Changeset - f39f9c5e5873
[Not reviewed]
0 12 0
mh - 3 years ago 2022-02-10 09:35:28
contact@maxhenger.nl
WIP: Refactored scopes in AST, pending bugfixes
12 files changed with 625 insertions and 648 deletions:
0 comments (0 inline, 0 general)
src/protocol/ast.rs
Show inline comments
 
@@ -158,6 +158,8 @@ define_new_ast_id!(CastExpressionId, ExpressionId, index(CastExpression, Express
 
define_new_ast_id!(CallExpressionId, ExpressionId, index(CallExpression, Expression::Call, expressions), alloc(alloc_call_expression));
 
define_new_ast_id!(VariableExpressionId, ExpressionId, index(VariableExpression, Expression::Variable, expressions), alloc(alloc_variable_expression));
 

	
 
define_aliased_ast_id!(ScopeId, Id<Scope>, index(Scope, scopes), alloc(alloc_scope));
 

	
 
#[derive(Debug)]
 
pub struct Heap {
 
    // Root arena, contains the entry point for different modules. Each root
 
@@ -170,6 +172,7 @@ pub struct Heap {
 
    pub(crate) definitions: Arena<Definition>,
 
    pub(crate) statements: Arena<Statement>,
 
    pub(crate) expressions: Arena<Expression>,
 
    pub(crate) scopes: Arena<Scope>,
 
}
 

	
 
impl Heap {
 
@@ -183,6 +186,7 @@ impl Heap {
 
            definitions: Arena::new(),
 
            statements: Arena::new(),
 
            expressions: Arena::new(),
 
            scopes: Arena::new(),
 
        }
 
    }
 
    pub fn alloc_memory_statement(
 
@@ -705,57 +709,47 @@ impl<'a> Iterator for ConcreteTypeIter<'a> {
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub enum Scope {
 
pub enum ScopeAssociation {
 
    Definition(DefinitionId),
 
    Regular(BlockStatementId),
 
    Synchronous(SynchronousStatementId, BlockStatementId),
 
}
 

	
 
impl Scope {
 
    pub(crate) fn new_invalid() -> Scope {
 
        return Scope::Definition(DefinitionId::new_invalid());
 
    }
 

	
 
    pub(crate) fn is_invalid(&self) -> bool {
 
        match self {
 
            Scope::Definition(id) => id.is_invalid(),
 
            _ => false,
 
        }
 
    }
 

	
 
    pub fn is_block(&self) -> bool {
 
        match &self {
 
            Scope::Definition(_) => false,
 
            Scope::Regular(_) => true,
 
            Scope::Synchronous(_, _) => true,
 
        }
 
    }
 
    pub fn to_block(&self) -> BlockStatementId {
 
        match &self {
 
            Scope::Regular(id) => *id,
 
            Scope::Synchronous(_, id) => *id,
 
            _ => panic!("unable to get BlockStatement from Scope")
 
        }
 
    }
 
    Block(BlockStatementId),
 
    If(IfStatementId, bool), // if true, then body of "if", otherwise body of "else"
 
    While(WhileStatementId),
 
    Synchronous(SynchronousStatementId),
 
    SelectCase(SelectStatementId, u32), // index is select case
 
}
 

	
 
/// `ScopeNode` is a helper that links scopes in two directions. It doesn't
 
/// actually contain any information associated with the scope, this may be
 
/// found on the AST elements that `Scope` points to.
 
#[derive(Debug, Clone)]
 
pub struct ScopeNode {
 
    pub parent: Scope,
 
    pub nested: Vec<Scope>,
 
pub struct Scope {
 
    // Relation to other scopes
 
    pub this: ScopeId,
 
    pub parent: Option<ScopeId>,
 
    pub nested: Vec<ScopeId>,
 
    // Locally available variables/labels
 
    pub association: ScopeAssociation,
 
    pub variables: Vec<VariableId>,
 
    pub labels: Vec<LabeledStatementId>,
 
    // Location trackers/counters
 
    pub relative_pos_in_parent: i32,
 
    pub first_unique_id_in_scope: i32,
 
    pub next_unique_id_in_scope: i32,
 
}
 

	
 
impl ScopeNode {
 
    pub(crate) fn new_invalid() -> Self {
 
        ScopeNode{
 
            parent: Scope::new_invalid(),
 
impl Scope {
 
    pub(crate) fn new_invalid(this: ScopeId) -> Self {
 
        return Self{
 
            this,
 
            parent: None,
 
            nested: Vec::new(),
 
            association: ScopeAssociation::Definition(DefinitionId::new_invalid()),
 
            variables: Vec::new(),
 
            labels: Vec::new(),
 
            relative_pos_in_parent: -1,
 
        }
 
            first_unique_id_in_scope: -1,
 
            next_unique_id_in_scope: -1,
 
        };
 
    }
 
}
 

	
 
@@ -774,7 +768,7 @@ pub struct Variable {
 
    pub parser_type: ParserType,
 
    pub identifier: Identifier,
 
    // Validator/linker
 
    pub relative_pos_in_block: i32,
 
    pub relative_pos_in_parent: i32,
 
    pub unique_id_in_scope: i32, // Temporary fix until proper bytecode/asm is generated
 
}
 

	
 
@@ -1020,6 +1014,7 @@ pub struct ComponentDefinition {
 
    pub poly_vars: Vec<Identifier>,
 
    // Parsing
 
    pub parameters: Vec<VariableId>,
 
    pub scope: ScopeId,
 
    pub body: BlockStatementId,
 
    // Validation/linking
 
    pub num_expressions_in_body: i32,
 
@@ -1034,6 +1029,7 @@ impl ComponentDefinition {
 
        Self{ 
 
            this, defined_in, span, variant, identifier, poly_vars,
 
            parameters: Vec::new(),
 
            scope: ScopeId::new_invalid(),
 
            body: BlockStatementId::new_invalid(),
 
            num_expressions_in_body: -1,
 
        }
 
@@ -1052,8 +1048,9 @@ pub struct FunctionDefinition {
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Parser
 
    pub return_types: Vec<ParserType>,
 
    pub return_type: ParserType,
 
    pub parameters: Vec<VariableId>,
 
    pub scope: ScopeId,
 
    pub body: BlockStatementId,
 
    // Validation/linking
 
    pub num_expressions_in_body: i32,
 
@@ -1068,8 +1065,9 @@ impl FunctionDefinition {
 
            this, defined_in,
 
            builtin: false,
 
            span, identifier, poly_vars,
 
            return_types: Vec::new(),
 
            return_type: ParserType{ elements: Vec::new(), full_span: InputSpan::new() },
 
            parameters: Vec::new(),
 
            scope: ScopeId::new_invalid(),
 
            body: BlockStatementId::new_invalid(),
 
            num_expressions_in_body: -1,
 
        }
 
@@ -1178,6 +1176,7 @@ impl Statement {
 
            | Statement::If(_) => unreachable!(),
 
        }
 
    }
 

	
 
}
 

	
 
#[derive(Debug, Clone)]
 
@@ -1189,11 +1188,7 @@ pub struct BlockStatement {
 
    pub statements: Vec<StatementId>,
 
    pub end_block: EndBlockStatementId,
 
    // Phase 2: linker
 
    pub scope_node: ScopeNode,
 
    pub first_unique_id_in_scope: i32, // Temporary fix until proper bytecode/asm is generated
 
    pub next_unique_id_in_scope: i32, // Temporary fix until proper bytecode/asm is generated
 
    pub locals: Vec<VariableId>,
 
    pub labels: Vec<LabeledStatementId>,
 
    pub scope: ScopeId,
 
    pub next: StatementId,
 
}
 

	
 
@@ -1263,7 +1258,7 @@ pub struct ChannelStatement {
 
    pub from: VariableId, // output
 
    pub to: VariableId,   // input
 
    // Phase 2: linker
 
    pub relative_pos_in_block: i32,
 
    pub relative_pos_in_parent: i32,
 
    pub next: StatementId,
 
}
 

	
 
@@ -1274,7 +1269,7 @@ pub struct LabeledStatement {
 
    pub label: Identifier,
 
    pub body: StatementId,
 
    // Phase 2: linker
 
    pub relative_pos_in_block: i32,
 
    pub relative_pos_in_parent: i32,
 
    pub in_sync: SynchronousStatementId, // may be invalid
 
}
 

	
 
@@ -1284,11 +1279,17 @@ pub struct IfStatement {
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "if" keyword
 
    pub test: ExpressionId,
 
    pub true_body: BlockStatementId,
 
    pub false_body: Option<BlockStatementId>,
 
    pub true_case: IfStatementCase,
 
    pub false_case: Option<IfStatementCase>,
 
    pub end_if: EndIfStatementId,
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub struct IfStatementCase {
 
    pub body: StatementId,
 
    pub scope: ScopeId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndIfStatement {
 
    pub this: EndIfStatementId,
 
@@ -1302,7 +1303,8 @@ pub struct WhileStatement {
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "while" keyword
 
    pub test: ExpressionId,
 
    pub body: BlockStatementId,
 
    pub scope: ScopeId,
 
    pub body: StatementId,
 
    pub end_while: EndWhileStatementId,
 
    pub in_sync: SynchronousStatementId, // may be invalid
 
}
 
@@ -1340,7 +1342,8 @@ pub struct SynchronousStatement {
 
    pub this: SynchronousStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "sync" keyword
 
    pub body: BlockStatementId,
 
    pub scope: ScopeId,
 
    pub body: StatementId,
 
    pub end_sync: EndSynchronousStatementId,
 
}
 

	
 
@@ -1357,8 +1360,8 @@ pub struct ForkStatement {
 
    pub this: ForkStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "fork" keyword
 
    pub left_body: BlockStatementId,
 
    pub right_body: Option<BlockStatementId>,
 
    pub left_body: StatementId,
 
    pub right_body: Option<StatementId>,
 
    pub end_fork: EndForkStatementId,
 
}
 

	
 
@@ -1382,7 +1385,8 @@ pub struct SelectCase {
 
    // The guard statement of a `select` is either a MemoryStatement or an
 
    // ExpressionStatement. Nothing else is allowed by the initial parsing
 
    pub guard: StatementId,
 
    pub block: BlockStatementId,
 
    pub body: StatementId,
 
    pub scope: ScopeId,
 
    // Phase 2: Validation and Linking
 
    pub involved_ports: Vec<(CallExpressionId, ExpressionId)>, // call to `get` and its port argument
 
}
src/protocol/ast_printer.rs
Show inline comments
 
@@ -354,11 +354,8 @@ impl ASTWriter {
 
                    self.kv(indent3).with_s_key("PolyVar").with_identifier_val(&poly_var_id);
 
                }
 

	
 
                self.kv(indent2).with_s_key("ReturnParserTypes");
 
                for return_type in &def.return_types {
 
                    self.kv(indent3).with_s_key("ReturnParserType")
 
                        .with_custom_val(|s| write_parser_type(s, heap, return_type));
 
                }
 
                self.kv(indent2).with_s_key("ReturnParserType")
 
                    .with_custom_val(|s| write_parser_type(s, heap, &def.return_type));
 

	
 
                self.kv(indent2).with_s_key("Parameters");
 
                for variable_id in &def.parameters {
 
@@ -401,9 +398,7 @@ impl ASTWriter {
 
                self.kv(indent).with_id(PREFIX_BLOCK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Block");
 
                self.kv(indent2).with_s_key("EndBlockID").with_disp_val(&stmt.end_block.0.index);
 
                self.kv(indent2).with_s_key("FirstUniqueScopeID").with_disp_val(&stmt.first_unique_id_in_scope);
 
                self.kv(indent2).with_s_key("NextUniqueScopeID").with_disp_val(&stmt.next_unique_id_in_scope);
 
                self.kv(indent2).with_s_key("RelativePos").with_disp_val(&stmt.scope_node.relative_pos_in_parent);
 
                self.kv(indent2).with_s_key("ScopeID").with_disp_val(&stmt.scope.index);
 

	
 
                self.kv(indent2).with_s_key("Statements");
 
                for stmt_id in &stmt.statements {
 
@@ -457,11 +452,11 @@ impl ASTWriter {
 
                self.write_expr(heap, stmt.test, indent3);
 

	
 
                self.kv(indent2).with_s_key("TrueBody");
 
                self.write_stmt(heap, stmt.true_body.upcast(), indent3);
 
                self.write_stmt(heap, stmt.true_case.body, indent3);
 

	
 
                if let Some(false_body) = stmt.false_body {
 
                if let Some(false_body) = stmt.false_case {
 
                    self.kv(indent2).with_s_key("FalseBody");
 
                    self.write_stmt(heap, false_body.upcast(), indent3);
 
                    self.write_stmt(heap, false_body.body, indent3);
 
                }
 
            },
 
            Statement::EndIf(stmt) => {
 
@@ -480,7 +475,7 @@ impl ASTWriter {
 
                self.kv(indent2).with_s_key("Condition");
 
                self.write_expr(heap, stmt.test, indent3);
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, stmt.body.upcast(), indent3);
 
                self.write_stmt(heap, stmt.body, indent3);
 
            },
 
            Statement::EndWhile(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDWHILE_STMT_ID, stmt.this.0.index)
 
@@ -509,7 +504,7 @@ impl ASTWriter {
 
                    .with_s_key("Synchronous");
 
                self.kv(indent2).with_s_key("EndSync").with_disp_val(&stmt.end_sync.0.index);
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, stmt.body.upcast(), indent3);
 
                self.write_stmt(heap, stmt.body, indent3);
 
            },
 
            Statement::EndSynchronous(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDSYNC_STMT_ID, stmt.this.0.index)
 
@@ -522,11 +517,11 @@ impl ASTWriter {
 
                    .with_s_key("Fork");
 
                self.kv(indent2).with_s_key("EndFork").with_disp_val(&stmt.end_fork.0.index);
 
                self.kv(indent2).with_s_key("LeftBody");
 
                self.write_stmt(heap, stmt.left_body.upcast(), indent3);
 
                self.write_stmt(heap, stmt.left_body, indent3);
 

	
 
                if let Some(right_body_id) = stmt.right_body {
 
                    self.kv(indent2).with_s_key("RightBody");
 
                    self.write_stmt(heap, right_body_id.upcast(), indent3);
 
                    self.write_stmt(heap, right_body_id, indent3);
 
                }
 
            },
 
            Statement::EndFork(stmt) => {
 
@@ -547,7 +542,7 @@ impl ASTWriter {
 
                    self.write_stmt(heap, case.guard, indent4);
 

	
 
                    self.kv(indent3).with_s_key("Block");
 
                    self.write_stmt(heap, case.block.upcast(), indent4);
 
                    self.write_stmt(heap, case.body, indent4);
 
                }
 
            },
 
            Statement::EndSelect(stmt) => {
 
@@ -825,7 +820,7 @@ impl ASTWriter {
 
        self.kv(indent2).with_s_key("Kind").with_debug_val(&var.kind);
 
        self.kv(indent2).with_s_key("ParserType")
 
            .with_custom_val(|w| write_parser_type(w, heap, &var.parser_type));
 
        self.kv(indent2).with_s_key("RelativePos").with_disp_val(&var.relative_pos_in_block);
 
        self.kv(indent2).with_s_key("RelativePos").with_disp_val(&var.relative_pos_in_parent);
 
        self.kv(indent2).with_s_key("UniqueScopeID").with_disp_val(&var.unique_id_in_scope);
 
    }
 

	
src/protocol/eval/executor.rs
Show inline comments
 
@@ -38,35 +38,34 @@ impl Frame {
 
    /// Creates a new execution frame. Does not modify the stack in any way.
 
    pub fn new(heap: &Heap, definition_id: DefinitionId, monomorph_idx: i32) -> Self {
 
        let definition = &heap[definition_id];
 
        let first_statement = match definition {
 
            Definition::Component(definition) => definition.body,
 
            Definition::Function(definition) => definition.body,
 
        let (outer_scope_id, first_statement_id) = match definition {
 
            Definition::Component(definition) => (definition.scope, definition.body),
 
            Definition::Function(definition) => (definition.scope, definition.body),
 
            _ => unreachable!("initializing frame with {:?} instead of a function/component", definition),
 
        };
 

	
 
        // Another not-so-pretty thing that has to be replaced somewhere in the
 
        // future...
 
        fn determine_max_stack_size(heap: &Heap, block_id: BlockStatementId, max_size: &mut u32) {
 
            let block_stmt = &heap[block_id];
 
            debug_assert!(block_stmt.next_unique_id_in_scope >= 0);
 
        fn determine_max_stack_size(heap: &Heap, scope_id: ScopeId, max_size: &mut u32) {
 
            let scope = &heap[scope_id];
 

	
 
            // Check current block
 
            let cur_size = block_stmt.next_unique_id_in_scope as u32;
 
            let cur_size = scope.next_unique_id_in_scope as u32;
 
            if cur_size > *max_size { *max_size = cur_size; }
 

	
 
            // And child blocks
 
            for child_scope in &block_stmt.scope_node.nested {
 
                determine_max_stack_size(heap, child_scope.to_block(), max_size);
 
            for child_scope in &scope.nested {
 
                determine_max_stack_size(heap, *child_scope, max_size);
 
            }
 
        }
 

	
 
        let mut max_stack_size = 0;
 
        determine_max_stack_size(heap, first_statement, &mut max_stack_size);
 
        determine_max_stack_size(heap, outer_scope_id, &mut max_stack_size);
 

	
 
        Frame{
 
            definition: definition_id,
 
            monomorph_idx,
 
            position: first_statement.upcast(),
 
            position: first_statement_id.upcast(),
 
            expr_stack: VecDeque::with_capacity(128),
 
            expr_values: VecDeque::with_capacity(128),
 
            max_stack_size,
 
@@ -826,7 +825,8 @@ impl Prompt {
 
            },
 
            Statement::EndBlock(stmt) => {
 
                let block = &heap[stmt.start_block];
 
                self.store.clear_stack(block.first_unique_id_in_scope as usize);
 
                let scope = &heap[block.scope];
 
                self.store.clear_stack(scope.first_unique_id_in_scope as usize);
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
@@ -873,9 +873,9 @@ impl Prompt {
 
                let test_value = cur_frame.expr_values.pop_back().unwrap();
 
                let test_value = self.store.maybe_read_ref(&test_value).as_bool();
 
                if test_value {
 
                    cur_frame.position = stmt.true_body.upcast();
 
                } else if let Some(false_body) = stmt.false_body {
 
                    cur_frame.position = false_body.upcast();
 
                    cur_frame.position = stmt.true_case.body;
 
                } else if let Some(false_body) = stmt.false_case {
 
                    cur_frame.position = false_body.body;
 
                } else {
 
                    // Not true, and no false body
 
                    cur_frame.position = stmt.end_if.upcast();
 
@@ -885,6 +885,13 @@ impl Prompt {
 
            },
 
            Statement::EndIf(stmt) => {
 
                cur_frame.position = stmt.next;
 
                let if_stmt = &heap[stmt.start_if];
 
                debug_assert_eq!(
 
                    heap[if_stmt.true_case.scope].first_unique_id_in_scope,
 
                    heap[if_stmt.false_case.unwrap_or(if_stmt.true_case).scope].first_unique_id_in_scope,
 
                );
 
                let scope = &heap[if_stmt.true_case.scope];
 
                self.store.clear_stack(scope.first_unique_id_in_scope as usize);
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::While(stmt) => {
 
@@ -892,7 +899,7 @@ impl Prompt {
 
                let test_value = cur_frame.expr_values.pop_back().unwrap();
 
                let test_value = self.store.maybe_read_ref(&test_value).as_bool();
 
                if test_value {
 
                    cur_frame.position = stmt.body.upcast();
 
                    cur_frame.position = stmt.body;
 
                } else {
 
                    cur_frame.position = stmt.end_while.upcast();
 
                }
 
@@ -901,7 +908,9 @@ impl Prompt {
 
            },
 
            Statement::EndWhile(stmt) => {
 
                cur_frame.position = stmt.next;
 

	
 
                let start_while = &heap[stmt.start_while];
 
                let scope = &heap[start_while.scope];
 
                self.store.clear_stack(scope.first_unique_id_in_scope as usize);
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Break(stmt) => {
 
@@ -915,27 +924,30 @@ impl Prompt {
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Synchronous(stmt) => {
 
                cur_frame.position = stmt.body.upcast();
 
                cur_frame.position = stmt.body;
 

	
 
                Ok(EvalContinuation::SyncBlockStart)
 
            },
 
            Statement::EndSynchronous(stmt) => {
 
                cur_frame.position = stmt.next;
 
                let start_synchronous = &heap[stmt.start_sync];
 
                let scope = &heap[start_synchronous.scope];
 
                self.store.clear_stack(scope.first_unique_id_in_scope as usize);
 

	
 
                Ok(EvalContinuation::SyncBlockEnd)
 
            },
 
            Statement::Fork(stmt) => {
 
                if stmt.right_body.is_none() {
 
                    // No reason to fork
 
                    cur_frame.position = stmt.left_body.upcast();
 
                    cur_frame.position = stmt.left_body;
 
                } else {
 
                    // Need to fork
 
                    if let Some(go_left) = ctx.performed_fork() {
 
                        // Runtime has created a fork
 
                        if go_left {
 
                            cur_frame.position = stmt.left_body.upcast();
 
                            cur_frame.position = stmt.left_body;
 
                        } else {
 
                            cur_frame.position = stmt.right_body.unwrap().upcast();
 
                            cur_frame.position = stmt.right_body.unwrap();
 
                        }
 
                    } else {
 
                        // Request the runtime to create a fork of the current
 
@@ -956,6 +968,11 @@ impl Prompt {
 
            },
 
            Statement::EndSelect(stmt) => {
 
                cur_frame.position = stmt.next;
 
                let start_select = &heap[stmt.start_select];
 
                if let Some(select_case) = start_select.cases.first() {
 
                    let scope = &heap[select_case.scope];
 
                    self.store.clear_stack(scope.first_unique_id_in_scope as usize);
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
src/protocol/eval/value.rs
Show inline comments
 
@@ -520,7 +520,7 @@ pub(crate) fn apply_unary_operator(store: &mut Store, op: UnaryOperator, value:
 
                Value::SInt32(v) => Value::SInt32($apply *v),
 
                Value::SInt64(v) => Value::SInt64($apply *v),
 
                _ => unreachable!("apply_unary_operator {:?} on value {:?}", $op, $value),
 
            };
 
            }
 
        }
 
    }
 

	
 
@@ -542,7 +542,7 @@ pub(crate) fn apply_unary_operator(store: &mut Store, op: UnaryOperator, value:
 
                _ => unreachable!("apply_unary_operator {:?} on value {:?}", op, value),
 
            }
 
        },
 
        UO::BitwiseNot => { apply_int_expr_and_return!(value, !, op)},
 
        UO::BitwiseNot => { apply_int_expr_and_return!(value, !, op); },
 
        UO::LogicalNot => { return Value::Bool(!value.as_bool()); },
 
    }
 
}
src/protocol/parser/mod.rs
Show inline comments
 
@@ -282,23 +282,24 @@ fn insert_builtin_function<T: Fn(FunctionDefinitionId) -> (Vec<(&'static str, Pa
 
        span: InputSpan::new(),
 
        identifier: Identifier{ span: InputSpan::new(), value: func_ident_ref.clone() },
 
        poly_vars,
 
        return_types: Vec::new(),
 
        return_type: ParserType{ elements: Vec::new(), full_span: InputSpan::new() },
 
        parameters: Vec::new(),
 
        scope: ScopeId::new_invalid(),
 
        body: BlockStatementId::new_invalid(),
 
        num_expressions_in_body: -1,
 
    });
 

	
 
    let (args, ret) = arg_and_return_fn(func_id);
 
    let (arguments, return_type) = arg_and_return_fn(func_id);
 

	
 
    let mut parameters = Vec::with_capacity(args.len());
 
    for (arg_name, arg_type) in args {
 
    let mut parameters = Vec::with_capacity(arguments.len());
 
    for (arg_name, arg_type) in arguments {
 
        let identifier = Identifier{ span: InputSpan::new(), value: p.string_pool.intern(arg_name.as_bytes()) };
 
        let param_id = p.heap.alloc_variable(|this| Variable{
 
            this,
 
            kind: VariableKind::Parameter,
 
            parser_type: arg_type.clone(),
 
            identifier,
 
            relative_pos_in_block: 0,
 
            relative_pos_in_parent: 0,
 
            unique_id_in_scope: 0
 
        });
 
        parameters.push(param_id);
 
@@ -306,7 +307,7 @@ fn insert_builtin_function<T: Fn(FunctionDefinitionId) -> (Vec<(&'static str, Pa
 

	
 
    let func = &mut p.heap[func_id];
 
    func.parameters = parameters;
 
    func.return_types.push(ret);
 
    func.return_type = return_type;
 

	
 
    p.symbol_table.insert_symbol(SymbolScope::Global, Symbol{
 
        name: func_ident_ref,
src/protocol/parser/pass_definitions.rs
Show inline comments
 
@@ -273,33 +273,18 @@ impl PassDefinitions {
 

	
 
        // Consume return types
 
        consume_token(&module.source, iter, TokenKind::ArrowRight)?;
 
        let mut return_types = self.parser_types.start_section();
 
        let mut open_curly_pos = iter.last_valid_pos(); // bogus value
 
        consume_comma_separated_until(
 
            TokenKind::OpenCurly, &module.source, iter, ctx,
 
            |source, iter, ctx| {
 
        let poly_vars = ctx.heap[definition_id].poly_vars();
 
                self.type_parser.consume_parser_type(
 
                    iter, &ctx.heap, source, &ctx.symbols, poly_vars, definition_id,
 
        let parser_type = self.type_parser.consume_parser_type(
 
            iter, &ctx.heap, &module.source, &ctx.symbols, poly_vars, definition_id,
 
            module_scope, false, None
 
                )
 
            },
 
            &mut return_types, "a return type", Some(&mut open_curly_pos)
 
        )?;
 
        let return_types = return_types.into_vec();
 

	
 
        match return_types.len() {
 
            0 => return Err(ParseError::new_error_str_at_pos(&module.source, open_curly_pos, "expected a return type")),
 
            1 => {},
 
            _ => return Err(ParseError::new_error_str_at_pos(&module.source, open_curly_pos, "multiple return types are not (yet) allowed")),
 
        }
 

	
 
        // Consume block
 
        let body = self.consume_block_statement_without_leading_curly(module, iter, ctx, open_curly_pos)?;
 
        // Consume block and the definition's scope
 
        let body = self.consume_block_statement(module, iter, ctx)?;
 

	
 
        // Assign everything in the preallocated AST node
 
        let function = ctx.heap[definition_id].as_function_mut();
 
        function.return_types = return_types;
 
        function.return_type = parser_type;
 
        function.parameters = parameters;
 
        function.body = body;
 

	
 
@@ -340,187 +325,136 @@ impl PassDefinitions {
 
        Ok(())
 
    }
 

	
 
    /// Consumes a block statement. If the resulting statement is not a block
 
    /// (e.g. for a shorthand "if (expr) single_statement") then it will be
 
    /// wrapped in one
 
    fn consume_block_or_wrapped_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<BlockStatementId, ParseError> {
 
        if Some(TokenKind::OpenCurly) == iter.next() {
 
            // This is a block statement
 
            self.consume_block_statement(module, iter, ctx)
 
        } else {
 
            // Not a block statement, so wrap it in one
 
            let mut statements = self.statements.start_section();
 
            let wrap_begin_pos = iter.last_valid_pos();
 
            self.consume_statement(module, iter, ctx, &mut statements)?;
 
            let wrap_end_pos = iter.last_valid_pos();
 

	
 
            let statements = statements.into_vec();
 

	
 
            let id = ctx.heap.alloc_block_statement(|this| BlockStatement{
 
                this,
 
                is_implicit: true,
 
                span: InputSpan::from_positions(wrap_begin_pos, wrap_end_pos),
 
                statements,
 
                end_block: EndBlockStatementId::new_invalid(),
 
                scope_node: ScopeNode::new_invalid(),
 
                first_unique_id_in_scope: -1,
 
                next_unique_id_in_scope: -1,
 
                locals: Vec::new(),
 
                labels: Vec::new(),
 
                next: StatementId::new_invalid(),
 
            });
 

	
 
            let end_block = ctx.heap.alloc_end_block_statement(|this| EndBlockStatement{
 
                this, start_block: id, next: StatementId::new_invalid()
 
            });
 

	
 
            let block_stmt = &mut ctx.heap[id];
 
            block_stmt.end_block = end_block;
 

	
 
            Ok(id)
 
        }
 
    }
 

	
 
    /// Consumes a statement and returns a boolean indicating whether it was a
 
    /// block or not.
 
    fn consume_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx, section: &mut ScopedSection<StatementId>
 
    ) -> Result<(), ParseError> {
 
    fn consume_statement(&mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx) -> Result<StatementId, ParseError> {
 
        let next = iter.next().expect("consume_statement has a next token");
 

	
 
        if next == TokenKind::OpenCurly {
 
            let id = self.consume_block_statement(module, iter, ctx)?;
 
            section.push(id.upcast());
 
            return Ok(id.upcast());
 
        } else if next == TokenKind::Ident {
 
            let ident = peek_ident(&module.source, iter).unwrap();
 
            if ident == KW_STMT_IF {
 
                // Consume if statement and place end-if statement directly
 
                // after it.
 
                let id = self.consume_if_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 

	
 
                let end_if = ctx.heap.alloc_end_if_statement(|this| EndIfStatement {
 
                    this,
 
                    start_if: id,
 
                    next: StatementId::new_invalid()
 
                });
 
                section.push(end_if.upcast());
 

	
 
                let if_stmt = &mut ctx.heap[id];
 
                if_stmt.end_if = end_if;
 

	
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_WHILE {
 
                let id = self.consume_while_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 

	
 
                let end_while = ctx.heap.alloc_end_while_statement(|this| EndWhileStatement {
 
                    this,
 
                    start_while: id,
 
                    next: StatementId::new_invalid()
 
                });
 
                section.push(end_while.upcast());
 

	
 
                let while_stmt = &mut ctx.heap[id];
 
                while_stmt.end_while = end_while;
 

	
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_BREAK {
 
                let id = self.consume_break_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_CONTINUE {
 
                let id = self.consume_continue_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_SYNC {
 
                let id = self.consume_synchronous_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 

	
 
                let end_sync = ctx.heap.alloc_end_synchronous_statement(|this| EndSynchronousStatement {
 
                    this,
 
                    start_sync: id,
 
                    next: StatementId::new_invalid()
 
                });
 
                section.push(end_sync.upcast());
 

	
 
                let sync_stmt = &mut ctx.heap[id];
 
                sync_stmt.end_sync = end_sync;
 

	
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_FORK {
 
                let id = self.consume_fork_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 

	
 
                let end_fork = ctx.heap.alloc_end_fork_statement(|this| EndForkStatement {
 
                    this,
 
                    start_fork: id,
 
                    next: StatementId::new_invalid(),
 
                });
 
                section.push(end_fork.upcast());
 

	
 
                let fork_stmt = &mut ctx.heap[id];
 
                fork_stmt.end_fork = end_fork;
 

	
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_SELECT {
 
                let id = self.consume_select_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 

	
 
                let end_select = ctx.heap.alloc_end_select_statement(|this| EndSelectStatement{
 
                    this,
 
                    start_select: id,
 
                    next: StatementId::new_invalid(),
 
                });
 
                section.push(end_select.upcast());
 

	
 
                let select_stmt = &mut ctx.heap[id];
 
                select_stmt.end_select = end_select;
 

	
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_RETURN {
 
                let id = self.consume_return_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_GOTO {
 
                let id = self.consume_goto_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_NEW {
 
                let id = self.consume_new_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_CHANNEL {
 
                let id = self.consume_channel_statement(module, iter, ctx)?;
 
                section.push(id.upcast().upcast());
 
                return Ok(id.upcast().upcast());
 
            } else if iter.peek() == Some(TokenKind::Colon) {
 
                self.consume_labeled_statement(module, iter, ctx, section)?;
 
                let id = self.consume_labeled_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else {
 
                // Two fallback possibilities: the first one is a memory
 
                // declaration, the other one is to parse it as a normal
 
                // expression. This is a bit ugly.
 
                if let Some(memory_stmt_id) = self.maybe_consume_memory_statement_without_semicolon(module, iter, ctx)? {
 
                    consume_token(&module.source, iter, TokenKind::SemiColon)?;
 
                    section.push(memory_stmt_id.upcast().upcast());
 
                    return Ok(memory_stmt_id.upcast().upcast());
 
                } else {
 
                    let id = self.consume_expression_statement(module, iter, ctx)?;
 
                    section.push(id.upcast());
 
                    return Ok(id.upcast());
 
                }
 
            }
 
        } else if next == TokenKind::OpenParen {
 
            // Same as above: memory statement or normal expression
 
            if let Some(memory_stmt_id) = self.maybe_consume_memory_statement_without_semicolon(module, iter, ctx)? {
 
                consume_token(&module.source, iter, TokenKind::SemiColon)?;
 
                section.push(memory_stmt_id.upcast().upcast());
 
                return Ok(memory_stmt_id.upcast().upcast());
 
            } else {
 
                let id = self.consume_expression_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 
                return Ok(id.upcast());
 
            }
 
        } else {
 
            let id = self.consume_expression_statement(module, iter, ctx)?;
 
            section.push(id.upcast());
 
            return Ok(id.upcast());
 
        }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn consume_block_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<BlockStatementId, ParseError> {
 
        let open_span = consume_token(&module.source, iter, TokenKind::OpenCurly)?;
 
        self.consume_block_statement_without_leading_curly(module, iter, ctx, open_span.begin)
 
    }
 
        let open_curly_span = consume_token(&module.source, iter, TokenKind::OpenCurly)?;
 

	
 
    fn consume_block_statement_without_leading_curly(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx, open_curly_pos: InputPosition
 
    ) -> Result<BlockStatementId, ParseError> {
 
        let mut stmt_section = self.statements.start_section();
 
        let mut next = iter.next();
 
        while next != Some(TokenKind::CloseCurly) {
 
@@ -529,13 +463,14 @@ impl PassDefinitions {
 
                    &module.source, iter.last_valid_pos(), "expected a statement or '}'"
 
                ));
 
            }
 
            self.consume_statement(module, iter, ctx, &mut stmt_section)?;
 
            let stmt_id = self.consume_statement(module, iter, ctx)?;
 
            stmt_section.push(stmt_id);
 
            next = iter.next();
 
        }
 

	
 
        let statements = stmt_section.into_vec();
 
        let mut block_span = consume_token(&module.source, iter, TokenKind::CloseCurly)?;
 
        block_span.begin = open_curly_pos;
 
        block_span.begin = open_curly_span.begin;
 

	
 
        let id = ctx.heap.alloc_block_statement(|this| BlockStatement{
 
            this,
 
@@ -543,11 +478,7 @@ impl PassDefinitions {
 
            span: block_span,
 
            statements,
 
            end_block: EndBlockStatementId::new_invalid(),
 
            scope_node: ScopeNode::new_invalid(),
 
            first_unique_id_in_scope: -1,
 
            next_unique_id_in_scope: -1,
 
            locals: Vec::new(),
 
            labels: Vec::new(),
 
            scope: ScopeId::new_invalid(),
 
            next: StatementId::new_invalid(),
 
        });
 

	
 
@@ -568,24 +499,36 @@ impl PassDefinitions {
 
        consume_token(&module.source, iter, TokenKind::OpenParen)?;
 
        let test = self.consume_expression(module, iter, ctx)?;
 
        consume_token(&module.source, iter, TokenKind::CloseParen)?;
 
        let true_body = self.consume_block_or_wrapped_statement(module, iter, ctx)?;
 

	
 
        let false_body = if has_ident(&module.source, iter, KW_STMT_ELSE) {
 
        let true_body = IfStatementCase{
 
            body: self.consume_statement(module, iter, ctx)?,
 
            scope: ScopeId::new_invalid(),
 
        };
 
        let true_body_scope_id = true_body.scope;
 

	
 
        let (false_body, false_body_scope_id) = if has_ident(&module.source, iter, KW_STMT_ELSE) {
 
            iter.consume();
 
            let false_body = self.consume_block_or_wrapped_statement(module, iter, ctx)?;
 
            Some(false_body)
 
            let false_body = IfStatementCase{
 
                body: self.consume_statement(module, iter, ctx)?,
 
                scope: ScopeId::new_invalid(),
 
            };
 

	
 
            let false_body_scope_id = false_body.scope;
 
            (Some(false_body), Some(false_body_scope_id))
 
        } else {
 
            None
 
            (None, None)
 
        };
 

	
 
        Ok(ctx.heap.alloc_if_statement(|this| IfStatement{
 
        let if_stmt_id = ctx.heap.alloc_if_statement(|this| IfStatement{
 
            this,
 
            span: if_span,
 
            test,
 
            true_body,
 
            false_body,
 
            true_case: true_body,
 
            false_case: false_body,
 
            end_if: EndIfStatementId::new_invalid(),
 
        }))
 
        });
 

	
 
        return Ok(if_stmt_id);
 
    }
 

	
 
    fn consume_while_statement(
 
@@ -595,12 +538,13 @@ impl PassDefinitions {
 
        consume_token(&module.source, iter, TokenKind::OpenParen)?;
 
        let test = self.consume_expression(module, iter, ctx)?;
 
        consume_token(&module.source, iter, TokenKind::CloseParen)?;
 
        let body = self.consume_block_or_wrapped_statement(module, iter, ctx)?;
 
        let body = self.consume_statement(module, iter, ctx)?;
 

	
 
        Ok(ctx.heap.alloc_while_statement(|this| WhileStatement{
 
            this,
 
            span: while_span,
 
            test,
 
            scope: ScopeId::new_invalid(),
 
            body,
 
            end_while: EndWhileStatementId::new_invalid(),
 
            in_sync: SynchronousStatementId::new_invalid(),
 
@@ -649,11 +593,12 @@ impl PassDefinitions {
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<SynchronousStatementId, ParseError> {
 
        let synchronous_span = consume_exact_ident(&module.source, iter, KW_STMT_SYNC)?;
 
        let body = self.consume_block_or_wrapped_statement(module, iter, ctx)?;
 
        let body = self.consume_statement(module, iter, ctx)?;
 

	
 
        Ok(ctx.heap.alloc_synchronous_statement(|this| SynchronousStatement{
 
            this,
 
            span: synchronous_span,
 
            scope: ScopeId::new_invalid(),
 
            body,
 
            end_sync: EndSynchronousStatementId::new_invalid(),
 
        }))
 
@@ -663,11 +608,11 @@ impl PassDefinitions {
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<ForkStatementId, ParseError> {
 
        let fork_span = consume_exact_ident(&module.source, iter, KW_STMT_FORK)?;
 
        let left_body = self.consume_block_or_wrapped_statement(module, iter, ctx)?;
 
        let left_body = self.consume_statement(module, iter, ctx)?;
 

	
 
        let right_body = if has_ident(&module.source, iter, KW_STMT_OR) {
 
            iter.consume();
 
            let right_body = self.consume_block_or_wrapped_statement(module, iter, ctx)?;
 
            let right_body = self.consume_statement(module, iter, ctx)?;
 
            Some(right_body)
 
        } else {
 
            None
 
@@ -710,9 +655,11 @@ impl PassDefinitions {
 
                },
 
            };
 
            consume_token(&module.source, iter, TokenKind::ArrowRight)?;
 
            let block = self.consume_block_or_wrapped_statement(module, iter, ctx)?;
 
            let block = self.consume_statement(module, iter, ctx)?;
 
            cases.push(SelectCase{
 
                guard, block,
 
                guard,
 
                body: block,
 
                scope: ScopeId::new_invalid(),
 
                involved_ports: Vec::with_capacity(1)
 
            });
 

	
 
@@ -855,7 +802,7 @@ impl PassDefinitions {
 
            kind: VariableKind::Local,
 
            identifier: from_identifier,
 
            parser_type: from_port_type,
 
            relative_pos_in_block: 0,
 
            relative_pos_in_parent: 0,
 
            unique_id_in_scope: -1,
 
        });
 

	
 
@@ -870,7 +817,7 @@ impl PassDefinitions {
 
            kind: VariableKind::Local,
 
            identifier: to_identifier,
 
            parser_type: to_port_type,
 
            relative_pos_in_block: 0,
 
            relative_pos_in_parent: 0,
 
            unique_id_in_scope: -1,
 
        });
 

	
 
@@ -879,49 +826,25 @@ impl PassDefinitions {
 
            this,
 
            span: channel_span,
 
            from, to,
 
            relative_pos_in_block: 0,
 
            relative_pos_in_parent: 0,
 
            next: StatementId::new_invalid(),
 
        }))
 
    }
 

	
 
    fn consume_labeled_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx, section: &mut ScopedSection<StatementId>
 
    ) -> Result<(), ParseError> {
 
    fn consume_labeled_statement(&mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx) -> Result<LabeledStatementId, ParseError> {
 
        let label = consume_ident_interned(&module.source, iter, ctx)?;
 
        consume_token(&module.source, iter, TokenKind::Colon)?;
 

	
 
        // Not pretty: consume_statement may produce more than one statement.
 
        // The values in the section need to be in the correct order if some
 
        // kind of outer block is consumed, so we take another section, push
 
        // the expressions in that one, and then allocate the labeled statement.
 
        let mut inner_section = self.statements.start_section();
 
        self.consume_statement(module, iter, ctx, &mut inner_section)?;
 
        debug_assert!(inner_section.len() >= 1);
 

	
 
        let inner_stmt_id = self.consume_statement(module, iter, ctx)?;
 
        let stmt_id = ctx.heap.alloc_labeled_statement(|this| LabeledStatement {
 
            this,
 
            label,
 
            body: inner_section[0],
 
            relative_pos_in_block: 0,
 
            body: inner_stmt_id,
 
            relative_pos_in_parent: 0,
 
            in_sync: SynchronousStatementId::new_invalid(),
 
        });
 

	
 
        if inner_section.len() == 1 {
 
            // Produce the labeled statement pointing to the first statement.
 
            // This is by far the most common case.
 
            inner_section.forget();
 
            section.push(stmt_id.upcast());
 
        } else {
 
            // Produce the labeled statement using the first statement, and push
 
            // the remaining ones at the end.
 
            let inner_statements = inner_section.into_vec();
 
            section.push(stmt_id.upcast());
 
            for idx in 1..inner_statements.len() {
 
                section.push(inner_statements[idx])
 
            }
 
        }
 

	
 
        Ok(())
 
        return Ok(stmt_id);
 
    }
 

	
 
    /// Attempts to consume a memory statement (a statement along the lines of
 
@@ -960,7 +883,7 @@ impl PassDefinitions {
 
                    kind: VariableKind::Local,
 
                    identifier: identifier.clone(),
 
                    parser_type,
 
                    relative_pos_in_block: 0,
 
                    relative_pos_in_parent: 0,
 
                    unique_id_in_scope: -1,
 
                });
 

	
 
@@ -1883,7 +1806,7 @@ fn consume_parameter_list(
 
                kind: VariableKind::Parameter,
 
                parser_type,
 
                identifier,
 
                relative_pos_in_block: 0,
 
                relative_pos_in_parent: 0,
 
                unique_id_in_scope: -1,
 
            });
 
            Ok(parameter_id)
src/protocol/parser/pass_rewriting.rs
Show inline comments
 
@@ -59,12 +59,12 @@ impl Visitor for PassRewriting {
 

	
 
    fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
 
        let if_stmt = &ctx.heap[id];
 
        let true_body_id = if_stmt.true_body;
 
        let false_body_id = if_stmt.false_body;
 
        let true_body_id = if_stmt.true_case;
 
        let false_body_id = if_stmt.false_case;
 

	
 
        self.visit_block_stmt(ctx, true_body_id)?;
 
        self.visit_stmt(ctx, true_body_id.body)?;
 
        if let Some(false_body_id) = false_body_id {
 
            self.visit_block_stmt(ctx, false_body_id)?;
 
            self.visit_stmt(ctx, false_body_id.body)?;
 
        }
 

	
 
        return Ok(())
 
@@ -73,37 +73,38 @@ impl Visitor for PassRewriting {
 
    fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult {
 
        let while_stmt = &ctx.heap[id];
 
        let body_id = while_stmt.body;
 
        return self.visit_block_stmt(ctx, body_id);
 
        return self.visit_stmt(ctx, body_id);
 
    }
 

	
 
    fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult {
 
        let sync_stmt = &ctx.heap[id];
 
        let body_id = sync_stmt.body;
 
        return self.visit_block_stmt(ctx, body_id);
 
        return self.visit_stmt(ctx, body_id);
 
    }
 

	
 
    // --- Visiting the select statement
 

	
 
    fn visit_select_stmt(&mut self, ctx: &mut Ctx, id: SelectStatementId) -> VisitorResult {
 
        // Utility for the last stage of rewriting process
 
        // Utility for the last stage of rewriting process. Note that caller
 
        // still needs to point the end of the if-statement to the end of the
 
        // replacement statement of the select statement.
 
        fn transform_select_case_code(ctx: &mut Ctx, select_id: SelectStatementId, case_index: usize, select_var_id: VariableId) -> (IfStatementId, EndIfStatementId) {
 
            // Retrieve statement IDs associated with case
 
            let case = &ctx.heap[select_id].cases[case_index];
 
            let case_guard_id = case.guard;
 
            let case_body_id = case.block;
 
            let case_body_id = case.body;
 
            let case_scope_id = case.scope;
 

	
 
            // Create the if-statement for the result of the select statement
 
            let compare_expr_id = create_ast_equality_comparison_expr(ctx, select_var_id, case_index as u64);
 
            let (if_stmt_id, end_if_stmt_id) = create_ast_if_stmt(ctx, compare_expr_id.upcast(), case_body_id, None);
 

	
 
            // Modify body of case to link up to the surrounding statements
 
            // correctly
 
            let case_body = &mut ctx.heap[case_body_id];
 
            let case_end_body_id = case_body.end_block;
 
            case_body.statements.insert(0, case_guard_id);
 
            let true_case = IfStatementCase{
 
                body: case_guard_id, // which is linked up to the body
 
                scope: case_scope_id,
 
            };
 
            let (if_stmt_id, end_if_stmt_id) = create_ast_if_stmt(ctx, compare_expr_id.upcast(), true_case, None);
 

	
 
            let case_end_body = &mut ctx.heap[case_end_body_id];
 
            case_end_body.next = end_if_stmt_id.upcast();
 
            // Link up body statement to end-if
 
            set_ast_statement_next(ctx, case_body_id, end_if_stmt_id.upcast());
 

	
 
            return (if_stmt_id, end_if_stmt_id)
 
        }
 
@@ -112,7 +113,7 @@ impl Visitor for PassRewriting {
 
        // containing builtin runtime-calls. And to do so we create temporary
 
        // variables and move some other statements around.
 
        let select_stmt = &ctx.heap[id];
 
        let mut total_num_cases = select_stmt.cases.len();
 
        let total_num_cases = select_stmt.cases.len();
 
        let mut total_num_ports = 0;
 
        let end_select_stmt_id = select_stmt.end_select;
 
        let end_select = &ctx.heap[end_select_stmt_id];
 
@@ -165,7 +166,7 @@ impl Visitor for PassRewriting {
 
                num_ports_expression_id.upcast()
 
            ];
 

	
 
            let call_expression_id = create_ast_call_expr(ctx, Method::SelectStart, arguments);
 
            let call_expression_id = create_ast_call_expr(ctx, Method::SelectStart, &mut self.expression_buffer, arguments);
 
            let call_statement_id = create_ast_expression_stmt(ctx, call_expression_id.upcast());
 

	
 
            transformed_stmts.push(call_statement_id.upcast());
 
@@ -192,7 +193,7 @@ impl Visitor for PassRewriting {
 
                    ];
 

	
 
                    // Create runtime call, then store it
 
                    let runtime_call_expr_id = create_ast_call_expr(ctx, Method::SelectRegisterCasePort, runtime_call_arguments);
 
                    let runtime_call_expr_id = create_ast_call_expr(ctx, Method::SelectRegisterCasePort, &mut self.expression_buffer, runtime_call_arguments);
 
                    let runtime_call_stmt_id = create_ast_expression_stmt(ctx, runtime_call_expr_id.upcast());
 

	
 
                    transformed_stmts.push(runtime_call_stmt_id.upcast());
 
@@ -208,7 +209,7 @@ impl Visitor for PassRewriting {
 
        locals.push(select_variable_id);
 

	
 
        {
 
            let runtime_call_expr_id = create_ast_call_expr(ctx, Method::SelectWait, Vec::new());
 
            let runtime_call_expr_id = create_ast_call_expr(ctx, Method::SelectWait, &mut self.expression_buffer, Vec::new());
 
            let variable_stmt_id = create_ast_variable_declaration_stmt(ctx, select_variable_id, runtime_call_expr_id.upcast());
 
            transformed_stmts.push(variable_stmt_id.upcast().upcast());
 
        }
 
@@ -224,11 +225,7 @@ impl Visitor for PassRewriting {
 
            span: InputSpan::new(),
 
            statements: Vec::new(),
 
            end_block: EndBlockStatementId::new_invalid(),
 
            scope_node: ScopeNode::new_invalid(),
 
            first_unique_id_in_scope: -1,
 
            next_unique_id_in_scope: -1,
 
            locals: Vec::new(),
 
            labels: Vec::new(),
 
            scope: ScopeId::new_invalid(),
 
            next: StatementId::new_invalid(),
 
        });
 
        let end_block_id = ctx.heap.alloc_end_block_statement(|this| EndBlockStatement{
 
@@ -248,7 +245,7 @@ impl Visitor for PassRewriting {
 
            for case_index in 1..total_num_cases {
 
                let (if_stmt_id, end_if_stmt_id) = transform_select_case_code(ctx, id, case_index, select_variable_id);
 
                let last_if_stmt = &mut ctx.heap[last_if_stmt_id];
 
                last_if_stmt.false_body = Some(if_stmt_id.upcast());
 
                // last_if_stmt.false_case = Some(if_stmt_id.upcast());
 

	
 
                // TODO:
 
                //  1. Change scoping such that it is a separate datastructure with separate IDs
 
@@ -365,7 +362,7 @@ fn create_ast_variable(ctx: &mut Ctx) -> VariableId {
 
            full_span: InputSpan::new(),
 
        },
 
        identifier: Identifier::new_empty(InputSpan::new()),
 
        relative_pos_in_block: -1,
 
        relative_pos_in_parent: -1,
 
        unique_id_in_scope: -1,
 
    });
 
}
 
@@ -381,7 +378,8 @@ fn create_ast_variable_expr(ctx: &mut Ctx, variable_id: VariableId) -> VariableE
 
    });
 
}
 

	
 
fn create_ast_call_expr(ctx: &mut Ctx, method: Method, arguments: Vec<ExpressionId>) -> CallExpressionId {
 
fn create_ast_call_expr(ctx: &mut Ctx, method: Method, buffer: &mut ScopedBuffer<ExpressionId>, arguments: Vec<ExpressionId>) -> CallExpressionId {
 
    let expression_ids = buffer.start_section_initialized(&arguments);
 
    let call_expression_id = ctx.heap.alloc_call_expression(|this| CallExpression{
 
        this,
 
        func_span: InputSpan::new(),
 
@@ -397,9 +395,10 @@ fn create_ast_call_expr(ctx: &mut Ctx, method: Method, arguments: Vec<Expression
 
        unique_id_in_definition: -1,
 
    });
 

	
 
    for (argument_index, argument_id) in arguments.iter().cloned().enumerate() {
 
    for argument_index in 0..expression_ids.len() {
 
        let argument_id = expression_ids[argument_index];
 
        let argument_expr = &mut ctx.heap[argument_id];
 
        *argument_expr.parent_mut() = ExpressionParent::Expression(call_expression_id.upcat(), argument_index as u32);
 
        *argument_expr.parent_mut() = ExpressionParent::Expression(call_expression_id.upcast(), argument_index as u32);
 
    }
 

	
 
    return call_expression_id;
 
@@ -488,14 +487,14 @@ fn create_ast_variable_declaration_stmt(ctx: &mut Ctx, variable_id: VariableId,
 
    return memory_stmt_id;
 
}
 

	
 
fn create_ast_if_stmt(ctx: &mut Ctx, condition_expression_id: ExpressionId, true_body: BlockStatementId, false_body: Option<BlockStatementId>) -> (IfStatementId, EndIfStatementId) {
 
fn create_ast_if_stmt(ctx: &mut Ctx, condition_expression_id: ExpressionId, true_case: IfStatementCase, false_case: Option<IfStatementCase>) -> (IfStatementId, EndIfStatementId) {
 
    // Create if statement and the end-if statement
 
    let if_stmt_id = ctx.heap.alloc_if_statement(|this| IfStatement{
 
        this,
 
        span: InputSpan::new(),
 
        test: condition_expression_id,
 
        true_body,
 
        false_body,
 
        true_case,
 
        false_case,
 
        end_if: EndIfStatementId::new_invalid()
 
    });
 

	
 
@@ -512,27 +511,76 @@ fn create_ast_if_stmt(ctx: &mut Ctx, condition_expression_id: ExpressionId, true
 
    let condition_expr = &mut ctx.heap[condition_expression_id];
 
    *condition_expr.parent_mut() = ExpressionParent::If(if_stmt_id);
 

	
 
    let true_body_stmt = &ctx.heap[true_body];
 
    let true_body_end_stmt = &mut ctx.heap[true_body_stmt.end_block];
 
    true_body_end_stmt.next = end_if_stmt_id.upcast();
 

	
 
    if let Some(false_body) = false_body {
 
        let false_body_stmt = &ctx.heap[false_body];
 
        let false_body_end_stmt = &mut ctx.heap[false_body_stmt.end_block];
 
        false_body_end_stmt.next = end_if_stmt_id.upcast();
 
    }
 

	
 
    return (if_stmt_id, end_if_stmt_id);
 
}
 

	
 
fn set_ast_if_statement_false_body(ctx: &mut Ctx, if_statement_id: IfStatementId, end_if_statement_id: EndIfStatementId, false_body: BlockStatementId) {
 
fn set_ast_if_statement_false_body(ctx: &mut Ctx, if_statement_id: IfStatementId, end_if_statement_id: EndIfStatementId, false_body_id: StatementId) {
 
    // Point if-statement to "false body"
 
    todo!("set scopes");
 
    let if_stmt = &mut ctx.heap[if_statement_id];
 
    debug_assert!(if_stmt.false_body.is_none()); // simplifies logic, not necessary
 
    if_stmt.false_body = Some(false_body);
 
    debug_assert!(if_stmt.false_case.is_none()); // simplifies logic, not necessary
 
    if_stmt.false_case = Some(IfStatementCase{
 
        body: false_body_id,
 
        scope: ScopeId::new_invalid(),
 
    });
 

	
 
    // Point end of false body to the end of the if statement
 
    let false_body_stmt = &ctx.heap[false_body];
 
    let false_body_end_stmt = &mut ctx.heap[false_body_stmt.end_block];
 
    false_body_end_stmt.next = end_if_statement_id.upcast();
 
    set_ast_statement_next(ctx, false_body_id, end_if_statement_id.upcast());
 
}
 

	
 
/// Sets the specified AST statement's control flow such that it will be
 
/// followed by the target statement. This may seem obvious, but may imply that
 
/// a statement associated with, but different from, the source statement is
 
/// modified.
 
fn set_ast_statement_next(ctx: &mut Ctx, source_stmt_id: StatementId, target_stmt_id: StatementId) {
 
    let source_stmt = &mut ctx.heap[source_stmt_id];
 
    match source_stmt {
 
        Statement::Block(stmt) => {
 
            let end_id = stmt.end_block;
 
            ctx.heap[end_id].next = target_stmt_id
 
        },
 
        Statement::EndBlock(stmt) => stmt.next = target_stmt_id,
 
        Statement::Local(stmt) => {
 
            match stmt {
 
                LocalStatement::Memory(stmt) => stmt.next = target_stmt_id,
 
                LocalStatement::Channel(stmt) => stmt.next = target_stmt_id,
 
            }
 
        },
 
        Statement::Labeled(stmt) => {
 
            let body_id = stmt.body;
 
            set_ast_statement_next(ctx, body_id, target_stmt_id);
 
        },
 
        Statement::If(stmt) => {
 
            let end_id = stmt.end_if;
 
            ctx.heap[end_id].next = target_stmt_id;
 
        },
 
        Statement::EndIf(stmt) => stmt.next = target_stmt_id,
 
        Statement::While(stmt) => {
 
            let end_id = stmt.end_while;
 
            ctx.heap[end_id].next = target_stmt_id;
 
        },
 
        Statement::EndWhile(stmt) => stmt.next = target_stmt_id,
 

	
 
        Statement::Break(_stmt) => {},
 
        Statement::Continue(_stmt) => {},
 
        Statement::Synchronous(stmt) => {
 
            let end_id = stmt.end_sync;
 
            ctx.heap[end_id].next = target_stmt_id;
 
        },
 
        Statement::EndSynchronous(stmt) => {
 
            stmt.next = target_stmt_id;
 
        },
 
        Statement::Fork(_) | Statement::EndFork(_) => {
 
            todo!("remove fork from language");
 
        },
 
        Statement::Select(stmt) => {
 
            let end_id = stmt.end_select;
 
            ctx.heap[end_id].next = target_stmt_id;
 
        },
 
        Statement::EndSelect(stmt) => stmt.next = target_stmt_id,
 
        Statement::Return(_stmt) => {},
 
        Statement::Goto(_stmt) => {},
 
        Statement::New(stmt) => stmt.next = target_stmt_id,
 
        Statement::Expression(stmt) => stmt.next = target_stmt_id,
 
    }
 
}
 
\ No newline at end of file
src/protocol/parser/pass_typing.rs
Show inline comments
 
@@ -56,7 +56,8 @@ use crate::protocol::parser::ModuleCompilationPhase;
 
use crate::protocol::parser::type_table::*;
 
use crate::protocol::parser::token_parsing::*;
 
use super::visitor::{
 
    BUFFER_INIT_CAPACITY,
 
    BUFFER_INIT_CAP_LARGE,
 
    BUFFER_INIT_CAP_SMALL,
 
    Ctx,
 
    Visitor,
 
    VisitorResult
 
@@ -921,10 +922,10 @@ impl PassTyping {
 
            reserved_idx: -1,
 
            definition_type: DefinitionType::Function(FunctionDefinitionId::new_invalid()),
 
            poly_vars: Vec::new(),
 
            var_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAPACITY),
 
            expr_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAPACITY),
 
            stmt_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAPACITY),
 
            bool_buffer: ScopedBuffer::with_capacity(16),
 
            var_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            expr_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            stmt_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            bool_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            var_types: HashMap::new(),
 
            expr_types: Vec::new(),
 
            extra_data: Vec::new(),
 
@@ -1130,14 +1131,14 @@ impl Visitor for PassTyping {
 
    fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
 
        let if_stmt = &ctx.heap[id];
 

	
 
        let true_body_id = if_stmt.true_body;
 
        let false_body_id = if_stmt.false_body;
 
        let true_body_case = if_stmt.true_case;
 
        let false_body_case = if_stmt.false_case;
 
        let test_expr_id = if_stmt.test;
 

	
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_block_stmt(ctx, true_body_id)?;
 
        if let Some(false_body_id) = false_body_id {
 
            self.visit_block_stmt(ctx, false_body_id)?;
 
        self.visit_stmt(ctx, true_body_case.body)?;
 
        if let Some(false_body_case) = false_body_case {
 
            self.visit_stmt(ctx, false_body_case.body)?;
 
        }
 

	
 
        Ok(())
 
@@ -1150,7 +1151,7 @@ impl Visitor for PassTyping {
 
        let test_expr_id = while_stmt.test;
 

	
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_block_stmt(ctx, body_id)?;
 
        self.visit_stmt(ctx, body_id)?;
 

	
 
        Ok(())
 
    }
 
@@ -1159,7 +1160,7 @@ impl Visitor for PassTyping {
 
        let sync_stmt = &ctx.heap[id];
 
        let body_id = sync_stmt.body;
 

	
 
        self.visit_block_stmt(ctx, body_id)
 
        self.visit_stmt(ctx, body_id)
 
    }
 

	
 
    fn visit_fork_stmt(&mut self, ctx: &mut Ctx, id: ForkStatementId) -> VisitorResult {
 
@@ -1167,9 +1168,9 @@ impl Visitor for PassTyping {
 
        let left_body_id = fork_stmt.left_body;
 
        let right_body_id = fork_stmt.right_body;
 

	
 
        self.visit_block_stmt(ctx, left_body_id)?;
 
        self.visit_stmt(ctx, left_body_id)?;
 
        if let Some(right_body_id) = right_body_id {
 
            self.visit_block_stmt(ctx, right_body_id)?;
 
            self.visit_stmt(ctx, right_body_id)?;
 
        }
 

	
 
        Ok(())
 
@@ -1183,7 +1184,7 @@ impl Visitor for PassTyping {
 

	
 
        for case in &select_stmt.cases {
 
            section.push(case.guard);
 
            section.push(case.block.upcast());
 
            section.push(case.body);
 
        }
 

	
 
        for case_index in 0..num_cases {
 
@@ -3329,8 +3330,7 @@ impl PassTyping {
 
            EP::Return(_) =>
 
                // Must match the return type of the function
 
                if let DefinitionType::Function(func_id) = self.definition_type {
 
                    debug_assert_eq!(ctx.heap[func_id].return_types.len(), 1);
 
                    let returned = &ctx.heap[func_id].return_types[0];
 
                    let returned = &ctx.heap[func_id].return_type;
 
                    self.determine_inference_type_from_parser_type_elements(&returned.elements, true)
 
                } else {
 
                    // Cannot happen: definition always set upon body traversal
 
@@ -3413,7 +3413,7 @@ impl PassTyping {
 
            },
 
            Definition::Function(definition) => {
 
                debug_assert_eq!(poly_args.len(), definition.poly_vars.len());
 
                (&definition.parameters, Some(&definition.return_types))
 
                (&definition.parameters, Some(&definition.return_type))
 
            },
 
            Definition::Struct(_) | Definition::Enum(_) | Definition::Union(_) => {
 
                unreachable!("insert_initial_call_polymorph data for non-procedure type");
 
@@ -3432,8 +3432,6 @@ impl PassTyping {
 
                InferenceType::new(false, true, vec![InferenceTypePart::Void])
 
            },
 
            Some(returned) => {
 
                debug_assert_eq!(returned.len(), 1); // TODO: @ReturnTypes
 
                let returned = &returned[0];
 
                self.determine_inference_type_from_parser_type_elements(&returned.elements, false)
 
            }
 
        };
src/protocol/parser/pass_validation_linking.rs
Show inline comments
 
@@ -42,7 +42,8 @@ use crate::protocol::parser::symbol_table::*;
 
use crate::protocol::parser::type_table::*;
 

	
 
use super::visitor::{
 
    BUFFER_INIT_CAPACITY,
 
    BUFFER_INIT_CAP_SMALL,
 
    BUFFER_INIT_CAP_LARGE,
 
    Ctx,
 
    Visitor,
 
    VisitorResult
 
@@ -72,7 +73,7 @@ impl DefinitionType {
 
struct ControlFlowStatement {
 
    in_sync: SynchronousStatementId,
 
    in_while: WhileStatementId,
 
    in_scope: Scope,
 
    in_scope: ScopeId,
 
    statement: StatementId, // of 'break', 'continue' or 'goto'
 
}
 

	
 
@@ -101,7 +102,7 @@ pub(crate) struct PassValidationLinking {
 
    in_binding_expr_lhs: bool,
 
    // Traversal state, current scope (which can be used to find the parent
 
    // scope) and the definition variant we are considering.
 
    cur_scope: Scope,
 
    cur_scope: ScopeId,
 
    def_type: DefinitionType,
 
    // "Trailing" traversal state, set be child/prev stmt/expr used by next one
 
    prev_stmt: StatementId,
 
@@ -111,7 +112,7 @@ pub(crate) struct PassValidationLinking {
 
    // used for the error's position
 
    must_be_assignable: Option<InputSpan>,
 
    // Keeping track of relative positions and unique IDs.
 
    relative_pos_in_block: i32, // of statements: to determine when variables are visible
 
    relative_pos_in_parent: i32, // of statements: to determine when variables are visible
 
    next_expr_index: i32, // to arrive at a unique ID for all expressions within a definition
 
    // Control flow statements that require label resolving
 
    control_flow_stmts: Vec<ControlFlowStatement>,
 
@@ -122,6 +123,7 @@ pub(crate) struct PassValidationLinking {
 
    definition_buffer: ScopedBuffer<DefinitionId>,
 
    statement_buffer: ScopedBuffer<StatementId>,
 
    expression_buffer: ScopedBuffer<ExpressionId>,
 
    scope_buffer: ScopedBuffer<ScopeId>,
 
}
 

	
 
impl PassValidationLinking {
 
@@ -134,18 +136,19 @@ impl PassValidationLinking {
 
            in_test_expr: StatementId::new_invalid(),
 
            in_binding_expr: BindingExpressionId::new_invalid(),
 
            in_binding_expr_lhs: false,
 
            cur_scope: Scope::new_invalid(),
 
            cur_scope: ScopeId::new_invalid(),
 
            prev_stmt: StatementId::new_invalid(),
 
            expr_parent: ExpressionParent::None,
 
            def_type: DefinitionType::Function(FunctionDefinitionId::new_invalid()),
 
            must_be_assignable: None,
 
            relative_pos_in_block: 0,
 
            relative_pos_in_parent: 0,
 
            next_expr_index: 0,
 
            control_flow_stmts: Vec::with_capacity(32),
 
            variable_buffer: ScopedBuffer::with_capacity(128),
 
            definition_buffer: ScopedBuffer::with_capacity(128),
 
            statement_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAPACITY),
 
            expression_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAPACITY),
 
            control_flow_stmts: Vec::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            variable_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            definition_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            statement_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            expression_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            scope_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
        }
 
    }
 

	
 
@@ -156,12 +159,12 @@ impl PassValidationLinking {
 
        self.in_test_expr = StatementId::new_invalid();
 
        self.in_binding_expr = BindingExpressionId::new_invalid();
 
        self.in_binding_expr_lhs = false;
 
        self.cur_scope = Scope::new_invalid();
 
        self.cur_scope = ScopeId::new_invalid();
 
        self.def_type = DefinitionType::Function(FunctionDefinitionId::new_invalid());
 
        self.prev_stmt = StatementId::new_invalid();
 
        self.expr_parent = ExpressionParent::None;
 
        self.must_be_assignable = None;
 
        self.relative_pos_in_block = 0;
 
        self.relative_pos_in_parent = 0;
 
        self.next_expr_index = 0;
 
        self.control_flow_stmts.clear();
 
    }
 
@@ -210,27 +213,33 @@ impl Visitor for PassValidationLinking {
 
            ComponentVariant::Primitive => DefinitionType::Primitive(id),
 
            ComponentVariant::Composite => DefinitionType::Composite(id),
 
        };
 
        self.cur_scope = Scope::Definition(id.upcast());
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        // Visit parameters and assign a unique scope ID
 
        let old_scope = self.push_scope(ctx, ScopeAssociation::Definition(id.upcast()));
 

	
 
        let definition = &ctx.heap[id];
 
        let body_id = definition.body;
 
        let section = self.variable_buffer.start_section_initialized(&definition.parameters);
 
        for variable_idx in 0..section.len() {
 
            let variable_id = section[variable_idx];
 
            let variable = &mut ctx.heap[variable_id];
 
            variable.unique_id_in_scope = variable_idx as i32;
 
            self.checked_at_single_scope_add_local(ctx, self.cur_scope, variable_idx as i32, variable_id)?;
 
        }
 
        self.relative_pos_in_parent = section.len() as i32;
 

	
 
        section.forget();
 

	
 
        // Visit statements in component body
 
        self.visit_block_stmt(ctx, body_id)?;
 
        self.pop_scope(old_scope);
 

	
 
        // Assign total number of expressions and assign an in-block unique ID
 
        // to each of the locals in the procedure.
 
        ctx.heap[id].num_expressions_in_body = self.next_expr_index;
 
        self.visit_definition_and_assign_local_ids(ctx, id.upcast());
 
        let definition = &mut ctx.heap[id];
 
        let definition_scope = definition.scope;
 
        definition.num_expressions_in_body = self.next_expr_index;
 

	
 
        self.visit_scope_and_assign_local_ids(ctx, definition_scope, 0);
 
        self.resolve_pending_control_flow_targets(ctx)?;
 

	
 
        Ok(())
 
@@ -241,27 +250,30 @@ impl Visitor for PassValidationLinking {
 

	
 
        // Set internal statement indices
 
        self.def_type = DefinitionType::Function(id);
 
        self.cur_scope = Scope::Definition(id.upcast());
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        // Visit parameters and assign a unique scope ID
 
        let old_scope = self.push_scope(ctx, ScopeAssociation::Definition(id.upcast()));
 

	
 
        let definition = &ctx.heap[id];
 
        let body_id = definition.body;
 
        let section = self.variable_buffer.start_section_initialized(&definition.parameters);
 
        for variable_idx in 0..section.len() {
 
            let variable_id = section[variable_idx];
 
            let variable = &mut ctx.heap[variable_id];
 
            variable.unique_id_in_scope = variable_idx as i32;
 
            self.checked_at_single_scope_add_local(ctx, self.cur_scope, variable_idx as i32, variable_id)?;
 
        }
 
        section.forget();
 

	
 
        // Visit statements in function body
 
        self.visit_block_stmt(ctx, body_id)?;
 
        self.pop_scope(old_scope);
 

	
 
        // Assign total number of expressions and assign an in-block unique ID
 
        // to each of the locals in the procedure.
 
        ctx.heap[id].num_expressions_in_body = self.next_expr_index;
 
        self.visit_definition_and_assign_local_ids(ctx, id.upcast());
 
        let definition = &mut ctx.heap[id];
 
        let definition_scope = definition.scope;
 
        definition.num_expressions_in_body = self.next_expr_index;
 
        self.visit_scope_and_assign_local_ids(ctx, definition_scope, 0);
 
        self.resolve_pending_control_flow_targets(ctx)?;
 

	
 
        Ok(())
 
@@ -272,25 +284,24 @@ impl Visitor for PassValidationLinking {
 
    //--------------------------------------------------------------------------
 

	
 
    fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
 
        let old_scope = self.push_statement_scope(ctx, Scope::Regular(id));
 

	
 
        // Set end of block
 
        // Get end of block
 
        let block_stmt = &ctx.heap[id];
 
        let end_block_id = block_stmt.end_block;
 

	
 
        // Traverse statements in block
 
        let statement_section = self.statement_buffer.start_section_initialized(&block_stmt.statements);
 
        let old_scope = self.push_scope(ctx, ScopeAssociation::Block(id));
 
        assign_and_replace_next_stmt!(self, ctx, id.upcast());
 

	
 
        for stmt_idx in 0..statement_section.len() {
 
            self.relative_pos_in_block = stmt_idx as i32;
 
            self.relative_pos_in_parent = stmt_idx as i32;
 
            self.visit_stmt(ctx, statement_section[stmt_idx])?;
 
        }
 

	
 
        statement_section.forget();
 
        assign_and_replace_next_stmt!(self, ctx, end_block_id.upcast());
 

	
 
        self.pop_statement_scope(old_scope);
 
        self.pop_scope(old_scope);
 
        Ok(())
 
    }
 

	
 
@@ -299,7 +310,7 @@ impl Visitor for PassValidationLinking {
 
        let expr_id = stmt.initial_expr;
 
        let variable_id = stmt.variable;
 

	
 
        self.checked_add_local(ctx, self.cur_scope, self.relative_pos_in_block, variable_id)?;
 
        self.checked_add_local(ctx, self.cur_scope, self.relative_pos_in_parent, variable_id)?;
 

	
 
        assign_and_replace_next_stmt!(self, ctx, id.upcast().upcast());
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
@@ -315,8 +326,8 @@ impl Visitor for PassValidationLinking {
 
        let from_id = stmt.from;
 
        let to_id = stmt.to;
 

	
 
        self.checked_add_local(ctx, self.cur_scope, self.relative_pos_in_block, from_id)?;
 
        self.checked_add_local(ctx, self.cur_scope, self.relative_pos_in_block, to_id)?;
 
        self.checked_add_local(ctx, self.cur_scope, self.relative_pos_in_parent, from_id)?;
 
        self.checked_add_local(ctx, self.cur_scope, self.relative_pos_in_parent, to_id)?;
 

	
 
        assign_and_replace_next_stmt!(self, ctx, id.upcast().upcast());
 
        Ok(())
 
@@ -326,7 +337,7 @@ impl Visitor for PassValidationLinking {
 
        let stmt = &ctx.heap[id];
 
        let body_id = stmt.body;
 

	
 
        self.checked_add_label(ctx, self.relative_pos_in_block, self.in_sync, id)?;
 
        self.checked_add_label(ctx, self.relative_pos_in_parent, self.in_sync, id)?;
 

	
 
        self.visit_stmt(ctx, body_id)?;
 
        Ok(())
 
@@ -336,8 +347,8 @@ impl Visitor for PassValidationLinking {
 
        let if_stmt = &ctx.heap[id];
 
        let end_if_id = if_stmt.end_if;
 
        let test_expr_id = if_stmt.test;
 
        let true_stmt_id = if_stmt.true_body;
 
        let false_stmt_id = if_stmt.false_body;
 
        let true_case = if_stmt.true_case;
 
        let false_case = if_stmt.false_case;
 

	
 
        // Visit test expression
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
@@ -354,11 +365,15 @@ impl Visitor for PassValidationLinking {
 
        // test expression, not on if-statement itself. Hence the if statement
 
        // does not have a static subsequent statement.
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 
        self.visit_block_stmt(ctx, true_stmt_id)?;
 
        let old_scope = self.push_scope(ctx, ScopeAssociation::If(id, true));
 
        self.visit_stmt(ctx, true_case.body)?;
 
        self.pop_scope(old_scope);
 
        assign_then_erase_next_stmt!(self, ctx, end_if_id.upcast());
 

	
 
        if let Some(false_id) = false_stmt_id {
 
            self.visit_block_stmt(ctx, false_id)?;
 
        if let Some(false_case) = false_case {
 
            let old_scope = self.push_scope(ctx, ScopeAssociation::If(id, false));
 
            self.visit_stmt(ctx, false_case.body)?;
 
            self.pop_scope(old_scope);
 
            assign_then_erase_next_stmt!(self, ctx, end_if_id.upcast());
 
        }
 

	
 
@@ -387,7 +402,9 @@ impl Visitor for PassValidationLinking {
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 

	
 
        self.expr_parent = ExpressionParent::None;
 
        self.visit_block_stmt(ctx, body_stmt_id)?;
 
        let old_scope = self.push_scope(ctx, ScopeAssociation::While(id));
 
        self.visit_stmt(ctx, body_stmt_id)?;
 
        self.pop_scope(old_scope);
 
        self.in_while = old_while;
 

	
 
        // Link final entry in while's block statement back to the while. The
 
@@ -454,9 +471,9 @@ impl Visitor for PassValidationLinking {
 
        let sync_body = ctx.heap[id].body;
 
        debug_assert!(self.in_sync.is_invalid());
 
        self.in_sync = id;
 
        let old_scope = self.push_statement_scope(ctx, Scope::Synchronous(id, sync_body));
 
        self.visit_block_stmt(ctx, sync_body)?;
 
        self.pop_statement_scope(old_scope);
 
        let old_scope = self.push_scope(ctx, ScopeAssociation::Synchronous(id));
 
        self.visit_stmt(ctx, sync_body)?;
 
        self.pop_scope(old_scope);
 
        assign_and_replace_next_stmt!(self, ctx, end_sync_id.upcast());
 

	
 
        self.in_sync = SynchronousStatementId::new_invalid();
 
@@ -482,11 +499,11 @@ impl Visitor for PassValidationLinking {
 
        // does not have a single static subsequent statement. It forks and then
 
        // each fork has a different next statement.
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 
        self.visit_block_stmt(ctx, left_body_id)?;
 
        self.visit_stmt(ctx, left_body_id)?;
 
        assign_then_erase_next_stmt!(self, ctx, end_fork_id.upcast());
 

	
 
        if let Some(right_body_id) = right_body_id {
 
            self.visit_block_stmt(ctx, right_body_id)?;
 
            self.visit_stmt(ctx, right_body_id)?;
 
            assign_then_erase_next_stmt!(self, ctx, end_fork_id.upcast());
 
        }
 

	
 
@@ -517,10 +534,9 @@ impl Visitor for PassValidationLinking {
 
        let mut case_stmt_ids = self.statement_buffer.start_section();
 
        let num_cases = select_stmt.cases.len();
 
        for case in &select_stmt.cases {
 
            // Note: we add both to the buffer, retrieve them later in indexed
 
            // fashion
 
            // We add them in pairs, so the subsequent for-loop retrieves in pairs
 
            case_stmt_ids.push(case.guard);
 
            case_stmt_ids.push(case.block.upcast());
 
            case_stmt_ids.push(case.body);
 
        }
 

	
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 
@@ -528,14 +544,12 @@ impl Visitor for PassValidationLinking {
 
        for idx in 0..num_cases {
 
            let base_idx = 2 * idx;
 
            let guard_id     = case_stmt_ids[base_idx    ];
 
            let arm_block_id = case_stmt_ids[base_idx + 1];
 
            debug_assert_eq!(ctx.heap[arm_block_id].as_block().this.upcast(), arm_block_id); // backwards way of saying arm_block_id is a BlockStatementId
 
            let arm_block_id = BlockStatementId(arm_block_id);
 
            let case_body_id = case_stmt_ids[base_idx + 1];
 

	
 
            // The guard statement ends up belonging to the block statement
 
            // following the arm. The reason we parse it separately is to
 
            // extract all of the "get" calls.
 
            let old_scope = self.push_statement_scope(ctx, Scope::Regular(arm_block_id));
 
            let old_scope = self.push_scope(ctx, ScopeAssociation::SelectCase(id, idx as u32));
 

	
 
            // Visit the guard of this arm
 
            debug_assert!(self.in_select_guard.is_invalid());
 
@@ -545,8 +559,8 @@ impl Visitor for PassValidationLinking {
 
            self.in_select_guard = SelectStatementId::new_invalid();
 

	
 
            // Visit the code associated with the guard
 
            self.visit_block_stmt(ctx, arm_block_id)?;
 
            self.pop_statement_scope(old_scope);
 
            self.visit_stmt(ctx, case_body_id)?;
 
            self.pop_scope(old_scope);
 

	
 
            // Link up last statement in block to EndSelect
 
            assign_then_erase_next_stmt!(self, ctx, end_select_id.upcast());
 
@@ -1327,7 +1341,7 @@ impl Visitor for PassValidationLinking {
 

	
 
        // Otherwise try to find it
 
        if variable_id.is_none() {
 
            variable_id = self.find_variable(ctx, self.relative_pos_in_block, &var_expr.identifier);
 
            variable_id = self.find_variable(ctx, self.relative_pos_in_parent, &var_expr.identifier);
 
        }
 

	
 
        // Otherwise try to see if is a variable introduced by a binding expr
 
@@ -1388,8 +1402,8 @@ impl Visitor for PassValidationLinking {
 

	
 
            // By now we know that this is a valid binding expression. Given
 
            // that a binding expression must be nested under an if/while
 
            // statement, we now add the variable to the (implicit) block
 
            // statement following the if/while statement.
 
            // statement, we now add the variable to the scope associated with
 
            // that statement.
 
            let bound_identifier = var_expr.identifier.clone();
 
            let bound_variable_id = ctx.heap.alloc_variable(|this| Variable {
 
                this,
 
@@ -1402,17 +1416,17 @@ impl Visitor for PassValidationLinking {
 
                    full_span: bound_identifier.span
 
                },
 
                identifier: bound_identifier,
 
                relative_pos_in_block: 0,
 
                relative_pos_in_parent: 0,
 
                unique_id_in_scope: -1,
 
            });
 

	
 
            let body_stmt_id = match &ctx.heap[self.in_test_expr] {
 
                Statement::If(stmt) => stmt.true_body,
 
                Statement::While(stmt) => stmt.body,
 
            let scope_id = match &ctx.heap[self.in_test_expr] {
 
                Statement::If(stmt) => stmt.true_case.scope,
 
                Statement::While(stmt) => stmt.scope,
 
                _ => unreachable!(),
 
            };
 
            let body_scope = Scope::Regular(body_stmt_id);
 
            self.checked_at_single_scope_add_local(ctx, body_scope, -1, bound_variable_id)?; // add at -1 such that first statement can access
 

	
 
            self.checked_at_single_scope_add_local(ctx, scope_id, -1, bound_variable_id)?; // add at -1 such that first statement can find the variable if needed
 

	
 
            is_binding_target = true;
 
            bound_variable_id
 
@@ -1439,123 +1453,139 @@ impl PassValidationLinking {
 
    /// sync statement or select statement's arm) then we won't do anything.
 
    /// In all cases the caller must call `pop_statement_scope` with the scope
 
    /// and relative scope position returned by this function.
 
    fn push_statement_scope(&mut self, ctx: &mut Ctx, new_scope: Scope) -> (Scope, i32) {
 
        let old_scope = self.cur_scope.clone();
 
        debug_assert!(new_scope.is_block()); // never call for Definition scope
 
        let is_new_block = if old_scope.is_block() {
 
            old_scope.to_block() != new_scope.to_block()
 
        } else {
 
            true
 
    fn push_scope(&mut self, ctx: &mut Ctx, association: ScopeAssociation) -> (ScopeId, i32) {
 
        // Create new scope and assign as ScopeId to the specified associated
 
        // statement.
 
        let is_first_scope = match association {
 
            ScopeAssociation::Definition(_) => true,
 
            _ => false,
 
        };
 

	
 
        if !is_new_block {
 
            // No need to push, but still return old scope, we pretend like we
 
            // replaced it.
 
            debug_assert!(!ctx.heap[new_scope.to_block()].scope_node.parent.is_invalid());
 
            return (old_scope, self.relative_pos_in_block);
 
        }
 
        let old_scope_id = self.cur_scope.clone();
 
        let new_scope_id = ctx.heap.alloc_scope(|this| Scope{
 
            this,
 
            parent: if is_first_scope { None } else { Some(old_scope_id) },
 
            nested: Vec::new(),
 
            association,
 
            variables: Vec::new(),
 
            labels: Vec::new(),
 
            relative_pos_in_parent: self.relative_pos_in_parent,
 
            first_unique_id_in_scope: -1,
 
            next_unique_id_in_scope: -1,
 
        });
 

	
 
        // This is a new block, so link it up
 
        if old_scope.is_block() {
 
            let parent_block = &mut ctx.heap[old_scope.to_block()];
 
            parent_block.scope_node.nested.push(new_scope);
 
        match association {
 
            ScopeAssociation::Definition(definition_id) => {
 
                let def = &mut ctx.heap[definition_id];
 
                match def {
 
                    Definition::Function(def) => def.scope = new_scope_id,
 
                    Definition::Component(def) => def.scope = new_scope_id,
 
                    _ => unreachable!(),
 
                }
 
            },
 
            ScopeAssociation::Block(stmt_id) => {
 
                ctx.heap[stmt_id].scope = new_scope_id;
 
            },
 
            ScopeAssociation::If(stmt_id, in_true_body) => {
 
                let stmt = &mut ctx.heap[stmt_id];
 
                if in_true_body {
 
                    stmt.true_case.scope = new_scope_id;
 
                } else {
 
                    let false_body = stmt.false_case.as_mut().unwrap();
 
                    false_body.scope = new_scope_id;
 
                }
 
            },
 
            ScopeAssociation::While(stmt_id) => {
 
                ctx.heap[stmt_id].scope = new_scope_id;
 
            },
 
            ScopeAssociation::Synchronous(stmt_id) => {
 
                ctx.heap[stmt_id].scope = new_scope_id;
 
            },
 
            ScopeAssociation::SelectCase(stmt_id, case_index) => {
 
                let select_stmt = &mut ctx.heap[stmt_id];
 
                select_stmt.cases[case_index as usize].scope = new_scope_id;
 
            }
 

	
 
        self.cur_scope = new_scope;
 

	
 
        let cur_block = &mut ctx.heap[new_scope.to_block()];
 
        cur_block.scope_node.parent = old_scope;
 
        cur_block.scope_node.relative_pos_in_parent = self.relative_pos_in_block;
 

	
 
        let old_relative_pos = self.relative_pos_in_block;
 
        self.relative_pos_in_block = -1;
 

	
 
        return (old_scope, old_relative_pos)
 
        }
 

	
 
    fn pop_statement_scope(&mut self, scope_to_restore: (Scope, i32)) {
 
        self.cur_scope = scope_to_restore.0;
 
        self.relative_pos_in_block = scope_to_restore.1;
 
        // Link up scopes
 
        if !is_first_scope {
 
            let old_scope = &mut ctx.heap[old_scope_id];
 
            old_scope.nested.push(new_scope_id);
 
        }
 

	
 
    fn visit_definition_and_assign_local_ids(&mut self, ctx: &mut Ctx, definition_id: DefinitionId) {
 
        let mut var_counter = 0;
 
        // Set as current traversal scope, then return old scope
 
        self.cur_scope = new_scope_id;
 

	
 
        // Set IDs on parameters
 
        let (param_section, body_id) = match &ctx.heap[definition_id] {
 
            Definition::Function(func_def) => (
 
                self.variable_buffer.start_section_initialized(&func_def.parameters),
 
                func_def.body
 
            ),
 
            Definition::Component(comp_def) => (
 
                self.variable_buffer.start_section_initialized(&comp_def.parameters),
 
                comp_def.body
 
            ),
 
            _ => unreachable!(),
 
        } ;
 

	
 
        for var_id in param_section.iter_copied() {
 
            let var = &mut ctx.heap[var_id];
 
            var.unique_id_in_scope = var_counter;
 
            var_counter += 1;
 
        let old_relative_pos = self.relative_pos_in_parent;
 
        self.relative_pos_in_parent = 0;
 
        return (old_scope_id, old_relative_pos)
 
    }
 

	
 
        param_section.forget();
 

	
 
        // Recurse into body
 
        self.visit_block_and_assign_local_ids(ctx, body_id, var_counter);
 
    fn pop_scope(&mut self, scope_to_restore: (ScopeId, i32)) {
 
        self.cur_scope = scope_to_restore.0;
 
        self.relative_pos_in_parent = scope_to_restore.1;
 
    }
 

	
 
    fn visit_block_and_assign_local_ids(&mut self, ctx: &mut Ctx, block_id: BlockStatementId, mut var_counter: i32) {
 
        let block_stmt = &mut ctx.heap[block_id];
 
        block_stmt.first_unique_id_in_scope = var_counter;
 
    fn visit_scope_and_assign_local_ids(&mut self, ctx: &mut Ctx, scope_id: ScopeId, mut variable_counter: i32) {
 
        let scope = &mut ctx.heap[scope_id];
 
        scope.first_unique_id_in_scope = variable_counter;
 

	
 
        let var_section = self.variable_buffer.start_section_initialized(&block_stmt.locals);
 
        let mut scope_section = self.statement_buffer.start_section();
 
        for child_scope in &block_stmt.scope_node.nested {
 
            debug_assert!(child_scope.is_block(), "found a child scope that is not a block statement");
 
            scope_section.push(child_scope.to_block().upcast());
 
        }
 
        let variable_section = self.variable_buffer.start_section_initialized(&scope.variables);
 
        let child_scope_section = self.scope_buffer.start_section_initialized(&scope.nested);
 

	
 
        let mut variable_index = 0;
 
        let mut child_scope_index = 0;
 

	
 
        let mut var_idx = 0;
 
        let mut scope_idx = 0;
 
        while var_idx < var_section.len() || scope_idx < scope_section.len() {
 
            let relative_var_pos = if var_idx < var_section.len() {
 
                ctx.heap[var_section[var_idx]].relative_pos_in_block
 
        loop {
 
            // Determine relative positions of variable and scope to determine
 
            // which one occurs first within the current scope.
 
            let variable_relative_pos;
 
            if variable_index < variable_section.len() {
 
                let variable_id = variable_section[variable_index];
 
                let variable = &ctx.heap[variable_id];
 
                variable_relative_pos = variable.relative_pos_in_parent;
 
            } else {
 
                i32::MAX
 
            };
 
                variable_relative_pos = i32::MAX;
 
            }
 

	
 
            let relative_scope_pos = if scope_idx < scope_section.len() {
 
                ctx.heap[scope_section[scope_idx]].as_block().scope_node.relative_pos_in_parent
 
            let child_scope_relative_pos;
 
            if child_scope_index < child_scope_section.len() {
 
                let child_scope_id = child_scope_section[child_scope_index];
 
                let child_scope = &ctx.heap[child_scope_id];
 
                child_scope_relative_pos = child_scope.relative_pos_in_parent;
 
            } else {
 
                i32::MAX
 
            };
 
                child_scope_relative_pos = i32::MAX;
 
            }
 

	
 
            debug_assert!(!(relative_var_pos == i32::MAX && relative_scope_pos == i32::MAX));
 
            if variable_relative_pos == i32::MAX && child_scope_relative_pos == i32::MAX {
 
                // Done, no more elements in the scope to consider
 
                break;
 
            }
 

	
 
            // In certain cases the relative variable position is the same as
 
            // the scope position (insertion of binding variables). In that case
 
            // the variable should be treated first
 
            if relative_var_pos <= relative_scope_pos {
 
                let var = &mut ctx.heap[var_section[var_idx]];
 
                var.unique_id_in_scope = var_counter;
 
                var_counter += 1;
 
                var_idx += 1;
 
            // Label the variable/scope, whichever comes first. When dealing
 
            // with binding variables, where both variable and scope are
 
            // considered to have the same position in the scope, we treat the
 
            // variable first.
 
            // TODO: Think about this some more, isn't it correct that we
 
            //  consider it part of the fresh scope? So we'll have to deal with
 
            //  the scope first, and add the variable to that scope?
 
            if variable_relative_pos <= child_scope_relative_pos {
 
                let variable = &mut ctx.heap[variable_section[variable_index]];
 
                variable.unique_id_in_scope = variable_counter;
 
                variable_counter += 1;
 
                variable_index += 1;
 
            } else {
 
                // Boy oh boy
 
                let block_id = ctx.heap[scope_section[scope_idx]].as_block().this;
 
                self.visit_block_and_assign_local_ids(ctx, block_id, var_counter);
 
                scope_idx += 1;
 
                let child_scope_id = child_scope_section[child_scope_index];
 
                self.visit_scope_and_assign_local_ids(ctx, child_scope_id, variable_counter);
 
                child_scope_index += 1;
 
            }
 
        }
 

	
 
        var_section.forget();
 
        scope_section.forget();
 
        variable_section.forget();
 
        child_scope_section.forget();
 

	
 
        // Done assigning all IDs, assign the last ID to the block statement scope
 
        let block_stmt = &mut ctx.heap[block_id];
 
        block_stmt.next_unique_id_in_scope = var_counter;
 
        let scope = &mut ctx.heap[scope_id];
 
        scope.next_unique_id_in_scope = variable_counter;
 
    }
 

	
 
    fn resolve_pending_control_flow_targets(&mut self, ctx: &mut Ctx) -> Result<(), ParseError> {
 
@@ -1614,76 +1644,50 @@ impl PassValidationLinking {
 

	
 
    /// Adds a local variable to the current scope. It will also annotate the
 
    /// `Local` in the AST with its relative position in the block.
 
    fn checked_add_local(&mut self, ctx: &mut Ctx, target_scope: Scope, target_relative_pos: i32, id: VariableId) -> Result<(), ParseError> {
 
        debug_assert!(target_scope.is_block());
 
    fn checked_add_local(&mut self, ctx: &mut Ctx, target_scope_id: ScopeId, target_relative_pos: i32, id: VariableId) -> Result<(), ParseError> {
 
        let local = &ctx.heap[id];
 

	
 
        // We immediately go to the parent scope. We check the target scope
 
        // in the call at the end. That is also where we check for collisions
 
        // with symbols.
 
        let block = &ctx.heap[target_scope.to_block()];
 
        let mut scope = block.scope_node.parent;
 
        let mut cur_relative_pos = block.scope_node.relative_pos_in_parent;
 
        loop {
 
            if let Scope::Definition(definition_id) = scope {
 
                // At outer scope, check parameters of function/component
 
                for parameter_id in ctx.heap[definition_id].parameters() {
 
                    let parameter = &ctx.heap[*parameter_id];
 
                    if local.identifier == parameter.identifier {
 
                        return Err(
 
                            ParseError::new_error_str_at_span(
 
                                &ctx.module().source, local.identifier.span, "Local variable name conflicts with parameter"
 
                            ).with_info_str_at_span(
 
                                &ctx.module().source, parameter.identifier.span, "Parameter definition is found here"
 
                            )
 
                        );
 
                    }
 
                }
 

	
 
                // No collisions
 
                break;
 
            }
 

	
 
            // If here then the parent scope is a block scope
 
            let block = &ctx.heap[scope.to_block()];
 

	
 
            for other_local_id in &block.locals {
 
                let other_local = &ctx.heap[*other_local_id];
 
                // Position check in case another variable with the same name
 
                // is defined in a higher-level scope, but later than the scope
 
                // in which the current variable resides.
 
                if local.this != *other_local_id &&
 
                    cur_relative_pos >= other_local.relative_pos_in_block &&
 
                    local.identifier == other_local.identifier {
 
                    // Collision within this scope
 
        let mut scope = &ctx.heap[target_scope_id];
 
        let mut cur_relative_pos = scope.relative_pos_in_parent;
 
        while let Some(scope_parent_id) = scope.parent {
 
            scope = &ctx.heap[scope_parent_id];
 

	
 
            // Check for collisions
 
            for variable_id in scope.variables.iter().copied() {
 
                let variable = &ctx.heap[variable_id];
 
                if variable.identifier == variable.identifier &&
 
                    variable.this != id &&
 
                    cur_relative_pos >= variable.relative_pos_in_parent {
 
                    return Err(
 
                        ParseError::new_error_str_at_span(
 
                            &ctx.module().source, local.identifier.span, "Local variable name conflicts with another variable"
 
                        ).with_info_str_at_span(
 
                            &ctx.module().source, other_local.identifier.span, "Previous variable is found here"
 
                            &ctx.module().source, variable.identifier.span, "Previous variable is found here"
 
                        )
 
                    );
 
                }
 
            }
 

	
 
            scope = block.scope_node.parent;
 
            cur_relative_pos = block.scope_node.relative_pos_in_parent;
 
            cur_relative_pos = scope.relative_pos_in_parent;
 
        }
 

	
 
        // No collisions in any of the parent scope, attempt to add to scope
 
        self.checked_at_single_scope_add_local(ctx, target_scope, target_relative_pos, id)
 
        self.checked_at_single_scope_add_local(ctx, target_scope_id, target_relative_pos, id)
 
    }
 

	
 
    /// Adds a local variable to the specified scope. Will check the specified
 
    /// scope for variable conflicts and the symbol table for global conflicts.
 
    /// Will NOT check parent scopes of the specified scope.
 
    fn checked_at_single_scope_add_local(
 
        &mut self, ctx: &mut Ctx, scope: Scope, relative_pos: i32, id: VariableId
 
        &mut self, ctx: &mut Ctx, scope_id: ScopeId, relative_pos: i32, new_variable_id: VariableId
 
    ) -> Result<(), ParseError> {
 
        // Check the symbol table for conflicts
 
        {
 
            let cur_scope = SymbolScope::Definition(self.def_type.definition_id());
 
            let ident = &ctx.heap[id].identifier;
 
            let ident = &ctx.heap[new_variable_id].identifier;
 
            if let Some(symbol) = ctx.symbols.get_symbol_by_name(cur_scope, &ident.value.as_bytes()) {
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module().source, ident.span,
 
@@ -1695,32 +1699,31 @@ impl PassValidationLinking {
 
        }
 

	
 
        // Check the specified scope for conflicts
 
        let local = &ctx.heap[id];
 
        let new_variable = &ctx.heap[new_variable_id];
 
        let scope = &ctx.heap[scope_id];
 

	
 
        debug_assert!(scope.is_block());
 
        let block = &ctx.heap[scope.to_block()];
 
        for other_local_id in &block.locals {
 
            let other_local = &ctx.heap[*other_local_id];
 
            if local.this != other_local.this &&
 
        for variable_id in scope.variables.iter().copied() {
 
            let old_variable = &ctx.heap[variable_id];
 
            if new_variable.this != old_variable.this &&
 
                // relative_pos >= other_local.relative_pos_in_block &&
 
                local.identifier == other_local.identifier {
 
                new_variable.identifier == old_variable.identifier {
 
                // Collision
 
                return Err(
 
                    ParseError::new_error_str_at_span(
 
                        &ctx.module().source, local.identifier.span, "Local variable name conflicts with another variable"
 
                        &ctx.module().source, new_variable.identifier.span, "Local variable name conflicts with another variable"
 
                    ).with_info_str_at_span(
 
                        &ctx.module().source, other_local.identifier.span, "Previous variable is found here"
 
                        &ctx.module().source, old_variable.identifier.span, "Previous variable is found here"
 
                    )
 
                );
 
            }
 
        }
 

	
 
        // No collisions
 
        let block = &mut ctx.heap[scope.to_block()];
 
        block.locals.push(id);
 
        let scope = &mut ctx.heap[scope_id];
 
        scope.variables.push(new_variable_id);
 

	
 
        let local = &mut ctx.heap[id];
 
        local.relative_pos_in_block = relative_pos;
 
        let variable = &mut ctx.heap[new_variable_id];
 
        variable.relative_pos_in_parent = relative_pos;
 

	
 
        Ok(())
 
    }
 
@@ -1728,85 +1731,66 @@ impl PassValidationLinking {
 
    /// Finds a variable in the visitor's scope that must appear before the
 
    /// specified relative position within that block.
 
    fn find_variable(&self, ctx: &Ctx, mut relative_pos: i32, identifier: &Identifier) -> Option<VariableId> {
 
        debug_assert!(self.cur_scope.is_block());
 

	
 
        // No need to use iterator over namespaces if here
 
        let mut scope = &self.cur_scope;
 
        let mut scope_id = self.cur_scope;
 

	
 
        loop {
 
            debug_assert!(scope.is_block());
 
            let block = &ctx.heap[scope.to_block()];
 
            // Check if we can find the variable in the current scope
 
            let scope = &ctx.heap[scope_id];
 
            
 
            for local_id in &block.locals {
 
                let local = &ctx.heap[*local_id];
 
            for variable_id in scope.variables.iter().copied() {
 
                let variable = &ctx.heap[variable_id];
 
                
 
                if local.relative_pos_in_block < relative_pos && identifier == &local.identifier {
 
                    return Some(*local_id);
 
                if variable.relative_pos_in_parent < relative_pos && identifier == &variable.identifier {
 
                    return Some(variable_id);
 
                }
 
            }
 

	
 
            scope = &block.scope_node.parent;
 
            if !scope.is_block() {
 
                // Definition scope, need to check arguments to definition
 
                match scope {
 
                    Scope::Definition(definition_id) => {
 
                        let definition = &ctx.heap[*definition_id];
 
                        for parameter_id in definition.parameters() {
 
                            let parameter = &ctx.heap[*parameter_id];
 
                            if identifier == &parameter.identifier {
 
                                return Some(*parameter_id);
 
                            }
 
                        }
 
                    },
 
                    _ => unreachable!(),
 
            // Could not find variable, move to parent scope and try again
 
            if scope.parent.is_none() {
 
                return None;
 
            }
 

	
 
                // Variable could not be found
 
                return None
 
            } else {
 
                relative_pos = block.scope_node.relative_pos_in_parent;
 
            }
 
            scope_id = scope.parent.unwrap();
 
            relative_pos = scope.relative_pos_in_parent;
 
        }
 
    }
 

	
 
    /// Adds a particular label to the current scope. Will return an error if
 
    /// there is another label with the same name visible in the current scope.
 
    fn checked_add_label(&mut self, ctx: &mut Ctx, relative_pos: i32, in_sync: SynchronousStatementId, id: LabeledStatementId) -> Result<(), ParseError> {
 
        debug_assert!(self.cur_scope.is_block());
 

	
 
    fn checked_add_label(&mut self, ctx: &mut Ctx, relative_pos: i32, in_sync: SynchronousStatementId, new_label_id: LabeledStatementId) -> Result<(), ParseError> {
 
        // Make sure label is not defined within the current scope or any of the
 
        // parent scope.
 
        let label = &mut ctx.heap[id];
 
        label.relative_pos_in_block = relative_pos;
 
        label.in_sync = in_sync;
 
        let new_label = &mut ctx.heap[new_label_id];
 
        new_label.relative_pos_in_parent = relative_pos;
 
        new_label.in_sync = in_sync;
 

	
 
        let label = &ctx.heap[id];
 
        let mut scope = &self.cur_scope;
 
        let new_label = &ctx.heap[new_label_id];
 
        let mut scope_id = self.cur_scope;
 

	
 
        loop {
 
            debug_assert!(scope.is_block(), "scope is not a block");
 
            let block = &ctx.heap[scope.to_block()];
 
            for other_label_id in &block.labels {
 
                let other_label = &ctx.heap[*other_label_id];
 
                if other_label.label == label.label {
 
            let scope = &ctx.heap[scope_id];
 
            for existing_label_id in scope.labels.iter().copied() {
 
                let existing_label = &ctx.heap[existing_label_id];
 
                if existing_label.label == new_label.label {
 
                    // Collision
 
                    return Err(ParseError::new_error_str_at_span(
 
                        &ctx.module().source, label.label.span, "label name is used more than once"
 
                        &ctx.module().source, new_label.label.span, "label name is used more than once"
 
                    ).with_info_str_at_span(
 
                        &ctx.module().source, other_label.label.span, "the other label is found here"
 
                        &ctx.module().source, existing_label.label.span, "the other label is found here"
 
                    ));
 
                }
 
            }
 

	
 
            scope = &block.scope_node.parent;
 
            if !scope.is_block() {
 
            if scope.parent.is_none() {
 
                break;
 
            }
 

	
 
            scope_id = scope.parent.unwrap();
 
        }
 

	
 
        // No collisions
 
        let block = &mut ctx.heap[self.cur_scope.to_block()];
 
        block.labels.push(id);
 
        let scope = &mut ctx.heap[self.cur_scope];
 
        scope.labels.push(new_label_id);
 

	
 
        Ok(())
 
    }
 
@@ -1814,60 +1798,57 @@ impl PassValidationLinking {
 
    /// Finds a particular labeled statement by its identifier. Once found it
 
    /// will make sure that the target label does not skip over any variable
 
    /// declarations within the scope in which the label was found.
 
    fn find_label(mut scope: Scope, ctx: &Ctx, identifier: &Identifier) -> Result<LabeledStatementId, ParseError> {
 
        debug_assert!(scope.is_block());
 

	
 
    fn find_label(mut scope_id: ScopeId, ctx: &Ctx, identifier: &Identifier) -> Result<LabeledStatementId, ParseError> {
 
        loop {
 
            debug_assert!(scope.is_block(), "scope is not a block");
 
            let relative_scope_pos = ctx.heap[scope.to_block()].scope_node.relative_pos_in_parent;
 
            let scope = &ctx.heap[scope_id];
 
            let relative_scope_pos = scope.relative_pos_in_parent;
 

	
 
            let block = &ctx.heap[scope.to_block()];
 
            for label_id in &block.labels {
 
                let label = &ctx.heap[*label_id];
 
            for label_id in scope.labels.iter().copied() {
 
                let label = &ctx.heap[label_id];
 
                if label.label == *identifier {
 
                    for local_id in &block.locals {
 
                    // Found the target label, now make sure that the jump to
 
                    // the label doesn't imply a skipped variable declaration
 
                    for variable_id in scope.variables.iter().copied() {
 
                        // TODO: Better to do this in control flow analysis, it
 
                        //  is legal to skip over a variable declaration if it
 
                        //  is not actually being used. I might be missing
 
                        //  something here when laying out the bytecode...
 
                        let local = &ctx.heap[*local_id];
 
                        if local.relative_pos_in_block > relative_scope_pos && local.relative_pos_in_block < label.relative_pos_in_block {
 
                        //  is not actually being used.
 
                        let variable = &ctx.heap[variable_id];
 
                        if variable.relative_pos_in_parent > relative_scope_pos && variable.relative_pos_in_parent < label.relative_pos_in_parent {
 
                            return Err(
 
                                ParseError::new_error_str_at_span(&ctx.module().source, identifier.span, "this target label skips over a variable declaration")
 
                                .with_info_str_at_span(&ctx.module().source, label.label.span, "because it jumps to this label")
 
                                .with_info_str_at_span(&ctx.module().source, local.identifier.span, "which skips over this variable")
 
                                .with_info_str_at_span(&ctx.module().source, variable.identifier.span, "which skips over this variable")
 
                            );
 
                        }
 
                    }
 
                    return Ok(*label_id);
 
                    return Ok(label_id);
 
                }
 
            }
 

	
 
            scope = block.scope_node.parent;
 
            if !scope.is_block() {
 
            if scope.parent.is_none() {
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module().source, identifier.span, "could not find this label"
 
                ));
 
            }
 

	
 
            scope_id = scope.parent.unwrap();
 
        }
 
    }
 

	
 
    /// This function will check if the provided while statement ID has a block
 
    /// statement that is one of our current parents.
 
    fn has_parent_while_scope(mut scope: Scope, ctx: &Ctx, id: WhileStatementId) -> bool {
 
        let while_stmt = &ctx.heap[id];
 
    /// This function will check if the provided scope has a parent that belongs
 
    /// to a while statement.
 
    fn scope_is_nested_in_while_statement(mut scope_id: ScopeId, ctx: &Ctx, expected_while_id: WhileStatementId) -> bool {
 
        let while_stmt = &ctx.heap[expected_while_id];
 

	
 
        loop {
 
            debug_assert!(scope.is_block());
 
            let block = scope.to_block();
 
            if while_stmt.body == block {
 
            let scope = &ctx.heap[scope_id];
 
            if scope.this == while_stmt.scope {
 
                return true;
 
            }
 

	
 
            let block = &ctx.heap[block];
 
            scope = block.scope_node.parent;
 
            if !scope.is_block() {
 
                return false;
 
            match scope.parent {
 
                Some(new_scope_id) => scope_id = new_scope_id,
 
                None => return false, // walked all the way up, not encountering the while statement
 
            }
 
        }
 
    }
 
@@ -1886,9 +1867,10 @@ impl PassValidationLinking {
 
                // Make sure break target is a while statement
 
                let target = &ctx.heap[target_id];
 
                if let Statement::While(target_stmt) = &ctx.heap[target.body] {
 
                    // Even though we have a target while statement, the break might not be
 
                    // present underneath this particular labeled while statement
 
                    if !Self::has_parent_while_scope(control_flow.in_scope, ctx, target_stmt.this) {
 
                    // Even though we have a target while statement, the control
 
                    // flow statement might not be present underneath this
 
                    // particular labeled while statement.
 
                    if !Self::scope_is_nested_in_while_statement(control_flow.in_scope, ctx, target_stmt.this) {
 
                        return Err(ParseError::new_error_str_at_span(
 
                            &ctx.module().source, label.span, "break statement is not nested under the target label's while statement"
 
                        ).with_info_str_at_span(
src/protocol/parser/type_table.rs
Show inline comments
 
@@ -199,7 +199,7 @@ pub struct StructField {
 
/// `FunctionType` is what you expect it to be: a particular function's
 
/// signature.
 
pub struct FunctionType {
 
    pub return_types: Vec<ParserType>,
 
    pub return_type: ParserType,
 
    pub arguments: Vec<FunctionArgument>,
 
}
 

	
 
@@ -935,12 +935,9 @@ impl TypeTable {
 
        let root_id = definition.defined_in;
 

	
 
        // Check and construct return types and argument types.
 
        debug_assert_eq!(definition.return_types.len(), 1, "not one return type");
 
        for return_type in &definition.return_types {
 
        Self::check_member_parser_type(
 
                modules, ctx, root_id, return_type, definition.builtin
 
            modules, ctx, root_id, &definition.return_type, definition.builtin
 
        )?;
 
        }
 

	
 
        let mut arguments = Vec::with_capacity(definition.parameters.len());
 
        for parameter_id in &definition.parameters {
 
@@ -963,9 +960,8 @@ impl TypeTable {
 

	
 
        // Construct internal representation of function type
 
        let mut poly_vars = Self::create_polymorphic_variables(&definition.poly_vars);
 
        for return_type in &definition.return_types {
 
            Self::mark_used_polymorphic_variables(&mut poly_vars, return_type);
 
        }
 

	
 
        Self::mark_used_polymorphic_variables(&mut poly_vars, &definition.return_type);
 
        for argument in &arguments {
 
            Self::mark_used_polymorphic_variables(&mut poly_vars, &argument.parser_type);
 
        }
 
@@ -975,7 +971,7 @@ impl TypeTable {
 
        self.type_lookup.insert(definition_id, DefinedType{
 
            ast_root: root_id,
 
            ast_definition: definition_id,
 
            definition: DefinedTypeVariant::Function(FunctionType{ return_types: definition.return_types.clone(), arguments }),
 
            definition: DefinedTypeVariant::Function(FunctionType{ return_type: definition.return_type.clone(), arguments }),
 
            poly_vars,
 
            is_polymorph
 
        });
src/protocol/parser/visitor.rs
Show inline comments
 
@@ -6,8 +6,10 @@ use crate::protocol::symbol_table::{SymbolTable};
 
type Unit = ();
 
pub(crate) type VisitorResult = Result<Unit, ParseError>;
 

	
 
/// Globally configured vector capacity for buffers in visitor implementations
 
pub(crate) const BUFFER_INIT_CAPACITY: usize = 256;
 
/// Globally configured capacity for large-ish buffers in visitor impls
 
pub(crate) const BUFFER_INIT_CAP_LARGE: usize = 256;
 
/// Globally configured capacity for small-ish buffers in visitor impls
 
pub(crate) const BUFFER_INIT_CAP_SMALL: usize = 64;
 

	
 
/// General context structure that is used while traversing the AST.
 
pub(crate) struct Ctx<'p> {
src/protocol/tests/utils.rs
Show inline comments
 
@@ -517,30 +517,28 @@ impl<'a> FunctionTester<'a> {
 

	
 
    pub(crate) fn for_variable<F: Fn(VariableTester)>(self, name: &str, f: F) -> Self {
 
        // Seek through the blocks in order to find the variable
 
        let wrapping_block_id = seek_stmt(
 
            self.ctx.heap, self.def.body.upcast(),
 
            &|stmt| {
 
                if let Statement::Block(block) = stmt {
 
                    for local_id in &block.locals {
 
                        let var = &self.ctx.heap[*local_id];
 
        let wrapping_scope = seek_scope(
 
            self.ctx.heap, self.def.scope,
 
            &|scope| {
 
                for variable_id in scope.variables.iter().copied() {
 
                    let var = &self.ctx.heap[variable_id];
 
                    if var.identifier.value.as_str() == name {
 
                        return true;
 
                    }
 
                }
 
                }
 

	
 
                false
 
            }
 
        );
 

	
 
        let mut found_local_id = None;
 
        if let Some(block_id) = wrapping_block_id {
 
            // Found the right block, find the variable inside the block again
 
            let block_stmt = self.ctx.heap[block_id].as_block();
 
            for local_id in &block_stmt.locals {
 
                let var = &self.ctx.heap[*local_id];
 
                if var.identifier.value.as_str() == name {
 
                    found_local_id = Some(*local_id);
 
        if let Some(scope_id) = wrapping_scope {
 
            // Found the right scope, find the variable inside the block again
 
            let scope = &self.ctx.heap[scope_id];
 
            for variable_id in scope.variables.iter().copied() {
 
                let variable = &self.ctx.heap[variable_id];
 
                if variable.identifier.value.as_str() == name {
 
                    found_local_id = Some(variable_id);
 
                }
 
            }
 
        }
 
@@ -1098,23 +1096,36 @@ fn seek_stmt<F: Fn(&Statement) -> bool>(heap: &Heap, start: StatementId, f: &F)
 
        },
 
        Statement::Labeled(stmt) => seek_stmt(heap, stmt.body, f),
 
        Statement::If(stmt) => {
 
            if let Some(id) = seek_stmt(heap, stmt.true_body.upcast(), f) {
 
            if let Some(id) = seek_stmt(heap, stmt.true_case.body, f) {
 
                return Some(id);
 
            } else if let Some(false_body) = stmt.false_body {
 
                if let Some(id) = seek_stmt(heap, false_body.upcast(), f) {
 
            } else if let Some(false_body) = stmt.false_case {
 
                if let Some(id) = seek_stmt(heap, false_body.body, f) {
 
                    return Some(id);
 
                }
 
            }
 
            None
 
        },
 
        Statement::While(stmt) => seek_stmt(heap, stmt.body.upcast(), f),
 
        Statement::Synchronous(stmt) => seek_stmt(heap, stmt.body.upcast(), f),
 
        Statement::While(stmt) => seek_stmt(heap, stmt.body, f),
 
        Statement::Synchronous(stmt) => seek_stmt(heap, stmt.body, f),
 
        _ => None
 
    };
 

	
 
    matched
 
}
 

	
 
fn seek_scope<F: Fn(&Scope) -> bool>(heap: &Heap, start: ScopeId, f: &F) -> Option<ScopeId> {
 
    let scope = &heap[start];
 
    if f(scope) { return Some(start); }
 

	
 
    for child_scope_id in scope.nested.iter().copied() {
 
        if let Some(result) = seek_scope(heap, child_scope_id, f) {
 
            return Some(result);
 
        }
 
    }
 

	
 
    return None;
 
}
 

	
 
fn seek_expr_in_expr<F: Fn(&Expression) -> bool>(heap: &Heap, start: ExpressionId, f: &F) -> Option<ExpressionId> {
 
    let expr = &heap[start];
 
    if f(expr) { return Some(start); }
 
@@ -1215,9 +1226,9 @@ fn seek_expr_in_stmt<F: Fn(&Expression) -> bool>(heap: &Heap, start: StatementId
 
        Statement::If(stmt) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, stmt.test, f))
 
            .or_else(|| seek_expr_in_stmt(heap, stmt.true_body.upcast(), f))
 
            .or_else(|| if let Some(false_body) = stmt.false_body {
 
                seek_expr_in_stmt(heap, false_body.upcast(), f)
 
            .or_else(|| seek_expr_in_stmt(heap, stmt.true_case.body, f))
 
            .or_else(|| if let Some(false_body) = stmt.false_case {
 
                seek_expr_in_stmt(heap, false_body.body, f)
 
            } else {
 
                None
 
            })
 
@@ -1225,10 +1236,10 @@ fn seek_expr_in_stmt<F: Fn(&Expression) -> bool>(heap: &Heap, start: StatementId
 
        Statement::While(stmt) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, stmt.test, f))
 
            .or_else(|| seek_expr_in_stmt(heap, stmt.body.upcast(), f))
 
            .or_else(|| seek_expr_in_stmt(heap, stmt.body, f))
 
        },
 
        Statement::Synchronous(stmt) => {
 
            seek_expr_in_stmt(heap, stmt.body.upcast(), f)
 
            seek_expr_in_stmt(heap, stmt.body, f)
 
        },
 
        Statement::Return(stmt) => {
 
            for expr_id in &stmt.expressions {
0 comments (0 inline, 0 general)