Changeset - fb9fe040916a
[Not reviewed]
0 1 0
MH - 4 years ago 2021-03-21 18:40:02
contact@maxhenger.nl
add helper for constructing polymorph infer errors
1 file changed with 172 insertions and 17 deletions:
0 comments (0 inline, 0 general)
src/protocol/parser/type_resolver.rs
Show inline comments
 
@@ -202,1543 +202,1698 @@ impl InferenceType {
 
        }
 
    }
 

	
 
    /// Checks if type is, or may be inferred as, an integer
 
    fn might_be_integer(&self) -> bool {
 
        use InferenceTypePart as ITP;
 

	
 
        // TODO: @marker?
 
        if self.parts.len() != 1 { return false; }
 
        match self.parts[0] {
 
            ITP::Unknown | ITP::IntegerLike |
 
            ITP::Byte | ITP::Short | ITP::Int | ITP::Long =>
 
                true,
 
            _ =>
 
                false,
 
        }
 
    }
 

	
 
    /// Checks if type is, or may be inferred as, a boolean
 
    fn might_be_boolean(&self) -> bool {
 
        use InferenceTypePart as ITP;
 

	
 
        // TODO: @marker?
 
        if self.parts.len() != 1 { return false; }
 
        match self.parts[0] {
 
            ITP::Unknown | ITP::Bool => true,
 
            _ => false
 
        }
 
    }
 

	
 
    fn marker_iter(&self) -> InferenceTypeMarkerIter {
 
        InferenceTypeMarkerIter::new(&self.parts)
 
    }
 

	
 
    /// Given that the `parts` are a depth-first serialized tree of types, this
 
    /// function finds the subtree anchored at a specific node. The returned 
 
    /// index is exclusive.
 
    fn find_subtree_end_idx(parts: &[InferenceTypePart], start_idx: usize) -> usize {
 
        let mut depth = 1;
 
        let mut idx = start_idx;
 

	
 
        while idx < parts.len() {
 
            depth += parts[idx].depth_change();
 
            if depth == 0 {
 
                return idx + 1;
 
            }
 
            idx += 1;
 
        }
 

	
 
        // If here, then the inference type is malformed
 
        unreachable!();
 
    }
 

	
 
    /// Call that attempts to infer the part at `to_infer.parts[to_infer_idx]` 
 
    /// using the subtree at `template.parts[template_idx]`. Will return 
 
    /// `Some(depth_change_due_to_traversal)` if type inference has been 
 
    /// applied. In this case the indices will also be modified to point to the 
 
    /// next part in both templates. If type inference has not (or: could not) 
 
    /// be applied then `None` will be returned. Note that this might mean that 
 
    /// the types are incompatible.
 
    ///
 
    /// As this is a helper functions, some assumptions: the parts are not 
 
    /// exactly equal, and neither of them contains a marker. Also: only the
 
    /// `to_infer` parts are checked for inference. It might be that this 
 
    /// function returns `None`, but that that `template` is still compatible
 
    /// with `to_infer`, e.g. when `template` has an `Unknown` part.
 
    fn infer_part_for_single_type(
 
        to_infer: &mut InferenceType, to_infer_idx: &mut usize,
 
        template_parts: &[InferenceTypePart], template_idx: &mut usize,
 
    ) -> Option<i32> {
 
        use InferenceTypePart as ITP;
 

	
 
        let to_infer_part = &to_infer.parts[*to_infer_idx];
 
        let template_part = &template_parts[*template_idx];
 

	
 
        // Check for programmer mistakes
 
        debug_assert_ne!(to_infer_part, template_part);
 
        debug_assert!(!to_infer_part.is_marker(), "marker encountered in 'infer part'");
 
        debug_assert!(!template_part.is_marker(), "marker encountered in 'template part'");
 

	
 
        // Inference of a somewhat-specified type
 
        if to_infer_part.may_be_inferred_from(template_part) {
 
            let depth_change = to_infer_part.depth_change();
 
            debug_assert_eq!(depth_change, template_part.depth_change());
 
            to_infer.parts[*to_infer_idx] = template_part.clone();
 
            *to_infer_idx += 1;
 
            *template_idx += 1;
 
            return Some(depth_change);
 
        }
 

	
 
        // Inference of a completely unknown type
 
        if *to_infer_part == ITP::Unknown {
 
            // template part is different, so cannot be unknown, hence copy the
 
            // entire subtree
 
            let template_end_idx = Self::find_subtree_end_idx(template_parts, *template_idx);
 
            to_infer.parts[*to_infer_idx] = template_part.clone();
 
            *to_infer_idx += 1;
 
            for insert_idx in (*template_idx + 1)..template_end_idx {
 
                to_infer.parts.insert(*to_infer_idx, template_parts[insert_idx].clone());
 
                *to_infer_idx += 1;
 
            }
 
            *template_idx = template_end_idx;
 

	
 
            // Note: by definition the LHS was Unknown and the RHS traversed a 
 
            // full subtree.
 
            return Some(-1);
 
        }
 

	
 
        None
 
    }
 

	
 
    /// Call that checks if the `to_check` part is compatible with the `infer`
 
    /// part. This essentially implements `infer_part_for_single_type` but skips
 
    /// over the matching parts.
 
    fn check_part_for_single_type(
 
        to_check_parts: &[InferenceTypePart], to_check_idx: &mut usize,
 
        template_parts: &[InferenceTypePart], template_idx: &mut usize
 
    ) -> Option<i32> {
 
        use InferenceTypePart as ITP;
 

	
 
        let to_check_part = &to_check_parts[*to_check_idx];
 
        let template_part = &template_parts[*template_idx];
 

	
 
        // Checking programmer errors
 
        debug_assert_ne!(to_check_part, template_part);
 
        debug_assert!(!to_check_part.is_marker(), "marker encountered in 'to_check part'");
 
        debug_assert!(!template_part.is_marker(), "marker encountered in 'template part'");
 

	
 
        if to_check_part.may_be_inferred_from(template_part) {
 
            let depth_change = to_check_part.depth_change();
 
            debug_assert_eq!(depth_change, template_part.depth_change());
 
            *to_check_idx += 1;
 
            *template_idx += 1;
 
            return Some(depth_change);
 
        }
 

	
 
        if *to_check_part == ITP::Unknown {
 
            *to_check_idx += 1;
 
            *template_idx = Self::find_subtree_end_idx(template_parts, *template_idx);
 

	
 
            // By definition LHS and RHS had depth change of -1
 
            return Some(-1);
 
        }
 

	
 
        None
 
    }
 

	
 
    /// Attempts to infer types between two `InferenceType` instances. This 
 
    /// function is unsafe as it accepts pointers to work around Rust's 
 
    /// borrowing rules. The caller must ensure that the pointers are distinct.
 
    unsafe fn infer_subtrees_for_both_types(
 
        type_a: *mut InferenceType, start_idx_a: usize,
 
        type_b: *mut InferenceType, start_idx_b: usize
 
    ) -> DualInferenceResult {
 
        use InferenceTypePart as ITP;
 

	
 
        debug_assert!(!std::ptr::eq(type_a, type_b), "same inference types");
 
        let type_a = &mut *type_a;
 
        let type_b = &mut *type_b;
 

	
 
        let mut modified_a = false;
 
        let mut modified_b = false;
 
        let mut idx_a = start_idx_a;
 
        let mut idx_b = start_idx_b;
 
        let mut depth = 1;
 

	
 
        while depth > 0 {
 
            // Advance indices if we encounter markers or equal parts
 
            let part_a = &type_a.parts[idx_a];
 
            let part_b = &type_b.parts[idx_b];
 
            
 
            if part_a == part_b {
 
                depth += part_a.depth_change();
 
                debug_assert_eq!(depth, part_b.depth_change());
 
                idx_a += 1;
 
                idx_b += 1;
 
                continue;
 
            }
 
            if let ITP::Marker(_) = part_a { idx_a += 1; continue; }
 
            if let ITP::Marker(_) = part_b { idx_b += 1; continue; }
 

	
 
            // Types are not equal and are both not markers
 
            if let Some(depth_change) = Self::infer_part_for_single_type(type_a, &mut idx_a, &type_b.parts, &mut idx_b) {
 
                depth += depth_change;
 
                modified_a = true;
 
                continue;
 
            }
 
            if let Some(depth_change) = Self::infer_part_for_single_type(type_b, &mut idx_b, &type_a.parts, &mut idx_a) {
 
                depth += depth_change;
 
                modified_b = true;
 
                continue;
 
            }
 

	
 
            // And can also not be inferred in any way: types must be incompatible
 
            return DualInferenceResult::Incompatible;
 
        }
 

	
 
        if modified_a { type_a.recompute_is_done(); }
 
        if modified_b { type_b.recompute_is_done(); }
 

	
 
        // If here then we completely inferred the subtrees.
 
        match (modified_a, modified_b) {
 
            (false, false) => DualInferenceResult::Neither,
 
            (false, true) => DualInferenceResult::Second,
 
            (true, false) => DualInferenceResult::First,
 
            (true, true) => DualInferenceResult::Both
 
        }
 
    }
 

	
 
    /// Attempts to infer the first subtree based on the template. Like
 
    /// `infer_subtrees_for_both_types`, but now only applying inference to
 
    /// `to_infer` based on the type information in `template`.
 
    /// Secondary use is to make sure that a type follows a certain template.
 
    fn infer_subtree_for_single_type(
 
        to_infer: &mut InferenceType, mut to_infer_idx: usize,
 
        template: &[InferenceTypePart], mut template_idx: usize,
 
    ) -> SingleInferenceResult {
 
        let mut modified = false;
 
        let mut depth = 1;
 

	
 
        while depth > 0 {
 
            let to_infer_part = &to_infer.parts[to_infer_idx];
 
            let template_part = &template[template_idx];
 

	
 
            if to_infer_part == template_part {
 
                depth += to_infer_part.depth_change();
 
                debug_assert_eq!(depth, template_part.depth_change());
 
                to_infer_idx += 1;
 
                template_idx += 1;
 
                continue;
 
            }
 
            if to_infer_part.is_marker() { to_infer_idx += 1; continue; }
 
            if template_part.is_marker() { template_idx += 1; continue; }
 

	
 
            // Types are not equal and not markers. So check if we can infer 
 
            // anything
 
            if let Some(depth_change) = Self::infer_part_for_single_type(
 
                to_infer, &mut to_infer_idx, template, &mut template_idx
 
            ) {
 
                depth += depth_change;
 
                modified = true;
 
                continue;
 
            }
 

	
 
            // We cannot infer anything, but the template may still be 
 
            // compatible with the type we're inferring
 
            if let Some(depth_change) = Self::check_part_for_single_type(
 
                template, &mut template_idx, &to_infer.parts, &mut to_infer_idx
 
            ) {
 
                depth += depth_change;
 
                continue;
 
            }
 

	
 
            return SingleInferenceResult::Incompatible
 
        }
 

	
 
        return if modified {
 
            to_infer.recompute_is_done();
 
            SingleInferenceResult::Modified
 
        } else {
 
            SingleInferenceResult::Unmodified
 
        }
 
    }
 

	
 
    /// Checks if both types are compatible, doesn't perform any inference
 
    fn check_subtrees(
 
        type_parts_a: &[InferenceTypePart], start_idx_a: usize,
 
        type_parts_b: &[InferenceTypePart], start_idx_b: usize
 
    ) -> bool {
 
        let mut depth = 1;
 
        let mut idx_a = start_idx_a;
 
        let mut idx_b = start_idx_b;
 

	
 
        while depth > 0 {
 
            let part_a = &type_parts_a[idx_a];
 
            let part_b = &type_parts_b[idx_b];
 

	
 
            if part_a == part_b {
 
                depth += part_a.depth_change();
 
                debug_assert_eq!(depth, part_b.depth_change());
 
                idx_a += 1;
 
                idx_b += 1;
 
                continue;
 
            }
 
            
 
            if part_a.is_marker() { idx_a += 1; continue; }
 
            if part_b.is_marker() { idx_b += 1; continue; }
 

	
 
            if let Some(depth_change) = Self::check_part_for_single_type(
 
                type_parts_a, &mut idx_a, type_parts_b, &mut idx_b
 
            ) {
 
                depth += depth_change;
 
                continue;
 
            }
 
            if let Some(depth_change) = Self::check_part_for_single_type(
 
                type_parts_b, &mut idx_b, type_parts_a, &mut idx_a
 
            ) {
 
                depth += depth_change;
 
                continue;
 
            }
 

	
 
            return false;
 
        }
 

	
 
        true
 
    }
 

	
 
    /// Returns a human-readable version of the type. Only use for debugging
 
    /// or returning errors (since it allocates a string).
 
    fn write_display_name(
 
        buffer: &mut String, heap: &Heap, parts: &[InferenceTypePart], mut idx: usize
 
    ) -> usize {
 
        use InferenceTypePart as ITP;
 

	
 
        match &parts[idx] {
 
            ITP::Marker(_) => {},
 
            ITP::Unknown => buffer.push_str("?"),
 
            ITP::NumberLike => buffer.push_str("num?"),
 
            ITP::IntegerLike => buffer.push_str("int?"),
 
            ITP::ArrayLike => {
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push_str("[?]");
 
            },
 
            ITP::PortLike => {
 
                buffer.push_str("port?<");
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            }
 
            ITP::Void => buffer.push_str("void"),
 
            ITP::Message => buffer.push_str("msg"),
 
            ITP::Bool => buffer.push_str("bool"),
 
            ITP::Byte => buffer.push_str("byte"),
 
            ITP::Short => buffer.push_str("short"),
 
            ITP::Int => buffer.push_str("int"),
 
            ITP::Long => buffer.push_str("long"),
 
            ITP::String => buffer.push_str("str"),
 
            ITP::Array => {
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push_str("[]");
 
            },
 
            ITP::Slice => {
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push_str("[..]");
 
            },
 
            ITP::Input => {
 
                buffer.push_str("in<");
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            },
 
            ITP::Output => {
 
                buffer.push_str("out<");
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            },
 
            ITP::Instance(definition_id, num_sub) => {
 
                let definition = &heap[*definition_id];
 
                buffer.push_str(&String::from_utf8_lossy(&definition.identifier().value));
 
                if *num_sub > 0 {
 
                    buffer.push('<');
 
                    idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                    for _sub_idx in 1..*num_sub {
 
                        buffer.push_str(", ");
 
                        idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                    }
 
                    buffer.push('>');
 
                }
 
            },
 
        }
 

	
 
        idx
 
    }
 

	
 
    fn partial_display_name(heap: &Heap, parts: &[InferenceTypePart]) -> String {
 
        let mut buffer = String::with_capacity(parts.len() * 6);
 
        Self::write_display_name(&mut buffer, heap, parts, 0);
 
        buffer
 
    }
 

	
 
    fn display_name(&self, heap: &Heap) -> String {
 
        Self::partial_display_name(heap, &self.parts)
 
    }
 
}
 

	
 
/// Iterator over the subtrees that follow a marker in an `InferenceType`
 
/// instance
 
/// instance.
 
struct InferenceTypeMarkerIter<'a> {
 
    parts: &'a [InferenceTypePart],
 
    idx: usize,
 
}
 

	
 
impl<'a> InferenceTypeMarkerIter<'a> {
 
    fn new(parts: &'a [InferenceTypePart]) -> Self {
 
        Self{ parts, idx: 0 }
 
    }
 
}
 

	
 
impl<'a> Iterator for InferenceTypeMarkerIter<'a> {
 
    type Item = (usize, &'a [InferenceTypePart]);
 

	
 
    fn next(&mut self) -> Option<Self::Item> {
 
        // Iterate until we find a marker
 
        while self.idx < self.parts.len() {
 
            if let InferenceTypePart::Marker(marker) = self.parts[self.idx] {
 
                // Found a marker, find the subtree end
 
                let start_idx = self.idx + 1;
 
                let end_idx = InferenceType::find_subtree_end_idx(self.parts, start_idx);
 

	
 
                // Modify internal index, then return items
 
                self.idx = end_idx;
 
                return Some((marker, &self.parts[start_idx..end_idx]))
 
            }
 

	
 
            self.idx += 1;
 
        }
 

	
 
        None
 
    }
 
}
 

	
 
#[derive(PartialEq, Eq)]
 
enum DualInferenceResult {
 
    Neither,        // neither argument is clarified
 
    First,          // first argument is clarified using the second one
 
    Second,         // second argument is clarified using the first one
 
    Both,           // both arguments are clarified
 
    Incompatible,   // types are incompatible: programmer error
 
}
 

	
 
impl DualInferenceResult {
 
    fn modified_any(&self) -> bool {
 
        match self {
 
            DualInferenceResult::First | DualInferenceResult::Second | DualInferenceResult::Both => true,
 
            _ => false
 
        }
 
    }
 
    fn modified_lhs(&self) -> bool {
 
        match self {
 
            DualInferenceResult::First | DualInferenceResult::Both => true,
 
            _ => false
 
        }
 
    }
 
    fn modified_rhs(&self) -> bool {
 
        match self {
 
            DualInferenceResult::Second | DualInferenceResult::Both => true,
 
            _ => false
 
        }
 
    }
 
}
 

	
 
#[derive(PartialEq, Eq)]
 
enum SingleInferenceResult {
 
    Unmodified,
 
    Modified,
 
    Incompatible
 
}
 

	
 
enum DefinitionType{
 
    None,
 
    Component(ComponentId),
 
    Function(FunctionId),
 
}
 

	
 
/// This particular visitor will recurse depth-first into the AST and ensures
 
/// that all expressions have the appropriate types. At the moment this implies:
 
///
 
///     - Type checking arguments to unary and binary operators.
 
///     - Type checking assignment, indexing, slicing and select expressions.
 
///     - Checking arguments to functions and component instantiations.
 
///
 
/// This will be achieved by slowly descending into the AST. At any given
 
/// expression we may depend on
 
pub(crate) struct TypeResolvingVisitor {
 
    definition_type: DefinitionType,
 

	
 
    // Buffers for iteration over substatements and subexpressions
 
    stmt_buffer: Vec<StatementId>,
 
    expr_buffer: Vec<ExpressionId>,
 

	
 
    // If instantiating a monomorph of a polymorphic proctype, then we store the
 
    // values of the polymorphic values here. There should be as many, and in
 
    // the same order as, in the definition's polyargs.
 
    polyvars: Vec<ConcreteType>,
 
    // Mapping from parser type to inferred type. We attempt to continue to
 
    // specify these types until we're stuck or we've fully determined the type.
 
    infer_types: HashMap<VariableId, InferenceType>,
 
    expr_types: HashMap<ExpressionId, InferenceType>,
 
    extra_data: HashMap<ExpressionId, ExtraData>,
 
    expr_queued: HashSet<ExpressionId>,
 
}
 

	
 
// TODO: @rename used for calls and struct literals, maybe union literals?
 
struct ExtraData {
 
    /// Progression of polymorphic variables (if any)
 
    poly_vars: Vec<InferenceType>,
 
    /// Progression of types of call arguments or struct members
 
    embedded: Vec<InferenceType>,
 
    returned: InferenceType,
 
}
 

	
 
impl TypeResolvingVisitor {
 
    pub(crate) fn new() -> Self {
 
        TypeResolvingVisitor{
 
            definition_type: DefinitionType::None,
 
            stmt_buffer: Vec::with_capacity(STMT_BUFFER_INIT_CAPACITY),
 
            expr_buffer: Vec::with_capacity(EXPR_BUFFER_INIT_CAPACITY),
 
            polyvars: Vec::new(),
 
            infer_types: HashMap::new(),
 
            expr_types: HashMap::new(),
 
            extra_data: HashMap::new(),
 
            expr_queued: HashSet::new(),
 
        }
 
    }
 

	
 
    fn reset(&mut self) {
 
        self.definition_type = DefinitionType::None;
 
        self.stmt_buffer.clear();
 
        self.expr_buffer.clear();
 
        self.polyvars.clear();
 
        self.infer_types.clear();
 
        self.expr_types.clear();
 
    }
 
}
 

	
 
impl Visitor2 for TypeResolvingVisitor {
 
    // Definitions
 

	
 
    fn visit_component_definition(&mut self, ctx: &mut Ctx, id: ComponentId) -> VisitorResult {
 
        self.reset();
 
        self.definition_type = DefinitionType::Component(id);
 

	
 
        let comp_def = &ctx.heap[id];
 
        debug_assert_eq!(comp_def.poly_vars.len(), self.polyvars.len(), "component polyvars do not match imposed polyvars");
 

	
 
        for param_id in comp_def.parameters.clone() {
 
            let param = &ctx.heap[param_id];
 
            let infer_type = self.determine_inference_type_from_parser_type(ctx, param.parser_type, true);
 
            debug_assert!(infer_type.is_done, "expected component arguments to be concrete types");
 
            self.infer_types.insert(param_id.upcast(), infer_type);
 
        }
 

	
 
        let body_stmt_id = ctx.heap[id].body;
 
        self.visit_stmt(ctx, body_stmt_id)
 
    }
 

	
 
    fn visit_function_definition(&mut self, ctx: &mut Ctx, id: FunctionId) -> VisitorResult {
 
        self.reset();
 
        self.definition_type = DefinitionType::Function(id);
 

	
 
        let func_def = &ctx.heap[id];
 
        debug_assert_eq!(func_def.poly_vars.len(), self.polyvars.len(), "function polyvars do not match imposed polyvars");
 

	
 
        for param_id in func_def.parameters.clone() {
 
            let param = &ctx.heap[param_id];
 
            let infer_type = self.determine_inference_type_from_parser_type(ctx, param.parser_type, true);
 
            debug_assert!(infer_type.is_done, "expected function arguments to be concrete types");
 
            self.infer_types.insert(param_id.upcast(), infer_type);
 
        }
 

	
 
        let body_stmt_id = ctx.heap[id].body;
 
        self.visit_stmt(ctx, body_stmt_id)
 
    }
 

	
 
    // Statements
 

	
 
    fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
 
        // Transfer statements for traversal
 
        let block = &ctx.heap[id];
 

	
 
        for stmt_id in block.statements.clone() {
 
            self.visit_stmt(ctx, stmt_id);
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_local_memory_stmt(&mut self, ctx: &mut Ctx, id: MemoryStatementId) -> VisitorResult {
 
        let memory_stmt = &ctx.heap[id];
 

	
 
        let local = &ctx.heap[memory_stmt.variable];
 
        let infer_type = self.determine_inference_type_from_parser_type(ctx, local.parser_type, true);
 
        self.infer_types.insert(memory_stmt.variable.upcast(), infer_type);
 

	
 
        let expr_id = memory_stmt.initial;
 
        self.visit_expr(ctx, expr_id)?;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_local_channel_stmt(&mut self, ctx: &mut Ctx, id: ChannelStatementId) -> VisitorResult {
 
        let channel_stmt = &ctx.heap[id];
 

	
 
        let from_local = &ctx.heap[channel_stmt.from];
 
        let from_infer_type = self.determine_inference_type_from_parser_type(ctx, from_local.parser_type, true);
 
        self.infer_types.insert(from_local.this.upcast(), from_infer_type);
 

	
 
        let to_local = &ctx.heap[channel_stmt.to];
 
        let to_infer_type = self.determine_inference_type_from_parser_type(ctx, to_local.parser_type, true);
 
        self.infer_types.insert(to_local.this.upcast(), to_infer_type);
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult {
 
        let labeled_stmt = &ctx.heap[id];
 
        let substmt_id = labeled_stmt.body;
 
        self.visit_stmt(ctx, substmt_id)
 
    }
 

	
 
    fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
 
        let if_stmt = &ctx.heap[id];
 

	
 
        let true_body_id = if_stmt.true_body;
 
        let false_body_id = if_stmt.false_body;
 
        let test_expr_id = if_stmt.test;
 

	
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_stmt(ctx, true_body_id)?;
 
        self.visit_stmt(ctx, false_body_id)?;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult {
 
        let while_stmt = &ctx.heap[id];
 

	
 
        let body_id = while_stmt.body;
 
        let test_expr_id = while_stmt.test;
 

	
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_stmt(ctx, body_id)?;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult {
 
        let sync_stmt = &ctx.heap[id];
 
        let body_id = sync_stmt.body;
 

	
 
        self.visit_stmt(ctx, body_id)
 
    }
 

	
 
    fn visit_return_stmt(&mut self, ctx: &mut Ctx, id: ReturnStatementId) -> VisitorResult {
 
        let return_stmt = &ctx.heap[id];
 
        let expr_id = return_stmt.expression;
 

	
 
        self.visit_expr(ctx, expr_id)
 
    }
 

	
 
    fn visit_assert_stmt(&mut self, ctx: &mut Ctx, id: AssertStatementId) -> VisitorResult {
 
        let assert_stmt = &ctx.heap[id];
 
        let test_expr_id = assert_stmt.expression;
 

	
 
        self.visit_expr(ctx, test_expr_id)
 
    }
 

	
 
    fn visit_new_stmt(&mut self, ctx: &mut Ctx, id: NewStatementId) -> VisitorResult {
 
        let new_stmt = &ctx.heap[id];
 
        let call_expr_id = new_stmt.expression;
 

	
 
        self.visit_call_expr(ctx, call_expr_id)
 
    }
 

	
 
    fn visit_put_stmt(&mut self, ctx: &mut Ctx, id: PutStatementId) -> VisitorResult {
 
        let put_stmt = &ctx.heap[id];
 

	
 
        let port_expr_id = put_stmt.port;
 
        let msg_expr_id = put_stmt.message;
 
        // TODO: What what?
 

	
 
        self.visit_expr(ctx, port_expr_id)?;
 
        self.visit_expr(ctx, msg_expr_id)?;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_expr_stmt(&mut self, ctx: &mut Ctx, id: ExpressionStatementId) -> VisitorResult {
 
        let expr_stmt = &ctx.heap[id];
 
        let subexpr_id = expr_stmt.expression;
 

	
 
        self.visit_expr(ctx, subexpr_id)
 
    }
 

	
 
    // Expressions
 

	
 
    fn visit_assignment_expr(&mut self, ctx: &mut Ctx, id: AssignmentExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let assign_expr = &ctx.heap[id];
 
        let left_expr_id = assign_expr.left;
 
        let right_expr_id = assign_expr.right;
 

	
 
        self.visit_expr(ctx, left_expr_id)?;
 
        self.visit_expr(ctx, right_expr_id)?;
 

	
 
        self.progress_assignment_expr(ctx, id)
 
    }
 

	
 
    fn visit_conditional_expr(&mut self, ctx: &mut Ctx, id: ConditionalExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let conditional_expr = &ctx.heap[id];
 
        let test_expr_id = conditional_expr.test;
 
        let true_expr_id = conditional_expr.true_expression;
 
        let false_expr_id = conditional_expr.false_expression;
 

	
 
        self.expr_types.insert(test_expr_id, InferenceType::new(false, true, vec![InferenceTypePart::Bool]));
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_expr(ctx, true_expr_id)?;
 
        self.visit_expr(ctx, false_expr_id)?;
 

	
 
        self.progress_conditional_expr(ctx, id)
 
    }
 

	
 
    fn visit_binary_expr(&mut self, ctx: &mut Ctx, id: BinaryExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let binary_expr = &ctx.heap[id];
 
        let lhs_expr_id = binary_expr.left;
 
        let rhs_expr_id = binary_expr.right;
 

	
 
        self.visit_expr(ctx, lhs_expr_id)?;
 
        self.visit_expr(ctx, rhs_expr_id)?;
 

	
 
        self.progress_binary_expr(ctx, id)
 
    }
 

	
 
    fn visit_unary_expr(&mut self, ctx: &mut Ctx, id: UnaryExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let unary_expr = &ctx.heap[id];
 
        let arg_expr_id = unary_expr.expression;
 

	
 
        self.visit_expr(ctx, arg_expr_id);
 

	
 
        self.progress_unary_expr(ctx, id)
 
    }
 

	
 
    fn visit_call_expr(&mut self, ctx: &mut Ctx, id: CallExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 
        self.insert_initial_call_polymorph_data(ctx, id);
 

	
 
        // TODO: @performance
 
        let call_expr = &ctx.heap[id];
 
        for arg_expr_id in call_expr.arguments.clone() {
 
            self.visit_expr(ctx, arg_expr_id)?;
 
        }
 

	
 
        self.progress_call_expr(ctx, id)
 
    }
 
}
 

	
 
macro_rules! debug_assert_expr_ids_unique_and_known {
 
    // Base case for a single expression ID
 
    ($resolver:ident, $id:ident) => {
 
        if cfg!(debug_assertions) {
 
            $resolver.expr_types.contains_key(&$id);
 
        }
 
    };
 
    // Base case for two expression IDs
 
    ($resolver:ident, $id1:ident, $id2:ident) => {
 
        debug_assert_ne!($id1, $id2);
 
        debug_assert_expr_ids_unique_and_known!($resolver, $id1);
 
        debug_assert_expr_ids_unique_and_known!($resolver, $id2);
 
    };
 
    // Generic case
 
    ($resolver:ident, $id1:ident, $id2:ident, $($tail:ident),+) => {
 
        debug_assert_ne!($id1, $id2);
 
        debug_assert_expr_ids_unique_and_known!($resolver, $id1);
 
        debug_assert_expr_ids_unique_and_known!($resolver, $id2, $($tail),+);
 
    };
 
}
 

	
 
macro_rules! debug_assert_ptrs_distinct {
 
    // Base case
 
    ($ptr1:ident, $ptr2:ident) => {
 
        debug_assert!(!std::ptr::eq($ptr1, $ptr2));
 
    };
 
    // Generic case
 
    ($ptr1:ident, $ptr2:ident, $($tail:ident),+) => {
 
        debug_assert_ptrs_distinct!($ptr1, $ptr2);
 
        debug_assert_ptrs_distinct!($ptr2, $($tail),+);
 
    };
 
}
 

	
 
enum TypeConstraintResult {
 
    Progress, // Success: Made progress in applying constraints
 
    NoProgess, // Success: But did not make any progress in applying constraints
 
    ErrExprType, // Error: Expression type did not match the argument(s) of the expression type
 
    ErrArgType, // Error: Expression argument types did not match
 
}
 

	
 
impl TypeResolvingVisitor {
 
    fn progress_assignment_expr(&mut self, ctx: &mut Ctx, id: AssignmentExpressionId) -> Result<(), ParseError2> {
 
        use AssignmentOperator as AO;
 

	
 
        // TODO: Assignable check
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let arg1_expr_id = expr.left;
 
        let arg2_expr_id = expr.right;
 

	
 
        let progress_base = match expr.operation {
 
            AO::Set =>
 
                false,
 
            AO::Multiplied | AO::Divided | AO::Added | AO::Subtracted =>
 
                self.apply_forced_constraint(ctx, upcast_id, &NUMBERLIKE_TEMPLATE)?,
 
            AO::Remained | AO::ShiftedLeft | AO::ShiftedRight |
 
            AO::BitwiseAnded | AO::BitwiseXored | AO::BitwiseOred =>
 
                self.apply_forced_constraint(ctx, upcast_id, &INTEGERLIKE_TEMPLATE)?,
 
        };
 

	
 
        let (progress_expr, progress_arg1, progress_arg2) = self.apply_equal3_constraint(
 
            ctx, upcast_id, arg1_expr_id, arg2_expr_id, 0
 
        )?;
 

	
 
        if progress_base || progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_arg1 { self.queue_expr(arg1_expr_id); }
 
        if progress_arg2 { self.queue_expr(arg2_expr_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_conditional_expr(&mut self, ctx: &mut Ctx, id: ConditionalExpressionId) -> Result<(), ParseError2> {
 
        // Note: test expression type is already enforced
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let arg1_expr_id = expr.true_expression;
 
        let arg2_expr_id = expr.false_expression;
 

	
 
        let (progress_expr, progress_arg1, progress_arg2) = self.apply_equal3_constraint(
 
            ctx, upcast_id, arg1_expr_id, arg2_expr_id, 0
 
        )?;
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_arg1 { self.queue_expr(arg1_expr_id); }
 
        if progress_arg2 { self.queue_expr(arg2_expr_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_binary_expr(&mut self, ctx: &mut Ctx, id: BinaryExpressionId) -> Result<(), ParseError2> {
 
        // Note: our expression type might be fixed by our parent, but we still
 
        // need to make sure it matches the type associated with our operation.
 
        use BinaryOperator as BO;
 

	
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let arg1_id = expr.left;
 
        let arg2_id = expr.right;
 

	
 
        let (progress_expr, progress_arg1, progress_arg2) = match expr.operation {
 
            BO::Concatenate => {
 
                // Arguments may be arrays/slices, output is always an array
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &ARRAY_TEMPLATE)?;
 
                let progress_arg1 = self.apply_forced_constraint(ctx, arg1_id, &ARRAYLIKE_TEMPLATE)?;
 
                let progress_arg2 = self.apply_forced_constraint(ctx, arg2_id, &ARRAYLIKE_TEMPLATE)?;
 

	
 
                // If they're all arraylike, then we want the subtype to match
 
                let (subtype_expr, subtype_arg1, subtype_arg2) =
 
                    self.apply_equal3_constraint(ctx, upcast_id, arg1_id, arg2_id, 1)?;
 

	
 
                (progress_expr || subtype_expr, progress_arg1 || subtype_arg1, progress_arg2 || subtype_arg2)
 
            },
 
            BO::LogicalOr | BO::LogicalAnd => {
 
                // Forced boolean on all
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let progress_arg1 = self.apply_forced_constraint(ctx, arg1_id, &BOOL_TEMPLATE)?;
 
                let progress_arg2 = self.apply_forced_constraint(ctx, arg2_id, &BOOL_TEMPLATE)?;
 

	
 
                (progress_expr, progress_arg1, progress_arg2)
 
            },
 
            BO::BitwiseOr | BO::BitwiseXor | BO::BitwiseAnd | BO::Remainder | BO::ShiftLeft | BO::ShiftRight => {
 
                // All equal of integer type
 
                let progress_base = self.apply_forced_constraint(ctx, upcast_id, &INTEGERLIKE_TEMPLATE)?;
 
                let (progress_expr, progress_arg1, progress_arg2) =
 
                    self.apply_equal3_constraint(ctx, upcast_id, arg1_id, arg2_id, 0)?;
 

	
 
                (progress_base || progress_expr, progress_base || progress_arg1, progress_base || progress_arg2)
 
            },
 
            BO::Equality | BO::Inequality | BO::LessThan | BO::GreaterThan | BO::LessThanEqual | BO::GreaterThanEqual => {
 
                // Equal2 on args, forced boolean output
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let progress_arg_base = self.apply_forced_constraint(ctx, arg1_id, &NUMBERLIKE_TEMPLATE)?;
 
                let (progress_arg1, progress_arg2) =
 
                    self.apply_equal2_constraint(ctx, upcast_id, arg1_id, 0, arg2_id, 0)?;
 

	
 
                (progress_expr, progress_arg_base || progress_arg1, progress_arg_base || progress_arg2)
 
            },
 
            BO::Add | BO::Subtract | BO::Multiply | BO::Divide => {
 
                // All equal of number type
 
                let progress_base = self.apply_forced_constraint(ctx, upcast_id, &NUMBERLIKE_TEMPLATE)?;
 
                let (progress_expr, progress_arg1, progress_arg2) =
 
                    self.apply_equal3_constraint(ctx, upcast_id, arg1_id, arg2_id, 0)?;
 

	
 
                (progress_base || progress_expr, progress_base || progress_arg1, progress_base || progress_arg2)
 
            },
 
        };
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_arg1 { self.queue_expr(arg1_id); }
 
        if progress_arg2 { self.queue_expr(arg2_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_unary_expr(&mut self, ctx: &mut Ctx, id: UnaryExpressionId) -> Result<(), ParseError2> {
 
        use UnaryOperation as UO;
 

	
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let arg_id = expr.expression;
 

	
 
        let (progress_expr, progress_arg) = match expr.operation {
 
            UO::Positive | UO::Negative => {
 
                // Equal types of numeric class
 
                let progress_base = self.apply_forced_constraint(ctx, upcast_id, &NUMBERLIKE_TEMPLATE)?;
 
                let (progress_expr, progress_arg) =
 
                    self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 0, arg_id, 0)?;
 

	
 
                (progress_base || progress_expr, progress_base || progress_arg)
 
            },
 
            UO::BitwiseNot | UO::PreIncrement | UO::PreDecrement | UO::PostIncrement | UO::PostDecrement => {
 
                // Equal types of integer class
 
                let progress_base = self.apply_forced_constraint(ctx, upcast_id, &INTEGERLIKE_TEMPLATE)?;
 
                let (progress_expr, progress_arg) =
 
                    self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 0, arg_id, 0)?;
 

	
 
                (progress_base || progress_expr, progress_base || progress_arg)
 
            },
 
            UO::LogicalNot => {
 
                // Both booleans
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let progress_arg = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                (progress_expr, progress_arg)
 
            }
 
        };
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_arg { self.queue_expr(arg_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_indexing_expr(&mut self, ctx: &mut Ctx, id: IndexingExpressionId) -> Result<(), ParseError2> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let subject_id = expr.subject;
 
        let index_id = expr.index;
 

	
 
        // Make sure subject is arraylike and index is integerlike
 
        let progress_subject_base = self.apply_forced_constraint(ctx, subject_id, &ARRAYLIKE_TEMPLATE)?;
 
        let progress_index = self.apply_forced_constraint(ctx, index_id, &INTEGERLIKE_TEMPLATE)?;
 

	
 
        // Make sure if output is of T then subject is Array<T>
 
        let (progress_expr, progress_subject) =
 
            self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 0, subject_id, 1)?;
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_subject_base || progress_subject { self.queue_expr(subject_id); }
 
        if progress_index { self.queue_expr(index_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_slicing_expr(&mut self, ctx: &mut Ctx, id: SlicingExpressionId) -> Result<(), ParseError2> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let subject_id = expr.subject;
 
        let from_id = expr.from_index;
 
        let to_id = expr.to_index;
 

	
 
        // Make sure subject is arraylike and indices are of equal integerlike
 
        let progress_subject_base = self.apply_forced_constraint(ctx, subject_id, &ARRAYLIKE_TEMPLATE)?;
 
        let progress_idx_base = self.apply_forced_constraint(ctx, from_id, &INTEGERLIKE_TEMPLATE)?;
 
        let (progress_from, progress_to) = self.apply_equal2_constraint(ctx, upcast_id, from_id, 0, to_id, 0)?;
 

	
 
        // Make sure if output is of T then subject is Array<T>
 
        let (progress_expr, progress_subject) =
 
            self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 0, subject_id, 1)?;
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_subject_base || progress_subject { self.queue_expr(subject_id); }
 
        if progress_idx_base || progress_from { self.queue_expr(from_id); }
 
        if progress_idx_base || progress_to { self.queue_expr(to_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    // TODO: @cleanup, see how this can be cleaned up once I implement
 
    //  polymorphic struct/enum/union literals. These likely follow the same
 
    //  pattern as here.
 
    fn progress_call_expr(&mut self, ctx: &mut Ctx, id: CallExpressionId) -> Result<(), ParseError2> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let extra = self.extra_data.get_mut(&upcast_id).unwrap();
 

	
 
        // Check if we can make progress using the arguments and/or return types
 
        // while keeping track of the polyvars we've extended
 
        let mut poly_progress = HashSet::new();
 
        debug_assert_eq!(extra.embedded.len(), expr.arguments.len());
 
        let mut poly_infer_error = false;
 

	
 
        for (arg_idx, arg_id) in expr.arguments.clone().into_iter().enumerate() {
 
            let signature_type = &mut extra.embedded[arg_idx];
 
            let argument_type: *mut _ = self.expr_types.get_mut(&arg_id).unwrap();
 
            let (progress_sig, progress_arg) = Self::apply_equal2_constraint_types(
 
                ctx, upcast_id, signature_type, 0, argument_type, 0
 
            )?;
 

	
 
            if progress_sig {
 
                // Progressed signature, so also apply inference to the 
 
                // polymorph types using the markers 
 
                debug_assert!(signature_type.has_marker, "progress on signature argument type without markers");
 
                for (poly_idx, poly_section) in signature_type.marker_iter() {
 
                    let polymorph_type = &mut extra.poly_vars[poly_idx];
 
                    match Self::apply_forced_constraint_types(
 
                        ctx, upcast_id, polymorph_type, 0, poly_section, 0
 
                    ) {
 
                        Ok(true) => { poly_progress.insert(poly_idx); },
 
                        Ok(false) => {},
 
                        Err(()) => { poly_infer_error = true; }
 
                    }
 
                }
 
            }
 
            if progress_arg {
 
                // Progressed argument expression
 
                self.queue_expr(arg_id);
 
            }
 
        }
 

	
 
        // Do the same for the return type
 
        let signature_type = &mut extra.returned;
 
        let expr_type: *mut _ = self.expr_types.get_mut(&upcast_id).unwrap();
 
        let (progress_sig, progress_expr) = Self::apply_equal2_constraint_types(
 
            ctx, upcast_id, signature_type, 0, expr_type, 0
 
        )?;
 

	
 
        if progress_sig {
 
            // As above: apply inference to polyargs as well
 
            debug_assert!(signature_type.has_marker, "progress on signature return type without markers");
 
            for (poly_idx, poly_section) in signature_type.marker_iter() {
 
                let polymorph_type = &mut extra.poly_vars[poly_idx];
 
                match Self::apply_forced_constraint_types(
 
                    ctx, upcast_id, polymorph_type, 0, poly_section, 0
 
                ) {
 
                    Ok(true) => { poly_progress.insert(poly_idx); },
 
                    Ok(false) => {},
 
                    Err(()) => { poly_infer_error = true; }
 
                }
 
            }
 
        }
 
        if progress_expr {
 
            self.queue_expr_parent(ctx, upcast_id);
 
        }
 

	
 
        // If we did not have an error in the polymorph progression (in the 
 
        // current inefficient implementation), then this means that all types
 
        // still agree on the polymorphic variables.
 
        //
 
        // If we did have an error, then this means that a pair of (argument,
 
        // return type) did not agree on the inferred value of a single 
 
        // polymorphic variable. Since this is an error case we do not care
 
        // about efficiency for now, we loop over all expressions, retrieve the
 
        // subtrees for the markers and see which ones differ (at least one pair
 
        // must differ!)
 

	
 
        // If we did not have an error, but we did expand the polymorphic 
 
        // variables, then we need to re-expand these by insertion.
 
        let mut v = Vec::new();
 
        
 
        // If we had an error in the polymorphic variable's inference, then we
 
        // need to provide a human readable error: find a pair of inference
 
        // types in the arguments/return type that do not agree on the
 
        // polymorphic variable's type
 
        if poly_infer_error { return Err(self.construct_poly_arg_error(ctx, id)) }
 

	
 
        // If we did not have an error in the polymorph inference above, then
 
        // reapplying the polymorph type to each argument type and the return
 
        // type should always succeed.
 
        // TODO: @performance If the algorithm is changed to be more "on demand
 
        //  argument re-evaluation", instead of "all-argument re-evaluation",
 
        //  then this is no longer valid
 
        for poly_idx in poly_progress.into_iter() {
 

	
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn queue_expr_parent(&mut self, ctx: &Ctx, expr_id: ExpressionId) {
 
        if let ExpressionParent::Expression(parent_expr_id, _) = &ctx.heap[expr_id].parent() {
 
            self.expr_queued.insert(*parent_expr_id);
 
        }
 
    }
 

	
 
    fn queue_expr(&mut self, expr_id: ExpressionId) {
 
        self.expr_queued.insert(expr_id);
 
    }
 

	
 
    /// Applies a forced type constraint: the type associated with the supplied
 
    /// expression will be molded into the provided "template". The template may
 
    /// be fully specified (e.g. a bool) or contain "inference" variables (e.g.
 
    /// an array of T)
 
    fn apply_forced_constraint(
 
        &mut self, ctx: &mut Ctx, expr_id: ExpressionId, template: &[InferenceTypePart]
 
    ) -> Result<bool, ParseError2> {
 
        debug_assert_expr_ids_unique_and_known!(self, expr_id);
 
        let expr_type = self.expr_types.get_mut(&expr_id).unwrap();
 
        match InferenceType::infer_subtree_for_single_type(expr_type, 0, template, 0) {
 
            SingleInferenceResult::Modified => Ok(true),
 
            SingleInferenceResult::Unmodified => Ok(false),
 
            SingleInferenceResult::Incompatible => Err(
 
                self.construct_template_type_error(ctx, expr_id, template)
 
            )
 
        }
 
    }
 

	
 
    fn apply_forced_constraint_types(
 
        ctx: &Ctx, expr_id: ExpressionId,
 
        to_infer: *mut InferenceType, to_infer_start_idx: usize,
 
        template: &[InferenceTypePart], template_start_idx: usize
 
    ) -> Result<bool, ()> {
 
        match InferenceType::infer_subtree_for_single_type(
 
            unsafe{ &mut *to_infer }, to_infer_start_idx,
 
            template, template_start_idx
 
        ) {
 
            SingleInferenceResult::Modified => Ok(true),
 
            SingleInferenceResult::Unmodified => Ok(false),
 
            SingleInferenceResult::Incompatible => Err(()),
 
        }
 
    }
 

	
 
    /// Applies a type constraint that expects the two provided types to be
 
    /// equal. We attempt to make progress in inferring the types. If the call
 
    /// is successful then the composition of all types are made equal.
 
    /// The "parent" `expr_id` is provided to construct errors.
 
    fn apply_equal2_constraint(
 
        &mut self, ctx: &Ctx, expr_id: ExpressionId,
 
        arg1_id: ExpressionId, arg1_start_idx: usize,
 
        arg2_id: ExpressionId, arg2_start_idx: usize
 
    ) -> Result<(bool, bool), ParseError2> {
 
        debug_assert_expr_ids_unique_and_known!(self, arg1_id, arg2_id);
 
        let arg1_type: *mut _ = self.expr_types.get_mut(&arg1_id).unwrap();
 
        let arg2_type: *mut _ = self.expr_types.get_mut(&arg2_id).unwrap();
 

	
 
        let infer_res = unsafe{ InferenceType::infer_subtrees_for_both_types(
 
            arg1_type, arg1_start_idx,
 
            arg2_type, arg2_start_idx
 
        ) };
 
        if infer_res == DualInferenceResult::Incompatible {
 
            return Err(self.construct_arg_type_error(ctx, expr_id, arg1_id, arg2_id));
 
        }
 

	
 
        Ok((infer_res.modified_lhs(), infer_res.modified_rhs()))
 
    }
 

	
 
    fn apply_equal2_constraint_types(
 
        ctx: &Ctx, expr_id: ExpressionId,
 
        type1: *mut InferenceType, type1_start_idx: usize, 
 
        type2: *mut InferenceType, type2_start_idx: usize
 
    ) -> Result<(bool, bool), ParseError2> {
 
        debug_assert_ptrs_distinct!(type1, type2);
 
        let infer_res = unsafe { 
 
            InferenceType::infer_subtrees_for_both_types(
 
                type1, type1_start_idx, 
 
                type2, type2_start_idx
 
            ) 
 
        };
 

	
 
        if infer_res == DualInferenceResult::Incompatible {
 
            return Err(ParseError2::new_error(
 
                &ctx.module.source, ctx.heap[expr_id].position(),
 
                "TODO: Write me, apply_equal2_constraint_types"
 
            ));
 
        }
 

	
 
        Ok((infer_res.modified_lhs(), infer_res.modified_rhs()))
 
    }
 

	
 
    /// Applies a type constraint that expects all three provided types to be
 
    /// equal. In case we can make progress in inferring the types then we
 
    /// attempt to do so. If the call is successful then the composition of all
 
    /// types is made equal.
 
    fn apply_equal3_constraint(
 
        &mut self, ctx: &Ctx, expr_id: ExpressionId,
 
        arg1_id: ExpressionId, arg2_id: ExpressionId,
 
        start_idx: usize
 
    ) -> Result<(bool, bool, bool), ParseError2> {
 
        // Safety: all expression IDs are always distinct, and we do not modify
 
        //  the container
 
        debug_assert_expr_ids_unique_and_known!(self, expr_id, arg1_id, arg2_id);
 
        let expr_type: *mut _ = self.expr_types.get_mut(&expr_id).unwrap();
 
        let arg1_type: *mut _ = self.expr_types.get_mut(&arg1_id).unwrap();
 
        let arg2_type: *mut _ = self.expr_types.get_mut(&arg2_id).unwrap();
 

	
 
        let expr_res = unsafe{
 
            InferenceType::infer_subtrees_for_both_types(expr_type, start_idx, arg1_type, start_idx)
 
        };
 
        if expr_res == DualInferenceResult::Incompatible {
 
            return Err(self.construct_expr_type_error(ctx, expr_id, arg1_id));
 
        }
 

	
 
        let args_res = unsafe{
 
            InferenceType::infer_subtrees_for_both_types(arg1_type, start_idx, arg2_type, start_idx) };
 
        if args_res == DualInferenceResult::Incompatible {
 
            return Err(self.construct_arg_type_error(ctx, expr_id, arg1_id, arg2_id));
 
        }
 

	
 
        // If all types are compatible, but the second call caused the arg1_type
 
        // to be expanded, then we must also assign this to expr_type.
 
        let mut progress_expr = expr_res.modified_lhs();
 
        let mut progress_arg1 = expr_res.modified_rhs();
 
        let mut progress_arg2 = args_res.modified_rhs();
 

	
 
        if args_res.modified_lhs() { 
 
            unsafe {
 
                (*expr_type).parts.drain(start_idx..);
 
                (*expr_type).parts.extend_from_slice(&((*arg2_type).parts[start_idx..]));
 
            }
 
            progress_expr = true;
 
            progress_arg1 = true;
 
        }
 

	
 
        Ok((progress_expr, progress_arg1, progress_arg2))
 
    }
 

	
 
    /// Determines the `InferenceType` for the expression based on the
 
    /// expression parent. Note that if the parent is another expression, we do
 
    /// not take special action, instead we let parent expressions fix the type
 
    /// of subexpressions before they have a chance to call this function.
 
    /// Hence: if the expression type is already set, this function doesn't do
 
    /// anything.
 
    fn insert_initial_expr_inference_type(
 
        &mut self, ctx: &mut Ctx, expr_id: ExpressionId
 
    ) -> Result<(), ParseError2> {
 
        use ExpressionParent as EP;
 
        use InferenceTypePart as ITP;
 

	
 
        let expr = &ctx.heap[expr_id];
 
        let inference_type = match expr.parent() {
 
            EP::None =>
 
                // Should have been set by linker
 
                unreachable!(),
 
            EP::Memory(_) | EP::ExpressionStmt(_) | EP::Expression(_, _) =>
 
                // Determined during type inference
 
                InferenceType::new(false, false, vec![ITP::Unknown]),
 
            EP::If(_) | EP::While(_) | EP::Assert(_) =>
 
                // Must be a boolean
 
                InferenceType::new(false, true, vec![ITP::Bool]),
 
            EP::Return(_) =>
 
                // Must match the return type of the function
 
                if let DefinitionType::Function(func_id) = self.definition_type {
 
                    let return_parser_type_id = ctx.heap[func_id].return_type;
 
                    self.determine_inference_type_from_parser_type(ctx, return_parser_type_id, true)
 
                } else {
 
                    // Cannot happen: definition always set upon body traversal
 
                    // and "return" calls in components are illegal.
 
                    unreachable!();
 
                },
 
            EP::New(_) =>
 
                // Must be a component call, which we assign a "Void" return
 
                // type
 
                InferenceType::new(false, true, vec![ITP::Void]),
 
            EP::Put(_, 0) =>
 
                // TODO: Change put to be a builtin function
 
                // port of "put" call
 
                InferenceType::new(false, false, vec![ITP::Output, ITP::Unknown]),
 
            EP::Put(_, 1) =>
 
                // TODO: Change put to be a builtin function
 
                // message of "put" call
 
                InferenceType::new(false, true, vec![ITP::Message]),
 
            EP::Put(_, _) =>
 
                unreachable!()
 
        };
 

	
 
        match self.expr_types.entry(expr_id) {
 
            Entry::Vacant(vacant) => {
 
                vacant.insert(inference_type);
 
            },
 
            Entry::Occupied(mut preexisting) => {
 
                // We already have an entry, this happens if our parent fixed
 
                // our type (e.g. we're used in a conditional expression's test)
 
                // but we have a different type.
 
                // TODO: Is this ever called? Seems like it can't
 
                debug_assert!(false, "I am actually called, my ID is {}", expr_id.index);
 
                let old_type = preexisting.get_mut();
 
                if let SingleInferenceResult::Incompatible = InferenceType::infer_subtree_for_single_type(
 
                    old_type, 0, &inference_type.parts, 0
 
                ) {
 
                    return Err(self.construct_expr_type_error(ctx, expr_id, expr_id))
 
                }
 
            }
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn insert_initial_call_polymorph_data(
 
        &mut self, ctx: &mut Ctx, call_id: CallExpressionId
 
    ) {
 
        use InferenceTypePart as ITP;
 

	
 
        // Note: the polymorph variables may be partially specified and may
 
        // contain references to the wrapping definition's (i.e. the proctype
 
        // we are currently visiting) polymorphic arguments.
 
        //
 
        // The arguments of the call may refer to polymorphic variables in the
 
        // definition of the function we're calling, not of the wrapping
 
        // definition. We insert markers in these inferred types to be able to
 
        // map them back and forth to the polymorphic arguments of the function
 
        // we are calling.
 
        let call = &ctx.heap[call_id];
 
        debug_assert!(!call.poly_args.is_empty());
 

	
 
        // Handle the polymorphic variables themselves
 
        let mut poly_vars = Vec::with_capacity(call.poly_args.len());
 
        for poly_arg_type_id in call.poly_args.clone() { // TODO: @performance
 
            poly_vars.push(self.determine_inference_type_from_parser_type(ctx, poly_arg_type_id, true));
 
        }
 

	
 
        // Handle the arguments
 
        // TODO: @cleanup: Maybe factor this out for reuse in the validator/linker, should also
 
        //  make the code slightly more robust.
 
        let (embedded_types, return_type) = match &call.method {
 
            Method::Create => {
 
                // Not polymorphic
 
                unreachable!("insert initial polymorph data for builtin 'create()' call")
 
            },
 
            Method::Fires => {
 
                // bool fires<T>(PortLike<T> arg)
 
                (
 
                    vec![InferenceType::new(true, false, vec![ITP::PortLike, ITP::Marker(0), ITP::Unknown])],
 
                    InferenceType::new(false, true, vec![ITP::Bool])
 
                )
 
            },
 
            Method::Get => {
 
                // T get<T>(input<T> arg)
 
                (
 
                    vec![InferenceType::new(true, false, vec![ITP::Input, ITP::Marker(0), ITP::Unknown])],
 
                    InferenceType::new(true, false, vec![ITP::Marker(0), ITP::Unknown])
 
                )
 
            },
 
            Method::Symbolic(symbolic) => {
 
                let definition = &ctx.heap[symbolic.definition.unwrap()];
 

	
 
                match definition {
 
                    Definition::Component(definition) => {
 
                        let mut parameter_types = Vec::with_capacity(definition.parameters.len());
 
                        for param_id in definition.parameters.clone() {
 
                            let param = &ctx.heap[param_id];
 
                            let param_parser_type_id = param.parser_type;
 
                            parameter_types.push(self.determine_inference_type_from_parser_type(ctx, param_parser_type_id, false));
 
                        }
 

	
 
                        (parameter_types, InferenceType::new(false, true, vec![InferenceTypePart::Unknown]))
 
                        (parameter_types, InferenceType::new(false, true, vec![InferenceTypePart::Void]))
 
                    },
 
                    Definition::Function(definition) => {
 
                        let mut parameter_types = Vec::with_capacity(definition.parameters.len());
 
                        for param_id in definition.parameters.clone() {
 
                            let param = &ctx.heap[param_id];
 
                            let param_parser_type_id = param.parser_type;
 
                            parameter_types.push(self.determine_inference_type_from_parser_type(ctx, param_parser_type_id, false));
 
                        }
 

	
 
                        let return_type = self.determine_inference_type_from_parser_type(ctx, definition.return_type, false);
 
                        (parameter_types, return_type)
 
                    },
 
                    Definition::Struct(_) | Definition::Enum(_) => {
 
                        unreachable!("insert initial polymorph data for struct/enum");
 
                    }
 
                }
 
            }
 
        };
 

	
 
        self.extra_data.insert(call_id.upcast(), ExtraData {
 
            poly_vars,
 
            embedded: embedded_types,
 
            returned: return_type
 
        });
 
    }
 

	
 
    /// Determines the initial InferenceType from the provided ParserType. This
 
    /// may be called with two kinds of intentions:
 
    /// 1. To resolve a ParserType within the body of a function, or on
 
    ///     polymorphic arguments to calls/instantiations within that body. This
 
    ///     means that the polymorphic variables are known and can be replaced
 
    ///     with the monomorph we're instantiating.
 
    /// 2. To resolve a ParserType on a called function's definition or on
 
    ///     an instantiated datatype's members. This means that the polymorphic
 
    ///     arguments inside those ParserTypes refer to the polymorphic
 
    ///     variables in the called/instantiated type's definition.
 
    /// In the second case we place InferenceTypePart::Marker instances such
 
    /// that we can perform type inference on the polymorphic variables.
 
    fn determine_inference_type_from_parser_type(
 
        &mut self, ctx: &Ctx, parser_type_id: ParserTypeId,
 
        parser_type_in_body: bool
 
    ) -> InferenceType {
 
        use ParserTypeVariant as PTV;
 
        use InferenceTypePart as ITP;
 

	
 
        let mut to_consider = VecDeque::with_capacity(16);
 
        to_consider.push_back(parser_type_id);
 

	
 
        let mut infer_type = Vec::new();
 
        let mut has_inferred = false;
 
        let mut has_markers = false;
 

	
 
        while !to_consider.is_empty() {
 
            let parser_type_id = to_consider.pop_front().unwrap();
 
            let parser_type = &ctx.heap[parser_type_id];
 
            match &parser_type.variant {
 
                PTV::Message => { infer_type.push(ITP::Message); },
 
                PTV::Bool => { infer_type.push(ITP::Bool); },
 
                PTV::Byte => { infer_type.push(ITP::Byte); },
 
                PTV::Short => { infer_type.push(ITP::Short); },
 
                PTV::Int => { infer_type.push(ITP::Int); },
 
                PTV::Long => { infer_type.push(ITP::Long); },
 
                PTV::String => { infer_type.push(ITP::String); },
 
                PTV::IntegerLiteral => { unreachable!("integer literal type on variable type"); },
 
                PTV::Inferred => {
 
                    infer_type.push(ITP::Unknown);
 
                    has_inferred = true;
 
                },
 
                PTV::Array(subtype_id) => {
 
                    infer_type.push(ITP::Array);
 
                    to_consider.push_front(*subtype_id);
 
                },
 
                PTV::Input(subtype_id) => {
 
                    infer_type.push(ITP::Input);
 
                    to_consider.push_front(*subtype_id);
 
                },
 
                PTV::Output(subtype_id) => {
 
                    infer_type.push(ITP::Output);
 
                    to_consider.push_front(*subtype_id);
 
                },
 
                PTV::Symbolic(symbolic) => {
 
                    debug_assert!(symbolic.variant.is_some(), "symbolic variant not yet determined");
 
                    match symbolic.variant.unwrap() {
 
                        SymbolicParserTypeVariant::PolyArg(_, arg_idx) => {
 
                            // Retrieve concrete type of argument and add it to
 
                            // the inference type.
 
                            debug_assert!(symbolic.poly_args.is_empty()); // TODO: @hkt
 

	
 
                            if parser_type_in_body {
 
                                debug_assert!(arg_idx < self.polyvars.len());
 
                                for concrete_part in &self.polyvars[arg_idx].v {
 
                                    infer_type.push(ITP::from(*concrete_part));
 
                                }
 
                            } else {
 
                                has_markers = true;
 
                                infer_type.push(ITP::Marker(arg_idx));
 
                                infer_type.push(ITP::Unknown);
 
                            }
 
                        },
 
                        SymbolicParserTypeVariant::Definition(definition_id) => {
 
                            // TODO: @cleanup
 
                            if cfg!(debug_assertions) {
 
                                let definition = &ctx.heap[definition_id];
 
                                debug_assert!(definition.is_struct() || definition.is_enum()); // TODO: @function_ptrs
 
                                let num_poly = match definition {
 
                                    Definition::Struct(v) => v.poly_vars.len(),
 
                                    Definition::Enum(v) => v.poly_vars.len(),
 
                                    _ => unreachable!(),
 
                                };
 
                                debug_assert_eq!(symbolic.poly_args.len(), num_poly);
 
                            }
 

	
 
                            infer_type.push(ITP::Instance(definition_id, symbolic.poly_args.len()));
 
                            let mut poly_arg_idx = symbolic.poly_args.len();
 
                            while poly_arg_idx > 0 {
 
                                poly_arg_idx -= 1;
 
                                to_consider.push_front(symbolic.poly_args[poly_arg_idx]);
 
                            }
 
                        }
 
                    }
 
                }
 
            }
 
        }
 

	
 
        InferenceType::new(has_markers, !has_inferred, infer_type)
 
    }
 

	
 
    /// Construct an error when an expression's type does not match. This
 
    /// happens if we infer the expression type from its arguments (e.g. the
 
    /// expression type of an addition operator is the type of the arguments)
 
    /// But the expression type was already set due to our parent (e.g. an
 
    /// "if statement" or a "logical not" always expecting a boolean)
 
    fn construct_expr_type_error(
 
        &self, ctx: &Ctx, expr_id: ExpressionId, arg_id: ExpressionId
 
    ) -> ParseError2 {
 
        // TODO: Expand and provide more meaningful information for humans
 
        let expr = &ctx.heap[expr_id];
 
        let arg_expr = &ctx.heap[arg_id];
 
        let expr_type = self.expr_types.get(&expr_id).unwrap();
 
        let arg_type = self.expr_types.get(&arg_id).unwrap();
 

	
 
        return ParseError2::new_error(
 
            &ctx.module.source, expr.position(),
 
            &format!(
 
                "Incompatible types: this expression expected a '{}'", 
 
                expr_type.display_name(&ctx.heap)
 
            )
 
        ).with_postfixed_info(
 
            &ctx.module.source, arg_expr.position(),
 
            &format!(
 
                "But this expression yields a '{}'",
 
                arg_type.display_name(&ctx.heap)
 
            )
 
        )
 
    }
 

	
 
    fn construct_arg_type_error(
 
        &self, ctx: &Ctx, expr_id: ExpressionId,
 
        arg1_id: ExpressionId, arg2_id: ExpressionId
 
    ) -> ParseError2 {
 
        let expr = &ctx.heap[expr_id];
 
        let arg1 = &ctx.heap[arg1_id];
 
        let arg2 = &ctx.heap[arg2_id];
 

	
 
        let arg1_type = self.expr_types.get(&arg1_id).unwrap();
 
        let arg2_type = self.expr_types.get(&arg2_id).unwrap();
 

	
 
        return ParseError2::new_error(
 
            &ctx.module.source, expr.position(),
 
            "Incompatible types: cannot apply this expression"
 
        ).with_postfixed_info(
 
            &ctx.module.source, arg1.position(),
 
            &format!(
 
                "Because this expression has type '{}'",
 
                arg1_type.display_name(&ctx.heap)
 
            )
 
        ).with_postfixed_info(
 
            &ctx.module.source, arg2.position(),
 
            &format!(
 
                "But this expression has type '{}'",
 
                arg2_type.display_name(&ctx.heap)
 
            )
 
        )
 
    }
 

	
 
    fn construct_template_type_error(
 
        &self, ctx: &Ctx, expr_id: ExpressionId, template: &[InferenceTypePart]
 
    ) -> ParseError2 {
 
        let expr = &ctx.heap[expr_id];
 
        let expr_type = self.expr_types.get(&expr_id).unwrap();
 

	
 
        return ParseError2::new_error(
 
            &ctx.module.source, expr.position(),
 
            &format!(
 
                "Incompatible types: got a '{}' but expected a '{}'",
 
                expr_type.display_name(&ctx.heap), 
 
                InferenceType::partial_display_name(&ctx.heap, template)
 
            )
 
        )
 
    }
 

	
 
    /// Constructs a human interpretable error in the case that type inference
 
    /// on a polymorphic variable to a function call failed. This may only be
 
    /// caused by a pair of inference types (which may come from arguments or
 
    /// the return type) having two different inferred values for that
 
    /// polymorphic variable.
 
    ///
 
    /// So we find this pair (which may be a argument type or return type
 
    /// conflicting with itself) and construct the error using it.
 
    fn construct_poly_arg_error(
 
        &self, ctx: &Ctx, call_id: CallExpressionId
 
    ) -> ParseError2 {
 
        // Helper function to check for polymorph mismatch between two inference
 
        // types.
 
        fn has_poly_mismatch<'a>(type_a: &'a InferenceType, type_b: &'a InferenceType) -> Option<(usize, &'a [InferenceTypePart], &'a [InferenceTypePart])> {
 
            if !type_a.has_marker || !type_b.has_marker {
 
                return None
 
            }
 

	
 
            for (marker_a, section_a) in type_a.marker_iter() {
 
                for (marker_b, section_b) in type_b.marker_iter() {
 
                    if marker_a != marker_b {
 
                        // Not the same polymorphic variable
 
                        continue;
 
                    }
 

	
 
                    if !InferenceType::check_subtrees(section_a, 0, section_b, 0) {
 
                        // Not compatible
 
                        return Some((marker_a, section_a, section_b))
 
                    }
 
                }
 
            }
 

	
 
            None
 
        }
 

	
 
        // Helpers function to retrieve polyvar name and function name
 
        fn get_poly_var_and_func_name(ctx: &Ctx, poly_var_idx: usize, expr: &CallExpression) -> (String, String) {
 
            let expr = &ctx.heap[call_id];
 
            match &expr.method {
 
                Method::Create => unreachable!(),
 
                Method::Fires => (String::from('T'), String::from("fires")),
 
                Method::Get => (String::from('T'), String::from("get")),
 
                Method::Symbolic(symbolic) => {
 
                    let definition = &ctx.heap[symbolic.definition.unwrap()];
 
                    let poly_var = match definition {
 
                        Definition::Struct(_) | Definition::Enum(_) => unreachable!(),
 
                        Definition::Function(definition) => {
 
                            String::from_utf8_lossy(&definition.poly_vars[poly_var_idx].value).to_string()
 
                        },
 
                        Definition::Component(definition) => {
 
                            String::from_utf8_lossy(&definition.poly_vars[poly_var_idx].value).to_string()
 
                        }
 
                    };
 
                    let func_name = String::from_utf8_lossy(&symbolic.identifier.value).to_string();
 
                    (poly_var, func_name)
 
                }
 
            }
 
        }
 

	
 
        // Helper function to construct initial error
 
        fn construct_main_error(ctx: &Ctx, poly_var_idx: usize, expr: &CallExpression) -> ParseError2 {
 
            let (poly_var, func_name) = get_poly_var_and_func_name(ctx, poly_var_idx, expr);
 
            return ParseError2::new_error(
 
                &ctx.module.source, expr.position(),
 
                &format!(
 
                    "Conflicting type for polymorphic variable '{}' of '{}'",
 
                    poly_var, func_name
 
                )
 
            )
 
        }
 

	
 
        // Actual checking
 
        let extra = self.extra_data.get(&call_id.upcast()).unwrap();
 
        let expr = &ctx.heap[call_id];
 

	
 
        // - check return type with itself
 
        if let Some((poly_idx, section_a, section_b)) = has_poly_mismatch(&extra.returned, &extra.returned) {
 
            return construct_main_error(ctx, poly_idx, expr)
 
                .with_postfixed_info(
 
                    &ctx.module.source, expr.position(),
 
                    &format!(
 
                        "The return type inferred the conflicting types '{}' and '{}'",
 
                        InferenceType::partial_display_name(heap, section_a),
 
                        InferenceType::partial_display_name(heap, section_b)
 
                    )
 
                )
 
        }
 

	
 
        // - check arguments with each other argument and with return type
 
        for (arg_a_idx, arg_a) in extra.embedded.iter().enumerate() {
 
            for (arg_b_idx, arg_b) in extra.embedded.iter().enumerate() {
 
                if arg_b_idx > arg_a_idx {
 
                    break;
 
                }
 

	
 
                if let Some((poly_idx, section_a, section_b)) = has_poly_mismatch(&arg_a, &arg_b) {
 
                    let error = construct_main_error(ctx, poly_idx, expr);
 
                    if arg_a_idx == arg_b_idx {
 
                        // Same argument
 
                        let arg = &ctx.heap[expr.arguments[arg_a_idx]];
 
                        return error.with_postfixed_info(
 
                            &ctx.module.source, arg.position(),
 
                            &format!(
 
                                "This argument inferred the conflicting types '{}' and '{}'",
 
                                InferenceType::partial_display_name(heap, section_a),
 
                                InferenceType::partial_display_name(heap, section_b)
 
                            )
 
                        )
 
                    } else {
 
                        let arg_a = &ctx.heap[expr.arguments[arg_a_idx]];
 
                        let arg_b = &ctx.heap[expr.arguments[arg_b_idx]];
 
                        return error.with_postfixed_info(
 
                            &ctx.module.source, arg_a.position(),
 
                            &format!(
 
                                "This argument inferred it to '{}'",
 
                                InferenceType::partial_display_name(heap, section_a)
 
                            )
 
                        ).with_postfixed_info(
 
                            &ctx.module.source, arg_b.position(),
 
                            &format!(
 
                                "While this argument inferred it to '{}'",
 
                                InferenceType::partial_display_name(heap, section_b)
 
                            )
 
                        )
 
                    }
 
                }
 
            }
 

	
 
            // Check with return type
 
            if let Some((poly_idx, section_arg, section_ret)) = has_poly_mismatch(arg_a, &extra.returned) {
 
                let arg = &ctx.heap[expr.arguments[arg_a_idx]];
 
                return construct_main_error(ctx, poly_idx, expr)
 
                    .with_postfixed_info(
 
                        &ctx.module.source, arg.position(),
 
                        &format!(
 
                            "This argument inferred it to '{}'",
 
                            InferenceType::partial_display_name(heap, section_arg)
 
                        )
 
                    )
 
                    .with_postfixed_info(
 
                        &ctx.module.source, expr.position,
 
                        &format!(
 
                            "While the return type inferred it to '{}'",
 
                            InferenceType::partial_display_name(heap, section_ret)
 
                        )
 
                    )
 
            }
 
        }
 

	
 
        unreachable!("construct_poly_arg_error without actual error found?")
 
    }
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)