Changeset - f2dca476327a
[Not reviewed]
0 2 0
Hans-Dieter Hiep - 5 years ago 2020-02-10 12:06:28
hdh@cwi.nl
Fixes fall-through component definition error
2 files changed with 11 insertions and 5 deletions:
0 comments (0 inline, 0 general)
src/protocol/eval.rs
Show inline comments
 
@@ -1328,395 +1328,394 @@ impl Store {
 
        Store { map: HashMap::new() }
 
    }
 
    fn initialize(&mut self, h: &Heap, var: VariableId, value: Value) {
 
        // Ensure value is compatible with type of variable
 
        let the_type = h[var].the_type(h);
 
        assert!(value.is_type_compatible(the_type));
 
        // Overwrite mapping
 
        self.map.insert(var, value.clone());
 
    }
 
    fn update(
 
        &mut self,
 
        h: &Heap,
 
        ctx: &mut EvalContext,
 
        lexpr: ExpressionId,
 
        value: Value,
 
    ) -> EvalResult {
 
        match &h[lexpr] {
 
            Expression::Variable(var) => {
 
                let var = var.declaration.unwrap();
 
                // Ensure value is compatible with type of variable
 
                let the_type = h[var].the_type(h);
 
                assert!(value.is_type_compatible(the_type));
 
                // Overwrite mapping
 
                self.map.insert(var, value.clone());
 
                Ok(value)
 
            }
 
            Expression::Indexing(indexing) => {
 
                // Evaluate index expression, which must be some integral type
 
                let index = self.eval(h, ctx, indexing.index)?;
 
                // Mutable reference to the subject
 
                let subject;
 
                match &h[indexing.subject] {
 
                    Expression::Variable(var) => {
 
                        let var = var.declaration.unwrap();
 
                        subject = self.map.get_mut(&var).unwrap();
 
                    }
 
                    _ => unreachable!(),
 
                }
 
                match subject.set(&index, &value) {
 
                    Some(value) => Ok(value),
 
                    None => Err(EvalContinuation::Inconsistent),
 
                }
 
            }
 
            _ => unimplemented!("{:?}", h[lexpr]),
 
        }
 
    }
 
    fn get(&mut self, h: &Heap, rexpr: ExpressionId) -> EvalResult {
 
        match &h[rexpr] {
 
            Expression::Variable(var) => {
 
                let var = var.declaration.unwrap();
 
                let value = self.map.get(&var).expect(&format!("Uninitialized variable {:?}", h[h[var].identifier()]));
 
                Ok(value.clone())
 
            }
 
            _ => unimplemented!("{:?}", h[rexpr]),
 
        }
 
    }
 
    fn eval(&mut self, h: &Heap, ctx: &mut EvalContext, expr: ExpressionId) -> EvalResult {
 
        match &h[expr] {
 
            Expression::Assignment(expr) => {
 
                let value = self.eval(h, ctx, expr.right)?;
 
                match expr.operation {
 
                    AssignmentOperator::Set => {
 
                        self.update(h, ctx, expr.left, value.clone());
 
                    }
 
                    AssignmentOperator::Added => {
 
                        let old = self.get(h, expr.left)?;
 
                        self.update(h, ctx, expr.left, old.plus(&value));
 
                    }
 
                    AssignmentOperator::Subtracted => {
 
                        let old = self.get(h, expr.left)?;
 
                        self.update(h, ctx, expr.left, old.minus(&value));
 
                    }
 
                    _ => unimplemented!("{:?}", expr),
 
                }
 
                Ok(value)
 
            }
 
            Expression::Conditional(expr) => {
 
                let test = self.eval(h, ctx, expr.test)?;
 
                if test.as_boolean().0 {
 
                    self.eval(h, ctx, expr.true_expression)
 
                } else {
 
                    self.eval(h, ctx, expr.false_expression)
 
                }
 
            }
 
            Expression::Binary(expr) => {
 
                let left = self.eval(h, ctx, expr.left)?;
 
                let right = self.eval(h, ctx, expr.right)?;
 
                match expr.operation {
 
                    BinaryOperator::Equality => Ok(left.eq(&right)),
 
                    BinaryOperator::Inequality => Ok(left.neq(&right)),
 
                    BinaryOperator::LessThan => Ok(left.lt(&right)),
 
                    BinaryOperator::LessThanEqual => Ok(left.lte(&right)),
 
                    BinaryOperator::GreaterThan => Ok(left.gt(&right)),
 
                    BinaryOperator::GreaterThanEqual => Ok(left.gte(&right)),
 
                    BinaryOperator::Remainder => Ok(left.modulus(&right)),
 
                    _ => unimplemented!(),
 
                }
 
            }
 
            Expression::Unary(expr) => {
 
                let mut value = self.eval(h, ctx, expr.expression)?;
 
                match expr.operation {
 
                    UnaryOperation::PostIncrement => {
 
                        self.update(h, ctx, expr.expression, value.plus(&ONE));
 
                    }
 
                    UnaryOperation::PreIncrement => {
 
                        value = value.plus(&ONE);
 
                        self.update(h, ctx, expr.expression, value.clone());
 
                    }
 
                    UnaryOperation::PostDecrement => {
 
                        self.update(h, ctx, expr.expression, value.minus(&ONE));
 
                    }
 
                    UnaryOperation::PreDecrement => {
 
                        value = value.minus(&ONE);
 
                        self.update(h, ctx, expr.expression, value.clone());
 
                    }
 
                    _ => unimplemented!(),
 
                }
 
                Ok(value)
 
            }
 
            Expression::Indexing(expr) => self.get(h, expr.this.upcast()),
 
            Expression::Slicing(expr) => unimplemented!(),
 
            Expression::Select(expr) => self.get(h, expr.this.upcast()),
 
            Expression::Array(expr) => unimplemented!(),
 
            Expression::Constant(expr) => Ok(Value::from_constant(&expr.value)),
 
            Expression::Call(expr) => match expr.method {
 
                Method::Create => {
 
                    assert_eq!(1, expr.arguments.len());
 
                    let length = self.eval(h, ctx, expr.arguments[0])?;
 
                    Ok(Value::create_message(length))
 
                }
 
                Method::Fires => {
 
                    assert_eq!(1, expr.arguments.len());
 
                    let value = self.eval(h, ctx, expr.arguments[0])?;
 
                    match ctx.fires(value.clone()) {
 
                        None => Err(EvalContinuation::BlockFires(value)),
 
                        Some(result) => Ok(result),
 
                    }
 
                }
 
                Method::Get => {
 
                    assert_eq!(1, expr.arguments.len());
 
                    let value = self.eval(h, ctx, expr.arguments[0])?;
 
                    match ctx.get(value.clone()) {
 
                        None => Err(EvalContinuation::BlockGet(value)),
 
                        Some(result) => Ok(result),
 
                    }
 
                }
 
                Method::Symbolic(symbol) => unimplemented!(),
 
            },
 
            Expression::Variable(expr) => self.get(h, expr.this.upcast()),
 
        }
 
    }
 
}
 

	
 
type EvalResult = Result<Value, EvalContinuation>;
 
pub enum EvalContinuation {
 
    Stepping,
 
    Inconsistent,
 
    Terminal,
 
    SyncBlockStart,
 
    SyncBlockEnd,
 
    NewComponent(DeclarationId, Vec<Value>),
 
    BlockFires(Value),
 
    BlockGet(Value),
 
    Put(Value, Value),
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Prompt {
 
    definition: DefinitionId,
 
    store: Store,
 
    position: Option<StatementId>,
 
}
 

	
 
impl Prompt {
 
    pub fn new(h: &Heap, def: DefinitionId, args: &Vec<Value>) -> Self {
 
        let mut prompt =
 
            Prompt { definition: def, store: Store::new(), position: Some((&h[def]).body()) };
 
        prompt.set_arguments(h, args);
 
        prompt
 
    }
 
    fn set_arguments(&mut self, h: &Heap, args: &Vec<Value>) {
 
        let def = &h[self.definition];
 
        let params = def.parameters();
 
        assert_eq!(params.len(), args.len());
 
        for (param, value) in params.iter().zip(args.iter()) {
 
            let hparam = &h[*param];
 
            let type_annot = &h[hparam.type_annotation];
 
            assert!(value.is_type_compatible(&type_annot.the_type));
 
            self.store.initialize(h, param.upcast(), value.clone());
 
        }
 
    }
 
    pub fn step(&mut self, h: &Heap, ctx: &mut EvalContext) -> EvalResult {
 
        if let Some(stmt) = self.position {
 
            let stmt = &h[stmt];
 
        if self.position.is_none() {
 
            return Err(EvalContinuation::Terminal);
 
        }
 
        let stmt = &h[self.position.unwrap()];
 
        match stmt {
 
            Statement::Block(stmt) => {
 
                // Continue to first statement
 
                self.position = Some(stmt.first());
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::Local(stmt) => {
 
                match stmt {
 
                    LocalStatement::Memory(stmt) => {
 
                        // Evaluate initial expression
 
                        let value = self.store.eval(h, ctx, stmt.initial)?;
 
                        // Update store
 
                        self.store.initialize(h, stmt.variable.upcast(), value);
 
                    }
 
                    LocalStatement::Channel(stmt) => {
 
                        let [from, to] = ctx.new_channel();
 
                        // Store the values in the declared variables
 
                        self.store.initialize(h, stmt.from.upcast(), from);
 
                        self.store.initialize(h, stmt.to.upcast(), to);
 
                    },
 
                }
 
                // Continue to next statement
 
                self.position = stmt.next();
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::Skip(stmt) => {
 
                // Continue to next statement
 
                self.position = stmt.next;
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::Labeled(stmt) => {
 
                // Continue to next statement
 
                self.position = Some(stmt.body);
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::If(stmt) => {
 
                // Evaluate test
 
                let value = self.store.eval(h, ctx, stmt.test)?;
 
                // Continue with either branch
 
                if value.as_boolean().0 {
 
                    self.position = Some(stmt.true_body);
 
                } else {
 
                    self.position = Some(stmt.false_body);
 
                }
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::EndIf(stmt) => {
 
                // Continue to next statement
 
                self.position = stmt.next;
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::While(stmt) => {
 
                // Evaluate test
 
                let value = self.store.eval(h, ctx, stmt.test)?;
 
                // Either continue with body, or go to next
 
                if value.as_boolean().0 {
 
                    self.position = Some(stmt.body);
 
                } else {
 
                    self.position = stmt.next.map(|x| x.upcast());
 
                }
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::EndWhile(stmt) => {
 
                // Continue to next statement
 
                self.position = stmt.next;
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::Synchronous(stmt) => {
 
                // Continue to next statement, and signal upward
 
                self.position = Some(stmt.body);
 
                Err(EvalContinuation::SyncBlockStart)
 
            }
 
            Statement::EndSynchronous(stmt) => {
 
                // Continue to next statement, and signal upward
 
                self.position = stmt.next;
 
                Err(EvalContinuation::SyncBlockEnd)
 
            }
 
            Statement::Break(stmt) => {
 
                // Continue to end of while
 
                self.position = stmt.target.map(EndWhileStatementId::upcast);
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::Continue(stmt) => {
 
                // Continue to beginning of while
 
                self.position = stmt.target.map(WhileStatementId::upcast);
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::Assert(stmt) => {
 
                // Evaluate expression
 
                let value = self.store.eval(h, ctx, stmt.expression)?;
 
                if value.as_boolean().0 {
 
                    // Continue to next statement
 
                    self.position = stmt.next;
 
                    Err(EvalContinuation::Stepping)
 
                } else {
 
                    // Assertion failed: inconsistent
 
                    Err(EvalContinuation::Inconsistent)
 
                }
 
            }
 
            Statement::Return(stmt) => {
 
                // Evaluate expression
 
                let value = self.store.eval(h, ctx, stmt.expression)?;
 
                // Done with evaluation
 
                Ok(value)
 
            }
 
            Statement::Goto(stmt) => {
 
                // Continue to target
 
                self.position = stmt.target.map(|x| x.upcast());
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::New(stmt) => {
 
                let expr = &h[stmt.expression];
 
                let mut args = Vec::new();
 
                for &arg in expr.arguments.iter() {
 
                    let value = self.store.eval(h, ctx, arg)?;
 
                    args.push(value);
 
                }
 
                self.position = stmt.next;
 
                Err(EvalContinuation::NewComponent(expr.declaration.unwrap(), args))
 
            }
 
            Statement::Put(stmt) => {
 
                // Evaluate port and message
 
                let port = self.store.eval(h, ctx, stmt.port)?;
 
                let message = self.store.eval(h, ctx, stmt.message)?;
 
                // Continue to next statement
 
                self.position = stmt.next;
 
                // Signal the put upwards
 
                Err(EvalContinuation::Put(port, message))
 
            }
 
            Statement::Expression(stmt) => {
 
                // Evaluate expression
 
                let value = self.store.eval(h, ctx, stmt.expression)?;
 
                // Continue to next statement
 
                self.position = stmt.next;
 
                Err(EvalContinuation::Stepping)
 
            }
 
        }
 
        } else {
 
            Err(EvalContinuation::Terminal)
 
        }
 
    }
 
    fn compute_function(h: &Heap, fun: FunctionId, args: &Vec<Value>) -> Option<Value> {
 
        let mut prompt = Self::new(h, fun.upcast(), args);
 
        let mut context = EvalContext::None;
 
        loop {
 
            let result = prompt.step(h, &mut context);
 
            match result {
 
                Ok(val) => return Some(val),
 
                Err(cont) => match cont {
 
                    EvalContinuation::Stepping => continue,
 
                    EvalContinuation::Inconsistent => return None,
 
                    // Functions never terminate without returning
 
                    EvalContinuation::Terminal => unreachable!(),
 
                    // Functions never encounter any blocking behavior
 
                    EvalContinuation::SyncBlockStart => unreachable!(),
 
                    EvalContinuation::SyncBlockEnd => unreachable!(),
 
                    EvalContinuation::NewComponent(_, _) => unreachable!(),
 
                    EvalContinuation::BlockFires(val) => unreachable!(),
 
                    EvalContinuation::BlockGet(val) => unreachable!(),
 
                    EvalContinuation::Put(port, msg) => unreachable!(),
 
                },
 
            }
 
        }
 
    }
 
}
 

	
 
#[cfg(test)]
 
mod tests {
 
    extern crate test_generator;
 

	
 
    use std::fs::File;
 
    use std::io::Read;
 
    use std::path::Path;
 
    use test_generator::test_resources;
 

	
 
    use super::*;
 

	
 
    #[test_resources("testdata/eval/positive/*.pdl")]
 
    fn batch1(resource: &str) {
 
        let path = Path::new(resource);
 
        let expect = path.with_extension("txt");
 
        let mut heap = Heap::new();
 
        let mut source = InputSource::from_file(&path).unwrap();
 
        let mut parser = Parser::new(&mut source);
 
        let pd = parser.parse(&mut heap).unwrap();
 
        let def = heap[pd].get_definition_ident(&heap, b"test").unwrap();
 
        let fun = heap[def].as_function().this;
 
        let args = Vec::new();
 
        let result = Prompt::compute_function(&heap, fun, &args).unwrap();
 
        let valstr: String = format!("{}", result);
 
        println!("{}", valstr);
 

	
 
        let mut cev: Vec<u8> = Vec::new();
 
        let mut f = File::open(expect).unwrap();
 
        f.read_to_end(&mut cev).unwrap();
 
        let lavstr = String::from_utf8_lossy(&cev);
 
        println!("{}", lavstr);
 

	
 
        assert_eq!(valstr, lavstr);
 
    }
 
}
src/protocol/parser.rs
Show inline comments
 
@@ -892,384 +892,391 @@ impl BuildScope {
 
impl Visitor for BuildScope {
 
    fn visit_symbol_definition(&mut self, h: &mut Heap, def: DefinitionId) -> VisitorResult {
 
        assert!(self.scope.is_none());
 
        self.scope = Some(Scope::Definition(def));
 
        recursive_symbol_definition(self, h, def)?;
 
        self.scope = None;
 
        Ok(())
 
    }
 
    fn visit_block_statement(&mut self, h: &mut Heap, stmt: BlockStatementId) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let old = self.scope;
 
        // First store the current scope
 
        h[stmt].parent_scope = self.scope;
 
        // Then move scope down to current block
 
        self.scope = Some(Scope::Block(stmt));
 
        recursive_block_statement(self, h, stmt)?;
 
        // Move scope back up
 
        self.scope = old;
 
        Ok(())
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let old = self.scope;
 
        // First store the current scope
 
        h[stmt].parent_scope = self.scope;
 
        // Then move scope down to current sync
 
        self.scope = Some(Scope::Synchronous(stmt));
 
        recursive_synchronous_statement(self, h, stmt)?;
 
        // Move scope back up
 
        self.scope = old;
 
        Ok(())
 
    }
 
    fn visit_expression(&mut self, h: &mut Heap, expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
struct ResolveVariables {
 
    scope: Option<Scope>,
 
}
 

	
 
impl ResolveVariables {
 
    fn new() -> Self {
 
        ResolveVariables { scope: None }
 
    }
 
    fn get_variable(&self, h: &Heap, id: SourceIdentifierId) -> Result<VariableId, ParseError> {
 
        if let Some(var) = self.find_variable(h, id) {
 
            Ok(var)
 
        } else {
 
            Err(ParseError::new(h[id].position, "Unresolved variable"))
 
        }
 
    }
 
    fn find_variable(&self, h: &Heap, id: SourceIdentifierId) -> Option<VariableId> {
 
        ResolveVariables::find_variable_impl(h, self.scope, id)
 
    }
 
    fn find_variable_impl(
 
        h: &Heap,
 
        scope: Option<Scope>,
 
        id: SourceIdentifierId,
 
    ) -> Option<VariableId> {
 
        if let Some(scope) = scope {
 
            // The order in which we check for variables is important:
 
            // otherwise, two variables with the same name are shadowed.
 
            if let Some(var) = ResolveVariables::find_variable_impl(h, scope.parent_scope(h), id) {
 
                Some(var)
 
            } else {
 
                scope.get_variable(h, id)
 
            }
 
        } else {
 
            None
 
        }
 
    }
 
}
 

	
 
impl Visitor for ResolveVariables {
 
    fn visit_symbol_definition(&mut self, h: &mut Heap, def: DefinitionId) -> VisitorResult {
 
        assert!(self.scope.is_none());
 
        self.scope = Some(Scope::Definition(def));
 
        recursive_symbol_definition(self, h, def)?;
 
        self.scope = None;
 
        Ok(())
 
    }
 
    fn visit_variable_declaration(&mut self, h: &mut Heap, decl: VariableId) -> VisitorResult {
 
        // This is only called for parameters of definitions and synchronous statements,
 
        // since the local variables of block statements are still empty
 
        // the moment it is traversed. After resolving variables, this
 
        // function is also called for every local variable declaration.
 

	
 
        // We want to make sure that the resolved variable is the variable declared itself;
 
        // otherwise, there is some variable defined in the parent scope. This check
 
        // imposes that the order in which find_variable looks is significant!
 
        let id = h[decl].identifier();
 
        let check_same = self.find_variable(h, id);
 
        if let Some(check_same) = check_same {
 
            if check_same != decl {
 
                return Err(ParseError::new(h[id].position, "Declared variable clash"));
 
            }
 
        }
 
        recursive_variable_declaration(self, h, decl)
 
    }
 
    fn visit_memory_statement(&mut self, h: &mut Heap, stmt: MemoryStatementId) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let var = h[stmt].variable;
 
        let id = h[var].identifier;
 
        // First check whether variable with same identifier is in scope
 
        let check_duplicate = self.find_variable(h, id);
 
        if !check_duplicate.is_none() {
 
            return Err(ParseError::new(h[id].position, "Declared variable clash"));
 
        }
 
        // Then check the expression's variables (this should not refer to own variable)
 
        recursive_memory_statement(self, h, stmt)?;
 
        // Finally, we may add the variable to the scope, which is guaranteed to be a block
 
        {
 
            let mut block = &mut h[self.scope.unwrap().to_block()];
 
            block.locals.push(var);
 
        }
 
        Ok(())
 
    }
 
    fn visit_channel_statement(&mut self, h: &mut Heap, stmt: ChannelStatementId) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        // First handle the from variable
 
        {
 
            let var = h[stmt].from;
 
            let id = h[var].identifier;
 
            let check_duplicate = self.find_variable(h, id);
 
            if !check_duplicate.is_none() {
 
                return Err(ParseError::new(h[id].position, "Declared variable clash"));
 
            }
 
            let mut block = &mut h[self.scope.unwrap().to_block()];
 
            block.locals.push(var);
 
        }
 
        // Then handle the to variable (which may not be the same as the from)
 
        {
 
            let var = h[stmt].to;
 
            let id = h[var].identifier;
 
            let check_duplicate = self.find_variable(h, id);
 
            if !check_duplicate.is_none() {
 
                return Err(ParseError::new(h[id].position, "Declared variable clash"));
 
            }
 
            let mut block = &mut h[self.scope.unwrap().to_block()];
 
            block.locals.push(var);
 
        }
 
        Ok(())
 
    }
 
    fn visit_block_statement(&mut self, h: &mut Heap, stmt: BlockStatementId) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let old = self.scope;
 
        self.scope = Some(Scope::Block(stmt));
 
        recursive_block_statement(self, h, stmt)?;
 
        self.scope = old;
 
        Ok(())
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let old = self.scope;
 
        self.scope = Some(Scope::Synchronous(stmt));
 
        recursive_synchronous_statement(self, h, stmt)?;
 
        self.scope = old;
 
        Ok(())
 
    }
 
    fn visit_variable_expression(
 
        &mut self,
 
        h: &mut Heap,
 
        expr: VariableExpressionId,
 
    ) -> VisitorResult {
 
        let var = self.get_variable(h, h[expr].identifier)?;
 
        h[expr].declaration = Some(var);
 
        Ok(())
 
    }
 
}
 

	
 
struct UniqueStatementId(StatementId);
 

	
 
struct LinkStatements {
 
    prev: Option<UniqueStatementId>,
 
}
 

	
 
impl LinkStatements {
 
    fn new() -> Self {
 
        LinkStatements { prev: None }
 
    }
 
}
 

	
 
impl Visitor for LinkStatements {
 
    fn visit_symbol_definition(&mut self, h: &mut Heap, def: DefinitionId) -> VisitorResult {
 
        assert!(self.prev.is_none());
 
        recursive_symbol_definition(self, h, def)?;
 
        // Clear out last statement
 
        self.prev = None;
 
        Ok(())
 
    }
 
    fn visit_statement(&mut self, h: &mut Heap, stmt: StatementId) -> VisitorResult {
 
        if let Some(UniqueStatementId(prev)) = self.prev.take() {
 
            h[prev].link_next(stmt);
 
        }
 
        recursive_statement(self, h, stmt)
 
    }
 
    fn visit_local_statement(&mut self, _h: &mut Heap, stmt: LocalStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_labeled_statement(&mut self, h: &mut Heap, stmt: LabeledStatementId) -> VisitorResult {
 
        recursive_labeled_statement(self, h, stmt)
 
    }
 
    fn visit_skip_statement(&mut self, _h: &mut Heap, stmt: SkipStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_if_statement(&mut self, h: &mut Heap, stmt: IfStatementId) -> VisitorResult {
 
        // We allocate a pseudo-statement, which combines both branches into one next statement
 
        let position = h[stmt].position;
 
        let pseudo =
 
            h.alloc_end_if_statement(|this| EndIfStatement { this, position, next: None }).upcast();
 
        assert!(self.prev.is_none());
 
        self.visit_statement(h, h[stmt].true_body)?;
 
        if let Some(UniqueStatementId(prev)) = self.prev.take() {
 
            h[prev].link_next(pseudo);
 
        }
 
        assert!(self.prev.is_none());
 
        self.visit_statement(h, h[stmt].false_body)?;
 
        if let Some(UniqueStatementId(prev)) = self.prev.take() {
 
            h[prev].link_next(pseudo);
 
        }
 
        // Use the pseudo-statement as the statement where to update the next pointer
 
        self.prev = Some(UniqueStatementId(pseudo));
 
        Ok(())
 
    }
 
    fn visit_while_statement(&mut self, h: &mut Heap, stmt: WhileStatementId) -> VisitorResult {
 
        // We allocate a pseudo-statement, to which the break statement finds its target
 
        let position = h[stmt].position;
 
        let pseudo =
 
            h.alloc_end_while_statement(|this| EndWhileStatement { this, position, next: None });
 
        // Update the while's next statement to point to the pseudo-statement
 
        h[stmt].next = Some(pseudo);
 
        assert!(self.prev.is_none());
 
        self.visit_statement(h, h[stmt].body)?;
 
        // The body's next statement loops back to the while statement itself
 
        // Note: continue statements also loop back to the while statement itself
 
        if let Some(UniqueStatementId(prev)) = std::mem::replace(&mut self.prev, None) {
 
            h[prev].link_next(stmt.upcast());
 
        }
 
        // Use the while statement as the statement where the next pointer is updated
 
        self.prev = Some(UniqueStatementId(pseudo.upcast()));
 
        Ok(())
 
    }
 
    fn visit_break_statement(&mut self, _h: &mut Heap, _stmt: BreakStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_continue_statement(
 
        &mut self,
 
        _h: &mut Heap,
 
        _stmt: ContinueStatementId,
 
    ) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        // Allocate a pseudo-statement, that is added for helping the evaluator to issue a command
 
        // that marks the end of the synchronous block. Every evaluation has to pause at this
 
        // point, only to resume later when the thread is selected as unique thread to continue.
 
        let position = h[stmt].position;
 
        let pseudo = h
 
            .alloc_end_synchronous_statement(|this| EndSynchronousStatement {
 
                this,
 
                position,
 
                next: None,
 
            })
 
            .upcast();
 
        assert!(self.prev.is_none());
 
        self.visit_statement(h, h[stmt].body)?;
 
        // The body's next statement points to the pseudo element
 
        if let Some(UniqueStatementId(prev)) = std::mem::replace(&mut self.prev, None) {
 
            h[prev].link_next(pseudo);
 
        }
 
        // Use the pseudo-statement as the statement where the next pointer is updated
 
        self.prev = Some(UniqueStatementId(pseudo));
 
        Ok(())
 
    }
 
    fn visit_return_statement(&mut self, h: &mut Heap, stmt: ReturnStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_assert_statement(&mut self, h: &mut Heap, stmt: AssertStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_goto_statement(&mut self, _h: &mut Heap, _stmt: GotoStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_new_statement(&mut self, h: &mut Heap, stmt: NewStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_put_statement(&mut self, h: &mut Heap, stmt: PutStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_expression_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: ExpressionStatementId,
 
    ) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_expression(&mut self, h: &mut Heap, expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
struct BuildLabels {
 
    block: Option<BlockStatementId>,
 
    sync_enclosure: Option<SynchronousStatementId>,
 
}
 

	
 
impl BuildLabels {
 
    fn new() -> Self {
 
        BuildLabels { block: None, sync_enclosure: None }
 
    }
 
}
 

	
 
impl Visitor for BuildLabels {
 
    fn visit_block_statement(&mut self, h: &mut Heap, stmt: BlockStatementId) -> VisitorResult {
 
        assert_eq!(self.block, h[stmt].parent_block(h));
 
        let old = self.block;
 
        self.block = Some(stmt);
 
        recursive_block_statement(self, h, stmt)?;
 
        self.block = old;
 
        Ok(())
 
    }
 
    fn visit_labeled_statement(&mut self, h: &mut Heap, stmt: LabeledStatementId) -> VisitorResult {
 
        assert!(!self.block.is_none());
 
        // Store label in current block (on the fly)
 
        h[self.block.unwrap()].labels.push(stmt);
 
        // Update synchronous scope of label
 
        h[stmt].in_sync = self.sync_enclosure;
 
        recursive_labeled_statement(self, h, stmt)
 
    }
 
    fn visit_while_statement(&mut self, h: &mut Heap, stmt: WhileStatementId) -> VisitorResult {
 
        h[stmt].in_sync = self.sync_enclosure;
 
        recursive_while_statement(self, h, stmt)
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        assert!(self.sync_enclosure.is_none());
 
        self.sync_enclosure = Some(stmt);
 
        recursive_synchronous_statement(self, h, stmt)?;
 
        self.sync_enclosure = None;
 
        Ok(())
 
    }
 
    fn visit_expression(&mut self, h: &mut Heap, expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
struct ResolveLabels {
 
    block: Option<BlockStatementId>,
 
    while_enclosure: Option<WhileStatementId>,
 
    sync_enclosure: Option<SynchronousStatementId>,
 
}
 

	
 
impl ResolveLabels {
 
    fn new() -> Self {
 
        ResolveLabels { block: None, while_enclosure: None, sync_enclosure: None }
 
    }
 
    fn check_duplicate_impl(
 
        h: &Heap,
 
        block: Option<BlockStatementId>,
 
        stmt: LabeledStatementId,
 
    ) -> VisitorResult {
 
        if let Some(block) = block {
 
            // Checking the parent first is important. Otherwise, labels
 
            // overshadow previously defined labels: and this is illegal!
 
            ResolveLabels::check_duplicate_impl(h, h[block].parent_block(h), stmt)?;
 
            // For the current block, check for a duplicate.
 
            for &other_stmt in h[block].labels.iter() {
 
                if other_stmt == stmt {
 
                    continue;
0 comments (0 inline, 0 general)