Changeset - fb814548c7d5
[Not reviewed]
src/protocol/ast.rs
Show inline comments
 
@@ -1041,96 +1041,97 @@ impl ExpressionInfo {
 
        return Self{
 
            type_id: TypeId::new_invalid(),
 
            variant: ExpressionInfoVariant::Generic,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub enum ExpressionInfoVariant {
 
    Generic,
 
    Procedure(TypeId, u32), // procedure TypeID and its monomorph index
 
    Select(i32), // index
 
}
 

	
 
impl ExpressionInfoVariant {
 
    pub(crate) fn as_select(&self) -> i32 {
 
        match self {
 
            ExpressionInfoVariant::Select(v) => *v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    pub(crate) fn as_procedure(&self) -> (TypeId, u32) {
 
        match self {
 
            ExpressionInfoVariant::Procedure(type_id, monomorph_index) => (*type_id, *monomorph_index),
 
            _ => unreachable!(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug)]
 
pub enum ProcedureSource {
 
    FuncUserDefined,
 
    CompUserDefined,
 
    // Builtin functions, available to user
 
    FuncGet,
 
    FuncPut,
 
    FuncFires,
 
    FuncCreate,
 
    FuncLength,
 
    FuncAssert,
 
    FuncPrint,
 
    // Buitlin functions, not available to user
 
    FuncSelectStart,
 
    FuncSelectRegisterCasePort,
 
    FuncSelectWait,
 
    // Builtin components, available to user
 
    CompRandomU32, // TODO: Remove, temporary thing
 
    CompTcpClient,
 
}
 

	
 
impl ProcedureSource {
 
    pub(crate) fn is_builtin(&self) -> bool {
 
        match self {
 
            ProcedureSource::FuncUserDefined | ProcedureSource::CompUserDefined => false,
 
            _ => true,
 
        }
 
    }
 
}
 

	
 

	
 
/// Generic storage for functions, primitive components and composite
 
/// components.
 
// Note that we will have function definitions for builtin functions as well. In
 
// that case the span, the identifier span and the body are all invalid.
 
#[derive(Debug)]
 
pub struct ProcedureDefinition {
 
    pub this: ProcedureDefinitionId,
 
    pub defined_in: RootId,
 
    // Symbol scanning
 
    pub kind: ProcedureKind,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Parser
 
    pub source: ProcedureSource,
 
    pub return_type: Option<ParserType>, // present on functions, not components
 
    pub parameters: Vec<VariableId>,
 
    pub scope: ScopeId,
 
    pub body: BlockStatementId,
 
    // Monomorphization of typed procedures
 
    pub monomorphs: Vec<ProcedureDefinitionMonomorph>,
 
}
 

	
 
impl ProcedureDefinition {
 
    pub(crate) fn new_empty(
 
        this: ProcedureDefinitionId, defined_in: RootId,
 
        kind: ProcedureKind, identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self {
 
            this, defined_in,
 
            kind, identifier, poly_vars,
 
            source: ProcedureSource::FuncUserDefined,
 
            return_type: None,
 
            parameters: Vec::new(),
 
            scope: ScopeId::new_invalid(),
 
            body: BlockStatementId::new_invalid(),
 
            monomorphs: Vec::new(),
 
@@ -1807,107 +1808,108 @@ pub struct SelectExpression {
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct CastExpression {
 
    pub this: CastExpressionId,
 
    // Parsing
 
    pub cast_span: InputSpan, // of the "cast" keyword,
 
    pub full_span: InputSpan, // includes the cast subject
 
    pub to_type: ParserType,
 
    pub subject: ExpressionId,
 
    // Validator/linker
 
    pub parent: ExpressionParent,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct CallExpression {
 
    pub this: CallExpressionId,
 
    // Parsing
 
    pub func_span: InputSpan, // of the function name
 
    pub full_span: InputSpan, // includes the arguments and parentheses
 
    pub parser_type: ParserType, // of the function call, not the return type
 
    pub method: Method,
 
    pub arguments: Vec<ExpressionId>,
 
    pub procedure: ProcedureDefinitionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub enum Method {
 
    // Builtin function, accessible by programmer
 
    Get,
 
    Put,
 
    Fires,
 
    Create,
 
    Length,
 
    Assert,
 
    Print,
 
    // Builtin function, not accessible by programmer
 
    SelectStart, // SelectStart(total_num_cases, total_num_ports)
 
    SelectRegisterCasePort, // SelectRegisterCasePort(case_index, port_index, port_id)
 
    SelectWait, // SelectWait() -> u32
 
    // Builtin component,
 
    ComponentRandomU32,
 
    ComponentTcpClient,
 
    // User-defined
 
    UserFunction,
 
    UserComponent,
 
}
 

	
 
impl Method {
 
    pub(crate) fn is_public_builtin(&self) -> bool {
 
        use Method::*;
 
        match self {
 
            Get | Put | Fires | Create | Length | Assert | Print => true,
 
            ComponentRandomU32 => true,
 
            ComponentRandomU32 | ComponentTcpClient => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    pub(crate) fn is_user_defined(&self) -> bool {
 
        use Method::*;
 
        match self {
 
            UserFunction | UserComponent => true,
 
            _ => false,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralExpression {
 
    pub this: LiteralExpressionId,
 
    // Parsing
 
    pub span: InputSpan,
 
    pub value: Literal,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Literal {
 
    Null, // message
 
    True,
 
    False,
 
    Character(char),
 
    String(StringRef<'static>),
 
    Integer(LiteralInteger),
 
    Struct(LiteralStruct),
 
    Enum(LiteralEnum),
 
    Union(LiteralUnion),
 
    Array(Vec<ExpressionId>),
 
    Tuple(Vec<ExpressionId>),
 
}
 

	
 
impl Literal {
 
    pub(crate) fn as_struct(&self) -> &LiteralStruct {
 
        if let Literal::Struct(literal) = self{
 
            literal
 
        } else {
 
            unreachable!("Attempted to obtain {:?} as Literal::Struct", self)
 
        }
 
    }
src/protocol/eval/executor.rs
Show inline comments
 
@@ -710,97 +710,97 @@ impl Prompt {
 
                                Method::Assert => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value = self.store.maybe_read_ref(&value).clone();
 
                                    if !value.as_bool() {
 
                                        return Ok(EvalContinuation::BranchInconsistent)
 
                                    }
 
                                },
 
                                Method::Print => {
 
                                    // Convert the runtime-variant of a string
 
                                    // into an actual string.
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value_heap_pos = value.as_string();
 
                                    let elements = &self.store.heap_regions[value_heap_pos as usize].values;
 

	
 
                                    let mut message = String::with_capacity(elements.len());
 
                                    for element in elements {
 
                                        message.push(element.as_char());
 
                                    }
 

	
 
                                    // Drop the heap-allocated value from the
 
                                    // store
 
                                    self.store.drop_heap_pos(value_heap_pos);
 
                                    println!("{}", message);
 
                                },
 
                                Method::SelectStart => {
 
                                    let num_cases = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 
                                    let num_ports = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 

	
 
                                    return Ok(EvalContinuation::SelectStart(num_cases, num_ports));
 
                                },
 
                                Method::SelectRegisterCasePort => {
 
                                    let case_index = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 
                                    let port_index = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 
                                    let port_value = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_port_id();
 

	
 
                                    return Ok(EvalContinuation::SelectRegisterPort(case_index, port_index, port_value));
 
                                },
 
                                Method::SelectWait => {
 
                                    match ctx.performed_select_wait() {
 
                                        Some(select_index) => {
 
                                            cur_frame.expr_values.push_back(Value::UInt32(select_index));
 
                                        },
 
                                        None => {
 
                                            cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr.this.upcast()));
 
                                            return Ok(EvalContinuation::SelectWait)
 
                                        },
 
                                    }
 
                                },
 
                                Method::ComponentRandomU32 => {
 
                                Method::ComponentRandomU32 | Method::ComponentTcpClient => {
 
                                    debug_assert_eq!(heap[expr.procedure].parameters.len(), cur_frame.expr_values.len());
 
                                    debug_assert_eq!(heap[cur_frame.position].as_new().expression, expr.this);
 
                                },
 
                                Method::UserComponent => {
 
                                    // This is actually handled by the evaluation
 
                                    // of the statement.
 
                                    debug_assert_eq!(heap[expr.procedure].parameters.len(), cur_frame.expr_values.len());
 
                                    debug_assert_eq!(heap[cur_frame.position].as_new().expression, expr.this);
 
                                },
 
                                Method::UserFunction => {
 
                                    // Push a new frame. Note that all expressions have
 
                                    // been pushed to the front, so they're in the order
 
                                    // of the definition.
 
                                    let num_args = expr.arguments.len();
 

	
 
                                    // Determine stack boundaries
 
                                    let cur_stack_boundary = self.store.cur_stack_boundary;
 
                                    let new_stack_boundary = self.store.stack.len();
 

	
 
                                    // Push new boundary and function arguments for new frame
 
                                    self.store.stack.push(Value::PrevStackBoundary(cur_stack_boundary as isize));
 
                                    for _ in 0..num_args {
 
                                        let argument = self.store.read_take_ownership(cur_frame.expr_values.pop_front().unwrap());
 
                                        self.store.stack.push(argument);
 
                                    }
 

	
 
                                    // Determine the monomorph index of the function we're calling
 
                                    let mono_data = &heap[cur_frame.definition].monomorphs[cur_frame.monomorph_index];
 
                                    let (type_id, monomorph_index) = mono_data.expr_info[expr.type_index as usize].variant.as_procedure();
 

	
 
                                    // Push the new frame and reserve its stack size
 
                                    let new_frame = Frame::new(heap, expr.procedure, type_id, monomorph_index);
 
                                    let new_stack_size = new_frame.max_stack_size;
 
                                    self.frames.push(new_frame);
 
                                    self.store.cur_stack_boundary = new_stack_boundary;
 
                                    self.store.reserve_stack(new_stack_size);
 

	
 
                                    // To simplify the logic a little bit we will now
 
                                    // return and ask our caller to call us again
 
                                    return Ok(EvalContinuation::Stepping);
 
                                }
 
                            }
 
                        },
 
                        Expression::Variable(expr) => {
 
                            let variable = &heap[expr.declaration.unwrap()];
 
                            let ref_value = if expr.used_as_binding_target {
 
                                Value::Binding(variable.unique_id_in_scope as StackPos)
 
                            } else {
src/protocol/parser/mod.rs
Show inline comments
 
@@ -253,98 +253,99 @@ impl Parser {
 
            };
 
            self.pass_typing.queue_module_definitions(&mut ctx, &mut queue);
 
        };
 
        while !queue.is_empty() {
 
            let top = queue.pop_front().unwrap();
 
            let mut ctx = visitor::Ctx{
 
                heap: &mut self.heap,
 
                modules: &mut self.modules,
 
                module_idx: top.root_id.index as usize,
 
                symbols: &mut self.symbol_table,
 
                types: &mut self.type_table,
 
                arch: &self.arch,
 
            };
 
            self.pass_typing.handle_module_definition(&mut ctx, &mut queue, top)?;
 
        }
 

	
 
        // Rewrite nodes in tree, then prepare for execution of code
 
        for module_idx in 0..self.modules.len() {
 
            self.modules[module_idx].phase = ModuleCompilationPhase::Typed;
 
            let mut ctx = visitor::Ctx{
 
                heap: &mut self.heap,
 
                modules: &mut self.modules,
 
                module_idx,
 
                symbols: &mut self.symbol_table,
 
                types: &mut self.type_table,
 
                arch: &self.arch,
 
            };
 
            self.pass_rewriting.visit_module(&mut ctx)?;
 
            self.pass_stack_size.visit_module(&mut ctx)?;
 
        }
 

	
 
        // Write out desired information
 
        if let Some(filename) = &self.write_ast_to {
 
            let mut writer = ASTWriter::new();
 
            let mut file = std::fs::File::create(std::path::Path::new(filename)).unwrap();
 
            writer.write_ast(&mut file, &self.heap);
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    /// Tries to find the standard library and add the files for parsing.
 
    fn feed_standard_library(&mut self) -> Result<(), String> {
 
        use std::env;
 
        use std::path::{Path, PathBuf};
 
        use std::fs;
 

	
 
        // Pair is (name, add_to_global_namespace)
 
        const FILES: [(&'static str, bool); 2] = [
 
        const FILES: [(&'static str, bool); 3] = [
 
            ("std.global.pdl", true),
 
            ("std.internet.pdl", false),
 
            ("std.random.pdl", false),
 
        ];
 

	
 
        // Determine base directory
 
        let (base_path, from_env) = if let Ok(path) = env::var(REOWOLF_PATH_ENV) {
 
            // Path variable is set
 
            (path, true)
 
        } else {
 
            let mut path = String::with_capacity(REOWOLF_PATH_DIR.len() + 2);
 
            path.push_str("./");
 
            path.push_str(REOWOLF_PATH_DIR);
 
            (path, false)
 
        };
 

	
 
        // Make sure directory exists
 
        let path = Path::new(&base_path);
 
        if !path.exists() {
 
            return Err(format!("std lib root directory '{}' does not exist", base_path));
 
        }
 

	
 
        // Try to load all standard library files. We might need a more unified
 
        // way to do this in the future (i.e. a "std" package, containing all
 
        // of the modules)
 
        let mut file_path = PathBuf::new();
 
        let mut first_file = true;
 

	
 
        for (file, add_to_global_namespace) in FILES {
 
            file_path.clear();
 
            file_path.push(path);
 
            file_path.push(file);
 

	
 
            let source = fs::read(file_path.as_path());
 
            if let Err(err) = source {
 
                return Err(format!(
 
                    "failed to read std lib file '{}' in root directory '{}', because: {}",
 
                    file, base_path, err
 
                ));
 
            }
 

	
 
            let source = source.unwrap();
 
            let input_source = InputSource::new(file.to_string(), source);
 

	
 
            let module_index = self.feed_internal(input_source, true, add_to_global_namespace);
 
            if let Err(err) = module_index {
 
                // A bit of a hack, but shouldn't really happen anyway: the
 
                // compiler should ship with a decent standard library (at some
 
                // point)
 
                return Err(format!("{}", err));
src/protocol/parser/pass_definitions.rs
Show inline comments
 
@@ -332,96 +332,97 @@ impl PassDefinitions {
 
        component.body = body_id;
 

	
 
        Ok(())
 
    }
 

	
 
    /// Consumes a procedure's body: either a user-defined procedure, which we
 
    /// parse as normal, or a builtin function, where we'll make sure we expect
 
    /// the particular builtin.
 
    ///
 
    /// We expect that the procedure's name is already stored in the
 
    /// preallocated AST node.
 
    fn consume_procedure_body(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx, definition_id: DefinitionId, kind: ProcedureKind
 
    ) -> Result<(BlockStatementId, ProcedureSource), ParseError> {
 
        if iter.next() == Some(TokenKind::OpenCurly) && iter.peek() == Some(TokenKind::Pragma) {
 
            // Consume the placeholder "{ #builtin }" tokens
 
            iter.consume(); // opening curly brace
 
            let (pragma, pragma_span) = consume_pragma(&module.source, iter)?;
 
            if pragma != b"#builtin" {
 
                return Err(ParseError::new_error_str_at_span(
 
                    &module.source, pragma_span,
 
                    "expected a '#builtin' pragma, or a function body"
 
                ));
 
            }
 

	
 
            if iter.next() != Some(TokenKind::CloseCurly) {
 
                // Just to keep the compiler writers in line ;)
 
                panic!("compiler error: when using the #builtin pragma, wrap it in curly braces");
 
            }
 
            iter.consume();
 

	
 
            // Retrieve module and procedure name
 
            assert!(module.name.is_some(), "compiler error: builtin procedure body in unnamed module");
 
            let (_, module_name) = module.name.as_ref().unwrap();
 
            let module_name = module_name.as_str();
 

	
 
            let definition = ctx.heap[definition_id].as_procedure();
 
            let procedure_name = definition.identifier.value.as_str();
 

	
 
            let source = match (module_name, procedure_name) {
 
                ("std.global", "get") => ProcedureSource::FuncGet,
 
                ("std.global", "put") => ProcedureSource::FuncPut,
 
                ("std.global", "fires") => ProcedureSource::FuncFires,
 
                ("std.global", "create") => ProcedureSource::FuncCreate,
 
                ("std.global", "length") => ProcedureSource::FuncLength,
 
                ("std.global", "assert") => ProcedureSource::FuncAssert,
 
                ("std.global", "print") => ProcedureSource::FuncPrint,
 
                ("std.random", "random_u32") => ProcedureSource::CompRandomU32,
 
                ("std.internet", "tcp_client") => ProcedureSource::CompTcpClient,
 
                _ => panic!(
 
                    "compiler error: unknown builtin procedure '{}' in module '{}'",
 
                    procedure_name, module_name
 
                ),
 
            };
 

	
 
            return Ok((BlockStatementId::new_invalid(), source));
 
        } else {
 
            let body_id = self.consume_block_statement(module, iter, ctx)?;
 
            let source = match kind {
 
                ProcedureKind::Function =>
 
                    ProcedureSource::FuncUserDefined,
 
                ProcedureKind::Primitive | ProcedureKind::Composite =>
 
                    ProcedureSource::CompUserDefined,
 
            };
 

	
 
            return Ok((body_id, source))
 
        }
 
    }
 

	
 
    /// Consumes a statement and returns a boolean indicating whether it was a
 
    /// block or not.
 
    fn consume_statement(&mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx) -> Result<StatementId, ParseError> {
 
        let next = iter.next().expect("consume_statement has a next token");
 

	
 
        if next == TokenKind::OpenCurly {
 
            let id = self.consume_block_statement(module, iter, ctx)?;
 
            return Ok(id.upcast());
 
        } else if next == TokenKind::Ident {
 
            let ident = peek_ident(&module.source, iter).unwrap();
 
            if ident == KW_STMT_IF {
 
                // Consume if statement and place end-if statement directly
 
                // after it.
 
                let id = self.consume_if_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_WHILE {
 
                let id = self.consume_while_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_BREAK {
 
                let id = self.consume_break_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_CONTINUE {
 
                let id = self.consume_continue_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_SYNC {
 
                let id = self.consume_synchronous_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_FORK {
 
@@ -1613,96 +1614,97 @@ impl PassDefinitions {
 
                                        variant,
 
                                        definition: target_definition_id,
 
                                        variant_idx: 0
 
                                    }),
 
                                    parent: ExpressionParent::None,
 
                                    type_index: -1,
 
                                }).upcast()
 
                            },
 
                            Definition::Union(_) => {
 
                                // Union literal: consume the variant
 
                                consume_token(&module.source, iter, TokenKind::ColonColon)?;
 
                                let variant = consume_ident_interned(&module.source, iter, ctx)?;
 

	
 
                                // Consume any possible embedded values
 
                                let mut end_pos = variant.span.end;
 
                                let values = if Some(TokenKind::OpenParen) == iter.next() {
 
                                    self.consume_expression_list(module, iter, ctx, Some(&mut end_pos))?
 
                                } else {
 
                                    Vec::new()
 
                                };
 

	
 
                                ctx.heap.alloc_literal_expression(|this| LiteralExpression{
 
                                    this,
 
                                    span: InputSpan::from_positions(ident_span.begin, end_pos),
 
                                    value: Literal::Union(LiteralUnion{
 
                                        parser_type, variant, values,
 
                                        definition: target_definition_id,
 
                                        variant_idx: 0,
 
                                    }),
 
                                    parent: ExpressionParent::None,
 
                                    type_index: -1,
 
                                }).upcast()
 
                            },
 
                            Definition::Procedure(proc_def) => {
 
                                // Check whether it is a builtin function
 
                                // TODO: Once we start generating bytecode this is unnecessary
 
                                let procedure_id = proc_def.this;
 
                                let method = match proc_def.source {
 
                                    ProcedureSource::FuncUserDefined => Method::UserFunction,
 
                                    ProcedureSource::CompUserDefined => Method::UserComponent,
 
                                    ProcedureSource::FuncGet => Method::Get,
 
                                    ProcedureSource::FuncPut => Method::Put,
 
                                    ProcedureSource::FuncFires => Method::Fires,
 
                                    ProcedureSource::FuncCreate => Method::Create,
 
                                    ProcedureSource::FuncLength => Method::Length,
 
                                    ProcedureSource::FuncAssert => Method::Assert,
 
                                    ProcedureSource::FuncPrint => Method::Print,
 
                                    ProcedureSource::CompRandomU32 => Method::ComponentRandomU32,
 
                                    ProcedureSource::CompTcpClient => Method::ComponentTcpClient,
 
                                    _ => todo!("other procedure sources"),
 
                                };
 

	
 
                                // Function call: consume the arguments
 
                                let func_span = parser_type.full_span;
 
                                let mut full_span = func_span;
 
                                let arguments = self.consume_expression_list(
 
                                    module, iter, ctx, Some(&mut full_span.end)
 
                                )?;
 

	
 
                                ctx.heap.alloc_call_expression(|this| CallExpression{
 
                                    this, func_span, full_span, parser_type, method, arguments,
 
                                    procedure: procedure_id,
 
                                    parent: ExpressionParent::None,
 
                                    type_index: -1,
 
                                }).upcast()
 
                            }
 
                        }
 
                    },
 
                    _ => {
 
                        return Err(ParseError::new_error_str_at_span(
 
                            &module.source, parser_type.full_span, "unexpected type in expression"
 
                        ))
 
                    }
 
                }
 
            } else {
 
                // Check for builtin keywords or builtin functions
 
                if ident_text == KW_LIT_NULL || ident_text == KW_LIT_TRUE || ident_text == KW_LIT_FALSE {
 
                    iter.consume();
 

	
 
                    // Parse builtin literal
 
                    let value = match ident_text {
 
                        KW_LIT_NULL => Literal::Null,
 
                        KW_LIT_TRUE => Literal::True,
 
                        KW_LIT_FALSE => Literal::False,
 
                        _ => unreachable!(),
 
                    };
 

	
 
                    ctx.heap.alloc_literal_expression(|this| LiteralExpression {
 
                        this,
 
                        span: ident_span,
 
                        value,
 
                        parent: ExpressionParent::None,
 
                        type_index: -1,
 
                    }).upcast()
 
                } else if ident_text == KW_LET {
 
                    // Binding expression
 
                    let operator_span = iter.next_span();
src/protocol/parser/pass_validation_linking.rs
Show inline comments
 
@@ -1115,97 +1115,98 @@ impl Visitor for PassValidationLinking {
 
        let mut expecting_primitive_def = false;
 
        let mut expecting_wrapping_sync_stmt = false;
 
        let mut expecting_no_select_stmt = false;
 

	
 
        match call_expr.method {
 
            Method::Get => {
 
                expecting_primitive_def = true;
 
                expecting_wrapping_sync_stmt = true;
 
                if !self.in_select_guard.is_invalid() {
 
                    // In a select guard. Take the argument (i.e. the port we're
 
                    // retrieving from) and add it to the list of involved ports
 
                    // of the guard
 
                    if call_expr.arguments.len() == 1 {
 
                        // We're checking the number of arguments later, for now
 
                        // assume it is correct.
 
                        let argument = call_expr.arguments[0];
 
                        let select_stmt = &mut ctx.heap[self.in_select_guard];
 
                        let select_case = &mut select_stmt.cases[self.in_select_arm as usize];
 
                        select_case.involved_ports.push((id, argument));
 
                    }
 
                }
 
            },
 
            Method::Put => {
 
                expecting_primitive_def = true;
 
                expecting_wrapping_sync_stmt = true;
 
                expecting_no_select_stmt = true;
 
            },
 
            Method::Fires => {
 
                expecting_primitive_def = true;
 
                expecting_wrapping_sync_stmt = true;
 
            },
 
            Method::Create => {},
 
            Method::Length => {},
 
            Method::Assert => {
 
                expecting_wrapping_sync_stmt = true;
 
                expecting_no_select_stmt = true;
 
                if self.proc_kind == ProcedureKind::Function {
 
                    let call_span = call_expr.func_span;
 
                    return Err(ParseError::new_error_str_at_span(
 
                        &ctx.module().source, call_span,
 
                        "assert statement may only occur in components"
 
                    ));
 
                }
 
            },
 
            Method::Print => {},
 
            Method::SelectStart
 
            | Method::SelectRegisterCasePort
 
            | Method::SelectWait => unreachable!(), // not usable by programmer directly
 
            Method::ComponentRandomU32 => {
 
            Method::ComponentRandomU32
 
            | Method::ComponentTcpClient => {
 
                expecting_wrapping_new_stmt = true;
 
            },
 
            Method::UserFunction => {}
 
            Method::UserComponent => {
 
                expecting_wrapping_new_stmt = true;
 
            },
 
        }
 

	
 
        let call_expr = &mut ctx.heap[id];
 

	
 
        fn get_span_and_name<'a>(ctx: &'a Ctx, id: CallExpressionId) -> (InputSpan, String) {
 
            let call = &ctx.heap[id];
 
            let span = call.func_span;
 
            let name = String::from_utf8_lossy(ctx.module().source.section_at_span(span)).to_string();
 
            return (span, name);
 
        }
 
        if expecting_primitive_def {
 
            if self.proc_kind != ProcedureKind::Primitive {
 
                let (call_span, func_name) = get_span_and_name(ctx, id);
 
                return Err(ParseError::new_error_at_span(
 
                    &ctx.module().source, call_span,
 
                    format!("a call to '{}' may only occur in primitive component definitions", func_name)
 
                ));
 
            }
 
        }
 

	
 
        if expecting_wrapping_sync_stmt {
 
            if self.in_sync.is_invalid() {
 
                let (call_span, func_name) = get_span_and_name(ctx, id);
 
                return Err(ParseError::new_error_at_span(
 
                    &ctx.module().source, call_span,
 
                    format!("a call to '{}' may only occur inside synchronous blocks", func_name)
 
                ))
 
            }
 
        }
 

	
 
        if expecting_no_select_stmt {
 
            if !self.in_select_guard.is_invalid() {
 
                let (call_span, func_name) = get_span_and_name(ctx, id);
 
                return Err(ParseError::new_error_at_span(
 
                    &ctx.module().source, call_span,
 
                    format!("a call to '{}' may not occur in a select statement's guard", func_name)
 
                ));
 
            }
 
        }
 

	
 
        if expecting_wrapping_new_stmt {
 
            if !self.expr_parent.is_new() {
src/runtime2/component/component.rs
Show inline comments
 
use crate::protocol::eval::{Prompt, EvalError, ValueGroup, PortId as EvalPortId};
 
use crate::protocol::*;
 
use crate::runtime2::*;
 
use crate::runtime2::communication::*;
 

	
 
use super::{CompCtx, CompPDL};
 
use super::{CompCtx, CompPDL, CompId};
 
use super::component_context::*;
 
use super::component_random::*;
 
use super::component_internet::*;
 
use super::control_layer::*;
 
use super::consensus::*;
 

	
 
pub enum CompScheduling {
 
    Immediate,
 
    Requeue,
 
    Sleep,
 
    Exit,
 
}
 

	
 
/// Generic representation of a component (as viewed by a scheduler).
 
pub(crate) trait Component {
 
    /// Called upon the creation of the component.
 
    fn on_creation(&mut self, sched_ctx: &SchedulerCtx);
 
    fn on_creation(&mut self, comp_id: CompId, sched_ctx: &SchedulerCtx);
 

	
 
    /// Called if the component is created by another component and the messages
 
    /// are being transferred between the two.
 
    fn adopt_message(&mut self, comp_ctx: &mut CompCtx, message: DataMessage);
 

	
 
    /// Called if the component receives a new message. The component is
 
    /// responsible for deciding where that messages goes.
 
    fn handle_message(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx, message: Message);
 

	
 
    /// Called if the component's routine should be executed. The return value
 
    /// can be used to indicate when the routine should be run again.
 
    fn run(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx) -> Result<CompScheduling, EvalError>;
 
}
 

	
 
/// Representation of the generic operating mode of a component.
 
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
 
pub(crate) enum CompMode {
 
    NonSync, // not in sync mode
 
    Sync, // in sync mode, can interact with other components
 
    SyncEnd, // awaiting a solution, i.e. encountered the end of the sync block
 
    BlockedGet, // blocked because we need to receive a message on a particular port
 
    BlockedPut, // component is blocked because the port is blocked
 
    BlockedSelect, // waiting on message to complete the select statement
 
    StartExit, // temporary state: if encountered then we start the shutdown process
 
    BusyExit, // temporary state: waiting for Acks for all the closed ports
 
    Exit, // exiting: shutdown process started, now waiting until the reference count drops to 0
 
}
 

	
 
impl CompMode {
 
    pub(crate) fn is_in_sync_block(&self) -> bool {
 
        use CompMode::*;
 

	
 
        match self {
 
            Sync | SyncEnd | BlockedGet | BlockedPut | BlockedSelect => true,
 
            NonSync | StartExit | BusyExit | Exit => false,
 
        }
 
    }
 
}
 

	
 
/// Component execution state: the execution mode along with some descriptive
 
/// fields. Fields are public for ergonomic reasons, use member functions when
 
/// appropriate.
 
pub(crate) struct CompExecState {
 
    pub mode: CompMode,
 
    pub mode_port: PortId, // valid if blocked on a port (put/get)
 
    pub mode_value: ValueGroup, // valid if blocked on a put
 
}
 

	
 
impl CompExecState {
 
    pub(crate) fn new() -> Self {
 
        return Self{
 
            mode: CompMode::NonSync,
 
            mode_port: PortId::new_invalid(),
 
            mode_value: ValueGroup::default(),
 
        }
 
    }
 

	
 
    pub(crate) fn set_as_blocked_get(&mut self, port: PortId) {
 
        self.mode = CompMode::BlockedGet;
 
        self.mode_port = port;
 
        debug_assert!(self.mode_value.values.is_empty());
 
    }
 

	
 
    pub(crate) fn is_blocked_on_get(&self, port: PortId) -> bool {
 
        return
 
            self.mode == CompMode::BlockedGet &&
 
            self.mode_port == port;
 
    }
 

	
 
    pub(crate) fn set_as_blocked_put(&mut self, port: PortId, value: ValueGroup) {
 
        self.mode = CompMode::BlockedPut;
 
        self.mode_port = port;
 
        self.mode_value = value;
 
    }
 

	
 
    pub(crate) fn is_blocked_on_put(&self, port: PortId) -> bool {
 
        return
 
            self.mode == CompMode::BlockedPut &&
 
            self.mode_port == port;
 
    }
 
}
 

	
 
/// Creates a new component based on its definition. Meaning that if it is a
 
/// user-defined component then we set up the PDL code state. Otherwise we
 
/// construct a custom component. This does NOT take care of port and message
 
/// management.
 
pub(crate) fn create_component(
 
    protocol: &ProtocolDescription,
 
    definition_id: ProcedureDefinitionId, type_id: TypeId,
 
    arguments: ValueGroup, num_ports: usize
 
) -> Box<dyn Component> {
 
    let definition = &protocol.heap[definition_id];
 
    debug_assert!(definition.kind == ProcedureKind::Primitive || definition.kind == ProcedureKind::Composite);
 

	
 
    if definition.source.is_builtin() {
 
        // Builtin component
 
        let component = match definition.source {
 
        let component: Box<dyn Component> = match definition.source {
 
            ProcedureSource::CompRandomU32 => Box::new(ComponentRandomU32::new(arguments)),
 
            ProcedureSource::CompTcpClient => Box::new(ComponentTcpClient::new(arguments)),
 
            _ => unreachable!(),
 
        };
 

	
 
        return component;
 
    } else {
 
        // User-defined component
 
        let prompt = Prompt::new(
 
            &protocol.types, &protocol.heap,
 
            definition_id, type_id, arguments
 
        );
 
        let component = CompPDL::new(prompt, num_ports);
 
        return Box::new(component);
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// Generic component messaging utilities (for sending and receiving)
 
// -----------------------------------------------------------------------------
 

	
 
/// Default handling of sending a data message. In case the port is blocked then
 
/// the `ExecState` will become blocked as well. Note that
 
/// `default_handle_control_message` will ensure that the port becomes
 
/// unblocked if so instructed by the receiving component. The returned
 
/// scheduling value must be used.
 
#[must_use]
 
pub(crate) fn default_send_data_message(
 
    exec_state: &mut CompExecState, transmitting_port_id: PortId, value: ValueGroup,
 
    sched_ctx: &SchedulerCtx, consensus: &mut Consensus, comp_ctx: &mut CompCtx
 
) -> CompScheduling {
 
    debug_assert_eq!(exec_state.mode, CompMode::Sync);
 

	
 
    // TODO: Handle closed ports
 
    let port_handle = comp_ctx.get_port_handle(transmitting_port_id);
 
    let port_info = comp_ctx.get_port(port_handle);
 
    debug_assert_eq!(port_info.kind, PortKind::Putter);
 
    if port_info.state.is_blocked() {
 
        // Port is blocked, so we cannot send
 
        exec_state.set_as_blocked_put(transmitting_port_id, value);
 

	
 
        return CompScheduling::Sleep;
 
    } else {
 
        // Port is not blocked, so send to the peer
 
        let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
 
        let peer_info = comp_ctx.get_peer(peer_handle);
 
        let annotated_message = consensus.annotate_data_message(comp_ctx, port_info, value);
 
        peer_info.handle.send_message(&sched_ctx.runtime, Message::Data(annotated_message), true);
 

	
 
        return CompScheduling::Immediate;
src/runtime2/component/component_internet.rs
Show inline comments
 
use crate::protocol::eval::{ValueGroup, Value, EvalError};
 
use crate::runtime2::*;
 
use crate::runtime2::component::CompCtx;
 
use crate::runtime2::component::{CompCtx, CompId};
 
use crate::runtime2::stdlib::internet::*;
 
use crate::runtime2::poll::*;
 

	
 
use super::component::{self, *};
 
use super::control_layer::*;
 
use super::consensus::*;
 

	
 
use std::io::ErrorKind as IoErrorKind;
 

	
 
enum SocketState {
 
    Connected(SocketTcpClient),
 
    Error,
 
}
 

	
 
impl SocketState {
 
    fn get_socket(&self) -> &SocketTcpClient {
 
        match self {
 
            SocketState::Connected(v) => v,
 
            SocketState::Error => unreachable!(),
 
        }
 
    }
 
}
 

	
 
/// States from the point of view of the component that is connecting to this
 
/// TCP component (i.e. from the point of view of attempting to interface with
 
/// a socket).
 
#[derive(PartialEq, Debug)]
 
enum SyncState {
 
    AwaitingCmd,
 
    Getting,
 
    Putting,
 
    FinishSync,
 
}
 

	
 
pub struct ComponentTcpClient {
 
    // Properties for the tcp socket
 
    socket_state: SocketState,
 
    sync_state: SyncState,
 
    poll_ticket: Option<PollTicket>,
 
    inbox_main: Option<DataMessage>,
 
    inbox_backup: Vec<DataMessage>,
 
    pdl_input_port_id: PortId, // input from PDL, so transmitted over socket
 
    pdl_output_port_id: PortId, // output towards PDL, so received over socket
 
    input_union_send_tag_value: i64,
 
    input_union_receive_tag_value: i64,
 
    input_union_finish_tag_value: i64,
 
    input_union_shutdown_tag_value: i64,
 
    // Generic component state
 
    exec_state: CompExecState,
 
    control: ControlLayer,
 
    consensus: Consensus,
 
    // Temporary variables
 
    byte_buffer: Vec<u8>,
 
}
 

	
 
impl Component for ComponentTcpClient {
 
    fn on_creation(&mut self, sched_ctx: &SchedulerCtx) {
 
    fn on_creation(&mut self, id: CompId, sched_ctx: &SchedulerCtx) {
 
        // Retrieve type information for messages we're going to receive
 
        let pd = &sched_ctx.runtime.protocol;
 
        let cmd_type = pd.find_type(b"std.internet", b"Cmd")
 
            .expect("'Cmd' type in the 'std.internet' module");
 
        let cmd_type = cmd_type
 
            .as_union();
 

	
 
        self.input_union_send_tag_value = cmd_type.get_variant_tag_value(b"Send").unwrap();
 
        self.input_union_receive_tag_value = cmd_type.get_variant_tag_value(b"Receive").unwrap();
 
        self.input_union_finish_tag_value = cmd_type.get_variant_tag_value(b"Finish").unwrap();
 
        self.input_union_shutdown_tag_value = cmd_type.get_variant_tag_value(b"Shutdown").unwrap();
 

	
 
        // Register socket for async events
 
        if let SocketState::Connected(socket) = &self.socket_state {
 
            let self_handle = sched_ctx.runtime.get_component_public(id);
 
            let poll_ticket = sched_ctx.polling.register(socket, self_handle, true, true)
 
                .expect("registering tcp component");
 

	
 
            debug_assert!(self.poll_ticket.is_none());
 
            self.poll_ticket = Some(poll_ticket);
 
        }
 
    }
 

	
 
    fn adopt_message(&mut self, _comp_ctx: &mut CompCtx, message: DataMessage) {
 
        if self.inbox_main.is_none() {
 
            self.inbox_main = Some(message);
 
        } else {
 
            self.inbox_backup.push(message);
 
        }
 
    }
 

	
 
    fn handle_message(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx, message: Message) {
 
        match message {
 
            Message::Data(message) => {
 
                self.handle_incoming_data_message(sched_ctx, comp_ctx, message);
 
            },
 
            Message::Sync(message) => {
 
                let decision = self.consensus.receive_sync_message(sched_ctx, comp_ctx, message);
 
                component::default_handle_sync_decision(&mut self.exec_state, decision, &mut self.consensus);
 
            },
 
            Message::Control(message) => {
 
                component::default_handle_control_message(
 
                    &mut self.exec_state, &mut self.control, &mut self.consensus,
 
                    message, sched_ctx, comp_ctx
 
                );
 
            },
 
            Message::Poll => {
 
                sched_ctx.log("Received polling event");
 
            },
 
        }
 
    }
 

	
 
    fn run(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx) -> Result<CompScheduling, EvalError> {
 
        sched_ctx.log(&format!("Running component ComponentTcpClient (mode: {:?}", self.exec_state.mode));
 

	
 
        match self.exec_state.mode {
 
            CompMode::BlockedSelect => {
 
                // Not possible: we never enter this state
 
                unreachable!();
 
            },
 
            CompMode::NonSync => {
 
                // When in non-sync mode
 
                match &mut self.socket_state {
 
                    SocketState::Connected(_socket) => {
 
                        // Always move into the sync-state
 
                        self.sync_state = SyncState::AwaitingCmd;
 
                        self.consensus.notify_sync_start(comp_ctx);
 
                        self.exec_state.mode = CompMode::Sync;
 
                    },
 
                    SocketState::Error => {
 
                        // Could potentially send an error message to the
 
                        // connected component.
 
                        self.exec_state.mode = CompMode::StartExit;
 
                        return Ok(CompScheduling::Immediate);
 
                    }
 
                }
 
            },
 
            CompMode::Sync => {
 
                // When in sync mode: wait for a command to come in
 
                match self.sync_state {
 
                    SyncState::AwaitingCmd => {
 
                        if let Some(message) = self.inbox_backup.pop() {
 
                            if self.consensus.try_receive_data_message(sched_ctx, comp_ctx, &message) {
 
                                // Check which command we're supposed to execute.
 
                                let (tag_value, embedded_heap_pos) = message.content.values[0].as_union();
 
                                if tag_value == self.input_union_send_tag_value {
 
                                    // Retrieve bytes from the message
 
                                    self.byte_buffer.clear();
 
                                    let union_content = &message.content.regions[embedded_heap_pos as usize];
 
                                    debug_assert_eq!(union_content.len(), 1);
 
                                    let array_heap_pos = union_content[0].as_array();
 
                                    let array_values = &message.content.regions[array_heap_pos as usize];
 
                                    self.byte_buffer.reserve(array_values.len());
 
                                    for value in array_values {
 
                                        self.byte_buffer.push(value.as_uint8());
 
                                    }
 

	
 
                                    self.sync_state = SyncState::Putting;
 
                                    return Ok(CompScheduling::Immediate);
 
                                } else if tag_value == self.input_union_receive_tag_value {
 
                                    // Component requires a `recv`
 
                                    self.sync_state = SyncState::Getting;
 
                                    return Ok(CompScheduling::Immediate);
 
                                } else if tag_value == self.input_union_finish_tag_value {
 
                                    // Component requires us to end the sync round
 
                                    let decision = self.consensus.notify_sync_end(sched_ctx, comp_ctx);
 
                                    component::default_handle_sync_decision(&mut self.exec_state, decision, &mut self.consensus);
 
                                } else if tag_value == self.input_union_shutdown_tag_value {
 
                                    // Component wants to close the connection
 
                                    todo!("implement clean shutdown, don't forget to unregister to poll ticket");
 
                                }
 
                            } else {
 
                                todo!("handle sync failure due to message deadlock");
 
                                return Ok(CompScheduling::Sleep);
 
                            }
 
                        } else {
 
                            self.exec_state.set_as_blocked_get(self.pdl_input_port_id);
 
                            return Ok(CompScheduling::Sleep);
 
                        }
 
                    },
 
                    SyncState::Putting => {
 
                        // We're supposed to send a user-supplied message fully
 
                        // over the socket. But we might end up blocking. In
 
                        // that case the component goes to sleep until it is
 
                        // polled.
 
                        let socket = self.socket_state.get_socket();
 
                        while !self.byte_buffer.is_empty() {
 
                            match socket.send(&self.byte_buffer) {
 
                                Ok(bytes_sent) => {
 
                                    self.byte_buffer.drain(..bytes_sent);
 
                                },
 
                                Err(err) => {
 
                                    if err.kind() == IoErrorKind::WouldBlock {
 
                                        return Ok(CompScheduling::Sleep); // wait until notified
 
                                    } else {
 
                                        todo!("handle socket.send error {:?}", err)
 
                                    }
 
                                }
 
                            }
 
                        }
 

	
 
                        // If here then we're done putting the data, we can
 
                        // finish the sync round
 
                        let decision = self.consensus.notify_sync_end(sched_ctx, comp_ctx);
 
                        component::default_handle_sync_decision(&mut self.exec_state, decision, &mut self.consensus);
 
                    },
 
                    SyncState::Getting => {
 
                        // We're going to try and receive a single message. If
 
                        // this causes us to end up blocking the component
 
                        // goes to sleep until it is polled.
 
                        const BUFFER_SIZE: usize = 1024; // TODO: Move to config
 

	
 
                        let socket = self.socket_state.get_socket();
 
                        debug_assert!(self.byte_buffer.is_empty());
 
                        self.byte_buffer.resize(BUFFER_SIZE, 0);
 
                        match socket.receive(&mut self.byte_buffer) {
 
                            Ok(num_received) => {
 
                                self.byte_buffer.resize(num_received, 0);
 
@@ -223,101 +241,103 @@ impl Component for ComponentTcpClient {
 
            CompMode::BlockedGet => {
 
                // Entered when awaiting a new command
 
                debug_assert_eq!(self.sync_state, SyncState::AwaitingCmd);
 
                return Ok(CompScheduling::Sleep);
 
            },
 
            CompMode::SyncEnd | CompMode::BlockedPut =>
 
                return Ok(CompScheduling::Sleep),
 
            CompMode::StartExit =>
 
                return Ok(component::default_handle_start_exit(&mut self.exec_state, &mut self.control, sched_ctx, comp_ctx)),
 
            CompMode::BusyExit =>
 
                return Ok(component::default_handle_busy_exit(&mut self.exec_state, &mut self.control, sched_ctx)),
 
            CompMode::Exit =>
 
                return Ok(component::default_handle_exit(&self.exec_state)),
 
        }
 

	
 
        return Ok(CompScheduling::Immediate);
 
    }
 
}
 

	
 
impl ComponentTcpClient {
 
    pub(crate) fn new(arguments: ValueGroup) -> Self {
 
        use std::net::{IpAddr, Ipv4Addr};
 

	
 
        debug_assert_eq!(arguments.values.len(), 4);
 

	
 
        // Parsing arguments
 
        let ip_heap_pos = arguments.values[0].as_array();
 
        let ip_elements = &arguments.regions[ip_heap_pos as usize];
 
        if ip_elements.len() != 4 {
 
            todo!("friendly error reporting: ip contains 4 octects");
 
        }
 
        let ip_address = IpAddr::V4(Ipv4Addr::new(
 
            ip_elements[0].as_uint8(), ip_elements[1].as_uint8(),
 
            ip_elements[2].as_uint8(), ip_elements[3].as_uint8()
 
        ));
 

	
 
        let port = arguments.values[1].as_uint16();
 
        let input_port = component::port_id_from_eval(arguments.values[2].as_input());
 
        let output_port = component::port_id_from_eval(arguments.values[3].as_output());
 

	
 
        let socket = SocketTcpClient::new(ip_address, port);
 
        if let Err(socket) = socket {
 
            todo!("friendly error reporting: failed to open socket {:?}", socket);
 
        }
 

	
 
        return Self{
 
            socket_state: SocketState::Connected(socket.unwrap()),
 
            sync_state: SyncState::AwaitingCmd,
 
            poll_ticket: None,
 
            inbox_main: None,
 
            inbox_backup: Vec::new(),
 
            input_union_send_tag_value: -1,
 
            input_union_receive_tag_value: -1,
 
            input_union_finish_tag_value: -1,
 
            input_union_shutdown_tag_value: -1,
 
            pdl_input_port_id: input_port,
 
            pdl_output_port_id: output_port,
 
            exec_state: CompExecState::new(),
 
            control: ControlLayer::default(),
 
            consensus: Consensus::new(),
 
            byte_buffer: Vec::new(),
 
        }
 
    }
 

	
 
    // Handles incoming data from the PDL side (hence, going into the socket)
 
    fn handle_incoming_data_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: DataMessage) {
 
        if self.exec_state.mode.is_in_sync_block() {
 
            self.consensus.handle_incoming_data_message(comp_ctx, &message);
 
        }
 

	
 
        match component::default_handle_incoming_data_message(
 
            &mut self.exec_state, &mut self.inbox_main, comp_ctx, message, sched_ctx, &mut self.control
 
        ) {
 
            IncomingData::PlacedInSlot => {},
 
            IncomingData::SlotFull(message) => {
 
                self.inbox_backup.push(message);
 
            }
 
        }
 
    }
 

	
 
    fn data_message_to_bytes(&self, message: DataMessage, bytes: &mut Vec<u8>) {
 
        debug_assert_eq!(message.data_header.target_port, self.pdl_input_port_id);
 
        debug_assert_eq!(message.content.values.len(), 1);
 

	
 
        if let Value::Array(array_pos) = message.content.values[0] {
 
            let region = &message.content.regions[array_pos as usize];
 
            bytes.reserve(region.len());
 
            for value in region {
 
                bytes.push(value.as_uint8());
 
            }
 
        } else {
 
            unreachable!();
 
        }
 
    }
 

	
 
    fn bytes_to_data_message_content(&self, buffer: &[u8]) -> ValueGroup {
 
        // Turn bytes into silly executor-style array
 
        let mut values = Vec::with_capacity(buffer.len());
 
        for byte in buffer.iter().copied() {
 
            values.push(Value::UInt8(byte));
 
        }
 

	
 
        // Put in a value group
src/runtime2/component/component_pdl.rs
Show inline comments
 
use crate::random::Random;
 
use crate::protocol::*;
 
use crate::protocol::ast::ProcedureDefinitionId;
 
use crate::protocol::eval::{
 
    PortId as EvalPortId, Prompt,
 
    ValueGroup, Value,
 
    EvalContinuation, EvalResult, EvalError
 
};
 

	
 
use crate::runtime2::runtime::CompId;
 
use crate::runtime2::scheduler::SchedulerCtx;
 
use crate::runtime2::communication::*;
 

	
 
use super::component::{
 
    self,
 
    CompExecState, Component, CompScheduling, CompMode,
 
    port_id_from_eval, port_id_to_eval
 
};
 
use super::component_context::*;
 
use super::control_layer::*;
 
use super::consensus::Consensus;
 

	
 
pub enum ExecStmt {
 
    CreatedChannel((Value, Value)),
 
    PerformedPut,
 
    PerformedGet(ValueGroup),
 
    PerformedSelectWait(u32),
 
    None,
 
}
 

	
 
impl ExecStmt {
 
    fn take(&mut self) -> ExecStmt {
 
        let mut value = ExecStmt::None;
 
        std::mem::swap(self, &mut value);
 
        return value;
 
    }
 

	
 
    fn is_none(&self) -> bool {
 
        match self {
 
            ExecStmt::None => return true,
 
            _ => return false,
 
        }
 
    }
 
}
 

	
 
pub struct ExecCtx {
 
    stmt: ExecStmt,
 
}
 

	
 
impl RunContext for ExecCtx {
 
    fn performed_put(&mut self, _port: EvalPortId) -> bool {
 
        match self.stmt.take() {
 
            ExecStmt::None => return false,
 
            ExecStmt::PerformedPut => return true,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
@@ -177,97 +178,97 @@ impl SelectState {
 
    fn has_decision(&mut self, inbox: &InboxMain, comp_ctx: &CompCtx) -> SelectDecision {
 
        self.candidates_workspace.clear();
 
        if self.cases.is_empty() {
 
            // If there are no cases then we can immediately reach a "bogus
 
            // decision".
 
            return SelectDecision::Case(0);
 
        }
 

	
 
        // Need to check for valid case
 
        'case_loop: for (case_index, case) in self.cases.iter().enumerate() {
 
            for port_handle in case.involved_ports.iter().copied() {
 
                let port_index = comp_ctx.get_port_index(port_handle);
 
                if inbox[port_index].is_none() {
 
                    // Condition not satisfied
 
                    continue 'case_loop;
 
                }
 
            }
 

	
 
            // If here then the case guard is satisfied
 
            self.candidates_workspace.push(case_index);
 
        }
 

	
 
        if self.candidates_workspace.is_empty() {
 
            return SelectDecision::None;
 
        } else {
 
            let candidate_index = self.random.get_u64() as usize % self.candidates_workspace.len();
 
            return SelectDecision::Case(self.candidates_workspace[candidate_index] as u32);
 
        }
 
    }
 
}
 

	
 
pub(crate) struct CompPDL {
 
    pub exec_state: CompExecState,
 
    select_state: SelectState,
 
    pub prompt: Prompt,
 
    pub control: ControlLayer,
 
    pub consensus: Consensus,
 
    pub sync_counter: u32,
 
    pub exec_ctx: ExecCtx,
 
    // TODO: Temporary field, simulates future plans of having one storage place
 
    //  reserved per port.
 
    // Should be same length as the number of ports. Corresponding indices imply
 
    // message is intended for that port.
 
    pub inbox_main: InboxMain,
 
    pub inbox_backup: Vec<DataMessage>,
 
}
 

	
 
impl Component for CompPDL {
 
    fn on_creation(&mut self, _sched_ctx: &SchedulerCtx) {
 
    fn on_creation(&mut self, _id: CompId, _sched_ctx: &SchedulerCtx) {
 
        // Intentionally empty
 
    }
 

	
 
    fn adopt_message(&mut self, comp_ctx: &mut CompCtx, message: DataMessage) {
 
        let port_handle = comp_ctx.get_port_handle(message.data_header.target_port);
 
        let port_index = comp_ctx.get_port_index(port_handle);
 
        if self.inbox_main[port_index].is_none() {
 
            self.inbox_main[port_index] = Some(message);
 
        } else {
 
            self.inbox_backup.push(message);
 
        }
 
    }
 

	
 
    fn handle_message(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx, mut message: Message) {
 
        sched_ctx.log(&format!("handling message: {:#?}", message));
 
        if let Some(new_target) = self.control.should_reroute(&mut message) {
 
            let mut target = sched_ctx.runtime.get_component_public(new_target); // TODO: @NoDirectHandle
 
            target.send_message(&sched_ctx.runtime, message, false); // not waking up: we schedule once we've received all PortPeerChanged Acks
 
            let _should_remove = target.decrement_users();
 
            debug_assert!(_should_remove.is_none());
 
            return;
 
        }
 

	
 
        match message {
 
            Message::Data(message) => {
 
                self.handle_incoming_data_message(sched_ctx, comp_ctx, message);
 
            },
 
            Message::Control(message) => {
 
                component::default_handle_control_message(
 
                    &mut self.exec_state, &mut self.control, &mut self.consensus,
 
                    message, sched_ctx, comp_ctx
 
                );
 
            },
 
            Message::Sync(message) => {
 
                self.handle_incoming_sync_message(sched_ctx, comp_ctx, message);
 
            },
 
            Message::Poll => {
 
                unreachable!(); // because we never register at the polling thread
 
            }
 
        }
 
    }
 

	
 
    fn run(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx) -> Result<CompScheduling, EvalError> {
 
        use EvalContinuation as EC;
 

	
 
        sched_ctx.log(&format!("Running component (mode: {:?})", self.exec_state.mode));
 

	
 
        // Depending on the mode don't do anything at all, take some special
 
@@ -546,96 +547,102 @@ impl CompPDL {
 
            },
 
            IncomingData::SlotFull(message) => {
 
                self.inbox_backup.push(message);
 
            }
 
        }
 
    }
 

	
 
    /// Handles when a message has been handed off from the inbox to the PDL
 
    /// code. We check to see if there are more messages waiting and, if not,
 
    /// then we handle the case where the port might have been blocked
 
    /// previously.
 
    fn handle_received_data_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, port_handle: LocalPortHandle) {
 
        let port_index = comp_ctx.get_port_index(port_handle);
 
        debug_assert!(self.inbox_main[port_index].is_none()); // this function should be called after the message is taken out
 

	
 
        // Check for any more messages
 
        let port_info = comp_ctx.get_port(port_handle);
 
        for message_index in 0..self.inbox_backup.len() {
 
            let message = &self.inbox_backup[message_index];
 
            if message.data_header.target_port == port_info.self_id {
 
                // One more message for this port
 
                let message = self.inbox_backup.remove(message_index);
 
                debug_assert!(comp_ctx.get_port(port_handle).state.is_blocked()); // since we had >1 message on the port
 
                self.inbox_main[port_index] = Some(message);
 

	
 
                return;
 
            }
 
        }
 

	
 
        // Did not have any more messages. So if we were blocked, then we need
 
        // to send the "unblock" message.
 
        if port_info.state == PortState::BlockedDueToFullBuffers {
 
            comp_ctx.set_port_state(port_handle, PortState::Open);
 
            let (peer_handle, message) = self.control.cancel_port_blocking(comp_ctx, port_handle);
 
            let peer_info = comp_ctx.get_peer(peer_handle);
 
            peer_info.handle.send_message(&sched_ctx.runtime, Message::Control(message), true);
 
        }
 
    }
 

	
 
    fn handle_incoming_sync_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: SyncMessage) {
 
        let decision = self.consensus.receive_sync_message(sched_ctx, comp_ctx, message);
 
        self.handle_sync_decision(sched_ctx, comp_ctx, decision);
 
    }
 

	
 
    // -------------------------------------------------------------------------
 
    // Handling ports
 
    // -------------------------------------------------------------------------
 

	
 
    /// Creates a new component and transfers ports. Because of the stepwise
 
    /// process in which memory is allocated, ports are transferred, messages
 
    /// are exchanged, component lifecycle methods are called, etc. This
 
    /// function facilitates a lot of implicit assumptions (e.g. when the
 
    /// `Component::on_creation` method is called, the component is already
 
    /// registered at the runtime).
 
    fn create_component_and_transfer_ports(
 
        &mut self,
 
        sched_ctx: &SchedulerCtx, creator_ctx: &mut CompCtx,
 
        definition_id: ProcedureDefinitionId, type_id: TypeId, mut arguments: ValueGroup
 
    ) {
 
        struct PortPair{
 
            creator_handle: LocalPortHandle,
 
            creator_id: PortId,
 
            created_handle: LocalPortHandle,
 
            created_id: PortId,
 
        }
 
        let mut opened_port_id_pairs = Vec::new();
 
        let mut closed_port_id_pairs = Vec::new();
 

	
 
        let reservation = sched_ctx.runtime.start_create_pdl_component();
 
        let mut created_ctx = CompCtx::new(&reservation);
 

	
 
        let other_proc = &sched_ctx.runtime.protocol.heap[definition_id];
 
        let self_proc = &sched_ctx.runtime.protocol.heap[self.prompt.frames[0].definition];
 

	
 
        dbg_code!({
 
            sched_ctx.log(&format!(
 
                "DEBUG: Comp '{}' (ID {:?}) is creating comp '{}' (ID {:?})",
 
                self_proc.identifier.value.as_str(), creator_ctx.id,
 
                other_proc.identifier.value.as_str(), reservation.id()
 
            ));
 
        });
 

	
 
        // Take all the ports ID that are in the `args` (and currently belong to
 
        // the creator component) and translate them into new IDs that are
 
        // associated with the component we're about to create
 
        let mut arg_iter = ValueGroupPortIter::new(&mut arguments);
 
        while let Some(port_reference) = arg_iter.next() {
 
            // Create port entry for new component
 
            let creator_port_id = port_reference.id;
 
            let creator_port_handle = creator_ctx.get_port_handle(creator_port_id);
 
            let creator_port = creator_ctx.get_port(creator_port_handle);
 
            let created_port_handle = created_ctx.add_port(
 
                creator_port.peer_comp_id, creator_port.peer_port_id,
 
                creator_port.kind, creator_port.state
 
            );
 
            let created_port = created_ctx.get_port(created_port_handle);
 
            let created_port_id = created_port.self_id;
 

	
 
            let port_id_pair = PortPair {
 
                creator_handle: creator_port_handle,
 
                creator_id: creator_port_id,
 
                created_handle: created_port_handle,
 
@@ -664,97 +671,97 @@ impl CompPDL {
 
        // For each transferred port pair set their peer components to the
 
        // correct values. This will only change the values for the ports of
 
        // the new component.
 
        let mut created_component_has_remote_peers = false;
 

	
 
        for pair in opened_port_id_pairs.iter() {
 
            let creator_port_info = creator_ctx.get_port(pair.creator_handle);
 
            let created_port_info = created_ctx.get_port_mut(pair.created_handle);
 

	
 
            if created_port_info.peer_comp_id == creator_ctx.id {
 
                // Port peer is owned by the creator as well
 
                let created_peer_port_index = opened_port_id_pairs
 
                    .iter()
 
                    .position(|v| v.creator_id == creator_port_info.peer_port_id);
 
                match created_peer_port_index {
 
                    Some(created_peer_port_index) => {
 
                        // Peer port moved to the new component as well. So
 
                        // adjust IDs appropriately.
 
                        let peer_pair = &opened_port_id_pairs[created_peer_port_index];
 
                        created_port_info.peer_port_id = peer_pair.created_id;
 
                        created_port_info.peer_comp_id = reservation.id();
 
                        todo!("either add 'self peer', or remove that idea from Ctx altogether")
 
                    },
 
                    None => {
 
                        // Peer port remains with creator component.
 
                        created_port_info.peer_comp_id = creator_ctx.id;
 
                        created_ctx.add_peer(pair.created_handle, sched_ctx, creator_ctx.id, None);
 
                    }
 
                }
 
            } else {
 
                // Peer is a different component. We'll deal with sending the
 
                // appropriate messages later
 
                let peer_handle = creator_ctx.get_peer_handle(created_port_info.peer_comp_id);
 
                let peer_info = creator_ctx.get_peer(peer_handle);
 
                created_ctx.add_peer(pair.created_handle, sched_ctx, peer_info.id, Some(&peer_info.handle));
 
                created_component_has_remote_peers = true;
 
            }
 
        }
 

	
 
        // We'll now actually turn our reservation for a new component into an
 
        // actual component. Note that we initialize it as "not sleeping" as
 
        // its initial scheduling might be performed based on `Ack`s in response
 
        // to message exchanges between remote peers.
 
        let total_num_ports = opened_port_id_pairs.len() + closed_port_id_pairs.len();
 
        let component = component::create_component(&sched_ctx.runtime.protocol, definition_id, type_id, arguments, total_num_ports);
 
        let (created_key, component) = sched_ctx.runtime.finish_create_pdl_component(
 
            reservation, component, created_ctx, false,
 
        );
 
        component.component.on_creation(sched_ctx);
 
        component.component.on_creation(created_key.downgrade(), sched_ctx);
 

	
 
        // Now modify the creator's ports: remove every transferred port and
 
        // potentially remove the peer component.
 
        for pair in opened_port_id_pairs.iter() {
 
            // Remove peer if appropriate
 
            let creator_port_info = creator_ctx.get_port(pair.creator_handle);
 
            let creator_port_index = creator_ctx.get_port_index(pair.creator_handle);
 
            let creator_peer_comp_id = creator_port_info.peer_comp_id;
 
            creator_ctx.remove_peer(sched_ctx, pair.creator_handle, creator_peer_comp_id, false);
 
            creator_ctx.remove_port(pair.creator_handle);
 

	
 
            // Transfer any messages
 
            if let Some(mut message) = self.inbox_main.remove(creator_port_index) {
 
                message.data_header.target_port = pair.created_id;
 
                component.component.adopt_message(&mut component.ctx, message)
 
            }
 

	
 
            let mut message_index = 0;
 
            while message_index < self.inbox_backup.len() {
 
                let message = &self.inbox_backup[message_index];
 
                if message.data_header.target_port == pair.creator_id {
 
                    // transfer message
 
                    let mut message = self.inbox_backup.remove(message_index);
 
                    message.data_header.target_port = pair.created_id;
 
                    component.component.adopt_message(&mut component.ctx, message);
 
                } else {
 
                    message_index += 1;
 
                }
 
            }
 

	
 
            // Handle potential channel between creator and created component
 
            let created_port_info = component.ctx.get_port(pair.created_handle);
 

	
 
            if created_port_info.peer_comp_id == creator_ctx.id {
 
                let peer_port_handle = creator_ctx.get_port_handle(created_port_info.peer_port_id);
 
                let peer_port_info = creator_ctx.get_port_mut(peer_port_handle);
 
                peer_port_info.peer_comp_id = component.ctx.id;
 
                peer_port_info.peer_port_id = created_port_info.self_id;
 
                creator_ctx.add_peer(peer_port_handle, sched_ctx, component.ctx.id, None);
 
            }
 
        }
 

	
 
        // Do the same for the closed ports
 
        for pair in closed_port_id_pairs.iter() {
 
            let port_index = creator_ctx.get_port_index(pair.creator_handle);
 
            creator_ctx.remove_port(pair.creator_handle);
 
            let _removed_message = self.inbox_main.remove(port_index);
 

	
src/runtime2/component/component_random.rs
Show inline comments
 
use rand::prelude as random;
 
use rand::RngCore;
 

	
 
use crate::protocol::eval::{ValueGroup, Value, EvalError};
 
use crate::runtime2::*;
 

	
 
use super::*;
 
use super::component::{self, Component, CompExecState, CompScheduling, CompMode};
 
use super::control_layer::*;
 
use super::consensus::*;
 

	
 
/// TODO: Temporary component to figure out what to do with custom components.
 
///     This component sends random numbers between two u32 limits
 
pub struct ComponentRandomU32 {
 
    // Properties for this specific component
 
    output_port_id: PortId,
 
    random_minimum: u32,
 
    random_maximum: u32,
 
    num_sends: u32,
 
    max_num_sends: u32,
 
    generator: random::ThreadRng,
 
    // Generic state-tracking
 
    exec_state: CompExecState,
 
    did_perform_send: bool, // when in sync mode
 
    control: ControlLayer,
 
    consensus: Consensus,
 
}
 

	
 
impl Component for ComponentRandomU32 {
 
    fn on_creation(&mut self, _sched_ctx: &SchedulerCtx) {
 
    fn on_creation(&mut self, _id: CompId, _sched_ctx: &SchedulerCtx) {
 
    }
 

	
 
    fn adopt_message(&mut self, _comp_ctx: &mut CompCtx, _message: DataMessage) {
 
        // Impossible since this component does not have any input ports in its
 
        // signature.
 
        unreachable!();
 
    }
 

	
 
    fn handle_message(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx, message: Message) {
 
        match message {
 
            Message::Data(_message) => unreachable!(),
 
            Message::Sync(message) => {
 
                let decision = self.consensus.receive_sync_message(sched_ctx, comp_ctx, message);
 
                component::default_handle_sync_decision(&mut self.exec_state, decision, &mut self.consensus);
 
            },
 
            Message::Control(message) => {
 
                component::default_handle_control_message(
 
                    &mut self.exec_state, &mut self.control, &mut self.consensus,
 
                    message, sched_ctx, comp_ctx
 
                );
 
            },
 
            Message::Poll => unreachable!(),
 
        }
 
    }
 

	
 
    fn run(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx) -> Result<CompScheduling, EvalError> {
 
        sched_ctx.log(&format!("Running component ComponentRandomU32 (mode: {:?})", self.exec_state.mode));
 

	
 
        match self.exec_state.mode {
 
            CompMode::BlockedGet | CompMode::BlockedSelect => {
 
                // impossible for this component, no input ports and no select
 
                // blocks
 
                unreachable!();
 
            }
 
            CompMode::NonSync => {
 
                // If in non-sync mode then we check if the arguments make sense
 
                // (at some point in the future, this is just a testing
 
                // component).
 
                if self.random_minimum >= self.random_maximum {
 
                    // Could throw an evaluation error, but lets just panic
 
                    panic!("going to crash 'n burn your system now, please provide valid arguments");
 
                }
 

	
 
                if self.num_sends >= self.max_num_sends {
 
                    self.exec_state.mode = CompMode::StartExit;
 
                } else {
 
                    sched_ctx.log("Entering sync mode");
 
                    self.did_perform_send = false;
src/runtime2/poll/mod.rs
Show inline comments
 
@@ -250,75 +250,75 @@ pub(crate) struct PollingThreadHandle {
 
    // requires Option, because:
 
    queue: Option<QueueDynProducer<PollCmd>>, // destructor needs to be called
 
    handle: Option<thread::JoinHandle<()>>, // we need to call `join`
 
}
 

	
 
impl PollingThreadHandle {
 
    pub(crate) fn shutdown(&mut self) -> thread::Result<()> {
 
        debug_assert!(self.handle.is_some(), "polling thread already destroyed");
 
        self.queue.take().unwrap().push(PollCmd::Shutdown);
 
        return self.handle.take().unwrap().join();
 
    }
 
}
 

	
 
impl Drop for PollingThreadHandle {
 
    fn drop(&mut self) {
 
        debug_assert!(self.queue.is_none() && self.handle.is_none());
 
    }
 
}
 

	
 
// oh my god, now I'm writing factory objects. I'm not feeling too well
 
pub(crate) struct PollingClientFactory {
 
    poller: Arc<Poller>,
 
    generation_counter: Arc<AtomicU32>,
 
    queue_factory: QueueDynProducerFactory<PollCmd>,
 
}
 

	
 
impl PollingClientFactory {
 
    pub(crate) fn client(&self) -> PollingClient {
 
        return PollingClient{
 
            poller: self.poller.clone(),
 
            generation_counter: self.generation_counter.clone(),
 
            queue: self.queue_factory.producer(),
 
        };
 
    }
 
}
 

	
 
pub(crate) struct PollTicket(FileDescriptor, u64);
 

	
 
/// A structure that allows the owner to register components at the polling
 
/// thread. Because of assumptions in the communication queue all of these
 
/// clients should be dropped before stopping the polling thread.
 
pub(crate) struct PollingClient {
 
    poller: Arc<Poller>,
 
    generation_counter: Arc<AtomicU32>,
 
    queue: QueueDynProducer<PollCmd>,
 
}
 

	
 
impl PollingClient {
 
    fn register<F: AsFileDescriptor>(&self, entity: F, handle: CompHandle, read: bool, write: bool) -> Result<PollTicket, RtError> {
 
    pub(crate) fn register<F: AsFileDescriptor>(&self, entity: &F, handle: CompHandle, read: bool, write: bool) -> Result<PollTicket, RtError> {
 
        let generation = self.generation_counter.fetch_add(1, Ordering::Relaxed);
 
        let user_data = user_data_for_component(handle.id().0, generation);
 
        self.queue.push(PollCmd::Register(handle, user_data));
 

	
 
        let file_descriptor = entity.as_file_descriptor();
 
        self.poller.register(file_descriptor, user_data, read, write)
 
            .map_err(|e| rt_error!("failed to register for polling, because: {}", e))?;
 

	
 
        return Ok(PollTicket(file_descriptor, user_data.0));
 
    }
 

	
 
    fn unregister(&self, ticket: PollTicket) -> Result<(), RtError> {
 
    pub(crate) fn unregister(&self, ticket: PollTicket) -> Result<(), RtError> {
 
        let file_descriptor = ticket.0;
 
        let user_data = UserData(ticket.1);
 
        self.queue.push(PollCmd::Unregister(file_descriptor, user_data));
 
        self.poller.unregister(file_descriptor)
 
            .map_err(|e| rt_error!("failed to unregister polling, because: {}", e))?;
 

	
 
        return Ok(());
 
    }
 
}
 

	
 
#[inline]
 
fn user_data_for_component(component_id: u32, generation: u32) -> UserData {
 
    return UserData((generation as u64) << 32 | (component_id as u64));
 
}
 
\ No newline at end of file
src/runtime2/runtime.rs
Show inline comments
 
@@ -261,78 +261,81 @@ impl RuntimeInner {
 
    }
 

	
 
    // Creating/destroying components
 

	
 
    pub(crate) fn start_create_pdl_component(&self) -> CompReserved {
 
        self.increment_active_components();
 
        let reservation = self.components.reserve();
 
        return CompReserved{ reservation };
 
    }
 

	
 
    pub(crate) fn finish_create_pdl_component(
 
        &self, reserved: CompReserved,
 
        component: Box<dyn Component>, mut context: CompCtx, initially_sleeping: bool,
 
    ) -> (CompKey, &mut RuntimeComp) {
 
        let inbox_queue = QueueDynMpsc::new(16);
 
        let inbox_producer = inbox_queue.producer();
 

	
 
        let _id = reserved.id();
 
        context.id = reserved.id();
 
        let component = RuntimeComp {
 
            public: CompPublic{
 
                sleeping: AtomicBool::new(initially_sleeping),
 
                num_handles: AtomicU32::new(1), // the component itself acts like a handle
 
                inbox: inbox_producer,
 
            },
 
            component,
 
            ctx: context,
 
            inbox: inbox_queue,
 
            exiting: false,
 
        };
 

	
 
        let index = self.components.submit(reserved.reservation, component);
 
        debug_assert_eq!(index, _id.0);
 
        let component = self.components.get_mut(index);
 

	
 
        return (CompKey(index), component);
 
    }
 

	
 
    pub(crate) fn get_component(&self, key: CompKey) -> &mut RuntimeComp {
 
        let component = self.components.get_mut(key.0);
 
        return component;
 
    }
 

	
 
    pub(crate) fn get_component_public(&self, id: CompId) -> CompHandle {
 
        let component = self.components.get(id.0);
 
        return CompHandle::new(id, &component.public);
 
    }
 

	
 
    /// Will remove a component and its memory from the runtime. May only be
 
    /// called if the necessary conditions for destruction have been met.
 
    pub(crate) fn destroy_component(&self, key: CompKey) {
 
        dbg_code!({
 
            let component = self.get_component(key);
 
            debug_assert!(component.exiting);
 
            debug_assert_eq!(component.public.num_handles.load(Ordering::Acquire), 0);
 
        });
 

	
 
        self.decrement_active_components();
 
        self.components.destroy(key.0);
 
    }
 

	
 
    // Tracking number of active interfaces and the active components
 

	
 
    #[inline]
 
    fn increment_active_components(&self) {
 
        let _old_val = self.active_elements.fetch_add(1, Ordering::AcqRel);
 
        debug_assert!(_old_val > 0); // can only create a component from a API/component, so can never be 0.
 
    }
 

	
 
    fn decrement_active_components(&self) {
 
        let old_val = self.active_elements.fetch_sub(1, Ordering::AcqRel);
 
        debug_assert!(old_val > 0); // something wrong with incr/decr logic
 
        let new_val = old_val - 1;
 
        if new_val == 0 {
 
            // Just to be sure, in case the last thing that gets destroyed is an
 
            // API instead of a thread.
 
            let _lock = self.work_queue.lock();
 
            self.work_condvar.notify_all();
 
        }
 
    }
 
}
src/runtime2/stdlib/internet.rs
Show inline comments
 
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
 
use std::mem::size_of;
 
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
 

	
 
use libc::{
 
    c_int,
 
    sockaddr_in, sockaddr_in6, in_addr, in6_addr,
 
    socket, bind, listen, accept, connect, close,
 
};
 
use mio::{event, Interest, Registry, Token};
 

	
 
use crate::runtime2::poll::{AsFileDescriptor, FileDescriptor};
 

	
 
#[derive(Debug)]
 
pub enum SocketError {
 
    Opening,
 
    Modifying,
 
    Binding,
 
    Listening,
 
    Connecting,
 
    Accepted,
 
    Accepting,
 
}
 

	
 
enum SocketState {
 
    Opened,
 
    Listening,
 
}
 

	
 
/// TCP connection
 
pub struct SocketTcpClient {
 
    socket_handle: libc::c_int,
 
    is_blocking: bool,
 
}
 

	
 
impl SocketTcpClient {
 
    pub fn new(ip: IpAddr, port: u16) -> Result<Self, SocketError> {
 
        const BLOCKING: bool = false;
 

	
 
        let socket_handle = create_and_connect_socket(
 
            libc::SOCK_STREAM, libc::IPPROTO_TCP, ip, port
 
        )?;
 
        if !set_socket_blocking(socket_handle, BLOCKING) {
 
            unsafe{ libc::close(socket_handle); }
 
            return Err(SocketError::Modifying);
 
        }
 

	
 
        return Ok(SocketTcpClient{
 
            socket_handle,
 
            is_blocking: BLOCKING,
 
        })
 
    }
 

	
 
    pub fn send(&self, message: &[u8]) -> Result<usize, IoError> {
 
        let result = unsafe{
 
            let message_pointer = message.as_ptr().cast();
 
            libc::send(self.socket_handle, message_pointer, message.len() as libc::size_t, 0)
 
        };
 
        if result < 0 {
 
            return Err(IoError::last_os_error());
 
        }
 

	
 
        return Ok(result as usize);
 
    }
 

	
 
    /// Receives data from the TCP socket. Returns the number of bytes received.
 
    /// More bytes may be present even thought `used < buffer.len()`.
 
    pub fn receive(&self, buffer: &mut [u8]) -> Result<usize, IoError> {
 
        let result = unsafe {
 
            let message_pointer = buffer.as_mut_ptr().cast();
 
            libc::recv(self.socket_handle, message_pointer, buffer.len(), 0)
 
        };
 
        if result < 0 {
 
            return Err(IoError::last_os_error());
 
        }
 

	
 
        return Ok(result as usize);
 
    }
 
}
 

	
 
impl Drop for SocketTcpClient {
 
    fn drop(&mut self) {
 
        debug_assert!(self.socket_handle >= 0);
 
        unsafe{ close(self.socket_handle) };
 
    }
 
}
 

	
 
impl AsFileDescriptor for SocketTcpClient {
 
    fn as_file_descriptor(&self) -> FileDescriptor {
 
        return self.socket_handle;
 
    }
 
}
 

	
 
/// Raw socket receiver. Essentially a listener that accepts a single connection
 
struct SocketRawRx {
 
    listen_handle: c_int,
 
    accepted_handle: c_int,
 
}
 

	
 
impl SocketRawRx {
 
    pub fn new(ip: Option<Ipv4Addr>, port: u16) -> Result<Self, SocketError> {
 
        let ip = ip.unwrap_or(Ipv4Addr::UNSPECIFIED); // unspecified is the same as INADDR_ANY
 
        let address = unsafe{ in_addr{
 
            s_addr: std::mem::transmute(ip.octets()),
 
        }};
 
        let socket_address = sockaddr_in{
 
            sin_family: libc::AF_INET as libc::sa_family_t,
 
            sin_port: htons(port),
 
            sin_addr: address,
 
            sin_zero: [0; 8],
 
        };
 

	
 
        unsafe {
 
            let socket_handle = create_and_bind_socket(libc::SOCK_RAW, 0, IpAddr::V4(ip), port)?;
 

	
 
            let result = listen(socket_handle, 3);
 
            if result < 0 { return Err(SocketError::Listening); }
 

	
 
            return Ok(SocketRawRx{
 
                listen_handle: socket_handle,
 
                accepted_handle: -1,
 
            });
 
        }
 
    }
 

	
 
    // pub fn try_accept(&mut self, timeout_ms: u32) -> Result<(), SocketError> {
 
    //     if self.accepted_handle >= 0 {
 
    //         // Already accepted a connection
 
    //         return Err(SocketError::Accepted);
 
    //     }
 
    //
 
    //     let mut socket_address = sockaddr_in{
 
    //         sin_family: 0,
 
    //         sin_port: 0,
 
    //         sin_addr: in_addr{ s_addr: 0 },
 
    //         sin_zero: [0; 8]
 
    //     };
 
    //     let mut size = size_of::<sockaddr_in>() as u32;
 
    //     unsafe {
 
    //         let result = accept(self.listen_handle, &mut socket_address as *mut _, &mut size as *mut _);
 
    //         if result < 0 {
 
@@ -264,73 +272,49 @@ fn create_sockaddr_in_v6(ip: Ipv6Addr, port: u16) -> (sockaddr_in6, libc::sockle
 
        sin6_port: htons(port),
 
        sin6_flowinfo: flow_info,
 
        sin6_addr: address,
 
        sin6_scope_id: 0, // incorrect in case of loopback address
 
    };
 
    let address_size = size_of::<sockaddr_in6>();
 

	
 
    return (socket_address, address_size as _);
 
}
 

	
 
#[inline]
 
fn set_socket_blocking(handle: libc::c_int, blocking: bool) -> bool {
 
    if handle < 0 {
 
        return false;
 
    }
 

	
 
    unsafe{
 
        let mut flags = libc::fcntl(handle, libc::F_GETFL, 0);
 
        if flags < 0 {
 
            return false;
 
        }
 

	
 
        if blocking {
 
            flags &= !libc::O_NONBLOCK;
 
        } else {
 
            flags |= libc::O_NONBLOCK;
 
        }
 

	
 
        let result = libc::fcntl(handle, libc::F_SETFL, flags);
 
        if result < 0 {
 
            return false;
 
        }
 
    }
 

	
 
    return true;
 
}
 

	
 
#[inline]
 
fn socket_family_from_ip(ip: IpAddr) -> libc::c_int {
 
    return match ip {
 
        IpAddr::V4(_) => libc::AF_INET,
 
        IpAddr::V6(_) => libc::AF_INET6,
 
    };
 
}
 

	
 
#[inline]
 
fn htons(port: u16) -> u16 {
 
    return port.to_be();
 
}
 

	
 
mod tests {
 
    use std::net::*;
 
    use super::*;
 

	
 
    // #[test] @nocommit Remove this
 
    // fn test_inet_thingo() {
 
    //     const SIZE: usize = 1024;
 
    //
 
    //     let s = SocketTcpClient::new(IpAddr::V4(Ipv4Addr::new(142, 250, 179, 163)), 80).expect("connect");
 
    //     s.send(b"GET / HTTP/1.1\r\n\r\n").expect("sending");
 
    //     let mut total = Vec::<u8>::new();
 
    //     let mut buffer = [0; SIZE];
 
    //     let mut received = SIZE;
 
    //
 
    //     while received > 0 {
 
    //         received = s.receive(&mut buffer).expect("receiving");
 
    //         println!("DEBUG: Received {} bytes", received);
 
    //         total.extend_from_slice(&buffer[..received]);
 
    //     }
 
    //     let as_str = String::from_utf8_lossy(total.as_slice());
 
    //     println!("Yay! Got {} bytes:\n{}", as_str.len(), as_str);
 
    // }
 
}
 
\ No newline at end of file
src/runtime2/tests/mod.rs
Show inline comments
 
@@ -201,49 +201,49 @@ fn test_unguarded_select() {
 
            sync select { auto v = () -> index += 1; }
 
        }
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(3, false, pd).unwrap();
 
    create_component(&rt, "", "constructor_outside_select", no_args());
 
    create_component(&rt, "", "constructor_inside_select", no_args());
 
}
 

	
 
#[test]
 
fn test_empty_select() {
 
    let pd = ProtocolDescription::parse(b"
 
    primitive constructor() {
 
        u32 index = 0;
 
        while (index < 5) {
 
            sync select {}
 
            index += 1;
 
        }
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(3, false, pd).unwrap();
 
    create_component(&rt, "", "constructor", no_args());
 
}
 

	
 
#[test]
 
fn test_random_u32_temporary_thingo() {
 
    let pd = ProtocolDescription::parse(b"
 
    import std.random::random_u32;
 

	
 
    primitive random_taker(in<u32> generator, u32 num_values) {
 
        auto i = 0;
 
        while (i < num_values) {
 
            sync {
 
                auto a = get(generator);
 
            }
 
            i += 1;
 
        }
 
    }
 

	
 
    composite constructor() {
 
        channel tx -> rx;
 
        auto num_values = 25;
 
        new random_u32(tx, 1, 100, num_values);
 
        new random_taker(rx, num_values);
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(1, true, pd).unwrap();
 
    create_component(&rt, "", "constructor", no_args());
 
}
 
\ No newline at end of file
 
}
std/std.internet.pdl
Show inline comments
 
#module std.internet
 

	
 
union Cmd {
 
    Send(u8[]),
 
    Receive,
 
    Finish,
 
    Shutdown,
 
}
 

	
 
primitive tcp_client(u8[] ip, u16 port, in<Cmd> cmds, out<u8[]> rx) {
 
    #builtin
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)