InferenceTypePart as ITP;
 

	
 
        match &parts[idx] {
 
            ITP::Marker(_marker_idx) => {
 
                if debug_log_enabled!() {
 
                    buffer.push_str(&format!("{{Marker:{}}}", *_marker_idx));
 
                }
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
            },
 
            ITP::Unknown => buffer.push_str("?"),
 
            ITP::BoolLike => buffer.push_str("boollike"),
 
            ITP::NumberLike => buffer.push_str("numberlike"),
 
            ITP::IntegerLike => buffer.push_str("integerlike"),
 
            ITP::ArrayLike => {
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push_str("[?]");
 
            },
 
            ITP::PortLike => {
 
                buffer.push_str("portlike<");
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            }
 
            ITP::Void => buffer.push_str("void"),
 
            ITP::BindingBool => buffer.push_str("binding result"),
 
            ITP::Bool => buffer.push_str(KW_TYPE_BOOL_STR),
 
            ITP::UInt8 => buffer.push_str(KW_TYPE_UINT8_STR),
 
            ITP::UInt16 => buffer.push_str(KW_TYPE_UINT16_STR),
 
            ITP::UInt32 => buffer.push_str(KW_TYPE_UINT32_STR),
 
            ITP::UInt64 => buffer.push_str(KW_TYPE_UINT64_STR),
 
            ITP::SInt8 => buffer.push_str(KW_TYPE_SINT8_STR),
 
            ITP::SInt16 => buffer.push_str(KW_TYPE_SINT16_STR),
 
            ITP::SInt32 => buffer.push_str(KW_TYPE_SINT32_STR),
 
            ITP::SInt64 => buffer.push_str(KW_TYPE_SINT64_STR),
 
            ITP::Character => buffer.push_str(KW_TYPE_CHAR_STR),
 
            ITP::String => buffer.push_str(KW_TYPE_STRING_STR),
 
            ITP::Message => {
 
                buffer.push_str(KW_TYPE_MESSAGE_STR);
 
                buffer.push('<');
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            },
 
            ITP::Array => {
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push_str("[]");
 
            },
 
            ITP::Slice => {
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push_str("[..]");
 
            },
 
            ITP::Input => {
 
                buffer.push_str(KW_TYPE_IN_PORT_STR);
 
                buffer.push('<');
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            },
 
            ITP::Output => {
 
                buffer.push_str(KW_TYPE_OUT_PORT_STR);
 
                buffer.push('<');
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            },
 
            ITP::Instance(definition_id, num_sub) => {
 
                let definition = &heap[*definition_id];
 
                buffer.push_str(definition.identifier().value.as_str());
 
                if *num_sub > 0 {
 
                    buffer.push('<');
 
                    idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                    for _sub_idx in 1..*num_sub {
 
                        buffer.push_str(", ");
 
                        idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                    }
 
                    buffer.push('>');
 
@@ -1626,264 +1616,264 @@ impl PassTyping {
 
        let expr = &ctx.heap[id];
 
        let arg1_expr_id = expr.left;
 
        let arg2_expr_id = expr.right;
 

	
 
        debug_log!("Assignment expr '{:?}': {}", expr.operation, upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Arg1 type: {}", self.temp_get_display_name(ctx, arg1_expr_id));
 
        debug_log!("   - Arg2 type: {}", self.temp_get_display_name(ctx, arg2_expr_id));
 
        debug_log!("   - Expr type: {}", self.temp_get_display_name(ctx, upcast_id));
 

	
 
        // Assignment does not return anything (it operates like a statement)
 
        let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &VOID_TEMPLATE)?;
 

	
 
        // Apply forced constraint to LHS value
 
        let progress_forced = match expr.operation {
 
            AO::Set =>
 
                false,
 
            AO::Multiplied | AO::Divided | AO::Added | AO::Subtracted =>
 
                self.apply_template_constraint(ctx, arg1_expr_id, &NUMBERLIKE_TEMPLATE)?,
 
            AO::Remained | AO::ShiftedLeft | AO::ShiftedRight |
 
            AO::BitwiseAnded | AO::BitwiseXored | AO::BitwiseOred =>
 
                self.apply_template_constraint(ctx, arg1_expr_id, &INTEGERLIKE_TEMPLATE)?,
 
        };
 

	
 
        let (progress_arg1, progress_arg2) = self.apply_equal2_constraint(
 
            ctx, upcast_id, arg1_expr_id, 0, arg2_expr_id, 0
 
        )?;
 
        debug_assert!(if progress_forced { progress_arg2 } else { true });
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Arg1 type [{}]: {}", progress_forced || progress_arg1, self.temp_get_display_name(ctx, arg1_expr_id));
 
        debug_log!("   - Arg2 type [{}]: {}", progress_arg2, self.temp_get_display_name(ctx, arg2_expr_id));
 
        debug_log!("   - Expr type [{}]: {}", progress_expr, self.temp_get_display_name(ctx, upcast_id));
 

	
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_forced || progress_arg1 { self.queue_expr(ctx, arg1_expr_id); }
 
        if progress_arg2 { self.queue_expr(ctx, arg2_expr_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_binding_expr(&mut self, ctx: &mut Ctx, id: BindingExpressionId) -> Result<(), ParseError> {
 
        let upcast_id = id.upcast();
 
        let binding_expr = &ctx.heap[id];
 
        let bound_from_id = binding_expr.bound_from;
 
        let bound_to_id = binding_expr.bound_to;
 

	
 
        // Output of a binding expression is a special kind of boolean that can
 
        // only be used in binary-and expressions
 
        let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BINDING_BOOL_TEMPLATE)?;
 
        // Output is always a boolean. The two arguments should be of equal
 
        // type.
 
        let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
        let (progress_from, progress_to) = self.apply_equal2_constraint(ctx, upcast_id, bound_from_id, 0, bound_to_id, 0)?;
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_from { self.queue_expr(ctx, bound_from_id); }
 
        if progress_to { self.queue_expr(ctx, bound_to_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_conditional_expr(&mut self, ctx: &mut Ctx, id: ConditionalExpressionId) -> Result<(), ParseError> {
 
        // Note: test expression type is already enforced
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let arg1_expr_id = expr.true_expression;
 
        let arg2_expr_id = expr.false_expression;
 

	
 
        debug_log!("Conditional expr: {}", upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Arg1 type: {}", self.temp_get_display_name(ctx, arg1_expr_id));
 
        debug_log!("   - Arg2 type: {}", self.temp_get_display_name(ctx, arg2_expr_id));
 
        debug_log!("   - Expr type: {}", self.temp_get_display_name(ctx, upcast_id));
 

	
 
        // I keep confusing myself: this applies equality of types between the
 
        // condition branches' types, and the result from the conditional
 
        // expression, because the result from the conditional is one of the
 
        // branches.
 
        let (progress_expr, progress_arg1, progress_arg2) = self.apply_equal3_constraint(
 
            ctx, upcast_id, arg1_expr_id, arg2_expr_id, 0
 
        )?;
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Arg1 type [{}]: {}", progress_arg1, self.temp_get_display_name(ctx, arg1_expr_id));
 
        debug_log!("   - Arg2 type [{}]: {}", progress_arg2, self.temp_get_display_name(ctx, arg2_expr_id));
 
        debug_log!("   - Expr type [{}]: {}", progress_expr, self.temp_get_display_name(ctx, upcast_id));
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_arg1 { self.queue_expr(ctx, arg1_expr_id); }
 
        if progress_arg2 { self.queue_expr(ctx, arg2_expr_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_binary_expr(&mut self, ctx: &mut Ctx, id: BinaryExpressionId) -> Result<(), ParseError> {
 
        // Note: our expression type might be fixed by our parent, but we still
 
        // need to make sure it matches the type associated with our operation.
 
        use BinaryOperator as BO;
 

	
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let arg1_id = expr.left;
 
        let arg2_id = expr.right;
 

	
 
        debug_log!("Binary expr '{:?}': {}", expr.operation, upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Arg1 type: {}", self.temp_get_display_name(ctx, arg1_id));
 
        debug_log!("   - Arg2 type: {}", self.temp_get_display_name(ctx, arg2_id));
 
        debug_log!("   - Expr type: {}", self.temp_get_display_name(ctx, upcast_id));
 

	
 
        let (progress_expr, progress_arg1, progress_arg2) = match expr.operation {
 
            BO::Concatenate => {
 
                // Arguments may be arrays/slices, output is always an array
 
                let progress_expr = self.apply_template_constraint(ctx, upcast_id, &ARRAY_TEMPLATE)?;
 
                let progress_arg1 = self.apply_template_constraint(ctx, arg1_id, &ARRAYLIKE_TEMPLATE)?;
 
                let progress_arg2 = self.apply_template_constraint(ctx, arg2_id, &ARRAYLIKE_TEMPLATE)?;
 

	
 
                // If they're all arraylike, then we want the subtype to match
 
                let (subtype_expr, subtype_arg1, subtype_arg2) =
 
                    self.apply_equal3_constraint(ctx, upcast_id, arg1_id, arg2_id, 1)?;
 

	
 
                (progress_expr || subtype_expr, progress_arg1 || subtype_arg1, progress_arg2 || subtype_arg2)
 
            },
 
            BO::LogicalAnd => {
 
                // Logical AND may operate both on normal booleans and on
 
                // booleans that are the result of a binding expression. So we
 
                // force the expression to bool-like, then apply an equal_3
 
                // constraint. Any BindingBool will promote all the other Bool
 
                // types.
 
                let base_expr = self.apply_template_constraint(ctx, upcast_id, &BOOLLIKE_TEMPLATE)?;
 
                let (progress_expr, progress_arg1, progress_arg2) =
 
                    self.apply_equal3_constraint(ctx, upcast_id, arg1_id, arg2_id, 0)?;
 
                // Forced boolean on all
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let progress_arg1 = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let progress_arg2 = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 

	
 
                (base_expr || progress_expr, progress_arg1, progress_arg2)
 
                (progress_expr, progress_arg1, progress_arg2)
 
            },
 
            BO::LogicalOr => {
 
                // Forced boolean on all
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let progress_arg1 = self.apply_forced_constraint(ctx, arg1_id, &BOOL_TEMPLATE)?;
 
                let progress_arg2 = self.apply_forced_constraint(ctx, arg2_id, &BOOL_TEMPLATE)?;
 

	
 
                (progress_expr, progress_arg1, progress_arg2)
 
            },
 
            BO::BitwiseOr | BO::BitwiseXor | BO::BitwiseAnd | BO::Remainder | BO::ShiftLeft | BO::ShiftRight => {
 
                // All equal of integer type
 
                let progress_base = self.apply_template_constraint(ctx, upcast_id, &INTEGERLIKE_TEMPLATE)?;
 
                let (progress_expr, progress_arg1, progress_arg2) =
 
                    self.apply_equal3_constraint(ctx, upcast_id, arg1_id, arg2_id, 0)?;
 

	
 
                (progress_base || progress_expr, progress_base || progress_arg1, progress_base || progress_arg2)
 
            },
 
            BO::Equality | BO::Inequality => {
 
                // Equal2 on args, forced boolean output
 
                let progress_expr = self.apply_template_constraint(ctx, upcast_id, &BOOLLIKE_TEMPLATE)?;
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let (progress_arg1, progress_arg2) =
 
                    self.apply_equal2_constraint(ctx, upcast_id, arg1_id, 0, arg2_id, 0)?;
 

	
 
                (progress_expr, progress_arg1, progress_arg2)
 
            },
 
            BO::LessThan | BO::GreaterThan | BO::LessThanEqual | BO::GreaterThanEqual => {
 
                // Equal2 on args with numberlike type, forced boolean output
 
                let progress_expr = self.apply_template_constraint(ctx, upcast_id, &BOOLLIKE_TEMPLATE)?;
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let progress_arg_base = self.apply_template_constraint(ctx, arg1_id, &NUMBERLIKE_TEMPLATE)?;
 
                let (progress_arg1, progress_arg2) =
 
                    self.apply_equal2_constraint(ctx, upcast_id, arg1_id, 0, arg2_id, 0)?;
 

	
 
                (progress_expr, progress_arg_base || progress_arg1, progress_arg_base || progress_arg2)
 
            },
 
            BO::Add | BO::Subtract | BO::Multiply | BO::Divide => {
 
                // All equal of number type
 
                let progress_base = self.apply_template_constraint(ctx, upcast_id, &NUMBERLIKE_TEMPLATE)?;
 
                let (progress_expr, progress_arg1, progress_arg2) =
 
                    self.apply_equal3_constraint(ctx, upcast_id, arg1_id, arg2_id, 0)?;
 

	
 
                (progress_base || progress_expr, progress_base || progress_arg1, progress_base || progress_arg2)
 
            },
 
        };
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Arg1 type [{}]: {}", progress_arg1, self.temp_get_display_name(ctx, arg1_id));
 
        debug_log!("   - Arg2 type [{}]: {}", progress_arg2, self.temp_get_display_name(ctx, arg2_id));
 
        debug_log!("   - Expr type [{}]: {}", progress_expr, self.temp_get_display_name(ctx, upcast_id));
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_arg1 { self.queue_expr(ctx, arg1_id); }
 
        if progress_arg2 { self.queue_expr(ctx, arg2_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_unary_expr(&mut self, ctx: &mut Ctx, id: UnaryExpressionId) -> Result<(), ParseError> {
 
        use UnaryOperator as UO;
 

	
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let arg_id = expr.expression;
 

	
 
        debug_log!("Unary expr '{:?}': {}", expr.operation, upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Arg  type: {}", self.temp_get_display_name(ctx, arg_id));
 
        debug_log!("   - Expr type: {}", self.temp_get_display_name(ctx, upcast_id));
 

	
 
        let (progress_expr, progress_arg) = match expr.operation {
 
            UO::Positive | UO::Negative => {
 
                // Equal types of numeric class
 
                let progress_base = self.apply_template_constraint(ctx, upcast_id, &NUMBERLIKE_TEMPLATE)?;
 
                let (progress_expr, progress_arg) =
 
                    self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 0, arg_id, 0)?;
 

	
 
                (progress_base || progress_expr, progress_base || progress_arg)
 
            },
 
            UO::BitwiseNot => {
 
                // Equal types of integer class
 
                let progress_base = self.apply_template_constraint(ctx, upcast_id, &INTEGERLIKE_TEMPLATE)?;
 
                let (progress_expr, progress_arg) =
 
                    self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 0, arg_id, 0)?;
 

	
 
                (progress_base || progress_expr, progress_base || progress_arg)
 
            },
 
            UO::LogicalNot => {
 
                // Both booleans
 
                // Both bools
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let progress_arg = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                (progress_expr, progress_arg)
 
            }
 
        };
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Arg  type [{}]: {}", progress_arg, self.temp_get_display_name(ctx, arg_id));
 
        debug_log!("   - Expr type [{}]: {}", progress_expr, self.temp_get_display_name(ctx, upcast_id));
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_arg { self.queue_expr(ctx, arg_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_indexing_expr(&mut self, ctx: &mut Ctx, id: IndexingExpressionId) -> Result<(), ParseError> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let subject_id = expr.subject;
 
        let index_id = expr.index;
 

	
 
        debug_log!("Indexing expr: {}", upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Subject type: {}", self.temp_get_display_name(ctx, subject_id));
 
        debug_log!("   - Index   type: {}", self.temp_get_display_name(ctx, index_id));
 
        debug_log!("   - Expr    type: {}", self.temp_get_display_name(ctx, upcast_id));
 

	
 
        // Make sure subject is arraylike and index is integerlike
 
        let progress_subject_base = self.apply_template_constraint(ctx, subject_id, &ARRAYLIKE_TEMPLATE)?;
 
        let progress_index = self.apply_template_constraint(ctx, index_id, &INTEGERLIKE_TEMPLATE)?;
 

	
 
        // Make sure if output is of T then subject is Array<T>
 
        let (progress_expr, progress_subject) =
 
            self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 0, subject_id, 1)?;
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Subject type [{}]: {}", progress_subject_base || progress_subject, self.temp_get_display_name(ctx, subject_id));
 
        debug_log!("   - Index   type [{}]: {}", progress_index, self.temp_get_display_name(ctx, index_id));
 
        debug_log!("   - Expr    type [{}]: {}", progress_expr, self.temp_get_display_name(ctx, upcast_id));
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_subject_base || progress_subject { self.queue_expr(ctx, subject_id); }
 
        if progress_index { self.queue_expr(ctx, index_id); }
 

	
 
        Ok(())
 
    }
 

	
src/protocol/parser/pass_validation_linking.rs
Show inline comments
 
@@ -361,143 +361,198 @@ impl Visitor2 for PassValidationLinking {
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_new_stmt(&mut self, ctx: &mut Ctx, id: NewStatementId) -> VisitorResult {
 
        // Make sure the new statement occurs inside a composite component
 
        if !self.def_type.is_composite() {
 
            let new_stmt = &ctx.heap[id];
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module.source, new_stmt.span,
 
                "instantiating components may only be done in composite components"
 
            ));
 
        }
 

	
 
        // Recurse into call expression (which will check the expression parent
 
        // to ensure that the "new" statment instantiates a component)
 
        let call_expr_id = ctx.heap[id].expression;
 

	
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        self.expr_parent = ExpressionParent::New(id);
 
        self.visit_call_expr(ctx, call_expr_id)?;
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_expr_stmt(&mut self, ctx: &mut Ctx, id: ExpressionStatementId) -> VisitorResult {
 
        let expr_id = ctx.heap[id].expression;
 

	
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        self.expr_parent = ExpressionParent::ExpressionStmt(id);
 
        self.visit_expr(ctx, expr_id)?;
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        Ok(())
 
    }
 

	
 

	
 
    //--------------------------------------------------------------------------
 
    // Expression visitors
 
    //--------------------------------------------------------------------------
 

	
 
    fn visit_assignment_expr(&mut self, ctx: &mut Ctx, id: AssignmentExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 

	
 
        let assignment_expr = &mut ctx.heap[id];
 

	
 
        // Although we call assignment an expression to simplify the compiler's
 
        // code (mainly typechecking), we disallow nested use in expressions
 
        match self.expr_parent {
 
            ExpressionParent::ExpressionStmt(_) => {},
 
            _ => return Err(ParseError::new_error_str_at_span(
 
                &ctx.module.source, assignment_expr.span,
 
                "assignments may only appear at the statement level"
 
            )),
 
        }
 

	
 
        let left_expr_id = assignment_expr.left;
 
        let right_expr_id = assignment_expr.right;
 
        let old_expr_parent = self.expr_parent;
 
        assignment_expr.parent = old_expr_parent;
 
        assignment_expr.unique_id_in_definition = self.next_expr_index;
 
        self.next_expr_index += 1;
 

	
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
 
        self.must_be_assignable = Some(assignment_expr.span);
 
        self.visit_expr(ctx, left_expr_id)?;
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
 
        self.must_be_assignable = None;
 
        self.visit_expr(ctx, right_expr_id)?;
 
        self.expr_parent = old_expr_parent;
 
        Ok(())
 
    }
 

	
 
    fn visit_binding_expr(&mut self, ctx: &mut Ctx, id: BindingExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        let binding_expr = &mut ctx.heap[id];
 

	
 
        // Check for valid context of binding expression
 
        if let Some(span) = self.must_be_assignable {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module.source, span, "cannot assign to the result from a binding expression"
 
            ));
 
        }
 

	
 
        if self.in_test_expr.is_invalid() {
 
            let binding_expr = &ctx.heap[id];
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module.source, binding_expr.span,
 
                "binding expressions can only be used inside the testing expression of 'if' and 'while' statements"
 
            ));
 
        }
 

	
 
        if !self.in_binding_expr.is_invalid() {
 
            let binding_expr = &ctx.heap[id];
 
            let previous_expr = &ctx.heap[self.in_binding_expr];
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module.source, binding_expr.span,
 
                "nested binding expressions are not allowed"
 
            ).with_info_str_at_span(
 
                &ctx.module.source, previous_expr.span,
 
                "the outer binding expression is found here"
 
            ));
 
        }
 

	
 
        let mut seeking_parent = self.expr_parent;
 
        loop {
 
            // Perform upward search to make sure only LogicalAnd is applied to
 
            // the binding expression
 
            let valid = match seeking_parent {
 
                ExpressionParent::If(_) | ExpressionParent::While(_) => {
 
                    // Every parent expression (if any) were LogicalAnd.
 
                    break;
 
                }
 
                ExpressionParent::Expression(parent_id, _) => {
 
                    let parent_expr = &ctx.heap[parent_id];
 
                    match parent_expr {
 
                        Expression::Binary(parent_expr) => {
 
                            // Set new parent to continue the search. Otherwise
 
                            // halt and provide an error using the current
 
                            // parent.
 
                            if parent_expr.operation == BinaryOperator::LogicalAnd {
 
                                seeking_parent = parent_expr.parent;
 
                                true
 
                            } else {
 
                                false
 
                            }
 
                        },
 
                        _ => false,
 
                    }
 
                },
 
                _ => unreachable!(), // nested under if/while, so always expressions as parents
 
            };
 

	
 
            if !valid {
 
                let binding_expr = &ctx.heap[id];
 
                let parent_expr = &ctx.heap[seeking_parent.as_expression()];
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module.source, binding_expr.span,
 
                    "only the logical-and operator (&&) may be applied to binding expressions"
 
                ).with_info_str_at_span(
 
                    &ctx.module.source, parent_expr.span(),
 
                    "this was the disallowed operation applied to the result from a binding expression"
 
                ));
 
            }
 
        }
 

	
 
        // Perform all of the index/parent assignment magic
 
        let binding_expr = &mut ctx.heap[id];
 

	
 
        let old_expr_parent = self.expr_parent;
 
        binding_expr.parent = old_expr_parent;
 
        binding_expr.unique_id_in_definition = self.next_expr_index;
 
        self.next_expr_index += 1;
 
        self.in_binding_expr = id;
 

	
 
        // Perform preliminary check on children: binding expressions only make
 
        // sense if the left hand side is just a variable expression, or if it
 
        // is a literal of some sort. The typechecker will take care of the rest
 
        let bound_to_id = binding_expr.bound_to;
 
        let bound_from_id = binding_expr.bound_from;
 

	
 
        match &ctx.heap[bound_to_id] {
 
            // Variables may not be binding variables, and literals may
 
            // actually not contain binding variables. But in that case we just
 
            // perform an equality check.
 
            Expression::Variable(_) => {}
 
            Expression::Literal(_) => {},
 
            _ => {
 
                let binding_expr = &ctx.heap[id];
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module.source, binding_expr.span,
 
                    "the left hand side of a binding expression may only be a variable or a literal expression"
 
                ));
 
            },
 
        }
 

	
 
        // Visit the children themselves
 
        self.in_binding_expr_lhs = true;
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
 
        self.visit_expr(ctx, bound_to_id)?;
 
        self.in_binding_expr_lhs = false;
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
 
        self.visit_expr(ctx, bound_from_id)?;
 

	
 
        self.expr_parent = old_expr_parent;
 
        self.in_binding_expr = BindingExpressionId::new_invalid();
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_conditional_expr(&mut self, ctx: &mut Ctx, id: ConditionalExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        let conditional_expr = &mut ctx.heap[id];
 

	
 
        if let Some(span) = self.must_be_assignable {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module.source, span, "cannot assign to the result from a conditional expression"
src/protocol/tests/parser_binding.rs
Show inline comments
 
@@ -64,80 +64,87 @@ fn test_incorrect_binding() {
 
fn test_boolean_ops_on_binding() {
 
    Tester::new_single_source_expect_ok("apply && to binding result", "
 
        union TestUnion{ Two(u16), Four(u32), Eight(u64) }
 
        func foo() -> u32 {
 
            auto lit_2 = TestUnion::Two(2);
 
            auto lit_4 = TestUnion::Four(4);
 
            auto lit_8 = TestUnion::Eight(8);
 

	
 
            // Testing combined forms of bindings
 
            if (
 
                let TestUnion::Two(test_2) = lit_2 &&
 
                let TestUnion::Four(test_4) = lit_4 &&
 
                let TestUnion::Eight(test_8) = lit_8
 
            ) {
 
                auto valid_2 = test_2;
 
                auto valid_4 = test_4;
 
                auto valid_8 = test_8;
 
            }
 

	
 
            // Testing in combination with regular expressions, and to the correct
 
            // literals
 
            if (let TestUnion::Two(inter_a) = lit_2 && 5 + 2 == 7)               { inter_a = 0; }
 
            if (5 + 2 == 7 && let TestUnion::Two(inter_b) = lit_2)               { inter_b = 0; }
 
            if (2 + 2 == 4 && let TestUnion::Two(inter_c) = lit_2 && 3 + 3 == 8) { inter_c = 0; }
 

	
 
            // Testing with the 'incorrect' target union
 
            if (let TestUnion::Four(nope) = lit_2 && let TestUnion::Two(zilch) = lit_8) { }
 

	
 
            return 0;
 
        }
 
    ").for_function("foo", |f| { f
 
        .for_variable("valid_2", |v| { v.assert_concrete_type("u16"); })
 
        .for_variable("valid_4", |v| { v.assert_concrete_type("u32"); })
 
        .for_variable("valid_8", |v| { v.assert_concrete_type("u64"); })
 
        .for_variable("inter_a", |v| { v.assert_concrete_type("u16"); })
 
        .for_variable("inter_b", |v| { v.assert_concrete_type("u16"); })
 
        .for_variable("inter_c", |v| { v.assert_concrete_type("u16"); });
 
    });
 

	
 
    Tester::new_single_source_expect_err("apply || before binding", "
 
        enum Test{ A, B }
 
        func foo() -> u32 {
 
            if (let a = Test::A || 5 + 2 == 7) {
 
                auto mission_impossible = 5;
 
            }
 
            return 0;
 
        }
 
    ").error(|e| { e
 
        .assert_num(1)
 
        .assert_occurs_at(0, "let")
 
        .assert_msg_has(0, "expected a 'bool'");
 
        .assert_num(2)
 
        .assert_occurs_at(0, "let a")
 
        .assert_msg_has(0, "only the logical-and operator")
 
        .assert_occurs_at(1, "||")
 
        .assert_msg_has(1, "disallowed operation");
 
    });
 

	
 
    Tester::new_single_source_expect_err("apply || after binding", "
 
        enum Test{ A, B }
 
        func foo() -> u32 {
 
            if (5 + 2 == 7 || let b = Test::B) {
 
                auto magic_number = 7;
 
            }
 
            return 0;
 
        }
 
    ").error(|e| { e
 
        .assert_num(1)
 
        .assert_occurs_at(0, "let")
 
        .assert_msg_has(0, "expected a 'bool'");
 
        .assert_num(2)
 
        .assert_occurs_at(0, "let b")
 
        .assert_msg_has(0, "only the logical-and operator")
 
        .assert_occurs_at(1, "||")
 
        .assert_msg_has(1, "disallowed operation");
 
    });
 

	
 
    Tester::new_single_source_expect_err("apply || before and after binding", "
 
        enum Test{ A, B }
 
        func foo() -> u32 {
 
            if (1 + 2 == 3 || (let a = Test::A && let b = Test::B) || (2 + 2 == 4)) {
 
                auto darth_vader_says = \"Noooooooooo\";
 
            }
 
            return 0;
 
        }
 
    ").error(|e| { e
 
        .assert_num(1)
 
        .assert_msg_has(0, "expected a 'bool'");
 
        .assert_num(2)
 
        .assert_occurs_at(0, "let a")
 
        .assert_msg_has(0, "only the logical-and operator")
 
        .assert_occurs_at(1, "|| (let a")
 
        .assert_msg_has(1, "disallowed operation");
 
    });
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)