Changeset - ef80a75d0e6b
[Not reviewed]
1 6 3
Christopher Esterhuyse - 5 years ago 2020-10-06 17:16:43
christopher.esterhuyse@gmail.com
minor simplifications
10 files changed with 283 insertions and 63 deletions:
0 comments (0 inline, 0 general)
examples/bench_15/main.c
Show inline comments
 
#include <time.h>
 
#include "../../reowolf.h"
 
#include "../utility.c"
 
int main(int argc, char** argv) {
 
	int i, cid;
 
	cid = atoi(argv[1]);
 
	printf("cid %d\n", cid);
 
	printf("Error str `%s`\n", reowolf_error_peek(NULL));
 

	
 
	unsigned char pdl[] = "";
 
	Arc_ProtocolDescription * pd = protocol_description_parse(pdl, sizeof(pdl)-1);
 
	Connector * c = connector_new_with_id(pd, cid);
 

	
 
	bool seen_delim = false;
 
	for(i=2; i<argc; i++) {
 
		EndpointPolarity ep;
 
		Polarity p;
 
		if(argv[i][0] == '.') {
 
			seen_delim = true;
 
			continue;
 
		} else if(seen_delim) {
 
			printf("putter");
 
			printf("getter");
 
			p = Polarity_Getter;
 
			ep = EndpointPolarity_Passive;
 
		} else {
 
			printf("getter");
 
			printf("putter");
 
			p = Polarity_Putter;
 
			ep = EndpointPolarity_Active;
 
		}
 
		FfiSocketAddr addr = {{127, 0, 0, 1}, atoi(argv[i])};
 
		printf("@%d\n", addr.port);
 
		connector_add_net_port(c, NULL, addr, p, ep);
 
	}
 
	printf("Added all ports!\n");
 
	connector_connect(c, -1);
 
	printf("Connect OK!\n");
 
	
 
	clock_t begin = clock();
 
	for (i=0; i<10000; i++) {
 
	for (i=0; i<100000; i++) {
 
		connector_sync(c, -1);
 
	}
 
	clock_t end = clock();
 
	double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
 
	printf("Time taken: %f\n", time_spent);
 
	return 0;
 
}
 
\ No newline at end of file
examples/bench_18/main.c
Show inline comments
 
#include <time.h>
 
#include "../../reowolf.h"
 
#include "../utility.c"
 
int main(int argc, char** argv) {
 
	// all outward connections are ACTIVE to localhost
 
	// use tcp_rendezvous
 
	int i, j, cid, min_putter, min_getter, ports_tot, ports_used;
 
	char do_puts, do_gets;
 
	cid = atoi(argv[1]);
 
	min_putter = atoi(argv[2]);
 
	min_getter = atoi(argv[3]);
 
	ports_tot = atoi(argv[4]);
 
	ports_used = atoi(argv[5]);
 
	do_puts = argv[6][0]; // 't' or 'f'
 
	do_gets = argv[7][0];
 
	printf("cid %d, min_putter %d, min_getter %d, ports_tot %d, ports_used %d, do_puts %c, do_gets %c\n",
 
		cid, min_putter, min_getter, ports_tot, ports_used, do_puts, do_gets);
 
	printf("Error str `%s`\n", reowolf_error_peek(NULL));
 

	
 
	unsigned char pdl[] = "";
 
	Arc_ProtocolDescription * pd = protocol_description_parse(pdl, sizeof(pdl)-1);
 
	Connector * c = connector_new_with_id(pd, cid);
 
	PortId putters[ports_tot], getters[ports_tot];
 
	for(i=0; i<ports_tot; i++) {
 
		connector_add_net_port(c, &putters[i],
 
			(FfiSocketAddr){{127, 0, 0, 1}, min_putter+i},
 
			Polarity_Putter, EndpointPolarity_Active);
 
		connector_add_net_port(c, &getters[i],
 
			(FfiSocketAddr){{127, 0, 0, 1}, min_getter+i},
 
			Polarity_Getter, EndpointPolarity_Active);
 
	}
 
	connector_connect(c, -1);
 
	printf("connect ok!\n");
 
	
 
	clock_t begin = clock();
 
	char msg[] = "Hello, world!";
 
	for (i=0; i<1000; i++) {
 
	for (i=0; i<1000000; i++) {
 
		for(j=0; j<ports_used; j++) {
 
			if(do_gets=='y') connector_get(c, getters[j]);
 
			if(do_puts=='y') connector_put_bytes(c, putters[j], msg, sizeof(msg)-1);
 
		}
 
		connector_sync(c, -1);
 
	}
 
	clock_t end = clock();
 
	double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
 
	printf("Time taken: %f\n", time_spent);
 
	return 0;
 
}
 
\ No newline at end of file
examples/bench_20/main.c
Show inline comments
 
new file 100644
 
#include <time.h>
 
#include "../../reowolf.h"
 
#include "../utility.c"
 
int main(int argc, char** argv) {
 
	// same as bench 15 but connecting to 87.210.104.102 and getting at 0.0.0.0
 
	// also, doing 10k reps (down from 100k) to save time
 
	int i, cid;
 
	cid = atoi(argv[1]);
 
	printf("cid %d\n", cid);
 
	printf("Error str `%s`\n", reowolf_error_peek(NULL));
 

	
 
	unsigned char pdl[] = "";
 
	Arc_ProtocolDescription * pd = protocol_description_parse(pdl, sizeof(pdl)-1);
 
	Connector * c = connector_new_with_id(pd, cid);
 

	
 
	bool seen_delim = false;
 
	for(i=2; i<argc; i++) {
 
		EndpointPolarity ep;
 
		Polarity p;
 
		FfiSocketAddr addr;
 
		if(argv[i][0] == '.') {
 
			seen_delim = true;
 
			continue;
 
		} else if(seen_delim) {
 
			addr = (FfiSocketAddr) {{0, 0, 0, 0}, atoi(argv[i])};
 
			printf("getter");
 
			p = Polarity_Getter;
 
			ep = EndpointPolarity_Passive;
 
		} else {
 
			addr = (FfiSocketAddr) {{87, 210, 104, 102}, atoi(argv[i])};
 
			printf("putter");
 
			p = Polarity_Putter;
 
			ep = EndpointPolarity_Active;
 
		}
 
		printf("@%d\n", addr.port);
 
		connector_add_net_port(c, NULL, addr, p, ep);
 
	}
 
	printf("Added all ports!\n");
 
	connector_connect(c, -1);
 
	printf("Connect OK!\n");
 
	
 
	clock_t begin = clock();
 
	for (i=0; i<150; i++) {
 
		connector_sync(c, -1);
 
	}
 
	clock_t end = clock();
 
	double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
 
	printf("Time taken: %f\n", time_spent);
 
	return 0;
 
}
 
\ No newline at end of file
examples/bench_21/main.c
Show inline comments
 
new file 100644
 
#include <time.h>
 
#include "../../reowolf.h"
 
#include "../utility.c"
 

	
 

	
 
int main(int argc, char** argv) {
 
	// one of two processes: {leader, follower}
 
	// where a set of `par_msgs` messages are sent leader->follower after
 
	// looping follower->leader->follower `msg_loops` times.
 
	int i, j, cid, msg_loops, par_msgs;
 
	char is_leader;
 
	is_leader = argv[1][0];
 
	msg_loops = atoi(argv[2]);
 
	par_msgs = atoi(argv[3]);
 
	// argv[4..8] encodes peer IP
 
	printf("is_leader %c, msg_loops %d, par_msgs %d\n", is_leader, msg_loops, par_msgs);
 
	cid = is_leader=='y'; // cid := { leader:1, follower:0 }
 

	
 
	unsigned char pdl[] = "";
 
	Arc_ProtocolDescription * pd = protocol_description_parse(pdl, sizeof(pdl)-1);
 
	Connector * c = connector_new_with_id(pd, cid);
 
	PortId native_ports[par_msgs];
 
	FfiSocketAddr peer_addr = {
 
		{
 
			atoi(argv[4]),
 
			atoi(argv[5]),
 
			atoi(argv[6]),
 
			atoi(argv[7])
 
		}, 0/*dummy value*/};
 
	int port = 7000;
 
	
 
	// for each parallel message 
 
	for(i=0; i<par_msgs; i++) {
 
		if(is_leader == 'y') {
 
			peer_addr.port = port++;
 
			connector_add_net_port(
 
				c, &native_ports[i], peer_addr, Polarity_Putter, EndpointPolarity_Active);
 
			printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
		}
 

	
 
		for(j=0; j<msg_loops; j++) {
 
			PortId loop_getter, loop_putter;
 

	
 
			// create {putter, getter} port pair
 
			connector_add_net_port(
 
				c, &loop_getter,
 
				(FfiSocketAddr) {{0,0,0,0}, port++},
 
				Polarity_Getter, EndpointPolarity_Passive);
 
			printf("Error str `%s`\n", reowolf_error_peek(NULL));
 

	
 
			peer_addr.port = port++;
 
			connector_add_net_port(
 
				c, &loop_putter, peer_addr, Polarity_Putter, EndpointPolarity_Active);
 
			printf("Error str `%s`\n", reowolf_error_peek(NULL));
 

	
 
			connector_add_component(c, "forward", 7,
 
				(PortId[]){loop_getter, loop_putter}, 2);
 
			printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
		}
 

	
 
		if(is_leader != 'y') {
 
			connector_add_net_port(
 
				c, &native_ports[i],
 
				(FfiSocketAddr) {{0,0,0,0}, port++},
 
				Polarity_Getter, EndpointPolarity_Passive);
 
			printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
		}
 
	}
 
	printf("Added all ports!\n");
 
	connector_connect(c, -1);
 
	printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
	printf("Connect OK!\n");
 
	
 
	clock_t begin = clock();
 
	char msg[] = "Hello, world!";
 
	for(i=0; i<250; i++) {
 
		if(is_leader == 'y') {
 
			for(j=0; j<par_msgs; j++) {
 
				connector_put_bytes(c, native_ports[j], msg, sizeof(msg)-1);
 
			}
 
		} else {
 
			for(j=0; j<par_msgs; j++) {
 
				connector_get(c, native_ports[j]);
 
			}
 
		}
 
		connector_sync(c, -1);
 
	}
 
	
 
	clock_t end = clock();
 
	double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
 
	printf("Time taken: %f\n", time_spent);
 
	return 0;
 
}
 
\ No newline at end of file
examples/bench_22/main.c
Show inline comments
 
new file 100644
 
#include <time.h>
 
#include "../../reowolf.h"
 
#include "../utility.c"
 

	
 

	
 
int main(int argc, char** argv) {
 
	// same as bench 21 but with parametric message length
 
	int i, j, cid, msg_loops, par_msgs, msg_len;
 
	char is_leader;
 
	is_leader = argv[1][0];
 
	msg_loops = atoi(argv[2]);
 
	par_msgs = atoi(argv[3]);
 
	msg_len = atoi(argv[8]);
 

	
 
	// argv[4..8] encodes peer IP
 
	printf("is_leader %c, msg_loops %d, par_msgs %d, msg_len %d\n", is_leader, msg_loops, par_msgs, msg_len);
 
	cid = is_leader=='y'; // cid := { leader:1, follower:0 }
 

	
 
	unsigned char pdl[] = "";
 
	Arc_ProtocolDescription * pd = protocol_description_parse(pdl, sizeof(pdl)-1);
 
	Connector * c = connector_new_with_id(pd, cid);
 
	PortId native_ports[par_msgs];
 
	FfiSocketAddr peer_addr = {
 
		{
 
			atoi(argv[4]),
 
			atoi(argv[5]),
 
			atoi(argv[6]),
 
			atoi(argv[7])
 
		}, 0/*dummy value*/};
 
	int port = 7000;
 
	
 
	// for each parallel message 
 
	for(i=0; i<par_msgs; i++) {
 
		if(is_leader == 'y') {
 
			peer_addr.port = port++;
 
			connector_add_net_port(
 
				c, &native_ports[i], peer_addr, Polarity_Putter, EndpointPolarity_Active);
 
			printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
		}
 

	
 
		for(j=0; j<msg_loops; j++) {
 
			PortId loop_getter, loop_putter;
 

	
 
			// create {putter, getter} port pair
 
			connector_add_net_port(
 
				c, &loop_getter,
 
				(FfiSocketAddr) {{0,0,0,0}, port++},
 
				Polarity_Getter, EndpointPolarity_Passive);
 
			printf("Error str `%s`\n", reowolf_error_peek(NULL));
 

	
 
			peer_addr.port = port++;
 
			connector_add_net_port(
 
				c, &loop_putter, peer_addr, Polarity_Putter, EndpointPolarity_Active);
 
			printf("Error str `%s`\n", reowolf_error_peek(NULL));
 

	
 
			connector_add_component(c, "forward", 7,
 
				(PortId[]){loop_getter, loop_putter}, 2);
 
			printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
		}
 

	
 
		if(is_leader != 'y') {
 
			connector_add_net_port(
 
				c, &native_ports[i],
 
				(FfiSocketAddr) {{0,0,0,0}, port++},
 
				Polarity_Getter, EndpointPolarity_Passive);
 
			printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
		}
 
	}
 
	printf("Added all ports!\n");
 
	connector_connect(c, -1);
 
	printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
	printf("Connect OK!\n");
 

	
 
	char * msg = malloc(msg_len);
 
	memset(msg, 42, msg_len);
 
	
 
	clock_t begin = clock();
 
	for(i=0; i<100000; i++) {
 
		if(is_leader == 'y') {
 
			for(j=0; j<par_msgs; j++) {
 
				connector_put_bytes(c, native_ports[j], msg, msg_len);
 
			}
 
		} else {
 
			for(j=0; j<par_msgs; j++) {
 
				connector_get(c, native_ports[j]);
 
			}
 
		}
 
		connector_sync(c, -1);
 
	}
 
	
 
	clock_t end = clock();
 
	double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
 
	printf("Time taken: %f\n", time_spent);
 
	free(msg);
 
	return 0;
 
}
 
\ No newline at end of file
examples/bench_8/main.c
Show inline comments
 
#include <time.h>
 
#include "../../reowolf.h"
 
#include "../utility.c"
 
int main(int argc, char** argv) {
 
	int i, forwards;
 
	int i, forwards, msglen;
 
	forwards = atoi(argv[1]);
 
	printf("forwards %d\n", forwards);
 
	msglen = atoi(argv[2]);
 
	printf("forwards %d, msglen %d\n", forwards, msglen);
 
	unsigned char pdl[] = ""; 
 
	Arc_ProtocolDescription * pd = protocol_description_parse(pdl, sizeof(pdl)-1);
 
	printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
	char logpath[] = "./bench_8.txt";
 
	Connector * c = connector_new_logging(pd, logpath, sizeof(logpath)-1);
 

	
 
	PortId native_putter, native_getter;
 
	connector_add_port_pair(c, &native_putter, &native_getter);
 
	for (i=0; i<forwards; i++) {
 
		PortId putter, getter;
 
		connector_add_port_pair(c, &putter, &getter);
 
		// native ports: {native_putter, native_getter, putter, getter}
 
		char ident[] = "forward"; // defined in reowolf's stdlib 
 
		// thread a forward component onto native_tail
 
		connector_add_component(c, ident, sizeof(ident)-1, (PortId[]){native_getter, putter}, 2);
 
		// native ports: {native_putter, getter}
 
		printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
		native_getter = getter;
 
	}
 
	connector_connect(c, -1);
 
	printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
	
 
	
 
	size_t msg_len = 0xffff;
 
	char * msg = malloc(msg_len);
 
	memset(msg, 42, msg_len);
 
	char * msg = malloc(msglen);
 
	memset(msg, 42, msglen);
 
	
 
	clock_t begin = clock();
 
	for (i=0; i<1000000; i++) {
 
		connector_put_bytes(c, native_putter, msg, msg_len);
 
	for (i=0; i<100000; i++) {
 
		connector_put_bytes(c, native_putter, msg, msglen);
 
		connector_get(c, native_getter);
 
		connector_sync(c, -1);
 
	}
 
	clock_t end = clock();
 
	double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
 
	printf("Time taken: %f\n", time_spent);
 
	return 0;
 
}
 
\ No newline at end of file
examples/zoop.sh
Show inline comments
 
deleted file
src/runtime/endpoints.rs
Show inline comments
 
use super::*;
 

	
 
// A wrapper for some Read type, delegating read calls
 
// to the contained Read structure, but snooping on
 
// the number of bytes it reads, to be inspected later.
 
struct MonitoredReader<R: Read> {
 
    bytes: usize,
 
    r: R,
 
}
 

	
 
enum PollAndPopulateError {
 
    PollFailed,
 
    Timeout,
 
}
 

	
 
struct TryRecvAnyNetError {
 
    error: NetEndpointError,
 
    index: usize,
 
}
 
/////////////////////
 
impl NetEndpoint {
 
    // Returns the bincode configuration the NetEndpoint uses pervasively
 
    // for configuration on ser/de operations.
 
    fn bincode_opts() -> impl bincode::config::Options {
 
        // uses variable-length encoding everywhere; great!
 
        bincode::config::DefaultOptions::default()
 
    }
 

	
 
    // Attempt to return some deserializable T-type from
 
    // the inbox or network stream
 
    pub(super) fn try_recv<T: serde::de::DeserializeOwned>(
 
        &mut self,
 
        logger: &mut dyn Logger,
 
    ) -> Result<Option<T>, NetEndpointError> {
 
        use NetEndpointError as Nee;
 
        // populate inbox with bytes as much as possible (mio::TcpStream is nonblocking)
 
        let before_len = self.inbox.len();
 
        'read_loop: loop {
 
            let res = self.stream.read_to_end(&mut self.inbox);
 
            match res {
 
                Err(e) if err_would_block(&e) => break 'read_loop,
 
                Ok(0) => break 'read_loop,
 
                Ok(_) => (),
 
                Err(_e) => return Err(Nee::BrokenNetEndpoint),
 
            }
 
        }
 
        log!(
 
            @ENDPT,
 
            logger,
 
            "Inbox bytes [{:x?}| {:x?}]",
 
            DenseDebugHex(&self.inbox[..before_len]),
 
            DenseDebugHex(&self.inbox[before_len..]),
 
        );
 
        // Try deserialize from the inbox, monitoring how many bytes
 
        // the deserialiation process consumes. In the event of
 
        // success, this makes clear where the message ends
 
        let mut monitored = MonitoredReader::from(&self.inbox[..]);
 
        // Try deserialize from the inbox. `reading_slice' is updated by read()
 
        // in-place to truncate the read part. In the event of success,
 
        // the message bytes are contained in the truncated prefix
 
        let mut reading_slice = self.inbox.as_slice();
 
        let before_len = reading_slice.len();
 
        use bincode::config::Options;
 
        match Self::bincode_opts().deserialize_from(&mut monitored) {
 
        match Self::bincode_opts().deserialize_from(&mut reading_slice) {
 
            Ok(msg) => {
 
                let msg_size = monitored.bytes_read();
 
                let msg_size = before_len - reading_slice.len();
 
                // inbox[..msg_size] was deserialized into one message!
 
                self.inbox.drain(..msg_size);
 
                log!(
 
                    @ENDPT,
 
                    logger,
 
                    "Yielding msg. Inbox len {}-{}=={}: [{:?}]",
 
                    self.inbox.len() + msg_size,
 
                    msg_size,
 
                    self.inbox.len(),
 
                    DenseDebugHex(&self.inbox[..]),
 
                );
 
                Ok(Some(msg))
 
            }
 
            Err(e) => match *e {
 
                bincode::ErrorKind::Io(k) if k.kind() == std::io::ErrorKind::UnexpectedEof => {
 
                    // Contents of inbox insufficient for deserializing a message
 
                    Ok(None)
 
                }
 
                _ => Err(Nee::MalformedMessage),
 
            },
 
        }
 
    }
 

	
 
    // Send the given serializable type into the stream
 
    pub(super) fn send<T: serde::ser::Serialize>(
 
    pub(super) fn send<T: serde::ser::Serialize + Debug>(
 
        &mut self,
 
        msg: &T,
 
        io_byte_buffer: &mut IoByteBuffer,
 
    ) -> Result<(), NetEndpointError> {
 
        use bincode::config::Options;
 
        use NetEndpointError as Nee;
 
        Self::bincode_opts()
 
            .serialize_into(&mut self.stream, msg)
 
        // Create a buffer for our bytes: a slice of the io_byte_buffer
 
        let mut buf_slice = io_byte_buffer.as_mut_slice();
 
        // serialize into the slice, truncating as its filled
 
        Self::bincode_opts().serialize_into(&mut buf_slice, msg).expect("Serialize failed!");
 
        // written segment is the part missing from buf_slice. Write this as one segment to the TCP stream
 
        let wrote = IoByteBuffer::CAPACITY - buf_slice.len();
 
        self.stream
 
            .write_all(&io_byte_buffer.as_mut_slice()[..wrote])
 
            .map_err(|_| Nee::BrokenNetEndpoint)?;
 
        let _ = self.stream.flush();
 
        Ok(())
 
    }
 
}
 

	
 
impl EndpointManager {
 
    pub(super) fn index_iter(&self) -> Range<usize> {
 
        0..self.num_net_endpoints()
 
    }
 
    pub(super) fn num_net_endpoints(&self) -> usize {
 
        self.net_endpoint_store.endpoint_exts.len()
 
    }
 

	
 
    // Setup-phase particular send procedure.
 
    // Used pervasively, allows for some brevity with the ? operator.
 
    pub(super) fn send_to_setup(&mut self, index: usize, msg: &Msg) -> Result<(), ConnectError> {
 
        let net_endpoint = &mut self.net_endpoint_store.endpoint_exts[index].net_endpoint;
 
        net_endpoint.send(msg).map_err(|err| {
 
        net_endpoint.send(msg, &mut self.io_byte_buffer).map_err(|err| {
 
            ConnectError::NetEndpointSetupError(net_endpoint.stream.local_addr().unwrap(), err)
 
        })
 
    }
 

	
 
    // Communication-phase particular send procedure.
 
    // Used pervasively, allows for some brevity with the ? operator.
 
    pub(super) fn send_to_comms(
 
        &mut self,
 
        index: usize,
 
        msg: &Msg,
 
    ) -> Result<(), UnrecoverableSyncError> {
 
        use UnrecoverableSyncError as Use;
 
        let net_endpoint = &mut self.net_endpoint_store.endpoint_exts[index].net_endpoint;
 
        net_endpoint.send(msg).map_err(|_| Use::BrokenNetEndpoint { index })
 
        net_endpoint
 
            .send(msg, &mut self.io_byte_buffer)
 
            .map_err(|_| Use::BrokenNetEndpoint { index })
 
    }
 

	
 
    /// Receive the first message of any kind at all.
 
    /// Why not return SetupMsg? Because often this message will be forwarded to several others,
 
    /// and by returning a Msg, it can be serialized in-place (NetEndpoints allow the sending of Msg types!)
 
    pub(super) fn try_recv_any_setup(
 
        &mut self,
 
        logger: &mut dyn Logger,
 
        deadline: &Option<Instant>,
 
    ) -> Result<(usize, Msg), ConnectError> {
 
        // helper function, mapping a TryRecvAnySetup type error
 
        // into a ConnectError
 
        fn map_trane(
 
            trane: TryRecvAnyNetError,
 
            net_endpoint_store: &EndpointStore<NetEndpointExt>,
 
        ) -> ConnectError {
 
            ConnectError::NetEndpointSetupError(
 
                net_endpoint_store.endpoint_exts[trane.index]
 
                    .net_endpoint
 
                    .stream
 
                    .local_addr()
 
                    .unwrap(), // stream must already be connected
 
                trane.error,
 
            )
 
        }
 
        // try yield undelayed net message
 
        if let Some(tup) = self.undelayed_messages.pop() {
 
            log!(@ENDPT, logger, "RECV undelayed_msg {:?}", &tup);
 
            return Ok(tup);
 
        }
 
        loop {
 
            // try recv from some polled undrained NET endpoint
 
            if let Some(tup) = self
 
                .try_recv_undrained_net(logger)
 
                .map_err(|trane| map_trane(trane, &self.net_endpoint_store))?
 
            {
 
                return Ok(tup);
 
            }
 
            // poll if time remains
 
            self.poll_and_populate(logger, deadline)?;
 
        }
 
    }
 

	
 
    // drops all Setup messages,
 
    // buffers all future round messages,
 
    // drops all previous round messages,
 
    // enqueues all current round SendPayload messages using rctx.getter_push
 
    // returns the first comm_ctrl_msg encountered
 
    // only polls until SOME message is enqueued
 
    pub(super) fn try_recv_any_comms(
 
        &mut self,
 
        cu: &mut impl CuUndecided,
 
        rctx: &mut RoundCtx,
 
        round_index: usize,
 
    ) -> Result<CommRecvOk, UnrecoverableSyncError> {
 
        ///////////////////////////////////////////
 
        // adds scoped functionality for EndpointManager
 
        impl EndpointManager {
 
            // Given some Msg structure in a particular context,
 
            // return a control message for the current round
 
            // if its a payload message, buffer it instead
 
            fn handle_msg(
 
                &mut self,
 
                cu: &mut impl CuUndecided,
 
                rctx: &mut RoundCtx,
 
                net_index: usize,
 
                msg: Msg,
 
                round_index: usize,
 
                some_message_enqueued: &mut bool,
 
            ) -> Option<(usize, CommCtrlMsg)> {
 
                let comm_msg_contents = match msg {
 
                    Msg::SetupMsg(..) => return None, // discard setup messages
 
                    Msg::CommMsg(comm_msg) => match comm_msg.round_index.cmp(&round_index) {
 
                        Ordering::Equal => comm_msg.contents, // ok, keep going
 
                        Ordering::Less => {
 
                            // discard this message
 
                            log!(
 
                                cu.logger(),
 
                                "We are in round {}, but msg is for round {}. Discard",
 
                                comm_msg.round_index,
 
                                round_index,
 
                            );
 
                            return None;
 
                        }
 
                        Ordering::Greater => {
 
                            // "delay" this message, enqueueing it for a future round
 
                            log!(
 
                                cu.logger(),
 
                                "We are in round {}, but msg is for round {}. Buffer",
 
                                comm_msg.round_index,
 
                                round_index,
 
                            );
 
                            self.delayed_messages.push((net_index, Msg::CommMsg(comm_msg)));
 
                            return None;
 
                        }
 
                    },
 
                };
 
                // inspect the contents of this contemporary message, sorting it
 
                match comm_msg_contents {
 
                    CommMsgContents::CommCtrl(comm_ctrl_msg) => {
 
                        // yes! this is a CommCtrlMsg
 
                        Some((net_index, comm_ctrl_msg))
 
                    }
 
                    CommMsgContents::SendPayload(send_payload_msg) => {
 
                        // Enqueue this payload message
 
                        // Still not a CommCtrlMsg, so return None
 
                        let getter =
 
                            self.net_endpoint_store.endpoint_exts[net_index].getter_for_incoming;
 
                        rctx.getter_push(getter, send_payload_msg);
 
                        *some_message_enqueued = true;
 
                        None
 
                    }
 
                }
 
            }
 
        }
 
        use {PollAndPopulateError as Pape, UnrecoverableSyncError as Use};
 
        ///////////////////////////////////////////
 
        let mut some_message_enqueued = false;
 
        // pop undelayed messages, handling them. Return the first CommCtrlMsg popped
 
        while let Some((net_index, msg)) = self.undelayed_messages.pop() {
 
            if let Some((net_index, msg)) =
 
                self.handle_msg(cu, rctx, net_index, msg, round_index, &mut some_message_enqueued)
 
            {
 
                return Ok(CommRecvOk::NewControlMsg { net_index, msg });
 
            }
 
        }
 
        loop {
 
            // drain endpoints of incoming messages (without blocking)
 
            // return first CommCtrlMsg received
 
            while let Some((net_index, msg)) = self.try_recv_undrained_net(cu.logger())? {
 
                if let Some((net_index, msg)) = self.handle_msg(
 
                    cu,
 
                    rctx,
 
                    net_index,
 
                    msg,
 
                    round_index,
 
                    &mut some_message_enqueued,
 
                ) {
 
                    return Ok(CommRecvOk::NewControlMsg { net_index, msg });
 
                }
 
            }
 
            // try receive a udp message
 
            let recv_buffer = self.udp_in_buffer.as_mut_slice();
 
            let recv_buffer = self.io_byte_buffer.as_mut_slice();
 
            while let Some(index) = self.udp_endpoint_store.polled_undrained.pop() {
 
                let ee = &mut self.udp_endpoint_store.endpoint_exts[index];
 
                if let Some(bytes_written) = ee.sock.recv(recv_buffer).ok() {
 
                    // I received a payload!
 
                    self.udp_endpoint_store.polled_undrained.insert(index);
 
                    if !ee.received_this_round {
 
                        let payload = Payload::from(&recv_buffer[..bytes_written]);
 
                        let port_spec_var = rctx.ips.port_info.spec_var_for(ee.getter_for_incoming);
 
                        let predicate = Predicate::singleton(port_spec_var, SpecVal::FIRING);
 
                        rctx.getter_push(
 
                            ee.getter_for_incoming,
 
                            SendPayloadMsg { payload, predicate },
 
                        );
 
                        some_message_enqueued = true;
 
                        ee.received_this_round = true;
 
                    } else {
 
                        // lose the message!
 
                    }
 
                }
 
            }
 
            if some_message_enqueued {
 
                return Ok(CommRecvOk::NewPayloadMsgs);
 
            }
 
            // poll if time remains
 
            match self.poll_and_populate(cu.logger(), &rctx.deadline) {
 
                Ok(()) => {} // continue looping
 
                Err(Pape::Timeout) => return Ok(CommRecvOk::TimeoutWithoutNew),
 
                Err(Pape::PollFailed) => return Err(Use::PollFailed),
 
            }
 
        }
 
    }
 

	
 
    // Try receive some message from any net endpoint without blocking
 
    fn try_recv_undrained_net(
 
        &mut self,
 
        logger: &mut dyn Logger,
 
    ) -> Result<Option<(usize, Msg)>, TryRecvAnyNetError> {
 
        while let Some(index) = self.net_endpoint_store.polled_undrained.pop() {
 
            let net_endpoint = &mut self.net_endpoint_store.endpoint_exts[index].net_endpoint;
 
            if let Some(msg) = net_endpoint
 
                .try_recv(logger)
 
                .map_err(|error| TryRecvAnyNetError { error, index })?
 
            {
 
                log!(@ENDPT, logger, "RECV polled_undrained {:?}", &msg);
 
                if !net_endpoint.inbox.is_empty() {
 
                    // there may be another message waiting!
 
                    self.net_endpoint_store.polled_undrained.insert(index);
 
                }
 
                return Ok(Some((index, msg)));
 
            }
 
        }
 
        Ok(None)
 
    }
 

	
 
    // Poll the network, raising `polled_undrained` flags for endpoints
 
    // as they receive events.
 
    fn poll_and_populate(
 
        &mut self,
 
        logger: &mut dyn Logger,
 
        deadline: &Option<Instant>,
 
    ) -> Result<(), PollAndPopulateError> {
 
        use PollAndPopulateError as Pape;
 
        // No message yet. Do we have enough time to poll?
 
        let remaining = if let Some(deadline) = deadline {
 
            Some(deadline.checked_duration_since(Instant::now()).ok_or(Pape::Timeout)?)
 
        } else {
 
            None
 
        };
 
        // Yes we do! Poll with remaining time as poll deadline
 
        self.poll.poll(&mut self.events, remaining).map_err(|_| Pape::PollFailed)?;
 
        for event in self.events.iter() {
 
            match TokenTarget::from(event.token()) {
 
                TokenTarget::NetEndpoint { index } => {
 
                    self.net_endpoint_store.polled_undrained.insert(index);
 
                    log!(
 
                        @ENDPT,
 
                        logger,
 
                        "RECV poll event {:?} for NET endpoint index {:?}. undrained: {:?}",
 
                        &event,
 
                        index,
 
                        self.net_endpoint_store.polled_undrained.iter()
 
                    );
 
                }
 
                TokenTarget::UdpEndpoint { index } => {
 
                    self.udp_endpoint_store.polled_undrained.insert(index);
 
                    log!(
 
                        @ENDPT,
 
                        logger,
 
                        "RECV poll event {:?} for UDP endpoint index {:?}. undrained: {:?}",
 
                        &event,
 
                        index,
 
                        self.udp_endpoint_store.polled_undrained.iter()
 
                    );
 
                }
 
            }
 
        }
 
        self.events.clear();
 
        Ok(())
 
    }
 

	
 
    // Move all delayed messages to undelayed, making it possible to yield them
 
    pub(super) fn undelay_all(&mut self) {
 
        if self.undelayed_messages.is_empty() {
 
            // fast path
 
            std::mem::swap(&mut self.delayed_messages, &mut self.undelayed_messages);
 
            return;
 
        }
 
        // slow path
 
        self.undelayed_messages.extend(self.delayed_messages.drain(..));
 
    }
 

	
 
    // End the synchronous round for the udp endpoints given the round decision
 
    pub(super) fn udp_endpoints_round_end(
 
        &mut self,
 
        logger: &mut dyn Logger,
 
        decision: &Decision,
 
    ) -> Result<(), UnrecoverableSyncError> {
 
        // retain received_from_this_round for use in pseudo_socket_api::recv_from
 
        log!(
 
            logger,
 
            "Ending round for {} udp endpoints",
 
            self.udp_endpoint_store.endpoint_exts.len()
 
        );
 
        use UnrecoverableSyncError as Use;
 
        if let Decision::Success(solution_predicate) = decision {
 
            // Similar to a native component, we commit the branch of the component
 
            // consistent with the predicate decided upon, making its effects visible
 
            // to the world outside the connector's internals.
 
            // In this case, this takes the form of emptying the component's outbox buffer,
 
            // actually sending payloads 'on the wire' as UDP messages.
 
            for (index, ee) in self.udp_endpoint_store.endpoint_exts.iter_mut().enumerate() {
 
                'outgoing_loop: for (payload_predicate, payload) in ee.outgoing_payloads.drain() {
 
                    if payload_predicate.assigns_subset(solution_predicate) {
 
                        ee.sock.send(payload.as_slice()).map_err(|e| {
 
                            println!("{:?}", e);
 
                            Use::BrokenUdpEndpoint { index }
 
                        })?;
 
                        log!(
 
                            logger,
 
                            "Sent payload {:?} with pred {:?} through Udp endpoint {}",
 
                            &payload,
 
                            &payload_predicate,
 
                            index
 
                        );
 
                        // send at most one payload per endpoint per round
 
                        break 'outgoing_loop;
 
                    }
 
                }
 
                ee.received_this_round = false;
 
            }
 
        }
 
        Ok(())
 
    }
 
}
 
impl Debug for NetEndpoint {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        struct DebugStream<'a>(&'a TcpStream);
 
        impl Debug for DebugStream<'_> {
 
            fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
                f.debug_struct("Endpoint")
 
                    .field("local_addr", &self.0.local_addr())
 
                    .field("peer_addr", &self.0.peer_addr())
 
                    .finish()
 
            }
 
        }
 
        f.debug_struct("Endpoint")
 
            .field("inbox", &self.inbox)
 
            .field("stream", &DebugStream(&self.stream))
 
            .finish()
 
    }
 
}
 
impl<R: Read> From<R> for MonitoredReader<R> {
 
    fn from(r: R) -> Self {
 
        Self { r, bytes: 0 }
 
    }
 
}
 
impl<R: Read> MonitoredReader<R> {
 
    pub(super) fn bytes_read(&self) -> usize {
 
        self.bytes
 
    }
 
}
 
impl<R: Read> Read for MonitoredReader<R> {
 
    fn read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error> {
 
        let n = self.r.read(buf)?;
 
        self.bytes += n;
 
        Ok(n)
 
    }
 
}
 
impl Into<Msg> for SetupMsg {
 
    fn into(self) -> Msg {
 
        Msg::SetupMsg(self)
 
    }
 
}
 
impl From<PollAndPopulateError> for ConnectError {
 
    fn from(pape: PollAndPopulateError) -> ConnectError {
 
        use {ConnectError as Ce, PollAndPopulateError as Pape};
 
        match pape {
 
            Pape::PollFailed => Ce::PollFailed,
 
            Pape::Timeout => Ce::Timeout,
 
        }
 
    }
 
}
 
impl From<TryRecvAnyNetError> for UnrecoverableSyncError {
 
    fn from(trane: TryRecvAnyNetError) -> UnrecoverableSyncError {
 
        let TryRecvAnyNetError { index, .. } = trane;
 
        UnrecoverableSyncError::BrokenNetEndpoint { index }
 
    }
 
}
src/runtime/mod.rs
Show inline comments
 
/// cbindgen:ignore
 
mod communication;
 
/// cbindgen:ignore
 
mod endpoints;
 
pub mod error;
 
/// cbindgen:ignore
 
mod logging;
 
/// cbindgen:ignore
 
mod setup;
 

	
 
#[cfg(test)]
 
mod tests;
 

	
 
use crate::common::*;
 
use error::*;
 
use mio::net::UdpSocket;
 

	
 
/// The interface between the user's application and a communication session,
 
/// in which the application plays the part of a (native) component. This structure provides the application
 
/// with functionality available to all components: the ability to add new channels (port pairs), and to
 
/// instantiate new components whose definitions are defined in the connector's configured protocol
 
/// description. Native components have the additional ability to add `dangling' ports backed by local/remote
 
/// IP addresses, to be coupled with a counterpart once the connector's setup is completed by `connect`.
 
/// This allows sets of applications to cooperate in constructing shared sessions that span the network.
 
#[derive(Debug)]
 
pub struct Connector {
 
    unphased: ConnectorUnphased,
 
    phased: ConnectorPhased,
 
}
 

	
 
/// Characterizes a type which can write lines of logging text.
 
/// The implementations provided in the `logging` module are likely to be sufficient,
 
/// but for added flexibility, users are able to implement their own loggers for use
 
/// by connectors.
 
pub trait Logger: Debug + Send + Sync {
 
    fn line_writer(&mut self) -> Option<&mut dyn std::io::Write>;
 
}
 

	
 
/// A logger that appends the logged strings to a growing byte buffer
 
#[derive(Debug)]
 
pub struct VecLogger(ConnectorId, Vec<u8>);
 

	
 
/// A trivial logger that always returns None, such that no logging information is ever written.
 
#[derive(Debug)]
 
pub struct DummyLogger;
 

	
 
/// A logger that writes the logged lines to a given file.
 
#[derive(Debug)]
 
pub struct FileLogger(ConnectorId, std::fs::File);
 

	
 
// Interface between protocol state and the connector runtime BEFORE all components
 
// ave begun their branching speculation. See ComponentState::nonsync_run.
 
pub(crate) struct NonsyncProtoContext<'a> {
 
    ips: &'a mut IdAndPortState,
 
    logger: &'a mut dyn Logger,
 
    unrun_components: &'a mut Vec<(ComponentId, ComponentState)>, // lives for Nonsync phase
 
    proto_component_id: ComponentId,                              // KEY in id->component map
 
}
 

	
 
// Interface between protocol state and the connector runtime AFTER all components
 
// have begun their branching speculation. See ComponentState::sync_run.
 
pub(crate) struct SyncProtoContext<'a> {
 
    rctx: &'a RoundCtx,
 
    branch_inner: &'a mut ProtoComponentBranchInner, // sub-structure of component branch
 
    predicate: &'a Predicate,                        // KEY in pred->branch map
 
}
 

	
 
// The data coupled with a particular protocol component branch, but crucially omitting
 
// the `ComponentState` such that this may be passed by reference to the state with separate
 
// access control.
 
#[derive(Default, Debug, Clone)]
 
struct ProtoComponentBranchInner {
 
    untaken_choice: Option<u16>,
 
    did_put_or_get: HashSet<PortId>,
 
    inbox: HashMap<PortId, Payload>,
 
}
 

	
 
// A speculative variable that lives for the duration of the synchronous round.
 
// Each is assigned a value in domain `SpecVal`.
 
#[derive(
 
    Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
struct SpecVar(PortId);
 

	
 
// The codomain of SpecVal. Has two associated constants for values FIRING and SILENT,
 
// but may also enumerate many more values to facilitate finer-grained nondeterministic branching.
 
#[derive(
 
    Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
struct SpecVal(u16);
 

	
 
// Data associated with a successful synchronous round, retained afterwards such that the
 
// native component can freely reflect on how it went, reading the messages received at their
 
// inputs, and reflecting on which of their connector's synchronous batches succeeded.
 
#[derive(Debug)]
 
struct RoundEndedNative {
 
    batch_index: usize,
 
    gotten: HashMap<PortId, Payload>,
 
}
 

	
 
// Implementation of a set in terms of a vector (optimized for reading, not writing)
 
#[derive(Default)]
 
struct VecSet<T: std::cmp::Ord> {
 
    // invariant: ordered, deduplicated
 
    vec: Vec<T>,
 
}
 

	
 
// Allows a connector to remember how to forward payloads towards the component that
 
// owns their destination port. `LocalComponent` corresponds with messages for components
 
// managed by the connector itself (hinting for it to look it up in a local structure),
 
// whereas the other variants direct the connector to forward the messages over the network.
 
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
 
enum Route {
 
    LocalComponent,
 
    NetEndpoint { index: usize },
 
    UdpEndpoint { index: usize },
 
}
 

	
 
// The outcome of a synchronous round, representing the distributed consensus.
 
// In the success case, the attached predicate encodes a row in the session's trace table.
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
enum Decision {
 
    Failure, // some connector timed out!
 
    Success(Predicate),
 
}
 

	
 
// The type of control messages exchanged between connectors over the network
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
enum Msg {
 
    SetupMsg(SetupMsg),
 
    CommMsg(CommMsg),
 
}
 

	
 
// Control messages exchanged during the setup phase only
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
enum SetupMsg {
 
    MyPortInfo(MyPortInfo),
 
    LeaderWave { wave_leader: ConnectorId },
 
    LeaderAnnounce { tree_leader: ConnectorId },
 
    YouAreMyParent,
 
    SessionGather { unoptimized_map: HashMap<ConnectorId, SessionInfo> },
 
    SessionScatter { optimized_map: HashMap<ConnectorId, SessionInfo> },
 
}
 

	
 
// A data structure encoding the state of a connector, passed around
 
// during the session optimization procedure.
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct SessionInfo {
 
    serde_proto_description: SerdeProtocolDescription,
 
    port_info: PortInfoMap,
 
    endpoint_incoming_to_getter: Vec<PortId>,
 
    proto_components: HashMap<ComponentId, ComponentState>,
 
}
 

	
 
// Newtype wrapper for an Arc<ProtocolDescription>,
 
// such that it can be (de)serialized for transmission over the network.
 
#[derive(Debug, Clone)]
 
struct SerdeProtocolDescription(Arc<ProtocolDescription>);
 

	
 
// Control message particular to the communication phase.
 
// as such, it's annotated with a round_index
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct CommMsg {
 
    round_index: usize,
 
    contents: CommMsgContents,
 
}
 

	
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
enum CommMsgContents {
 
    SendPayload(SendPayloadMsg),
 
    CommCtrl(CommCtrlMsg),
 
}
 

	
 
// Connector <-> connector control messages for use in the communication phase
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
enum CommCtrlMsg {
 
    Suggest { suggestion: Decision }, // child->parent
 
    Announce { decision: Decision },  // parent->child
 
}
 

	
 
// Speculative payload message, communicating the value for the given
 
// port's message predecated on the given speculative variable assignments.
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct SendPayloadMsg {
 
    predicate: Predicate,
 
    payload: Payload,
 
}
 

	
 
// Return result of `Predicate::assignment_union`, communicating the contents
 
// of the predicate which represents the (consistent) union of their mappings,
 
// if it exists (no variable mapped distinctly by the input predicates)
 
#[derive(Debug, PartialEq)]
 
enum AssignmentUnionResult {
 
    FormerNotLatter,
 
    LatterNotFormer,
 
    Equivalent,
 
    New(Predicate),
 
    Nonexistant,
 
}
 

	
 
// One of two endpoints for a control channel with a connector on either end.
 
// The underlying transport is TCP, so we use an inbox buffer to allow
 
// discrete payload receipt.
 
struct NetEndpoint {
 
    inbox: Vec<u8>,
 
    stream: TcpStream,
 
}
 

	
 
// Datastructure used during the setup phase representing a NetEndpoint TO BE SETUP
 
#[derive(Debug, Clone)]
 
struct NetEndpointSetup {
 
    getter_for_incoming: PortId,
 
    sock_addr: SocketAddr,
 
    endpoint_polarity: EndpointPolarity,
 
}
 

	
 
// Datastructure used during the setup phase representing a UdpEndpoint TO BE SETUP
 
#[derive(Debug, Clone)]
 
struct UdpEndpointSetup {
 
    getter_for_incoming: PortId,
 
    local_addr: SocketAddr,
 
    peer_addr: SocketAddr,
 
}
 

	
 
// NetEndpoint annotated with the ID of the port that receives payload
 
// messages received through the endpoint. This approach assumes that NetEndpoints
 
// DO NOT multiplex port->port channels, and so a mapping such as this is possible.
 
// As a result, the messages themselves don't need to carry the PortID with them.
 
#[derive(Debug)]
 
struct NetEndpointExt {
 
    net_endpoint: NetEndpoint,
 
    getter_for_incoming: PortId,
 
}
 

	
 
// Endpoint for a "raw" UDP endpoint. Corresponds to the "Udp Mediator Component"
 
// described in the literature.
 
// It acts as an endpoint by receiving messages via the poller etc. (managed by EndpointManager),
 
// It acts as a native component by managing a (speculative) set of payload messages (an outbox,
 
//  protecting the peer on the other side of the network).
 
#[derive(Debug)]
 
struct UdpEndpointExt {
 
    sock: UdpSocket, // already bound and connected
 
    received_this_round: bool,
 
    outgoing_payloads: HashMap<Predicate, Payload>,
 
    getter_for_incoming: PortId,
 
}
 

	
 
// Meta-data for the connector: its role in the consensus tree.
 
#[derive(Debug)]
 
struct Neighborhood {
 
    parent: Option<usize>,
 
    children: VecSet<usize>,
 
}
 

	
 
// Manages the connector's ID, and manages allocations for connector/port IDs.
 
#[derive(Debug, Clone)]
 
struct IdManager {
 
    connector_id: ConnectorId,
 
    port_suffix_stream: U32Stream,
 
    component_suffix_stream: U32Stream,
 
}
 

	
 
// Newtype wrapper around a byte buffer, used for UDP mediators to receive incoming datagrams.
 
struct UdpInBuffer {
 
struct IoByteBuffer {
 
    byte_vec: Vec<u8>,
 
}
 

	
 
// A generator of speculative variables. Created on-demand during the synchronous round
 
// by the IdManager.
 
#[derive(Debug)]
 
struct SpecVarStream {
 
    connector_id: ConnectorId,
 
    port_suffix_stream: U32Stream,
 
}
 

	
 
// Manages the messy state of the various endpoints, pollers, buffers, etc.
 
#[derive(Debug)]
 
struct EndpointManager {
 
    // invariants:
 
    // 1. net and udp endpoints are registered with poll with tokens computed with TargetToken::into
 
    // 2. Events is empty
 
    poll: Poll,
 
    events: Events,
 
    delayed_messages: Vec<(usize, Msg)>,
 
    undelayed_messages: Vec<(usize, Msg)>, // ready to yield
 
    net_endpoint_store: EndpointStore<NetEndpointExt>,
 
    udp_endpoint_store: EndpointStore<UdpEndpointExt>,
 
    udp_in_buffer: UdpInBuffer,
 
    io_byte_buffer: IoByteBuffer,
 
}
 

	
 
// A storage of endpoints, which keeps track of which components have raised
 
// an event during poll(), signifying that they need to be checked for new incoming data
 
#[derive(Debug)]
 
struct EndpointStore<T> {
 
    endpoint_exts: Vec<T>,
 
    polled_undrained: VecSet<usize>,
 
}
 

	
 
// The information associated with a port identifier, designed for local storage.
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct PortInfo {
 
    owner: ComponentId,
 
    peer: Option<PortId>,
 
    polarity: Polarity,
 
    route: Route,
 
}
 

	
 
// Similar to `PortInfo`, but designed for communication during the setup procedure.
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct MyPortInfo {
 
    polarity: Polarity,
 
    port: PortId,
 
    owner: ComponentId,
 
}
 

	
 
// Newtype around port info map, allowing the implementation of some
 
// useful methods
 
#[derive(Default, Debug, Clone, serde::Serialize, serde::Deserialize)]
 
struct PortInfoMap {
 
    // invariant: self.invariant_preserved()
 
    // `owned` is redundant information, allowing for fast lookup
 
    // of a component's owned ports (which occurs during the sync round a lot)
 
    map: HashMap<PortId, PortInfo>,
 
    owned: HashMap<ComponentId, HashSet<PortId>>,
 
}
 

	
 
// A convenient substructure for containing port info and the ID manager.
 
// Houses the bulk of the connector's persistent state between rounds.
 
// It turns out several situations require access to both things.
 
#[derive(Debug, Clone)]
 
struct IdAndPortState {
 
    port_info: PortInfoMap,
 
    id_manager: IdManager,
 
}
 

	
 
// A component's setup-phase-specific data
 
#[derive(Debug)]
 
struct ConnectorCommunication {
 
    round_index: usize,
 
    endpoint_manager: EndpointManager,
 
    neighborhood: Neighborhood,
 
    native_batches: Vec<NativeBatch>,
 
    round_result: Result<Option<RoundEndedNative>, SyncError>,
 
}
 

	
 
// A component's data common to both setup and communication phases
 
#[derive(Debug)]
 
struct ConnectorUnphased {
 
    proto_description: Arc<ProtocolDescription>,
 
    proto_components: HashMap<ComponentId, ComponentState>,
 
    logger: Box<dyn Logger>,
 
    ips: IdAndPortState,
 
    native_component_id: ComponentId,
 
}
 

	
 
// A connector's phase-specific data
 
#[derive(Debug)]
 
enum ConnectorPhased {
 
    Setup(Box<ConnectorSetup>),
 
    Communication(Box<ConnectorCommunication>),
 
}
 

	
 
// A connector's setup-phase-specific data
 
#[derive(Debug)]
 
struct ConnectorSetup {
 
    net_endpoint_setups: Vec<NetEndpointSetup>,
 
    udp_endpoint_setups: Vec<UdpEndpointSetup>,
 
}
 

	
 
// A newtype wrapper for a map from speculative variable to speculative value
 
// A missing mapping corresponds with "unspecified".
 
#[derive(Default, Clone, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
 
struct Predicate {
 
    assigned: BTreeMap<SpecVar, SpecVal>,
 
}
 

	
 
// Identifies a child of this connector in the _solution tree_.
 
// Each connector creates its own local solutions for the consensus procedure during `sync`,
 
// from the solutions of its children. Those children are either locally-managed components,
 
// (which are leaves in the solution tree), or other connectors reachable through the given
 
// network endpoint (which are internal nodes in the solution tree).
 
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
 
enum SubtreeId {
 
    LocalComponent(ComponentId),
 
    NetEndpoint { index: usize },
 
}
 

	
 
// An accumulation of the connector's knowledge of all (a) the local solutions its children
 
// in the solution tree have found, and (b) its own solutions derivable from those of its children.
 
// This structure starts off each round with an empty set, and accumulates solutions as they are found
 
// by local components, or received over the network in control messages.
 
// IMPORTANT: solutions, once found, don't go away until the end of the round. That is to
 
// say that these sets GROW until the round is over, and all solutions are reset.
 
#[derive(Debug)]
 
struct SolutionStorage {
 
    // invariant: old_local U new_local solutions are those that can be created from
 
    // the UNION of one element from each set in `subtree_solution`.
 
    // invariant is maintained by potentially populating new_local whenever subtree_solutions is populated.
 
    old_local: HashSet<Predicate>, // already sent to this connector's parent OR decided
 
    new_local: HashSet<Predicate>, // not yet sent to this connector's parent OR decided
 
    // this pair acts as SubtreeId -> HashSet<Predicate> which is friendlier to iteration
 
    subtree_solutions: Vec<HashSet<Predicate>>,
 
    subtree_id_to_index: HashMap<SubtreeId, usize>,
 
}
 

	
 
// Stores the transient data of a synchronous round.
 
// Some of it is for bookkeeping, and the rest is a temporary mirror of fields of
 
// `ConnectorUnphased`, such that any changes are safely contained within RoundCtx,
 
// and can be undone if the round fails.
 
struct RoundCtx {
 
    solution_storage: SolutionStorage,
 
    spec_var_stream: SpecVarStream,
 
    payload_inbox: Vec<(PortId, SendPayloadMsg)>,
 
    deadline: Option<Instant>,
 
    ips: IdAndPortState,
 
}
 

	
 
// A trait intended to limit the access of the ConnectorUnphased structure
 
// such that we don't accidentally modify any important component/port data
 
// while the results of the round are undecided. Why? Any actions during Connector::sync
 
// are _speculative_ until the round is decided, and we need a safe way of rolling
 
// back any changes.
 
trait CuUndecided {
 
    fn logger(&mut self) -> &mut dyn Logger;
 
    fn proto_description(&self) -> &ProtocolDescription;
 
    fn native_component_id(&self) -> ComponentId;
 
    fn logger_and_protocol_description(&mut self) -> (&mut dyn Logger, &ProtocolDescription);
 
}
 

	
 
// Represents a set of synchronous port operations that the native component
 
// has described as an "option" for completing during the synchronous rounds.
 
// Operations contained here succeed together or not at all.
 
// A native with N=2+ batches are expressing an N-way nondeterministic choice
 
#[derive(Debug, Default)]
 
struct NativeBatch {
 
    // invariant: putters' and getters' polarities respected
 
    to_put: HashMap<PortId, Payload>,
 
    to_get: HashSet<PortId>,
 
}
 

	
 
// Parallels a mio::Token type, but more clearly communicates
 
// the way it identifies the evented structre it corresponds to.
 
// See runtime/setup for methods converting between TokenTarget and mio::Token
 
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
 
enum TokenTarget {
 
    NetEndpoint { index: usize },
 
    UdpEndpoint { index: usize },
 
}
 

	
 
// Returned by the endpoint manager as a result of comm_recv, telling the connector what happened,
 
// such that it can know when to continue polling, and when to block.
 
enum CommRecvOk {
 
    TimeoutWithoutNew,
 
    NewPayloadMsgs,
 
    NewControlMsg { net_index: usize, msg: CommCtrlMsg },
 
}
 
////////////////
 
fn err_would_block(err: &std::io::Error) -> bool {
 
    err.kind() == std::io::ErrorKind::WouldBlock
 
}
 
impl<T: std::cmp::Ord> VecSet<T> {
 
    fn new(mut vec: Vec<T>) -> Self {
 
        // establish the invariant
 
        vec.sort();
 
        vec.dedup();
 
        Self { vec }
 
    }
 
    fn contains(&self, element: &T) -> bool {
 
        self.vec.binary_search(element).is_ok()
 
    }
 
    // Insert the given element. Returns whether it was already present.
 
    fn insert(&mut self, element: T) -> bool {
 
        match self.vec.binary_search(&element) {
 
            Ok(_) => false,
 
            Err(index) => {
 
                self.vec.insert(index, element);
 
                true
 
            }
 
        }
 
    }
 
    fn iter(&self) -> std::slice::Iter<T> {
 
        self.vec.iter()
 
    }
 
    fn pop(&mut self) -> Option<T> {
 
        self.vec.pop()
 
    }
 
}
 
impl PortInfoMap {
 
    fn ports_owned_by(&self, owner: ComponentId) -> impl Iterator<Item = &PortId> {
 
        self.owned.get(&owner).into_iter().flat_map(HashSet::iter)
 
    }
 
    fn spec_var_for(&self, port: PortId) -> SpecVar {
 
        // Every port maps to a speculative variable
 
        // Two distinct ports map to the same variable
 
        // IFF they are two ends of the same logical channel.
 
        let info = self.map.get(&port).unwrap();
 
        SpecVar(match info.polarity {
 
            Getter => port,
 
            Putter => info.peer.unwrap(),
 
        })
 
    }
 
    fn invariant_preserved(&self) -> bool {
 
        // for every port P with some owner O,
 
        // P is in O's owned set
 
        for (port, info) in self.map.iter() {
 
            match self.owned.get(&info.owner) {
 
                Some(set) if set.contains(port) => {}
 
                _ => {
 
                    println!("{:#?}\n WITH port {:?}", self, port);
 
                    return false;
 
                }
 
            }
 
        }
 
        // for every port P owned by every owner O,
 
        // P's owner is O
 
        for (&owner, set) in self.owned.iter() {
 
            for port in set {
 
                match self.map.get(port) {
 
                    Some(info) if info.owner == owner => {}
 
                    _ => {
 
                        println!("{:#?}\n WITH owner {:?} port {:?}", self, owner, port);
 
                        return false;
 
                    }
 
                }
 
            }
 
        }
 
        true
 
    }
 
}
 
impl SpecVarStream {
 
    fn next(&mut self) -> SpecVar {
 
        let phantom_port: PortId =
 
            Id { connector_id: self.connector_id, u32_suffix: self.port_suffix_stream.next() }
 
                .into();
 
        SpecVar(phantom_port)
 
    }
 
}
 
impl IdManager {
 
    fn new(connector_id: ConnectorId) -> Self {
 
        Self {
 
            connector_id,
 
            port_suffix_stream: Default::default(),
 
            component_suffix_stream: Default::default(),
 
        }
 
    }
 
    fn new_spec_var_stream(&self) -> SpecVarStream {
 
        // Spec var stream starts where the current port_id stream ends, with gap of SKIP_N.
 
        // This gap is entirely unnecessary (i.e. 0 is fine)
 
        // It's purpose is only to make SpecVars easier to spot in logs.
 
        // E.g. spot the spec var: { v0_0, v1_2, v1_103 }
 
        const SKIP_N: u32 = 100;
 
        let port_suffix_stream = self.port_suffix_stream.clone().n_skipped(SKIP_N);
 
        SpecVarStream { connector_id: self.connector_id, port_suffix_stream }
 
    }
 
    fn new_port_id(&mut self) -> PortId {
 
        Id { connector_id: self.connector_id, u32_suffix: self.port_suffix_stream.next() }.into()
 
    }
 
    fn new_component_id(&mut self) -> ComponentId {
 
        Id { connector_id: self.connector_id, u32_suffix: self.component_suffix_stream.next() }
 
            .into()
 
    }
 
}
 
impl Drop for Connector {
 
    fn drop(&mut self) {
 
        log!(self.unphased.logger(), "Connector dropping. Goodbye!");
 
    }
 
}
 
// Given a slice of ports, return the first, if any, port is present repeatedly
 
fn duplicate_port(slice: &[PortId]) -> Option<PortId> {
 
    let mut vec = Vec::with_capacity(slice.len());
 
    for port in slice.iter() {
 
        match vec.binary_search(port) {
 
            Err(index) => vec.insert(index, *port),
 
            Ok(_) => return Some(*port),
 
        }
 
    }
 
    None
 
}
 
impl Connector {
 
    /// Generate a random connector identifier from the system's source of randomness.
 
    pub fn random_id() -> ConnectorId {
 
        type Bytes8 = [u8; std::mem::size_of::<ConnectorId>()];
 
        unsafe {
 
            let mut bytes = std::mem::MaybeUninit::<Bytes8>::uninit();
 
            // getrandom is the canonical crate for a small, secure rng
 
            getrandom::getrandom(&mut *bytes.as_mut_ptr()).unwrap();
 
            // safe! representations of all valid Byte8 values are valid ConnectorId values
 
            std::mem::transmute::<_, _>(bytes.assume_init())
 
        }
 
    }
 

	
 
    /// Returns true iff the connector is in connected state, i.e., it's setup phase is complete,
 
    /// and it is ready to participate in synchronous rounds of communication.
 
    pub fn is_connected(&self) -> bool {
 
        // If designed for Rust usage, connectors would be exposed as an enum type from the start.
 
        // consequently, this "phased" business would also include connector variants and this would
 
        // get a lot closer to the connector impl. itself.
 
        // Instead, the C-oriented implementation doesn't distinguish connector states as types,
 
        // and distinguish them as enum variants instead
 
        match self.phased {
 
            ConnectorPhased::Setup(..) => false,
 
            ConnectorPhased::Communication(..) => true,
 
        }
 
    }
 

	
 
    /// Enables the connector's current logger to be swapped out for another
 
    pub fn swap_logger(&mut self, mut new_logger: Box<dyn Logger>) -> Box<dyn Logger> {
 
        std::mem::swap(&mut self.unphased.logger, &mut new_logger);
 
        new_logger
 
    }
 

	
 
    /// Access the connector's current logger
 
    pub fn get_logger(&mut self) -> &mut dyn Logger {
 
        &mut *self.unphased.logger
 
    }
 

	
 
    /// Create a new synchronous channel, returning its ends as a pair of ports,
 
    /// with polarity output, input respectively. Available during either setup/communication phase.
 
    /// # Panics
 
    /// This function panics if the connector's (large) port id space is exhausted.
 
    pub fn new_port_pair(&mut self) -> [PortId; 2] {
 
        let cu = &mut self.unphased;
 
        // adds two new associated ports, related to each other, and exposed to the native
 
        let mut new_cid = || cu.ips.id_manager.new_port_id();
 
        // allocate two fresh port identifiers
 
        let [o, i] = [new_cid(), new_cid()];
 
        // store info for each:
 
        // - they are each others' peers
 
        // - they are owned by a local component with id `cid`
 
        // - polarity putter, getter respectively
 
        cu.ips.port_info.map.insert(
 
            o,
 
            PortInfo {
 
                route: Route::LocalComponent,
 
                peer: Some(i),
 
                owner: cu.native_component_id,
 
                polarity: Putter,
 
            },
 
        );
 
        cu.ips.port_info.map.insert(
 
            i,
 
            PortInfo {
 
                route: Route::LocalComponent,
 
                peer: Some(o),
 
                owner: cu.native_component_id,
 
                polarity: Getter,
 
            },
 
        );
 
        cu.ips
 
            .port_info
 
            .owned
 
            .entry(cu.native_component_id)
 
            .or_default()
 
            .extend([o, i].iter().copied());
 

	
 
        log!(cu.logger, "Added port pair (out->in) {:?} -> {:?}", o, i);
 
        [o, i]
 
    }
 

	
 
    /// Instantiates a new component for the connector runtime to manage, and passing
 
    /// the given set of ports from the interface of the native component, to that of the
 
    /// newly created component (passing their ownership).
 
    /// # Errors
 
    /// Error is returned if the moved ports are not owned by the native component,
 
    /// if the given component name is not defined in the connector's protocol,
 
    /// the given sequence of ports contains a duplicate port,
 
    /// or if the component is unfit for instantiation with the given port sequence.
 
    /// # Panics
 
    /// This function panics if the connector's (large) component id space is exhausted.
 
    pub fn add_component(
 
        &mut self,
 
        identifier: &[u8],
 
        ports: &[PortId],
 
    ) -> Result<(), AddComponentError> {
 
        // Check for error cases first before modifying `cu`
 
        use AddComponentError as Ace;
 
        let cu = &self.unphased;
 
        if let Some(port) = duplicate_port(ports) {
 
            return Err(Ace::DuplicatePort(port));
 
        }
 
        let expected_polarities = cu.proto_description.component_polarities(identifier)?;
 
        if expected_polarities.len() != ports.len() {
 
            return Err(Ace::WrongNumberOfParamaters { expected: expected_polarities.len() });
 
        }
 
        for (&expected_polarity, &port) in expected_polarities.iter().zip(ports.iter()) {
 
            let info = cu.ips.port_info.map.get(&port).ok_or(Ace::UnknownPort(port))?;
 
            if info.owner != cu.native_component_id {
 
                return Err(Ace::UnknownPort(port));
 
            }
 
            if info.polarity != expected_polarity {
 
                return Err(Ace::WrongPortPolarity { port, expected_polarity });
 
            }
 
        }
 
        // No errors! Time to modify `cu`
 
        // create a new component and identifier
 
        let cu = &mut self.unphased;
 
        let new_cid = cu.ips.id_manager.new_component_id();
 
        cu.proto_components.insert(new_cid, cu.proto_description.new_component(identifier, ports));
 
        // update the ownership of moved ports
 
        for port in ports.iter() {
 
            match cu.ips.port_info.map.get_mut(port) {
 
                Some(port_info) => port_info.owner = new_cid,
 
                None => unreachable!(),
 
            }
 
        }
 
        if let Some(set) = cu.ips.port_info.owned.get_mut(&cu.native_component_id) {
 
            set.retain(|x| !ports.contains(x));
 
        }
 
        cu.ips.port_info.owned.insert(new_cid, ports.iter().copied().collect());
 
        Ok(())
 
    }
 
}
 
impl Predicate {
 
    #[inline]
 
    pub fn singleton(k: SpecVar, v: SpecVal) -> Self {
 
        Self::default().inserted(k, v)
 
    }
 
    #[inline]
 
    pub fn inserted(mut self, k: SpecVar, v: SpecVal) -> Self {
 
        self.assigned.insert(k, v);
 
        self
 
    }
 

	
 
    // Return true whether `self` is a subset of `maybe_superset`
 
    pub fn assigns_subset(&self, maybe_superset: &Self) -> bool {
 
        for (var, val) in self.assigned.iter() {
 
            match maybe_superset.assigned.get(var) {
 
                Some(val2) if val2 == val => {}
 
                _ => return false, // var unmapped, or mapped differently
 
            }
 
        }
 
        // `maybe_superset` mirrored all my assignments!
 
        true
 
    }
 

	
 
    /// Given the two predicates {self, other}, return that whose
 
    /// assignments are the union of those of both.
 
    fn assignment_union(&self, other: &Self) -> AssignmentUnionResult {
 
        use AssignmentUnionResult as Aur;
 
        // iterators over assignments of both predicates. Rely on SORTED ordering of BTreeMap's keys.
 
        let [mut s_it, mut o_it] = [self.assigned.iter(), other.assigned.iter()];
 
        let [mut s, mut o] = [s_it.next(), o_it.next()];
 
        // populate lists of assignments in self but not other and vice versa.
 
        // do this by incrementally unfolding the iterators, keeping an eye
 
        // on the ordering between the head elements [s, o].
 
        // whenever s<o, other is certainly missing element 's', etc.
 
        let [mut s_not_o, mut o_not_s] = [vec![], vec![]];
 
        loop {
 
            match [s, o] {
 
                [None, None] => break, // both iterators are empty
 
                [None, Some(x)] => {
 
                    // self's iterator is empty.
 
                    // all remaning elements are in other but not self
 
                    o_not_s.push(x);
 
                    o_not_s.extend(o_it);
 
                    break;
 
                }
 
                [Some(x), None] => {
 
                    // other's iterator is empty.
 
                    // all remaning elements are in self but not other
 
                    s_not_o.push(x);
 
                    s_not_o.extend(s_it);
 
                    break;
 
                }
 
                [Some((sid, sb)), Some((oid, ob))] => {
 
                    if sid < oid {
 
                        // o is missing this element
 
                        s_not_o.push((sid, sb));
 
                        s = s_it.next();
 
                    } else if sid > oid {
 
                        // s is missing this element
 
                        o_not_s.push((oid, ob));
 
                        o = o_it.next();
 
                    } else if sb != ob {
 
                        assert_eq!(sid, oid);
 
                        // both predicates assign the variable but differ on the value
 
                        // No predicate exists which satisfies both!
 
                        return Aur::Nonexistant;
 
                    } else {
 
                        // both predicates assign the variable to the same value
 
                        s = s_it.next();
 
                        o = o_it.next();
 
                    }
 
                }
 
            }
 
        }
 
        // Observed zero inconsistencies. A unified predicate exists...
 
        match [s_not_o.is_empty(), o_not_s.is_empty()] {
 
            [true, true] => Aur::Equivalent,       // ... equivalent to both.
 
            [false, true] => Aur::FormerNotLatter, // ... equivalent to self.
 
            [true, false] => Aur::LatterNotFormer, // ... equivalent to other.
 
            [false, false] => {
 
                // ... which is the union of the predicates' assignments but
 
                //     is equivalent to neither self nor other.
 
                let mut new = self.clone();
 
                for (&id, &b) in o_not_s {
 
                    new.assigned.insert(id, b);
 
                }
 
                Aur::New(new)
 
            }
 
        }
 
    }
 

	
 
    // Compute the union of the assignments of the two given predicates, if it exists.
 
    // It doesn't exist if there is some value which the predicates assign to different values.
 
    pub(crate) fn union_with(&self, other: &Self) -> Option<Self> {
 
        let mut res = self.clone();
 
        for (&channel_id, &assignment_1) in other.assigned.iter() {
 
            match res.assigned.insert(channel_id, assignment_1) {
 
                Some(assignment_2) if assignment_1 != assignment_2 => return None,
 
                _ => {}
 
            }
 
        }
 
        Some(res)
 
    }
 
    pub(crate) fn query(&self, var: SpecVar) -> Option<SpecVal> {
 
        self.assigned.get(&var).copied()
 
    }
 
}
 

	
 
impl RoundCtx {
 
    // remove an arbitrary buffered message, along with the ID of the getter who receives it
 
    fn getter_pop(&mut self) -> Option<(PortId, SendPayloadMsg)> {
 
        self.payload_inbox.pop()
 
    }
 

	
 
    // buffer a message along with the ID of the getter who receives it
 
    fn getter_push(&mut self, getter: PortId, msg: SendPayloadMsg) {
 
        self.payload_inbox.push((getter, msg));
 
    }
 

	
 
    // buffer a message along with the ID of the putter who sent it
 
    fn putter_push(&mut self, cu: &mut impl CuUndecided, putter: PortId, msg: SendPayloadMsg) {
 
        if let Some(getter) = self.ips.port_info.map.get(&putter).unwrap().peer {
 
            log!(cu.logger(), "Putter add (putter:{:?} => getter:{:?})", putter, getter);
 
            self.getter_push(getter, msg);
 
        } else {
 
            log!(cu.logger(), "Putter {:?} has no known peer!", putter);
 
            panic!("Putter {:?} has no known peer!");
 
        }
 
    }
 
}
 

	
 
impl<T: Debug + std::cmp::Ord> Debug for VecSet<T> {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        f.debug_set().entries(self.vec.iter()).finish()
 
    }
 
}
 
impl Debug for Predicate {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        struct Assignment<'a>((&'a SpecVar, &'a SpecVal));
 
        impl Debug for Assignment<'_> {
 
            fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
                write!(f, "{:?}={:?}", (self.0).0, (self.0).1)
 
            }
 
        }
 
        f.debug_set().entries(self.assigned.iter().map(Assignment)).finish()
 
    }
 
}
 
impl serde::Serialize for SerdeProtocolDescription {
 
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
 
    where
 
        S: serde::Serializer,
 
    {
 
        let inner: &ProtocolDescription = &self.0;
 
        inner.serialize(serializer)
 
    }
 
}
 
impl<'de> serde::Deserialize<'de> for SerdeProtocolDescription {
 
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
 
    where
 
        D: serde::Deserializer<'de>,
 
    {
 
        let inner: ProtocolDescription = ProtocolDescription::deserialize(deserializer)?;
 
        Ok(Self(Arc::new(inner)))
 
    }
 
}
 
impl IdParts for SpecVar {
 
    fn id_parts(self) -> (ConnectorId, U32Suffix) {
 
        self.0.id_parts()
 
    }
 
}
 
impl Debug for SpecVar {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        let (a, b) = self.id_parts();
 
        write!(f, "v{}_{}", a, b)
 
    }
 
}
 
impl SpecVal {
 
    const FIRING: Self = SpecVal(1);
 
    const SILENT: Self = SpecVal(0);
 
    fn is_firing(self) -> bool {
 
        self == Self::FIRING
 
        // all else treated as SILENT
 
    }
 
    fn iter_domain() -> impl Iterator<Item = Self> {
 
        (0..).map(SpecVal)
 
    }
 
}
 
impl Debug for SpecVal {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        self.0.fmt(f)
 
    }
 
}
 
impl Default for UdpInBuffer {
 
impl Default for IoByteBuffer {
 
    fn default() -> Self {
 
        let mut byte_vec = Vec::with_capacity(Self::CAPACITY);
 
        unsafe {
 
            // safe! this vector is guaranteed to have sufficient capacity
 
            byte_vec.set_len(Self::CAPACITY);
 
        }
 
        Self { byte_vec }
 
    }
 
}
 
impl UdpInBuffer {
 
    const CAPACITY: usize = u16::MAX as usize;
 
impl IoByteBuffer {
 
    const CAPACITY: usize = u16::MAX as usize + 1000;
 
    fn as_mut_slice(&mut self) -> &mut [u8] {
 
        self.byte_vec.as_mut_slice()
 
    }
 
}
 

	
 
impl Debug for UdpInBuffer {
 
impl Debug for IoByteBuffer {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        write!(f, "UdpInBuffer")
 
        write!(f, "IoByteBuffer")
 
    }
 
}
src/runtime/setup.rs
Show inline comments
 
use crate::common::*;
 
use crate::runtime::*;
 

	
 
#[derive(Default)]
 
struct ExtraPortInfo {
 
    info: HashMap<PortId, PortInfo>,
 
    peers: HashMap<PortId, PortId>,
 
}
 

	
 
impl TokenTarget {
 
    // subdivides the domain of usize into
 
    // [NET_ENDPOINT][UDP_ENDPOINT  ]
 
    // ^0            ^usize::MAX/2   ^usize::MAX
 
    const HALFWAY_INDEX: usize = usize::MAX / 2;
 
    const MAX_INDEX: usize = usize::MAX;
 
}
 
impl From<Token> for TokenTarget {
 
    fn from(Token(index): Token) -> Self {
 
        if let Some(shifted) = index.checked_sub(Self::HALFWAY_INDEX) {
 
            TokenTarget::UdpEndpoint { index: shifted }
 
        } else {
 
            TokenTarget::NetEndpoint { index }
 
        }
 
    }
 
}
 
impl Into<Token> for TokenTarget {
 
    fn into(self) -> Token {
 
        match self {
 
            TokenTarget::UdpEndpoint { index } => Token(index + Self::HALFWAY_INDEX),
 
            TokenTarget::NetEndpoint { index } => Token(index),
 
        }
 
    }
 
}
 
impl Connector {
 
    /// Create a new connector structure with the given protocol description (via Arc to facilitate sharing).
 
    /// The resulting connector will start in the setup phase, and cannot be used for communication until the
 
    /// `connect` procedure completes.
 
    /// # Safety
 
    /// The correctness of the system's underlying distributed algorithms requires that no two
 
    /// connectors have the same ID. If the user does not know the identifiers of other connectors in the
 
    /// system, it is advised to guess it using Connector::random_id (relying on the exceptionally low probability of an error).
 
    /// Sessions with duplicate connector identifiers will not result in any memory unsafety, but cannot be guaranteed
 
    /// to preserve their configured protocols.
 
    /// Fortunately, in most realistic cases, the presence of duplicate connector identifiers will result in an
 
    /// error during `connect`, observed as a peer misbehaving.
 
    pub fn new(
 
        mut logger: Box<dyn Logger>,
 
        proto_description: Arc<ProtocolDescription>,
 
        connector_id: ConnectorId,
 
    ) -> Self {
 
        log!(&mut *logger, "Created with connector_id {:?}", connector_id);
 
        let mut id_manager = IdManager::new(connector_id);
 
        let native_component_id = id_manager.new_component_id();
 
        Self {
 
            unphased: ConnectorUnphased {
 
                proto_description,
 
                proto_components: Default::default(),
 
                logger,
 
                native_component_id,
 
                ips: IdAndPortState { id_manager, port_info: Default::default() },
 
            },
 
            phased: ConnectorPhased::Setup(Box::new(ConnectorSetup {
 
                net_endpoint_setups: Default::default(),
 
                udp_endpoint_setups: Default::default(),
 
            })),
 
        }
 
    }
 

	
 
    /// Conceptually, this returning [p0, g1] is sugar for:
 
    /// 1. create port pair [p0, g0]
 
    /// 2. create port pair [p1, g1]
 
    /// 3. create udp component with interface of moved ports [p1, g0]
 
    /// 4. return [p0, g1]
 
    pub fn new_udp_mediator_component(
 
        &mut self,
 
        local_addr: SocketAddr,
 
        peer_addr: SocketAddr,
 
    ) -> Result<[PortId; 2], WrongStateError> {
 
        let Self { unphased: cu, phased } = self;
 
        match phased {
 
            ConnectorPhased::Communication(..) => Err(WrongStateError),
 
            ConnectorPhased::Setup(setup) => {
 
                let udp_index = setup.udp_endpoint_setups.len();
 
                let udp_cid = cu.ips.id_manager.new_component_id();
 
                // allocates 4 new port identifiers, two for each logical channel,
 
                // one channel per direction (into and out of the component)
 
                let mut npid = || cu.ips.id_manager.new_port_id();
 
                let [nin, nout, uin, uout] = [npid(), npid(), npid(), npid()];
 
                // allocate the native->udp_mediator channel's ports
 
                cu.ips.port_info.map.insert(
 
                    nout,
 
                    PortInfo {
 
                        route: Route::LocalComponent,
 
                        polarity: Putter,
 
                        peer: Some(uin),
 
                        owner: cu.native_component_id,
 
                    },
 
                );
 
                cu.ips.port_info.map.insert(
 
                    uin,
 
                    PortInfo {
 
                        route: Route::UdpEndpoint { index: udp_index },
 
                        polarity: Getter,
 
                        peer: Some(uin),
 
                        owner: udp_cid,
 
                    },
 
                );
 
                // allocate the udp_mediator->native channel's ports
 
                cu.ips.port_info.map.insert(
 
                    uout,
 
                    PortInfo {
 
                        route: Route::UdpEndpoint { index: udp_index },
 
                        polarity: Putter,
 
                        peer: Some(uin),
 
                        owner: udp_cid,
 
                    },
 
                );
 
                cu.ips.port_info.map.insert(
 
                    nin,
 
                    PortInfo {
 
                        route: Route::LocalComponent,
 
                        polarity: Getter,
 
                        peer: Some(uout),
 
                        owner: cu.native_component_id,
 
                    },
 
                );
 
                // allocate the two ports owned by the UdpMediator component
 
                // Remember to setup this UdpEndpoint setup during `connect` later.
 
                setup.udp_endpoint_setups.push(UdpEndpointSetup {
 
                    local_addr,
 
                    peer_addr,
 
                    getter_for_incoming: nin,
 
                });
 

	
 
                // update owned sets
 
                cu.ips
 
                    .port_info
 
                    .owned
 
                    .entry(cu.native_component_id)
 
                    .or_default()
 
                    .extend([nin, nout].iter().copied());
 
                cu.ips.port_info.owned.insert(udp_cid, maplit::hashset! {uin, uout});
 
                // Return the native's output, input port pair
 
                Ok([nout, nin])
 
            }
 
        }
 
    }
 

	
 
    /// Adds a "dangling" port to the connector in the setup phase,
 
    /// to be formed into channel during the connect procedure with the given
 
    /// transport layer information.
 
    pub fn new_net_port(
 
        &mut self,
 
        polarity: Polarity,
 
        sock_addr: SocketAddr,
 
        endpoint_polarity: EndpointPolarity,
 
    ) -> Result<PortId, WrongStateError> {
 
        let Self { unphased: cu, phased } = self;
 
        match phased {
 
            ConnectorPhased::Communication(..) => Err(WrongStateError),
 
            ConnectorPhased::Setup(setup) => {
 
                // allocate a single dangling port with a `None` peer (for now)
 
                let new_pid = cu.ips.id_manager.new_port_id();
 
                cu.ips.port_info.map.insert(
 
                    new_pid,
 
                    PortInfo {
 
                        route: Route::LocalComponent,
 
                        peer: None,
 
                        owner: cu.native_component_id,
 
                        polarity,
 
                    },
 
                );
 
                log!(
 
                    cu.logger,
 
                    "Added net port {:?} with polarity {:?} addr {:?} endpoint_polarity {:?}",
 
                    new_pid,
 
                    polarity,
 
                    &sock_addr,
 
                    endpoint_polarity
 
                );
 
                // Remember to setup this NetEndpoint setup during `connect` later.
 
                setup.net_endpoint_setups.push(NetEndpointSetup {
 
                    sock_addr,
 
                    endpoint_polarity,
 
                    getter_for_incoming: new_pid,
 
                });
 
                // update owned set
 
                cu.ips.port_info.owned.entry(cu.native_component_id).or_default().insert(new_pid);
 
                Ok(new_pid)
 
            }
 
        }
 
    }
 

	
 
    /// Finalizes the connector's setup procedure and forms a distributed system with
 
    /// all other connectors reachable through network channels. This procedure represents
 
    /// a synchronization barrier, and upon successful return, the connector can no longer add new network ports,
 
    /// but is ready to begin the first communication round.
 
    /// Initially, the connector has a singleton set of _batches_, the only element of which is empty.
 
    /// This single element starts off selected. The selected batch is modified with `put` and `get`,
 
    /// and new batches are added and selected with `next_batch`. See `sync` for an explanation of the
 
    /// purpose of these batches.
 
    pub fn connect(&mut self, timeout: Option<Duration>) -> Result<(), ConnectError> {
 
        use ConnectError as Ce;
 
        let Self { unphased: cu, phased } = self;
 
        match &phased {
 
            ConnectorPhased::Communication { .. } => {
 
                log!(cu.logger, "Call to connecting in connected state");
 
                Err(Ce::AlreadyConnected)
 
            }
 
            ConnectorPhased::Setup(setup) => {
 
                log!(cu.logger, "~~~ CONNECT called timeout {:?}", timeout);
 
                let deadline = timeout.map(|to| Instant::now() + to);
 
                // connect all endpoints in parallel; send and receive peer ids through ports
 
                let (mut endpoint_manager, mut extra_port_info) = setup_endpoints_and_pair_ports(
 
                    &mut *cu.logger,
 
                    &setup.net_endpoint_setups,
 
                    &setup.udp_endpoint_setups,
 
                    &cu.ips.port_info,
 
                    &deadline,
 
                )?;
 
                log!(
 
                    cu.logger,
 
                    "Successfully connected {} endpoints. info now {:#?} {:#?}",
 
                    endpoint_manager.net_endpoint_store.endpoint_exts.len(),
 
                    &cu.ips.port_info,
 
                    &endpoint_manager,
 
                );
 
                // leader election and tree construction. Learn our role in the consensus tree,
 
                // from learning who are our children/parents (neighbors) in the consensus tree.
 
                let neighborhood = init_neighborhood(
 
                    cu.ips.id_manager.connector_id,
 
                    &mut *cu.logger,
 
                    &mut endpoint_manager,
 
                    &deadline,
 
                )?;
 
                log!(cu.logger, "Successfully created neighborhood {:?}", &neighborhood);
 
                // Put it all together with an initial round index of zero.
 
                let mut comm = ConnectorCommunication {
 
                    round_index: 0,
 
                    endpoint_manager,
 
                    neighborhood,
 
                    native_batches: vec![Default::default()],
 
                    round_result: Ok(None), // no previous round yet
 
                };
 
                if cfg!(feature = "session_optimization") {
 
                    // Perform the session optimization procedure, which may modify the
 
                    // internals of the connector, rerouting ports, moving around connectors etc.
 
                    session_optimize(cu, &mut comm, &deadline)?;
 
                }
 
                log!(cu.logger, "connect() finished. setup phase complete");
 
                // Connect procedure successful! Commit changes by...
 
                // ... commiting new port info for ConnectorUnphased
 
                for (port, info) in extra_port_info.info.drain() {
 
                    cu.ips.port_info.owned.entry(info.owner).or_default().insert(port);
 
                    cu.ips.port_info.map.insert(port, info);
 
                }
 
                for (port, peer) in extra_port_info.peers.drain() {
 
                    cu.ips.port_info.map.get_mut(&port).unwrap().peer = Some(peer);
 
                }
 
                // ... replacing the connector's phase to "communication"
 
                *phased = ConnectorPhased::Communication(Box::new(comm));
 
                Ok(())
 
            }
 
        }
 
    }
 
}
 

	
 
// Given a set of net_ and udp_ endpoints to setup,
 
// port information to flesh out (by discovering peers through channels)
 
// and a deadline in which to do it,
 
// try to return:
 
// - An EndpointManager, containing all the set up endpoints
 
// - new information about ports acquired through the newly-created channels
 
fn setup_endpoints_and_pair_ports(
 
    logger: &mut dyn Logger,
 
    net_endpoint_setups: &[NetEndpointSetup],
 
    udp_endpoint_setups: &[UdpEndpointSetup],
 
    port_info: &PortInfoMap,
 
    deadline: &Option<Instant>,
 
) -> Result<(EndpointManager, ExtraPortInfo), ConnectError> {
 
    use ConnectError as Ce;
 
    const BOTH: Interest = Interest::READABLE.add(Interest::WRITABLE);
 
    const RETRY_PERIOD: Duration = Duration::from_millis(200);
 

	
 
    // The data for a net endpoint's setup in progress
 
    struct NetTodo {
 
        // becomes completed once sent_local_port && recv_peer_port.is_some()
 
        // we send local port if we haven't already and we receive a writable event
 
        // we recv peer port if we haven't already and we receive a readbale event
 
        todo_endpoint: NetTodoEndpoint,
 
        endpoint_setup: NetEndpointSetup,
 
        sent_local_port: bool,          // true <-> I've sent my local port
 
        recv_peer_port: Option<PortId>, // Some(..) <-> I've received my peer's port
 
    }
 

	
 
    // The data for a udp endpoint's setup in progress
 
    struct UdpTodo {
 
        // becomes completed once we receive our first writable event
 
        getter_for_incoming: PortId,
 
        sock: UdpSocket,
 
    }
 

	
 
    // Substructure of `NetTodo`, which represents the endpoint itself
 
    enum NetTodoEndpoint {
 
        Accepting(TcpListener),       // awaiting it's peer initiating the connection
 
        PeerInfoRecving(NetEndpoint), // awaiting info about peer port through the channel
 
    }
 

	
 
    ////////////////////////////////////////////
 

	
 
    // Start to construct our return values
 
    // let mut waker_state: Option<Arc<WakerState>> = None;
 
    let mut extra_port_info = ExtraPortInfo::default();
 
    let mut poll = Poll::new().map_err(|_| Ce::PollInitFailed)?;
 
    let mut events =
 
        Events::with_capacity((net_endpoint_setups.len() + udp_endpoint_setups.len()) * 2 + 4);
 
    let [mut net_polled_undrained, udp_polled_undrained] = [VecSet::default(), VecSet::default()];
 
    let mut delayed_messages = vec![];
 
    let mut last_retry_at = Instant::now();
 
    let mut io_byte_buffer = IoByteBuffer::default();
 

	
 
    // Create net/udp todo structures, each already registered with poll
 
    let mut net_todos = net_endpoint_setups
 
        .iter()
 
        .enumerate()
 
        .map(|(index, endpoint_setup)| {
 
            let token = TokenTarget::NetEndpoint { index }.into();
 
            log!(logger, "Net endpoint {} beginning setup with {:?}", index, &endpoint_setup);
 
            let todo_endpoint = if let EndpointPolarity::Active = endpoint_setup.endpoint_polarity {
 
                let mut stream = TcpStream::connect(endpoint_setup.sock_addr)
 
                    .map_err(|_| Ce::TcpInvalidConnect(endpoint_setup.sock_addr))?;
 
                poll.registry().register(&mut stream, token, BOTH).unwrap();
 
                NetTodoEndpoint::PeerInfoRecving(NetEndpoint { stream, inbox: vec![] })
 
            } else {
 
                let mut listener = TcpListener::bind(endpoint_setup.sock_addr)
 
                    .map_err(|_| Ce::BindFailed(endpoint_setup.sock_addr))?;
 
                poll.registry().register(&mut listener, token, BOTH).unwrap();
 
                NetTodoEndpoint::Accepting(listener)
 
            };
 
            Ok(NetTodo {
 
                todo_endpoint,
 
                sent_local_port: false,
 
                recv_peer_port: None,
 
                endpoint_setup: endpoint_setup.clone(),
 
            })
 
        })
 
        .collect::<Result<Vec<NetTodo>, ConnectError>>()?;
 
    let udp_todos = udp_endpoint_setups
 
        .iter()
 
        .enumerate()
 
        .map(|(index, endpoint_setup)| {
 
            let mut sock = UdpSocket::bind(endpoint_setup.local_addr)
 
                .map_err(|_| Ce::BindFailed(endpoint_setup.local_addr))?;
 
            sock.connect(endpoint_setup.peer_addr)
 
                .map_err(|_| Ce::UdpConnectFailed(endpoint_setup.peer_addr))?;
 
            poll.registry()
 
                .register(&mut sock, TokenTarget::UdpEndpoint { index }.into(), Interest::WRITABLE)
 
                .unwrap();
 
            Ok(UdpTodo { sock, getter_for_incoming: endpoint_setup.getter_for_incoming })
 
        })
 
        .collect::<Result<Vec<UdpTodo>, ConnectError>>()?;
 

	
 
    // Initially no net connections have failed, and all udp and net endpoint setups are incomplete
 
    let mut net_connect_to_retry: HashSet<usize> = Default::default();
 
    let mut setup_incomplete: HashSet<TokenTarget> = {
 
        let net_todo_targets_iter =
 
            (0..net_todos.len()).map(|index| TokenTarget::NetEndpoint { index });
 
        let udp_todo_targets_iter =
 
            (0..udp_todos.len()).map(|index| TokenTarget::UdpEndpoint { index });
 
        net_todo_targets_iter.chain(udp_todo_targets_iter).collect()
 
    };
 
    // progress by reacting to poll events. continue until every endpoint is set up
 
    while !setup_incomplete.is_empty() {
 
        // recompute the timeout for the poll call
 
        let remaining = match (deadline, net_connect_to_retry.is_empty()) {
 
            (None, true) => None,
 
            (None, false) => Some(RETRY_PERIOD),
 
            (Some(deadline), is_empty) => {
 
                let dur_to_timeout =
 
                    deadline.checked_duration_since(Instant::now()).ok_or(Ce::Timeout)?;
 
                Some(if is_empty { dur_to_timeout } else { dur_to_timeout.min(RETRY_PERIOD) })
 
            }
 
        };
 
        // block until either
 
        // (a) `events` has been populated with 1+ elements
 
        // (b) timeout elapses, or
 
        // (c) RETRY_PERIOD elapses
 
        poll.poll(&mut events, remaining).map_err(|_| Ce::PollFailed)?;
 
        if last_retry_at.elapsed() > RETRY_PERIOD {
 
            // Retry all net connections and reset `last_retry_at`
 
            last_retry_at = Instant::now();
 
            for net_index in net_connect_to_retry.drain() {
 
                // Restart connect procedure for this net endpoint
 
                let net_todo = &mut net_todos[net_index];
 
                log!(
 
                    logger,
 
                    "Restarting connection with endpoint {:?} {:?}",
 
                    net_index,
 
                    net_todo.endpoint_setup.sock_addr
 
                );
 
                match &mut net_todo.todo_endpoint {
 
                    NetTodoEndpoint::PeerInfoRecving(endpoint) => {
 
                        let mut new_stream = TcpStream::connect(net_todo.endpoint_setup.sock_addr)
 
                            .expect("mio::TcpStream connect should not fail!");
 
                        std::mem::swap(&mut endpoint.stream, &mut new_stream);
 
                        let token = TokenTarget::NetEndpoint { index: net_index }.into();
 
                        poll.registry().register(&mut endpoint.stream, token, BOTH).unwrap();
 
                    }
 
                    _ => unreachable!(),
 
                }
 
            }
 
        }
 
        for event in events.iter() {
 
            let token = event.token();
 
            // figure out which endpoint the event belonged to
 
            let token_target = TokenTarget::from(token);
 
            match token_target {
 
                TokenTarget::UdpEndpoint { index } => {
 
                    // UdpEndpoints are easy to complete.
 
                    // Their setup event just has to succeed without error
 
                    if !setup_incomplete.contains(&token_target) {
 
                        // spurious wakeup. this endpoint has already been set up!
 
                        continue;
 
                    }
 
                    let udp_todo: &UdpTodo = &udp_todos[index];
 
                    if event.is_error() {
 
                        return Err(Ce::BindFailed(udp_todo.sock.local_addr().unwrap()));
 
                    }
 
                    setup_incomplete.remove(&token_target);
 
                }
 
                TokenTarget::NetEndpoint { index } => {
 
                    // NetEndpoints are complex to complete,
 
                    // they must accept/connect to their peer,
 
                    // and then exchange port info successfully
 
                    let net_todo = &mut net_todos[index];
 
                    if let NetTodoEndpoint::Accepting(listener) = &mut net_todo.todo_endpoint {
 
                        // Passive endpoint that will first try accept the peer's connection
 
                        match listener.accept() {
 
                            Err(e) if err_would_block(&e) => continue, // spurious wakeup
 
                            Err(_) => {
 
                                log!(logger, "accept() failure on index {}", index);
 
                                return Err(Ce::AcceptFailed(listener.local_addr().unwrap()));
 
                            }
 
                            Ok((mut stream, peer_addr)) => {
 
                                // successfully accepted the active peer
 
                                // reusing the token, but now for the stream and not the listener
 
                                poll.registry().deregister(listener).unwrap();
 
                                poll.registry().register(&mut stream, token, BOTH).unwrap();
 
                                log!(
 
                                    logger,
 
                                    "Endpoint[{}] accepted a connection from {:?}",
 
                                    index,
 
                                    peer_addr
 
                                );
 
                                let net_endpoint = NetEndpoint { stream, inbox: vec![] };
 
                                net_todo.todo_endpoint =
 
                                    NetTodoEndpoint::PeerInfoRecving(net_endpoint);
 
                            }
 
                        }
 
                    }
 
                    // OK now let's try and finish exchanging port info
 
                    if let NetTodoEndpoint::PeerInfoRecving(net_endpoint) =
 
                        &mut net_todo.todo_endpoint
 
                    {
 
                        if event.is_error() {
 
                            // event signals some error! :(
 
                            if net_todo.endpoint_setup.endpoint_polarity
 
                                == EndpointPolarity::Passive
 
                            {
 
                                // breaking as the acceptor is currently unrecoverable
 
                                return Err(Ce::AcceptFailed(
 
                                    net_endpoint.stream.local_addr().unwrap(),
 
                                ));
 
                            }
 
                            // this actively-connecting endpoint failed to connect!
 
                            // We will schedule it for a retry
 
                            net_connect_to_retry.insert(index);
 
                            continue;
 
                        }
 
                        // event wasn't ERROR
 
                        if net_connect_to_retry.contains(&index) {
 
                            // spurious wakeup. already scheduled to retry connect later
 
                            continue;
 
                        }
 
                        if !setup_incomplete.contains(&token_target) {
 
                            // spurious wakeup. this endpoint has already been completed!
 
                            if event.is_readable() {
 
                                net_polled_undrained.insert(index);
 
                            }
 
                            continue;
 
                        }
 
                        let local_info = port_info
 
                            .map
 
                            .get(&net_todo.endpoint_setup.getter_for_incoming)
 
                            .expect("Net Setup's getter port info isn't known"); // unreachable
 
                        if event.is_writable() && !net_todo.sent_local_port {
 
                            // can write and didn't send setup msg yet? Do so!
 
                            let _ = net_endpoint.stream.set_nodelay(true);
 
                            let msg = Msg::SetupMsg(SetupMsg::MyPortInfo(MyPortInfo {
 
                                owner: local_info.owner,
 
                                polarity: local_info.polarity,
 
                                port: net_todo.endpoint_setup.getter_for_incoming,
 
                            }));
 
                            net_endpoint
 
                                .send(&msg)
 
                                .send(&msg, &mut io_byte_buffer)
 
                                .map_err(|e| {
 
                                    Ce::NetEndpointSetupError(
 
                                        net_endpoint.stream.local_addr().unwrap(),
 
                                        e,
 
                                    )
 
                                })
 
                                .unwrap();
 
                            log!(logger, "endpoint[{}] sent msg {:?}", index, &msg);
 
                            net_todo.sent_local_port = true;
 
                        }
 
                        if event.is_readable() && net_todo.recv_peer_port.is_none() {
 
                            // can read and didn't finish recving setup msg yet? Do so!
 
                            let maybe_msg = net_endpoint.try_recv(logger).map_err(|e| {
 
                                Ce::NetEndpointSetupError(
 
                                    net_endpoint.stream.local_addr().unwrap(),
 
                                    e,
 
                                )
 
                            })?;
 
                            if maybe_msg.is_some() && !net_endpoint.inbox.is_empty() {
 
                                net_polled_undrained.insert(index);
 
                            }
 
                            match maybe_msg {
 
                                None => {} // msg deserialization incomplete
 
                                Some(Msg::SetupMsg(SetupMsg::MyPortInfo(peer_info))) => {
 
                                    log!(
 
                                        logger,
 
                                        "endpoint[{}] got peer info {:?}",
 
                                        index,
 
                                        peer_info
 
                                    );
 
                                    if peer_info.polarity == local_info.polarity {
 
                                        return Err(ConnectError::PortPeerPolarityMismatch(
 
                                            net_todo.endpoint_setup.getter_for_incoming,
 
                                        ));
 
                                    }
 
                                    net_todo.recv_peer_port = Some(peer_info.port);
 
                                    // finally learned the peer of this port!
 
                                    extra_port_info.peers.insert(
 
                                        net_todo.endpoint_setup.getter_for_incoming,
 
                                        peer_info.port,
 
                                    );
 
                                    // learned the info of this peer port
 
                                    if !port_info.map.contains_key(&peer_info.port) {
 
                                        let info = PortInfo {
 
                                            peer: Some(net_todo.endpoint_setup.getter_for_incoming),
 
                                            polarity: peer_info.polarity,
 
                                            owner: peer_info.owner,
 
                                            route: Route::NetEndpoint { index },
 
                                        };
 
                                        extra_port_info.info.insert(peer_info.port, info);
 
                                    }
 
                                }
 
                                Some(inappropriate_msg) => {
 
                                    log!(
 
                                        logger,
 
                                        "delaying msg {:?} during channel setup phase",
 
                                        inappropriate_msg
 
                                    );
 
                                    delayed_messages.push((index, inappropriate_msg));
 
                                }
 
                            }
 
                        }
 
                        // is the setup for this net_endpoint now complete?
 
                        if net_todo.sent_local_port && net_todo.recv_peer_port.is_some() {
 
                            // yes! connected, sent my info and received peer's info
 
                            setup_incomplete.remove(&token_target);
 
                            log!(logger, "endpoint[{}] is finished!", index);
 
                        }
 
                    }
 
                }
 
            }
 
        }
 
        events.clear();
 
    }
 
    log!(logger, "Endpoint setup complete! Cleaning up and building structures");
 
    let net_endpoint_exts = net_todos
 
        .into_iter()
 
        .enumerate()
 
        .map(|(index, NetTodo { todo_endpoint, endpoint_setup, .. })| NetEndpointExt {
 
            net_endpoint: match todo_endpoint {
 
                NetTodoEndpoint::PeerInfoRecving(mut net_endpoint) => {
 
                    let token = TokenTarget::NetEndpoint { index }.into();
 
                    poll.registry()
 
                        .reregister(&mut net_endpoint.stream, token, Interest::READABLE)
 
                        .unwrap();
 
                    net_endpoint
 
                }
 
                _ => unreachable!(),
 
            },
 
            getter_for_incoming: endpoint_setup.getter_for_incoming,
 
        })
 
        .collect();
 
    let udp_endpoint_exts = udp_todos
 
        .into_iter()
 
        .enumerate()
 
        .map(|(index, udp_todo)| {
 
            let UdpTodo { mut sock, getter_for_incoming } = udp_todo;
 
            let token = TokenTarget::UdpEndpoint { index }.into();
 
            poll.registry().reregister(&mut sock, token, Interest::READABLE).unwrap();
 
            UdpEndpointExt {
 
                sock,
 
                outgoing_payloads: Default::default(),
 
                received_this_round: false,
 
                getter_for_incoming,
 
            }
 
        })
 
        .collect();
 
    let endpoint_manager = EndpointManager {
 
        poll,
 
        events,
 
        undelayed_messages: delayed_messages, // no longer delayed
 
        delayed_messages: Default::default(),
 
        net_endpoint_store: EndpointStore {
 
            endpoint_exts: net_endpoint_exts,
 
            polled_undrained: net_polled_undrained,
 
        },
 
        udp_endpoint_store: EndpointStore {
 
            endpoint_exts: udp_endpoint_exts,
 
            polled_undrained: udp_polled_undrained,
 
        },
 
        udp_in_buffer: Default::default(),
 
        io_byte_buffer,
 
    };
 
    Ok((endpoint_manager, extra_port_info))
 
}
 

	
 
// Given a fully-formed endpoint manager,
 
// construct the consensus tree with:
 
// 1. decentralized leader election
 
// 2. centralized tree construction
 
fn init_neighborhood(
 
    connector_id: ConnectorId,
 
    logger: &mut dyn Logger,
 
    em: &mut EndpointManager,
 
    deadline: &Option<Instant>,
 
) -> Result<Neighborhood, ConnectError> {
 
    use {ConnectError as Ce, Msg::SetupMsg as S, SetupMsg as Sm};
 

	
 
    // storage structure for the state of a distributed wave
 
    // (for readability)
 
    #[derive(Debug)]
 
    struct WaveState {
 
        parent: Option<usize>,
 
        leader: ConnectorId,
 
    }
 

	
 
    // kick off a leader-election wave rooted at myself
 
    // given the desired wave information
 
    // (e.g. don't inform my parent if they exist)
 
    fn do_wave(
 
        em: &mut EndpointManager,
 
        awaiting: &mut HashSet<usize>,
 
        ws: &WaveState,
 
    ) -> Result<(), ConnectError> {
 
        awaiting.clear();
 
        let msg = S(Sm::LeaderWave { wave_leader: ws.leader });
 
        for index in em.index_iter() {
 
            if Some(index) != ws.parent {
 
                em.send_to_setup(index, &msg)?;
 
                awaiting.insert(index);
 
            }
 
        }
 
        Ok(())
 
    }
 
    ///////////////////////
 
    /*
 
    Conceptually, we have two distinct disstributed algorithms back-to-back
 
    1. Leader election using echo algorithm with extinction.
 
        - Each connector initiates a wave tagged with their ID
 
        - Connectors participate in waves of GREATER ID, abandoning previous waves
 
        - Only the wave of the connector with GREATEST ID completes, whereupon they are the leader
 
    2. Tree construction
 
        - The leader broadcasts their leadership with msg A
 
        - Upon receiving their first announcement, connectors reply B, and send A to all peers
 
        - A controller exits once they have received A or B from each neighbor
 

	
 
    The actual implementation is muddier, because non-leaders aren't aware of termiantion of algorithm 1,
 
    so they rely on receipt of the leader's announcement to realize that algorithm 2 has begun.
 

	
 
    NOTE the distinction between PARENT and LEADER
 
    */
 
    log!(logger, "beginning neighborhood construction");
 
    if em.num_net_endpoints() == 0 {
 
        log!(logger, "Edge case of no neighbors! No parent an no children!");
 
        return Ok(Neighborhood { parent: None, children: VecSet::new(vec![]) });
 
    }
 
    log!(logger, "Have {} endpoints. Must participate in distributed alg.", em.num_net_endpoints());
 
    let mut awaiting = HashSet::with_capacity(em.num_net_endpoints());
 
    // 1+ neighbors. Leader can only be learned by receiving messages
 
    // loop ends when I know my sink tree parent (implies leader was elected)
 
    let election_result: WaveState = {
 
        // initially: No parent, I'm the best leader.
 
        let mut best_wave = WaveState { parent: None, leader: connector_id };
 
        // start a wave for this initial state
 
        do_wave(em, &mut awaiting, &best_wave)?;
 
        // with 1+ neighbors, progress is only made in response to incoming messages
 
        em.undelay_all();
 
        'election: loop {
 
            log!(logger, "Election loop. awaiting {:?}...", awaiting.iter());
 
            let (recv_index, msg) = em.try_recv_any_setup(logger, deadline)?;
 
            log!(logger, "Received from index {:?} msg {:?}", &recv_index, &msg);
 
            match msg {
 
                S(Sm::LeaderAnnounce { tree_leader }) => {
 
                    // A neighbor explicitly tells me who is the leader
 
                    // they become my parent, and I adopt their announced leader
 
                    let election_result =
 
                        WaveState { leader: tree_leader, parent: Some(recv_index) };
 
                    log!(logger, "Election lost! Result {:?}", &election_result);
 
                    assert!(election_result.leader >= best_wave.leader);
 
                    assert_ne!(election_result.leader, connector_id);
 
                    break 'election election_result;
 
                }
 
                S(Sm::LeaderWave { wave_leader }) => {
 
                    use Ordering as O;
 
                    match wave_leader.cmp(&best_wave.leader) {
 
                        O::Less => log!(
 
                            logger,
 
                            "Ignoring wave with Id {:?}<{:?}",
 
                            wave_leader,
 
                            best_wave.leader
 
                        ),
 
                        O::Greater => {
 
                            log!(
 
                                logger,
 
                                "Joining wave with Id {:?}>{:?}",
 
                                wave_leader,
 
                                best_wave.leader
 
                            );
 
                            best_wave = WaveState { leader: wave_leader, parent: Some(recv_index) };
 
                            log!(logger, "New wave state {:?}", &best_wave);
 
                            do_wave(em, &mut awaiting, &best_wave)?;
 
                            if awaiting.is_empty() {
 
                                log!(logger, "Special case! Only neighbor is parent. Replying to {:?} msg {:?}", recv_index, &msg);
 
                                em.send_to_setup(recv_index, &msg)?;
 
                            }
 
                        }
 
                        O::Equal => {
 
                            assert!(awaiting.remove(&recv_index));
 
                            log!(
 
                                logger,
 
                                "Wave reply from index {:?} for leader {:?}. Now awaiting {} replies",
 
                                recv_index,
 
                                best_wave.leader,
 
                                awaiting.len()
 
                            );
 
                            if awaiting.is_empty() {
 
                                if let Some(parent) = best_wave.parent {
 
                                    log!(
 
                                        logger,
 
                                        "Sub-wave done! replying to parent {:?} msg {:?}",
 
                                        parent,
 
                                        &msg
 
                                    );
 
                                    em.send_to_setup(parent, &msg)?;
 
                                } else {
 
                                    let election_result: WaveState = best_wave;
 
                                    log!(logger, "Election won! Result {:?}", &election_result);
 
                                    break 'election election_result;
 
                                }
 
                            }
 
                        }
 
                    }
 
                }
 
                msg @ S(Sm::YouAreMyParent) | msg @ S(Sm::MyPortInfo(_)) => {
 
                    log!(logger, "Endpont {:?} sent unexpected msg! {:?}", recv_index, &msg);
 
                    return Err(Ce::SetupAlgMisbehavior);
 
                }
 
                msg @ S(Sm::SessionScatter { .. })
 
                | msg @ S(Sm::SessionGather { .. })
 
                | msg @ Msg::CommMsg { .. } => {
 
                    log!(logger, "delaying msg {:?} during election algorithm", msg);
 
                    em.delayed_messages.push((recv_index, msg));
 
                }
 
            }
 
        }
 
    };
 

	
 
    // starting algorithm 2. Send a message to every neighbor
 
    // namely, send "YouAreMyParent" to parent (if they exist),
 
    // and LeaderAnnounce to everyone else
 
    log!(logger, "Starting tree construction. Step 1: send one msg per neighbor");
 
    awaiting.clear();
 
    for index in em.index_iter() {
 
        if Some(index) == election_result.parent {
 
            em.send_to_setup(index, &S(Sm::YouAreMyParent))?;
 
        } else {
 
            awaiting.insert(index);
 
            em.send_to_setup(
 
                index,
 
                &S(Sm::LeaderAnnounce { tree_leader: election_result.leader }),
 
            )?;
 
        }
 
    }
 
    // Receive one message from each neighbor to learn
 
    // whether they consider me their parent or not.
 
    let mut children = vec![];
 
    em.undelay_all();
 
    while !awaiting.is_empty() {
 
        log!(logger, "Tree construction_loop loop. awaiting {:?}...", awaiting.iter());
 
        let (recv_index, msg) = em.try_recv_any_setup(logger, deadline)?;
 
        log!(logger, "Received from index {:?} msg {:?}", &recv_index, &msg);
 
        match msg {
 
            S(Sm::LeaderAnnounce { .. }) => {
 
                // `recv_index` is not my child
 
                log!(
 
                    logger,
 
                    "Got reply from non-child index {:?}. Children: {:?}",
 
                    recv_index,
 
                    children.iter()
 
                );
 
                if !awaiting.remove(&recv_index) {
 
                    return Err(Ce::SetupAlgMisbehavior);
 
                }
 
            }
 
            S(Sm::YouAreMyParent) => {
 
                if !awaiting.remove(&recv_index) {
 
                    log!(
 
                        logger,
 
                        "Got reply from child index {:?}. Children before... {:?}",
 
                        recv_index,
 
                        children.iter()
 
                    );
 
                    return Err(Ce::SetupAlgMisbehavior);
 
                }
 
                // `recv_index` is my child
 
                children.push(recv_index);
 
            }
 
            msg @ S(Sm::MyPortInfo(_)) | msg @ S(Sm::LeaderWave { .. }) => {
 
                log!(logger, "discarding old message {:?} during election", msg);
 
            }
 
            msg @ S(Sm::SessionScatter { .. })
 
            | msg @ S(Sm::SessionGather { .. })
 
            | msg @ Msg::CommMsg { .. } => {
 
                log!(logger, "delaying msg {:?} during election", msg);
 
                em.delayed_messages.push((recv_index, msg));
 
            }
 
        }
 
    }
 
    // Neighborhood complete!
 
    children.shrink_to_fit();
 
    let neighborhood =
 
        Neighborhood { parent: election_result.parent, children: VecSet::new(children) };
 
    log!(logger, "Neighborhood constructed {:?}", &neighborhood);
 
    Ok(neighborhood)
 
}
 

	
 
// Connectors collect a map of type ConnectorId=>SessionInfo,
 
// representing a global view of the session's state at the leader.
 
// The leader rewrites its contents however they like (currently: nothing happens)
 
// and the map is again broadcasted, for each peer to make their local changes to
 
// reflect the results of the rewrite.
 
fn session_optimize(
 
    cu: &mut ConnectorUnphased,
 
    comm: &mut ConnectorCommunication,
 
    deadline: &Option<Instant>,
 
) -> Result<(), ConnectError> {
 
    use {ConnectError as Ce, Msg::SetupMsg as S, SetupMsg as Sm};
 
    log!(cu.logger, "Beginning session optimization");
 
    // populate session_info_map from a message per child
 
    let mut unoptimized_map: HashMap<ConnectorId, SessionInfo> = Default::default();
 
    let mut awaiting: HashSet<usize> = comm.neighborhood.children.iter().copied().collect();
 
    comm.endpoint_manager.undelay_all();
 
    while !awaiting.is_empty() {
 
        log!(
 
            cu.logger,
 
            "Session gather loop. awaiting info from children {:?}...",
 
            awaiting.iter()
 
        );
 
        let (recv_index, msg) =
 
            comm.endpoint_manager.try_recv_any_setup(&mut *cu.logger, deadline)?;
 
        log!(cu.logger, "Received from index {:?} msg {:?}", &recv_index, &msg);
 
        match msg {
 
            S(Sm::SessionGather { unoptimized_map: child_unoptimized_map }) => {
 
                if !awaiting.remove(&recv_index) {
 
                    log!(
 
                        cu.logger,
 
                        "Wasn't expecting session info from {:?}. Got {:?}",
 
                        recv_index,
 
                        &child_unoptimized_map
 
                    );
 
                    return Err(Ce::SetupAlgMisbehavior);
 
                }
 
                unoptimized_map.extend(child_unoptimized_map.into_iter());
 
            }
 
            msg @ S(Sm::YouAreMyParent)
 
            | msg @ S(Sm::MyPortInfo(..))
 
            | msg @ S(Sm::LeaderAnnounce { .. })
 
            | msg @ S(Sm::LeaderWave { .. }) => {
 
                log!(cu.logger, "discarding old message {:?} during election", msg);
 
            }
 
            msg @ S(Sm::SessionScatter { .. }) => {
 
                log!(
 
                    cu.logger,
 
                    "Endpoint {:?} sent unexpected scatter! {:?} I've not contributed yet!",
 
                    recv_index,
 
                    &msg
 
                );
 
                return Err(Ce::SetupAlgMisbehavior);
 
            }
 
            msg @ Msg::CommMsg(..) => {
 
                log!(cu.logger, "delaying msg {:?} during session optimization", msg);
 
                comm.endpoint_manager.delayed_messages.push((recv_index, msg));
 
            }
 
        }
 
    }
 
    log!(
 
        cu.logger,
 
        "Gathered all children's maps. ConnectorId set is... {:?}",
 
        unoptimized_map.keys()
 
    );
 
    // add my own session info to the map
 
    let my_session_info = SessionInfo {
 
        port_info: cu.ips.port_info.clone(),
 
        proto_components: cu.proto_components.clone(),
 
        serde_proto_description: SerdeProtocolDescription(cu.proto_description.clone()),
 
        endpoint_incoming_to_getter: comm
 
            .endpoint_manager
 
            .net_endpoint_store
 
            .endpoint_exts
 
            .iter()
 
            .map(|ee| ee.getter_for_incoming)
 
            .collect(),
 
    };
 
    unoptimized_map.insert(cu.ips.id_manager.connector_id, my_session_info);
 
    log!(cu.logger, "Inserting my own info. Unoptimized subtree map is {:?}", &unoptimized_map);
 
    // acquire the optimized info...
 
    let optimized_map = if let Some(parent) = comm.neighborhood.parent {
 
        // ... as a message from my parent
 
        log!(cu.logger, "Forwarding gathered info to parent {:?}", parent);
 
        let msg = S(Sm::SessionGather { unoptimized_map });
 
        comm.endpoint_manager.send_to_setup(parent, &msg)?;
 
        'scatter_loop: loop {
 
            log!(
 
                cu.logger,
 
                "Session scatter recv loop. awaiting info from children {:?}...",
 
                awaiting.iter()
 
            );
 
            let (recv_index, msg) =
 
                comm.endpoint_manager.try_recv_any_setup(&mut *cu.logger, deadline)?;
 
            log!(cu.logger, "Received from index {:?} msg {:?}", &recv_index, &msg);
 
            match msg {
 
                S(Sm::SessionScatter { optimized_map }) => {
 
                    if recv_index != parent {
 
                        log!(cu.logger, "I expected the scatter from my parent only!");
 
                        return Err(Ce::SetupAlgMisbehavior);
 
                    }
 
                    break 'scatter_loop optimized_map;
 
                }
 
                msg @ Msg::CommMsg { .. } => {
 
                    log!(cu.logger, "delaying msg {:?} during scatter recv", msg);
 
                    comm.endpoint_manager.delayed_messages.push((recv_index, msg));
 
                }
 
                msg @ S(Sm::SessionGather { .. })
 
                | msg @ S(Sm::YouAreMyParent)
 
                | msg @ S(Sm::MyPortInfo(..))
 
                | msg @ S(Sm::LeaderAnnounce { .. })
 
                | msg @ S(Sm::LeaderWave { .. }) => {
 
                    log!(cu.logger, "discarding old message {:?} during election", msg);
 
                }
 
            }
 
        }
 
    } else {
 
        // by computing it myself
 
        log!(cu.logger, "I am the leader! I will optimize this session");
 
        leader_session_map_optimize(&mut *cu.logger, unoptimized_map)?
 
    };
 
    log!(
 
        cu.logger,
 
        "Optimized info map is {:?}. Sending to children {:?}",
 
        &optimized_map,
 
        comm.neighborhood.children.iter()
 
    );
 
    log!(cu.logger, "All session info dumped!: {:#?}", &optimized_map);
 
    // extract my own ConnectorId's entry
 
    let optimized_info =
 
        optimized_map.get(&cu.ips.id_manager.connector_id).expect("HEY NO INFO FOR ME?").clone();
 
    // broadcast the optimized session info to my children
 
    let msg = S(Sm::SessionScatter { optimized_map });
 
    for &child in comm.neighborhood.children.iter() {
 
        comm.endpoint_manager.send_to_setup(child, &msg)?;
 
    }
 
    // apply local optimizations
 
    apply_my_optimizations(cu, comm, optimized_info)?;
 
    log!(cu.logger, "Session optimizations applied");
 
    Ok(())
 
}
 

	
 
// Defines the optimization function, consuming an optimized map,
 
// and returning an optimized map.
 
fn leader_session_map_optimize(
 
    logger: &mut dyn Logger,
 
    unoptimized_map: HashMap<ConnectorId, SessionInfo>,
 
) -> Result<HashMap<ConnectorId, SessionInfo>, ConnectError> {
 
    log!(logger, "Session map optimize START");
 
    // currently, it's the identity function
 
    log!(logger, "Session map optimize END");
 
    Ok(unoptimized_map)
 
}
 

	
 
// Modify the given connector's internals to reflect
 
// the given session info
 
fn apply_my_optimizations(
 
    cu: &mut ConnectorUnphased,
 
    comm: &mut ConnectorCommunication,
 
    session_info: SessionInfo,
 
) -> Result<(), ConnectError> {
0 comments (0 inline, 0 general)