Changeset - ef64fd0cdb07
[Not reviewed]
0 4 1
Christopher Esterhuyse - 5 years ago 2020-08-28 16:38:01
christopher.esterhuyse@gmail.com
correctly merging protocol component branches: forks that create existing predicates MERGE the results, combining their inboxes s.t. there is no race condition on the order of received messages
5 files changed with 117 insertions and 11 deletions:
0 comments (0 inline, 0 general)
examples/README.md
Show inline comments
 
# Examples
 
This directory contains a set of programs for demonstrating the use of connectors for communications over the internet.
 

	
 
## Setting up and running
 
First, ensure that the Reowolf has been compiled, such that a dylib is present in `reowolf/target/release/`; see the parent directory for instructions on compiling the library.
 

	
 
The examples are designed to be run with the examples folder as your working directory (`reowolf/examples`), containing a local copy of the dylib. Two convenience scripts are made available for copying the library: `cpy_dll.sh` and `cpy_so.sh` for platforms Linux and Windows respectively.
 

	
 
Compiling the example programs is done using Python 3, with `python3 ./make.py`, which will crawl the example directory's children and compiling any C source files. 
 

	
 
## Groups of examples and takeaways
 
### Incremental Connector API examples
 
The examples contained within directories with names prefixed with `incremental_` demonstrate usage of the connector API. This set of examples is characterized by each example being self-contained, designed to be run in isolation. The examples are best understood when read in the order of their directories' names (from 1 onward), as they demonstrate the functionality of the connector API starting from the most (trivially) simple connectors, to more complex connectors incorporating multiple network channels and components.
 

	
 
Each example source file is prefixed by a multi-line comment, explaining what a reader is intended to take away from the example.
 

	
 
### Presentation examples
 
The examples contained within directories with names matching `pres_` are designed to accompany the Reowolf demonstration slides (inclusion here TODO).
 
Examples include interactions whose distributed sessions span multiple source files. What follows is a list of the sessions' consituent programs, along with what the session intends to demonstrate
 

	
 
1. {pres_1/amy, pres_1/bob}: Connectors can be used to transmit messages over the internet in a fashion comparable to that of UDP sockets.
 

	
 
2. {pres_1/amy, pres_2/bob}: The protocol descriptions used to configure components are loaded and parsed at runtime. Consequently, changing these descriptions can change the behavior of the system without recompiling any of the constituent programs.
 
2. {pres_3/amy, pres_3/bob}: *Atomicity*. Message exchange actions are grouped into synchronous interactions. Actions occur with observable effects IFF their interactions are well-formed, and complete successfully. For example, a put succeeds IFF its accompanying get succeeds.
 
2. {pres_3/amy, pres_4/bob}: *Nondeterminism*. Programs/components can express flexibility by providing mutually-exclusive firing patterns on their ports, as a nondeterministic choice. Which (if any) choice occurs can be determined after synchronization by inspecting the return value of `connector_sync`. Atomicity + Nondeterminism = Specialization of behavior.
 
2. {pres_5/amy, pres_5/bob}: When no synchronous interaction is found before some consituent program times out, the system RECOVERS to the synchronous state at the start of the round, allowing components to try again.
 

	
 
### Interoperability examples
 
The examples contained within directories with names matching `interop_` demonstrate the use of different APIs for communication over UDP channels. The three given programs are intended to be run together, each as its own process.
 

	
 
Each example source file is prefixed by a multi-line comment, explaining what a reader is intended to take away from the example.
 
\ No newline at end of file
 
Each example source file is prefixed by a multi-line comment, explaining what a reader is intended to take away from the example.
 

	
 
NOTE: These examples are designed to compile on Linux!
 
\ No newline at end of file
examples/bench_1/main.c
Show inline comments
 
new file 100644
 
#include "../../reowolf.h"
 
#include "../utility.c"
 
int main(int argc, char** argv) {
 
	Arc_ProtocolDescription * pd = protocol_description_parse("", 0);
 
	char logpath[] = "./bench_1.txt";
 
	Connector * c = connector_new_logging(pd, logpath, sizeof(logpath)-1);
 
	rw_err_peek(c);
 
	
 
	PortId putter, getter;
 
	FfiSocketAddr local_addr = {{0, 0, 0, 0}, 8000};
 
	FfiSocketAddr peer_addr =  {{8, 8, 8, 1}, 8001};
 
	rw_err_peek(c);
 
	connector_add_udp_mediator_component(c, &putter, &getter, local_addr, peer_addr);
 
	connector_connect(c, -1);
 
	rw_err_peek(c);
 
	
 
	// Prepare a message to send
 
	size_t msg_len = 16;
 
	char * msg_ptr = malloc(msg_len);
 
	memset(msg_ptr, 42, msg_len);
 
	
 
	int i;
 
	for(i=0; i<10; i++) {
 
		connector_put_bytes(c, putter, msg_ptr, msg_len);
 
		rw_err_peek(c);
 
		
 
		// ... reach new consistent state within 1000ms deadline.
 
		connector_sync(c, -1);
 
		rw_err_peek(c);
 
	}
 
	
 
	printf("Exiting\n");
 
	protocol_description_destroy(pd);
 
	connector_destroy(c);
 
	free(msg_ptr);
 
	sleep(1.0);
 
	return 0;
 
}
 
\ No newline at end of file
src/common.rs
Show inline comments
 
///////////////////// PRELUDE /////////////////////
 

	
 
pub(crate) use crate::protocol::{ComponentState, ProtocolDescription};
 
pub(crate) use crate::runtime::{error::AddComponentError, NonsyncProtoContext, SyncProtoContext};
 

	
 
pub(crate) use core::{
 
    cmp::Ordering,
 
    fmt::{Debug, Formatter},
 
    hash::Hash,
 
    ops::Range,
 
    time::Duration,
 
};
 
// pub(crate) use indexmap::IndexSet;
 
pub(crate) use maplit::hashmap;
 
pub(crate) use mio::{
 
    net::{TcpListener, TcpStream},
 
    Events, Interest, Poll, Token,
 
};
 
pub(crate) use std::{
 
    collections::{BTreeMap, HashMap, HashSet},
 
    convert::TryInto,
 
    io::{Read, Write},
 
    net::SocketAddr,
 
    sync::Arc,
 
    time::Instant,
 
};
 
pub(crate) use Polarity::*;
 

	
 
pub(crate) trait IdParts {
 
    fn id_parts(self) -> (ConnectorId, U32Suffix);
 
}
 
pub type ConnectorId = u32;
 
pub type U32Suffix = u32;
 
#[derive(
 
    Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
// acquired via error in the Rust API
 
pub struct ProtoComponentId(Id);
 
#[derive(
 
    Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
#[repr(C)]
 
pub struct Id {
 
    pub(crate) connector_id: ConnectorId,
 
    pub(crate) u32_suffix: U32Suffix,
 
}
 
#[derive(Clone, Debug, Default)]
 
pub struct U32Stream {
 
    next: u32,
 
}
 
#[derive(
 
    Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
#[repr(transparent)]
 
pub struct PortId(Id);
 
#[derive(Default, Clone, Eq, PartialEq, Ord, PartialOrd)]
 
#[derive(Default, Clone, Ord, PartialOrd)]
 
pub struct Payload(Arc<Vec<u8>>);
 
#[derive(
 
    Debug, Eq, PartialEq, Clone, Hash, Copy, Ord, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
#[repr(C)]
 
pub enum Polarity {
 
    Putter, // output port (from the perspective of the component)
 
    Getter, // input port (from the perspective of the component)
 
}
 
#[derive(
 
    Debug, Eq, PartialEq, Clone, Hash, Copy, Ord, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
#[repr(C)]
 
pub enum EndpointPolarity {
 
    Active,  // calls connect()
 
    Passive, // calls bind() listen() accept()
 
}
 
#[derive(Debug, Clone)]
 
pub(crate) enum NonsyncBlocker {
 
    Inconsistent,
 
    ComponentExit,
 
    SyncBlockStart,
 
}
 
#[derive(Debug, Clone)]
 
pub(crate) enum SyncBlocker {
 
    Inconsistent,
 
    SyncBlockEnd,
 
    CouldntReadMsg(PortId),
 
    CouldntCheckFiring(PortId),
 
    PutMsg(PortId, Payload),
 
    NondetChoice { n: u16 },
 
}
 
pub(crate) struct DenseDebugHex<'a>(pub &'a [u8]);
 

	
 
///////////////////// IMPL /////////////////////
 
impl Eq for Payload {}
 
impl PartialEq for Payload {
 
    fn eq(&self, other: &Self) -> bool {
 
        // self.as_slice() == other.as_slice()
 
        let res = self.as_slice() == other.as_slice();
 
        println!("CMP RESULT IS.... {}", res);
 
        res
 
    }
 
}
 
impl IdParts for Id {
 
    fn id_parts(self) -> (ConnectorId, U32Suffix) {
 
        (self.connector_id, self.u32_suffix)
 
    }
 
}
 
impl IdParts for PortId {
 
    fn id_parts(self) -> (ConnectorId, U32Suffix) {
 
        self.0.id_parts()
 
    }
 
}
 
impl IdParts for ProtoComponentId {
 
    fn id_parts(self) -> (ConnectorId, U32Suffix) {
 
        self.0.id_parts()
 
    }
 
}
 
impl U32Stream {
 
    pub(crate) fn next(&mut self) -> u32 {
 
        if self.next == u32::MAX {
 
            panic!("NO NEXT!")
 
        }
 
        self.next += 1;
 
        self.next - 1
 
    }
 
    pub(crate) fn n_skipped(mut self, n: u32) -> Self {
 
        self.next = self.next.saturating_add(n);
 
        self
 
    }
 
}
 
impl From<Id> for PortId {
 
    fn from(id: Id) -> PortId {
 
        Self(id)
 
    }
 
}
 
impl From<Id> for ProtoComponentId {
 
    fn from(id: Id) -> ProtoComponentId {
 
        Self(id)
 
    }
 
}
 
impl From<&[u8]> for Payload {
 
    fn from(s: &[u8]) -> Payload {
 
        Payload(Arc::new(s.to_vec()))
 
    }
 
}
 
impl Payload {
 
    pub fn new(len: usize) -> Payload {
 
        let mut v = Vec::with_capacity(len);
 
        unsafe {
 
            v.set_len(len);
 
        }
 
        Payload(Arc::new(v))
 
    }
 
    pub fn len(&self) -> usize {
 
        self.0.len()
 
    }
 
    pub fn as_slice(&self) -> &[u8] {
 
        &self.0
 
    }
 
    pub fn as_mut_slice(&mut self) -> &mut [u8] {
 
        Arc::make_mut(&mut self.0) as _
 
    }
 
    pub fn concatenate_with(&mut self, other: &Self) {
 
        let bytes = other.as_slice().iter().copied();
 
        let me = Arc::make_mut(&mut self.0);
 
        me.extend(bytes);
 
    }
 
}
 
impl serde::Serialize for Payload {
 
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
 
    where
 
        S: serde::Serializer,
 
    {
 
        let inner: &Vec<u8> = &self.0;
 
        inner.serialize(serializer)
 
    }
 
}
 
impl<'de> serde::Deserialize<'de> for Payload {
 
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
 
    where
 
        D: serde::Deserializer<'de>,
 
    {
 
        let inner: Vec<u8> = Vec::deserialize(deserializer)?;
 
        Ok(Self(Arc::new(inner)))
 
    }
 
}
 
impl From<Vec<u8>> for Payload {
 
    fn from(s: Vec<u8>) -> Self {
 
        Self(s.into())
 
    }
 
}
 
impl Debug for PortId {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        let (a, b) = self.id_parts();
 
        write!(f, "pid{}_{}", a, b)
 
    }
 
}
 
impl Debug for ProtoComponentId {
src/runtime/communication.rs
Show inline comments
 
@@ -237,193 +237,199 @@ impl Connector {
 
                    .unwrap() // unrun_components' keys originate from proto_components
 
                    .ports,
 
            };
 
            let blocker = component.state.nonsync_run(&mut ctx, &cu.proto_description);
 
            log!(
 
                cu.inner.logger,
 
                "proto component {:?} ran to nonsync blocker {:?}",
 
                proto_component_id,
 
                &blocker
 
            );
 
            use NonsyncBlocker as B;
 
            match blocker {
 
                B::ComponentExit => drop(component),
 
                B::Inconsistent => return Err(Se::InconsistentProtoComponent(proto_component_id)),
 
                B::SyncBlockStart => {
 
                    branching_proto_components
 
                        .insert(proto_component_id, BranchingProtoComponent::initial(component));
 
                }
 
            }
 
        }
 
        log!(
 
            @COMM_NB,
 
            cu.inner.logger,
 
            "All {} proto components are now done with Nonsync phase",
 
            branching_proto_components.len(),
 
        );
 

	
 
        // Create temp structures needed for the synchronous phase of the round
 
        let mut rctx = RoundCtx {
 
            solution_storage: {
 
                let n = std::iter::once(SubtreeId::LocalComponent(ComponentId::Native));
 
                let c = cu
 
                    .proto_components
 
                    .keys()
 
                    .map(|&id| SubtreeId::LocalComponent(ComponentId::Proto(id)));
 
                let e = comm
 
                    .neighborhood
 
                    .children
 
                    .iter()
 
                    .map(|&index| SubtreeId::NetEndpoint { index });
 
                let subtree_id_iter = n.chain(c).chain(e);
 
                log!(
 
                    cu.inner.logger,
 
                    "Children in subtree are: {:?}",
 
                    subtree_id_iter.clone().collect::<Vec<_>>()
 
                );
 
                SolutionStorage::new(subtree_id_iter)
 
            },
 
            spec_var_stream: cu.inner.id_manager.new_spec_var_stream(),
 
            getter_buffer: Default::default(),
 
            deadline: timeout.map(|to| Instant::now() + to),
 
        };
 
        log!(@COMM_NB, cu.inner.logger, "Round context structure initialized");
 

	
 
        // Explore all native branches eagerly. Find solutions, buffer messages, etc.
 
        log!(
 
            cu.inner.logger,
 
            "Translating {} native batches into branches...",
 
            comm.native_batches.len()
 
        );
 
        let native_spec_var = rctx.spec_var_stream.next();
 
        log!(cu.inner.logger, "Native branch spec var is {:?}", native_spec_var);
 
        let mut branching_native = BranchingNative { branches: Default::default() };
 
        'native_branches: for ((native_branch, index), branch_spec_val) in
 
            comm.native_batches.drain(..).zip(0..).zip(SpecVal::iter_domain())
 
        {
 
            let NativeBatch { to_get, to_put } = native_branch;
 
            let predicate = {
 
                let mut predicate = Predicate::default();
 
                // assign trues for ports that fire
 
                let firing_ports: HashSet<PortId> =
 
                    to_get.iter().chain(to_put.keys()).copied().collect();
 
                for &port in to_get.iter().chain(to_put.keys()) {
 
                    let var = cu.inner.port_info.spec_var_for(port);
 
                    predicate.assigned.insert(var, SpecVal::FIRING);
 
                }
 
                // assign falses for all silent (not firing) ports
 
                for &port in cu.inner.native_ports.difference(&firing_ports) {
 
                    let var = cu.inner.port_info.spec_var_for(port);
 
                    if let Some(SpecVal::FIRING) = predicate.assigned.insert(var, SpecVal::SILENT) {
 
                        log!(cu.inner.logger, "Native branch index={} contains internal inconsistency wrt. {:?}. Skipping", index, var);
 
                        continue 'native_branches;
 
                    }
 
                }
 
                // this branch is consistent. distinguish it with a unique var:val mapping and proceed
 
                predicate.inserted(native_spec_var, branch_spec_val)
 
            };
 
            log!(
 
                cu.inner.logger,
 
                "Native branch index={:?} has consistent {:?}",
 
                index,
 
                &predicate
 
            );
 
            // send all outgoing messages (by buffering them)
 
            for (putter, payload) in to_put {
 
                let msg = SendPayloadMsg { predicate: predicate.clone(), payload };
 
                log!(cu.inner.logger, "Native branch {} sending msg {:?}", index, &msg);
 
                log!(
 
                    cu.inner.logger,
 
                    "Native branch {} sending msg {:?} with putter {:?}",
 
                    index,
 
                    &msg,
 
                    putter
 
                );
 
                rctx.getter_buffer.putter_add(cu, putter, msg);
 
            }
 
            let branch = NativeBranch { index, gotten: Default::default(), to_get };
 
            if branch.is_ended() {
 
                log!(
 
                    cu.inner.logger,
 
                    "Native submitting solution for batch {} with {:?}",
 
                    index,
 
                    &predicate
 
                );
 
                rctx.solution_storage.submit_and_digest_subtree_solution(
 
                    &mut *cu.inner.logger,
 
                    SubtreeId::LocalComponent(ComponentId::Native),
 
                    predicate.clone(),
 
                );
 
            }
 
            if let Some(_) = branching_native.branches.insert(predicate, branch) {
 
                // thanks to the native_spec_var, each batch has a distinct predicate
 
                unreachable!()
 
            }
 
        }
 
        // restore the invariant: !native_batches.is_empty()
 
        comm.native_batches.push(Default::default());
 
        // Call to another big method; keep running this round until a distributed decision is reached
 
        log!(@COMM_NB, cu.inner.logger, "Searching for decision...");
 
        let decision = Self::sync_reach_decision(
 
            cu,
 
            comm,
 
            &mut branching_native,
 
            &mut branching_proto_components,
 
            &mut rctx,
 
        )?;
 
        log!(@COMM_NB, cu.inner.logger, "Committing to decision {:?}!", &decision);
 
        comm.endpoint_manager.udp_endpoints_round_end(&mut *cu.inner.logger, &decision)?;
 

	
 
        // propagate the decision to children
 
        let msg = Msg::CommMsg(CommMsg {
 
            round_index: comm.round_index,
 
            contents: CommMsgContents::CommCtrl(CommCtrlMsg::Announce {
 
                decision: decision.clone(),
 
            }),
 
        });
 
        log!(
 
            cu.inner.logger,
 
            "Announcing decision {:?} through child endpoints {:?}",
 
            &msg,
 
            &comm.neighborhood.children
 
        );
 
        for &child in comm.neighborhood.children.iter() {
 
            comm.endpoint_manager.send_to_comms(child, &msg)?;
 
        }
 
        let ret = match decision {
 
            Decision::Failure => {
 
                // dropping {branching_proto_components, branching_native}
 
                Err(Se::RoundFailure)
 
            }
 
            Decision::Success(predicate) => {
 
                // commit changes to component states
 
                cu.proto_components.clear();
 
                cu.proto_components.extend(
 
                    // consume branching proto components
 
                    branching_proto_components
 
                        .into_iter()
 
                        .map(|(id, bpc)| (id, bpc.collapse_with(&predicate))),
 
                );
 
                log!(
 
                    cu.inner.logger,
 
                    "End round with (updated) component states {:?}",
 
                    cu.proto_components.keys()
 
                );
 
                // consume native
 
                Ok(Some(branching_native.collapse_with(&mut *cu.inner.logger, &predicate)))
 
            }
 
        };
 
        log!(@COMM_NB, cu.inner.logger, "Sync round ending! Cleaning up");
 
        ret
 
    }
 

	
 
    fn sync_reach_decision(
 
        cu: &mut ConnectorUnphased,
 
        comm: &mut ConnectorCommunication,
 
        branching_native: &mut BranchingNative,
 
        branching_proto_components: &mut HashMap<ProtoComponentId, BranchingProtoComponent>,
 
        rctx: &mut RoundCtx,
 
    ) -> Result<Decision, UnrecoverableSyncError> {
 
        let mut already_requested_failure = false;
 
        if branching_native.branches.is_empty() {
 
            log!(cu.inner.logger, "Native starts with no branches! Failure!");
 
            match comm.neighborhood.parent {
 
                Some(parent) => {
 
                    if already_requested_failure.replace_with_true() {
 
                        Self::request_failure(cu, comm, parent)?
 
                    } else {
 
                        log!(cu.inner.logger, "Already requested failure");
 
                    }
 
                }
 
@@ -891,244 +897,267 @@ impl BranchingProtoComponent {
 
                B::CouldntReadMsg(port) => {
 
                    // move to "blocked"
 
                    assert!(!branch.inner.inbox.contains_key(&port));
 
                    drainer.add_output(predicate, branch);
 
                }
 
                B::CouldntCheckFiring(port) => {
 
                    // sanity check
 
                    let var = cu.inner.port_info.spec_var_for(port);
 
                    assert!(predicate.query(var).is_none());
 
                    // keep forks in "unblocked"
 
                    drainer.add_input(predicate.clone().inserted(var, SpecVal::SILENT), branch.clone());
 
                    drainer.add_input(predicate.inserted(var, SpecVal::FIRING), branch);
 
                }
 
                B::PutMsg(putter, payload) => {
 
                    // sanity check
 
                    assert_eq!(Some(&Putter), cu.inner.port_info.polarities.get(&putter));
 
                    // overwrite assignment
 
                    let var = cu.inner.port_info.spec_var_for(putter);
 
                    let was = predicate.assigned.insert(var, SpecVal::FIRING);
 
                    if was == Some(SpecVal::SILENT) {
 
                        log!(cu.inner.logger, "Proto component {:?} tried to PUT on port {:?} when pred said var {:?}==Some(false). inconsistent!", proto_component_id, putter, var);
 
                        // discard forever
 
                        drop((predicate, branch));
 
                    } else {
 
                        // keep in "unblocked"
 
                        branch.inner.did_put_or_get.insert(putter);
 
                        log!(cu.inner.logger, "Proto component {:?} putting payload {:?} on port {:?} (using var {:?})", proto_component_id, &payload, putter, var);
 
                        let msg = SendPayloadMsg { predicate: predicate.clone(), payload };
 
                        rctx.getter_buffer.putter_add(cu, putter, msg);
 
                        drainer.add_input(predicate, branch);
 
                    }
 
                }
 
                B::SyncBlockEnd => {
 
                    // make concrete all variables
 
                    for port in ports.iter() {
 
                        let var = cu.inner.port_info.spec_var_for(*port);
 
                        let should_have_fired = branch.inner.did_put_or_get.contains(port);
 
                        let val = *predicate.assigned.entry(var).or_insert(SpecVal::SILENT);
 
                        let did_fire = val == SpecVal::FIRING;
 
                        if did_fire != should_have_fired {
 
                            log!(cu.inner.logger, "Inconsistent wrt. port {:?} var {:?} val {:?} did_fire={}, should_have_fired={}", port, var, val, did_fire, should_have_fired);
 
                            // IMPLICIT inconsistency
 
                            drop((predicate, branch));
 
                            return Ok(());
 
                        }
 
                    }
 
                    // submit solution for this component
 
                    let subtree_id = SubtreeId::LocalComponent(ComponentId::Proto(proto_component_id));
 
                    rctx.solution_storage.submit_and_digest_subtree_solution(
 
                        &mut *cu.inner.logger,
 
                        subtree_id,
 
                        predicate.clone(),
 
                    );
 
                    branch.ended = true;
 
                    // move to "blocked"
 
                    drainer.add_output(predicate, branch);
 
                }
 
            }
 
            Ok(())
 
        })
 
    }
 
    // fn branch_merge_func(
 
    //     mut a: ProtoComponentBranch,
 
    //     b: &mut ProtoComponentBranch,
 
    // ) -> ProtoComponentBranch {
 
    //     if b.ended && !a.ended {
 
    //         a.ended = true;
 
    //         std::mem::swap(&mut a, b);
 
    //     }
 
    //     a
 
    // }
 
    fn feed_msg(
 
        &mut self,
 
        cu: &mut ConnectorUnphased,
 
        rctx: &mut RoundCtx,
 
        proto_component_id: ProtoComponentId,
 
        getter: PortId,
 
        send_payload_msg: &SendPayloadMsg,
 
        pcb_temps: MapTempsGuard<'_, Predicate, ProtoComponentBranch>,
 
    ) -> Result<(), UnrecoverableSyncError> {
 
        let logger = &mut *cu.inner.logger;
 
        log!(
 
            logger,
 
            "feeding proto component {:?} getter {:?} {:?}",
 
            proto_component_id,
 
            getter,
 
            &send_payload_msg
 
        );
 
        let BranchingProtoComponent { branches, ports } = self;
 
        let (mut unblocked, pcb_temps) = pcb_temps.split_first_mut();
 
        let (mut blocked, pcb_temps) = pcb_temps.split_first_mut();
 
        // partition drain from branches -> {unblocked, blocked}
 
        log!(logger, "visiting {} blocked branches...", branches.len());
 
        for (predicate, mut branch) in branches.drain() {
 
            if branch.ended {
 
                log!(logger, "Skipping ended branch with {:?}", &predicate);
 
                blocked.insert(predicate, branch);
 
                Self::insert_branch_merging(&mut blocked, predicate, branch);
 
                continue;
 
            }
 
            use AssignmentUnionResult as Aur;
 
            log!(logger, "visiting branch with pred {:?}", &predicate);
 
            match predicate.assignment_union(&send_payload_msg.predicate) {
 
                Aur::Nonexistant => {
 
                    // this branch does not receive the message
 
                    log!(logger, "skipping branch");
 
                    blocked.insert(predicate, branch);
 
                    Self::insert_branch_merging(&mut blocked, predicate, branch);
 
                }
 
                Aur::Equivalent | Aur::FormerNotLatter => {
 
                    // retain the existing predicate, but add this payload
 
                    log!(logger, "feeding this branch without altering its predicate");
 
                    branch.feed_msg(getter, send_payload_msg.payload.clone());
 
                    unblocked.insert(predicate, branch);
 
                    Self::insert_branch_merging(&mut unblocked, predicate, branch);
 
                }
 
                Aur::LatterNotFormer => {
 
                    // fork branch, give fork the message and payload predicate. original branch untouched
 
                    log!(logger, "Forking this branch, giving it the predicate of the msg");
 
                    let mut branch2 = branch.clone();
 
                    let predicate2 = send_payload_msg.predicate.clone();
 
                    branch2.feed_msg(getter, send_payload_msg.payload.clone());
 
                    blocked.insert(predicate, branch);
 
                    unblocked.insert(predicate2, branch2);
 
                    Self::insert_branch_merging(&mut blocked, predicate, branch);
 
                    Self::insert_branch_merging(&mut unblocked, predicate2, branch2);
 
                }
 
                Aur::New(predicate2) => {
 
                    // fork branch, give fork the message and the new predicate. original branch untouched
 
                    log!(logger, "Forking this branch with new predicate {:?}", &predicate2);
 
                    let mut branch2 = branch.clone();
 
                    branch2.feed_msg(getter, send_payload_msg.payload.clone());
 
                    blocked.insert(predicate, branch);
 
                    unblocked.insert(predicate2, branch2);
 
                    Self::insert_branch_merging(&mut blocked, predicate, branch);
 
                    Self::insert_branch_merging(&mut unblocked, predicate2, branch2);
 
                }
 
            }
 
        }
 
        log!(logger, "blocked {:?} unblocked {:?}", blocked.len(), unblocked.len());
 
        // drain from unblocked --> blocked
 
        let (swap, _pcb_temps) = pcb_temps.split_first_mut();
 
        let cd = CyclicDrainer::new(unblocked.0, swap.0, blocked.0);
 
        BranchingProtoComponent::drain_branches_to_blocked(
 
            cd,
 
            cu,
 
            rctx,
 
            proto_component_id,
 
            ports,
 
        )?;
 
        // swap the blocked branches back
 
        std::mem::swap(blocked.0, branches);
 
        log!(cu.inner.logger, "component settles down with branches: {:?}", branches.keys());
 
        Ok(())
 
    }
 
    fn insert_branch_merging(
 
        branches: &mut HashMap<Predicate, ProtoComponentBranch>,
 
        predicate: Predicate,
 
        mut branch: ProtoComponentBranch,
 
    ) {
 
        let e = branches.entry(predicate);
 
        use std::collections::hash_map::Entry;
 
        match e {
 
            Entry::Vacant(ev) => {
 
                // no existing branch present. We insert it no problem. (The most common case)
 
                ev.insert(branch);
 
            }
 
            Entry::Occupied(mut eo) => {
 
                // Oh dear, there is already a branch with this predicate.
 
                // Rather than choosing either branch, we MERGE them.
 
                // This means keeping the existing one in-place, and giving it the UNION of the inboxes
 
                let old = eo.get_mut();
 
                for (k, v) in branch.inner.inbox.drain() {
 
                    old.inner.inbox.insert(k, v);
 
                }
 
            }
 
        }
 
    }
 
    fn collapse_with(self, solution_predicate: &Predicate) -> ProtoComponent {
 
        let BranchingProtoComponent { ports, branches } = self;
 
        for (branch_predicate, branch) in branches {
 
            if branch.ended && branch_predicate.assigns_subset(solution_predicate) {
 
                let ProtoComponentBranch { state, .. } = branch;
 
                return ProtoComponent { state, ports };
 
            }
 
        }
 
        panic!("ProtoComponent had no branches matching pred {:?}", solution_predicate);
 
    }
 
    fn initial(ProtoComponent { state, ports }: ProtoComponent) -> Self {
 
        let branch = ProtoComponentBranch { state, inner: Default::default(), ended: false };
 
        Self { ports, branches: hashmap! { Predicate::default() => branch } }
 
    }
 
}
 
impl SolutionStorage {
 
    fn new(subtree_ids: impl Iterator<Item = SubtreeId>) -> Self {
 
        let mut subtree_id_to_index: HashMap<SubtreeId, usize> = Default::default();
 
        let mut subtree_solutions = vec![];
 
        for id in subtree_ids {
 
            subtree_id_to_index.insert(id, subtree_solutions.len());
 
            subtree_solutions.push(Default::default())
 
        }
 
        Self {
 
            subtree_solutions,
 
            subtree_id_to_index,
 
            old_local: Default::default(),
 
            new_local: Default::default(),
 
        }
 
    }
 
    // fn is_clear(&self) -> bool {
 
    //     self.subtree_id_to_index.is_empty()
 
    //         && self.subtree_solutions.is_empty()
 
    //         && self.old_local.is_empty()
 
    //         && self.new_local.is_empty()
 
    // }
 
    // fn clear(&mut self) {
 
    //     self.subtree_id_to_index.clear();
 
    //     self.subtree_solutions.clear();
 
    //     self.old_local.clear();
 
    //     self.new_local.clear();
 
    // }
 
    // fn reset(&mut self, subtree_ids: impl Iterator<Item = SubtreeId>) {
 
    //     self.subtree_id_to_index.clear();
 
    //     self.subtree_solutions.clear();
 
    //     self.old_local.clear();
 
    //     self.new_local.clear();
 
    //     for key in subtree_ids {
 
    //         self.subtree_id_to_index.insert(key, self.subtree_solutions.len());
 
    //         self.subtree_solutions.push(Default::default())
 
    //     }
 
    // }
 
    pub(crate) fn iter_new_local_make_old(&mut self) -> impl Iterator<Item = Predicate> + '_ {
 
        let Self { old_local, new_local, .. } = self;
 
        new_local.drain().map(move |local| {
 
            old_local.insert(local.clone());
 
            local
 
        })
 
    }
 
    pub(crate) fn submit_and_digest_subtree_solution(
 
        &mut self,
 
        logger: &mut dyn Logger,
 
        subtree_id: SubtreeId,
 
        predicate: Predicate,
 
    ) {
 
        log!(logger, "++ new component solution {:?} {:?}", subtree_id, &predicate);
 
        let index = self.subtree_id_to_index[&subtree_id];
 
        let left = 0..index;
 
        let right = (index + 1)..self.subtree_solutions.len();
 

	
 
        let Self { subtree_solutions, new_local, old_local, .. } = self;
 
        let was_new = subtree_solutions[index].insert(predicate.clone());
 
        if was_new {
 
            let set_visitor = left.chain(right).map(|index| &subtree_solutions[index]);
 
            Self::elaborate_into_new_local_rec(
 
                logger,
 
                predicate,
 
                set_visitor,
 
                old_local,
 
                new_local,
 
            );
 
        }
 
    }
 
    fn elaborate_into_new_local_rec<'a, 'b>(
 
        logger: &mut dyn Logger,
 
        partial: Predicate,
 
        mut set_visitor: impl Iterator<Item = &'b HashSet<Predicate>> + Clone,
 
        old_local: &'b HashSet<Predicate>,
 
        new_local: &'a mut HashSet<Predicate>,
 
    ) {
 
        if let Some(set) = set_visitor.next() {
 
            // incomplete solution. keep traversing
 
            for pred in set.iter() {
 
                if let Some(elaborated) = pred.union_with(&partial) {
 
                    Self::elaborate_into_new_local_rec(
 
                        logger,
src/runtime/tests.rs
Show inline comments
 
@@ -870,119 +870,147 @@ fn ac_not_b() {
 
                synchronous{ put(c, get(a)); }
 
            }";
 
            let pd = Arc::new(reowolf::ProtocolDescription::parse(pdl).unwrap());
 
            let mut c = file_logged_configured_connector(1, test_log_path, pd);
 
            let p0 = c.new_net_port(Getter, sock_addrs[0], Passive).unwrap();
 
            let p1 = c.new_net_port(Getter, sock_addrs[1], Passive).unwrap();
 
            let [a, b] = c.new_port_pair();
 
            c.add_component(b"ac_not_b", &[p0, p1, a]).unwrap();
 
            c.connect(SEC1).unwrap();
 

	
 
            c.get(b).unwrap();
 
            c.sync(SEC1).unwrap_err();
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn many_rounds_net() {
 
    let test_log_path = Path::new("./logs/many_rounds_net");
 
    let sock_addrs = [next_test_addr()];
 
    const NUM_ROUNDS: usize = 1_000;
 
    scope(|s| {
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(0, test_log_path);
 
            let p0 = c.new_net_port(Putter, sock_addrs[0], Active).unwrap();
 
            c.connect(SEC1).unwrap();
 
            for _ in 0..NUM_ROUNDS {
 
                c.put(p0, TEST_MSG.clone()).unwrap();
 
                c.sync(SEC1).unwrap();
 
            }
 
        });
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(1, test_log_path);
 
            let p0 = c.new_net_port(Getter, sock_addrs[0], Passive).unwrap();
 
            c.connect(SEC1).unwrap();
 
            for _ in 0..NUM_ROUNDS {
 
                c.get(p0).unwrap();
 
                c.sync(SEC1).unwrap();
 
            }
 
        });
 
    })
 
    .unwrap();
 
}
 
#[test]
 
fn many_rounds_mem() {
 
    let test_log_path = Path::new("./logs/many_rounds_mem");
 
    const NUM_ROUNDS: usize = 1_000;
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let [p0, p1] = c.new_port_pair();
 
    c.connect(SEC1).unwrap();
 
    for _ in 0..NUM_ROUNDS {
 
        c.put(p0, TEST_MSG.clone()).unwrap();
 
        c.get(p1).unwrap();
 
        c.sync(SEC1).unwrap();
 
    }
 
}
 

	
 
#[test]
 
fn pdl_reo_lossy() {
 
    let pdl = b"
 
    primitive lossy(in a, out b) {
 
        while(true) synchronous {
 
            msg m = null;
 
            if(fires(a)) {
 
                m = get(a);
 
                if(fires(b)) {
 
                    put(b, m);
 
                }
 
            }
 
        }
 
    }
 
    ";
 
    reowolf::ProtocolDescription::parse(pdl).unwrap();
 
}
 

	
 
#[test]
 
fn pdl_reo_fifo1() {
 
    let pdl = b"
 
    primitive fifo1(in a, out b) {
 
        msg m = null;
 
        while(true) synchronous {
 
            if(m == null) {
 
                if(fires(a)) m=get(a);
 
            } else {
 
                if(fires(b)) put(b, m);
 
                m = null;
 
            }
 
        }
 
    }
 
    ";
 
    reowolf::ProtocolDescription::parse(pdl).unwrap();
 
}
 

	
 
#[test]
 
fn pdl_reo_fifo1full() {
 
    let test_log_path = Path::new("./logs/pdl_reo_fifo1full");
 
    let pdl = b"
 
    primitive fifo1full(in a, out b) {
 
        msg m = create(0);
 
        while(true) synchronous {
 
            if(m == null) {
 
                if(fires(a)) m=get(a);
 
            } else {
 
                if(fires(b)) put(b, m);
 
                m = null;
 
            }
 
        }
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = Connector::new(Box::new(DummyLogger), Arc::new(pd), 0);
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 
    let [_p0, g0] = c.new_port_pair();
 
    let [p1, g1] = c.new_port_pair();
 
    c.add_component(b"fifo1full", &[g0, p1]).unwrap();
 
    c.connect(None).unwrap();
 
    c.get(g1).unwrap();
 
    c.sync(None).unwrap();
 
    assert_eq!(0, c.gotten(g1).unwrap().len());
 
}
 

	
 
#[test]
 
fn pdl_msg_consensus() {
 
    let test_log_path = Path::new("./logs/pdl_msg_consensus");
 
    let pdl = b"
 
    primitive msgconsensus(in a, in b) {
 
        while(true) synchronous {
 
            msg x = get(a);
 
            msg y = get(b);
 
            assert(x == y);
 
        }
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 
    let [p0, g0] = c.new_port_pair();
 
    let [p1, g1] = c.new_port_pair();
 
    c.add_component(b"msgconsensus", &[g0, g1]).unwrap();
 
    c.connect(None).unwrap();
 
    c.put(p0, Payload::from(b"HELLO" as &[_])).unwrap();
 
    c.put(p1, Payload::from(b"HELLO" as &[_])).unwrap();
 
    c.sync(SEC1).unwrap();
 

	
 
    c.put(p0, Payload::from(b"HEY" as &[_])).unwrap();
 
    c.put(p1, Payload::from(b"HELLO" as &[_])).unwrap();
 
    c.sync(SEC1).unwrap_err();
 
}
0 comments (0 inline, 0 general)