Changeset - fc44a832d3f9
[Not reviewed]
0 3 0
mh - 3 years ago 2022-02-16 10:23:12
contact@maxhenger.nl
Phase out visitor abstraction in typing pass
3 files changed with 215 insertions and 145 deletions:
0 comments (0 inline, 0 general)
src/protocol/parser/mod.rs
Show inline comments
 
#[macro_use] mod visitor;
 
pub(crate) mod symbol_table;
 
pub(crate) mod type_table;
 
pub(crate) mod tokens;
 
pub(crate) mod token_parsing;
 
pub(crate) mod pass_tokenizer;
 
pub(crate) mod pass_symbols;
 
pub(crate) mod pass_imports;
 
pub(crate) mod pass_definitions;
 
pub(crate) mod pass_definitions_types;
 
pub(crate) mod pass_validation_linking;
 
pub(crate) mod pass_rewriting;
 
pub(crate) mod pass_typing;
 
pub(crate) mod pass_stack_size;
 
mod visitor;
 

	
 
use tokens::*;
 
use crate::collections::*;
 
use visitor::Visitor;
 
use pass_tokenizer::PassTokenizer;
 
use pass_symbols::PassSymbols;
 
use pass_imports::PassImport;
 
use pass_definitions::PassDefinitions;
 
use pass_validation_linking::PassValidationLinking;
 
use pass_typing::{PassTyping, ResolveQueue};
 
use pass_rewriting::PassRewriting;
 
use pass_stack_size::PassStackSize;
 
use symbol_table::*;
 
use type_table::*;
 

	
 
use crate::protocol::ast::*;
 
use crate::protocol::input_source::*;
 

	
 
use crate::protocol::ast_printer::ASTWriter;
 
use crate::protocol::parser::type_table::PolymorphicVariable;
 

	
 
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord)]
 
pub enum ModuleCompilationPhase {
 
    Tokenized,              // source is tokenized
 
    SymbolsScanned,         // all definitions are linked to their type class
 
    ImportsResolved,        // all imports are added to the symbol table
 
    DefinitionsParsed,      // produced the AST for the entire module
 
    TypesAddedToTable,      // added all definitions to the type table
 
    ValidatedAndLinked,     // AST is traversed and has linked the required AST nodes
 
    Typed,                  // Type inference and checking has been performed
 
    Rewritten,              // Special AST nodes are rewritten into regular AST nodes
 
    // When we continue with the compiler:
 
    // StackSize
 
}
 

	
 
pub struct Module {
 
    // Buffers
 
    pub source: InputSource,
 
    pub tokens: TokenBuffer,
 
    // Identifiers
 
    pub root_id: RootId,
 
    pub name: Option<(PragmaId, StringRef<'static>)>,
 
    pub version: Option<(PragmaId, i64)>,
 
    pub phase: ModuleCompilationPhase,
 
}
 

	
 
pub struct TargetArch {
 
    pub void_type_id: TypeId,
src/protocol/parser/pass_typing.rs
Show inline comments
 
/// pass_typing
 
///
 
/// Performs type inference and type checking. Type inference is implemented by
 
/// applying constraints on (sub)trees of types. During this process the
 
/// resolver takes the `ParserType` structs (the representation of the types
 
/// written by the programmer), converts them to `InferenceType` structs (the
 
/// temporary data structure used during type inference) and attempts to arrive
 
/// at `ConcreteType` structs (the representation of a fully checked and
 
/// validated type).
 
///
 
/// The resolver will visit every statement and expression relevant to the
 
/// procedure and insert and determine its initial type based on context (e.g. a
 
/// return statement's expression must match the function's return type, an
 
/// if statement's test expression must evaluate to a boolean). When all are
 
/// visited we attempt to make progress in evaluating the types. Whenever a type
 
/// is progressed we queue the related expressions for further type progression.
 
/// Once no more expressions are in the queue the algorithm is finished. At this
 
/// point either all types are inferred (or can be trivially implicitly
 
/// determined), or we have incomplete types. In the latter case we return an
 
/// error.
 
///
 
/// TODO: Needs a thorough rewrite:
 
///  0. polymorph_progress is intentionally broken at the moment. Make it work
 
///     again and use a normal VecSomething.
 
///  1. The foundation for doing all of the work with predetermined indices
 
///     instead of with HashMaps is there, but it is not really used because of
 
///     time constraints. When time is available, rewrite the system such that
 
///     AST IDs are not needed, and only indices into arrays are used.
 
///  2. We're doing a lot of extra work. It seems better to apply the initial
 
///     type based on expression parents, and immediately apply forced
 
///     constraints (arg to a fires() call must be port-like). All of the \
 
///     progress_xxx calls should then only be concerned with "transmitting"
 
///     type inference across their parent/child expressions.
 
///  3. Remove the `msg` type?
 
///  4. Disallow certain types in certain operations (e.g. `Void`).
 
///  2. Remove the `msg` type?
 
///  3. Disallow certain types in certain operations (e.g. `Void`).
 

	
 
macro_rules! debug_log_enabled {
 
    () => { false };
 
}
 

	
 
macro_rules! debug_log {
 
    ($format:literal) => {
 
        enabled_debug_print!(false, "types", $format);
 
    };
 
    ($format:literal, $($args:expr),*) => {
 
        enabled_debug_print!(false, "types", $format, $($args),*);
 
    };
 
}
 

	
 
use std::collections::{HashMap, HashSet};
 

	
 
use crate::collections::{ScopedBuffer, ScopedSection, DequeSet};
 
use crate::protocol::ast::*;
 
use crate::protocol::input_source::ParseError;
 
use crate::protocol::parser::ModuleCompilationPhase;
 
use crate::protocol::parser::type_table::*;
 
use crate::protocol::parser::token_parsing::*;
 
use super::visitor::{
 
    BUFFER_INIT_CAP_LARGE,
 
    BUFFER_INIT_CAP_SMALL,
 
    Ctx,
 
    Visitor,
 
    VisitorResult
 
};
 

	
 
// -----------------------------------------------------------------------------
 
// Inference type
 
// -----------------------------------------------------------------------------
 

	
 
const VOID_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::Void ];
 
const MESSAGE_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::Message, InferenceTypePart::UInt8 ];
 
const BOOL_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::Bool ];
 
const CHARACTER_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::Character ];
 
const STRING_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::String, InferenceTypePart::Character ];
 
const NUMBERLIKE_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::NumberLike ];
 
const INTEGERLIKE_TEMPLATE: [InferenceTypePart; 1] = [ InferenceTypePart::IntegerLike ];
 
const ARRAY_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::Array, InferenceTypePart::Unknown ];
 
const SLICE_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::Slice, InferenceTypePart::Unknown ];
 
const ARRAYLIKE_TEMPLATE: [InferenceTypePart; 2] = [ InferenceTypePart::ArrayLike, InferenceTypePart::Unknown ];
 

	
 
/// TODO: @performance Turn into PartialOrd+Ord to simplify checks
 
#[derive(Debug, Clone, Eq, PartialEq)]
 
pub(crate) enum InferenceTypePart {
 
    // When we infer types of AST elements that support polymorphic arguments,
 
    // then we might have the case that multiple embedded types depend on the
 
    // polymorphic type (e.g. func bla(T a, T[] b) -> T[][]). If we can infer
 
    // the type in one place (e.g. argument a), then we may propagate this
 
    // information to other types (e.g. argument b and the return type). For
 
    // this reason we place markers in the `InferenceType` instances such that
 
    // we know which part of the type was originally a polymorphic argument.
 
    Marker(u32),
 
    // Completely unknown type, needs to be inferred
 
    Unknown,
 
    // Partially known type, may be inferred to to be the appropriate related 
 
    // type.
 
    // IndexLike,      // index into array/slice
 
    NumberLike,     // any kind of integer/float
 
    IntegerLike,    // any kind of integer
 
    ArrayLike,      // array or slice. Note that this must have a subtype
 
    PortLike,       // input or output port
 
    // Special types that cannot be instantiated by the user
 
    Void, // For builtin functions that do not return anything
 
    // Concrete types without subtypes
 
    Bool,
 
    UInt8,
 
    UInt16,
 
    UInt32,
 
    UInt64,
 
    SInt8,
 
    SInt16,
 
    SInt32,
 
    SInt64,
 
    Character,
 
    String,
 
    // One subtype
 
    Message,
 
    Array,
 
@@ -762,96 +759,103 @@ impl<'a> Iterator for InferenceTypeMarkerIter<'a> {
 
            if let InferenceTypePart::Marker(marker) = self.parts[self.idx] {
 
                // Found a marker, find the subtree end
 
                let start_idx = self.idx + 1;
 
                let end_idx = InferenceType::find_subtree_end_idx(self.parts, start_idx);
 

	
 
                // Modify internal index, then return items
 
                self.idx = end_idx;
 
                return Some((marker, &self.parts[start_idx..end_idx]));
 
            }
 

	
 
            self.idx += 1;
 
        }
 

	
 
        None
 
    }
 
}
 

	
 
#[derive(Debug, PartialEq, Eq)]
 
enum DualInferenceResult {
 
    Neither,        // neither argument is clarified
 
    First,          // first argument is clarified using the second one
 
    Second,         // second argument is clarified using the first one
 
    Both,           // both arguments are clarified
 
    Incompatible,   // types are incompatible: programmer error
 
}
 

	
 
impl DualInferenceResult {
 
    fn modified_lhs(&self) -> bool {
 
        match self {
 
            DualInferenceResult::First | DualInferenceResult::Both => true,
 
            _ => false
 
        }
 
    }
 
    fn modified_rhs(&self) -> bool {
 
        match self {
 
            DualInferenceResult::Second | DualInferenceResult::Both => true,
 
            _ => false
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, PartialEq, Eq)]
 
enum SingleInferenceResult {
 
    Unmodified,
 
    Modified,
 
    Incompatible
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// PassTyping - Public Interface
 
// -----------------------------------------------------------------------------
 

	
 
type InferIndex = usize;
 
type ExtraIndex = usize;
 

	
 
enum DefinitionType{
 
    Component(ComponentDefinitionId),
 
    Function(FunctionDefinitionId),
 
}
 

	
 
impl DefinitionType {
 
    fn definition_id(&self) -> DefinitionId {
 
        match self {
 
            DefinitionType::Component(v) => v.upcast(),
 
            DefinitionType::Function(v) => v.upcast(),
 
        }
 
    }
 
}
 

	
 
pub(crate) struct ResolveQueueElement {
 
    // Note that using the `definition_id` and the `monomorph_idx` one may
 
    // query the type table for the full procedure type, thereby retrieving
 
    // the polymorphic arguments to the procedure.
 
    pub(crate) root_id: RootId,
 
    pub(crate) definition_id: DefinitionId,
 
    pub(crate) reserved_type_id: TypeId,
 
}
 

	
 
pub(crate) type ResolveQueue = Vec<ResolveQueueElement>;
 

	
 
#[derive(Clone)]
 
struct InferenceExpression {
 
    expr_type: InferenceType,       // result type from expression
 
    expr_id: ExpressionId,          // expression that is evaluated
 
    field_or_monomorph_idx: i32,    // index of field
 
    extra_data_idx: i32,            // index of extra data needed for inference
 
    type_id: TypeId,                // when applicable indexes into type table
 
}
 

	
 
impl Default for InferenceExpression {
 
    fn default() -> Self {
 
        Self{
 
            expr_type: InferenceType::default(),
 
            expr_id: ExpressionId::new_invalid(),
 
            field_or_monomorph_idx: -1,
 
            extra_data_idx: -1,
 
            type_id: TypeId::new_invalid(),
 
        }
 
    }
 
}
 

	
 
/// This particular visitor will recurse depth-first into the AST and ensures
 
/// that all expressions have the appropriate types.
 
@@ -963,314 +967,346 @@ impl PassTyping {
 
            if let Some(first_concrete_part) = first_concrete_part {
 
                let concrete_type = ConcreteType{ parts: vec![first_concrete_part] };
 
                let type_id = ctx.types.reserve_procedure_monomorph_type_id(definition_id, concrete_type);
 
                queue.push(ResolveQueueElement{
 
                    root_id,
 
                    definition_id: *definition_id,
 
                    reserved_type_id: type_id,
 
                })
 
            }
 
        }
 
    }
 

	
 
    pub(crate) fn handle_module_definition(
 
        &mut self, ctx: &mut Ctx, queue: &mut ResolveQueue, element: ResolveQueueElement
 
    ) -> VisitorResult {
 
        self.reset();
 
        debug_assert_eq!(ctx.module().root_id, element.root_id);
 
        debug_assert!(self.poly_vars.is_empty());
 

	
 
        // Prepare for visiting the definition
 
        self.reserved_type_id = element.reserved_type_id;
 

	
 
        let proc_base = ctx.types.get_base_definition(&element.definition_id).unwrap();
 
        if proc_base.is_polymorph {
 
            let monomorph = ctx.types.get_monomorph(element.reserved_type_id);
 
            for poly_arg in monomorph.concrete_type.embedded_iter(0) {
 
                self.poly_vars.push(ConcreteType{ parts: Vec::from(poly_arg) });
 
            }
 
        }
 

	
 
        // Visit the definition, setting up the type resolving process, then
 
        // (attempt to) resolve all types
 
        self.visit_definition(ctx, element.definition_id)?;
 
        self.resolve_types(ctx, queue)?;
 
        Ok(())
 
    }
 

	
 
    fn reset(&mut self) {
 
        self.reserved_type_id = TypeId::new_invalid();
 
        self.definition_type = DefinitionType::Function(FunctionDefinitionId::new_invalid());
 
        self.poly_vars.clear();
 
        self.var_types.clear();
 
        self.expr_types.clear();
 
        self.extra_data.clear();
 
        self.expr_queued.clear();
 
    }
 
}
 

	
 
impl Visitor for PassTyping {
 
// -----------------------------------------------------------------------------
 
// PassTyping - Visitor-like implementation
 
// -----------------------------------------------------------------------------
 

	
 
type VisitorResult = Result<(), ParseError>;
 
type VisitStmtResult = Result<>
 

	
 
impl PassTyping {
 
    // Definitions
 

	
 
    fn visit_definition(&mut self, ctx: &mut Ctx, id: DefinitionId) -> VisitorResult {
 
        return visitor_recursive_definition_impl!(self, &ctx.heap[id], ctx);
 
    }
 

	
 
    fn visit_enum_definition(&mut self, _: &mut Ctx, _: EnumDefinitionId) -> VisitorResult { return Ok(()) }
 
    fn visit_struct_definition(&mut self, _: &mut Ctx, _: StructDefinitionId) -> VisitorResult { return Ok(()) }
 
    fn visit_union_definition(&mut self, _: &mut Ctx, _: UnionDefinitionId) -> VisitorResult { return Ok(()) }
 

	
 
    fn visit_component_definition(&mut self, ctx: &mut Ctx, id: ComponentDefinitionId) -> VisitorResult {
 
        self.definition_type = DefinitionType::Component(id);
 

	
 
        let comp_def = &ctx.heap[id];
 
        debug_assert_eq!(comp_def.poly_vars.len(), self.poly_vars.len(), "component polyvars do not match imposed polyvars");
 

	
 
        debug_log!("{}", "-".repeat(50));
 
        debug_log!("Visiting component '{}': {}", comp_def.identifier.value.as_str(), id.0.index);
 
        debug_log!("{}", "-".repeat(50));
 

	
 
        // Reserve data for expression types
 
        debug_assert!(self.expr_types.is_empty());
 
        self.expr_types.resize(comp_def.num_expressions_in_body as usize, Default::default());
 

	
 
        // Visit parameters
 
        let section = self.var_buffer.start_section_initialized(comp_def.parameters.as_slice());
 
        for param_id in section.iter_copied() {
 
            let param = &ctx.heap[param_id];
 
            let var_type = self.determine_inference_type_from_parser_type_elements(&param.parser_type.elements, true);
 
            debug_assert!(var_type.is_done, "expected component arguments to be concrete types");
 
            self.var_types.insert(param_id, VarData::new_local(var_type));
 
        }
 
        section.forget();
 

	
 
        // Visit the body and all of its expressions
 
        let body_stmt_id = ctx.heap[id].body;
 
        self.visit_block_stmt(ctx, body_stmt_id)
 
    }
 

	
 
    fn visit_function_definition(&mut self, ctx: &mut Ctx, id: FunctionDefinitionId) -> VisitorResult {
 
        self.definition_type = DefinitionType::Function(id);
 

	
 
        let func_def = &ctx.heap[id];
 
        debug_assert_eq!(func_def.poly_vars.len(), self.poly_vars.len(), "function polyvars do not match imposed polyvars");
 

	
 
        debug_log!("{}", "-".repeat(50));
 
        debug_log!("Visiting function '{}': {}", func_def.identifier.value.as_str(), id.0.index);
 
        if debug_log_enabled!() {
 
            debug_log!("Polymorphic variables:");
 
            for (_idx, poly_var) in self.poly_vars.iter().enumerate() {
 
                let mut infer_type_parts = Vec::new();
 
                Self::determine_inference_type_from_concrete_type(
 
                    &mut infer_type_parts, &poly_var.parts
 
                );
 
                let _infer_type = InferenceType::new(false, true, infer_type_parts);
 
                debug_log!(" - [{:03}] {:?}", _idx, _infer_type.display_name(&ctx.heap));
 
            }
 
        }
 
        debug_log!("{}", "-".repeat(50));
 

	
 
        // Reserve data for expression types
 
        debug_assert!(self.expr_types.is_empty());
 
        self.expr_types.resize(func_def.num_expressions_in_body as usize, Default::default());
 

	
 
        // Visit parameters
 
        let section = self.var_buffer.start_section_initialized(func_def.parameters.as_slice());
 
        for param_id in section.iter_copied() {
 
            let param = &ctx.heap[param_id];
 
            let var_type = self.determine_inference_type_from_parser_type_elements(&param.parser_type.elements, true);
 
            debug_assert!(var_type.is_done, "expected function arguments to be concrete types");
 
            self.var_types.insert(param_id, VarData::new_local(var_type));
 
        }
 
        section.forget();
 

	
 
        // Visit all of the expressions within the body
 
        let body_stmt_id = ctx.heap[id].body;
 
        self.visit_block_stmt(ctx, body_stmt_id)
 
    }
 

	
 
    // Statements
 

	
 
    fn visit_stmt(&mut self, ctx: &mut Ctx, id: StatementId) -> VisitorResult {
 
        return visitor_recursive_statement_impl!(self, &ctx.heap[id], ctx, Ok(()));
 
    }
 

	
 
    fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
 
        // Transfer statements for traversal
 
        let block = &ctx.heap[id];
 

	
 
        let section = self.stmt_buffer.start_section_initialized(block.statements.as_slice());
 
        for stmt_id in section.iter_copied() {
 
            self.visit_stmt(ctx, stmt_id)?;
 
        }
 
        section.forget();
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_local_stmt(&mut self, ctx: &mut Ctx, id: LocalStatementId) -> VisitorResult {
 
        return visitor_recursive_local_impl!(self, &ctx.heap[id], ctx);
 
    }
 

	
 
    fn visit_local_memory_stmt(&mut self, ctx: &mut Ctx, id: MemoryStatementId) -> VisitorResult {
 
        let memory_stmt = &ctx.heap[id];
 
        let initial_expr_id = memory_stmt.initial_expr;
 

	
 
        // Setup memory statement inference
 
        let local = &ctx.heap[memory_stmt.variable];
 
        let var_type = self.determine_inference_type_from_parser_type_elements(&local.parser_type.elements, true);
 
        self.var_types.insert(memory_stmt.variable, VarData::new_local(var_type));
 

	
 
        // Process the initial value
 
        self.visit_assignment_expr(ctx, initial_expr_id)?;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_local_channel_stmt(&mut self, ctx: &mut Ctx, id: ChannelStatementId) -> VisitorResult {
 
        let channel_stmt = &ctx.heap[id];
 

	
 
        let from_local = &ctx.heap[channel_stmt.from];
 
        let from_var_type = self.determine_inference_type_from_parser_type_elements(&from_local.parser_type.elements, true);
 
        self.var_types.insert(from_local.this, VarData::new_channel(from_var_type, channel_stmt.to));
 

	
 
        let to_local = &ctx.heap[channel_stmt.to];
 
        let to_var_type = self.determine_inference_type_from_parser_type_elements(&to_local.parser_type.elements, true);
 
        self.var_types.insert(to_local.this, VarData::new_channel(to_var_type, channel_stmt.from));
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult {
 
        let labeled_stmt = &ctx.heap[id];
 
        let substmt_id = labeled_stmt.body;
 
        self.visit_stmt(ctx, substmt_id)
 
    }
 

	
 
    fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
 
        let if_stmt = &ctx.heap[id];
 

	
 
        let true_body_case = if_stmt.true_case;
 
        let false_body_case = if_stmt.false_case;
 
        let test_expr_id = if_stmt.test;
 

	
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_stmt(ctx, true_body_case.body)?;
 
        if let Some(false_body_case) = false_body_case {
 
            self.visit_stmt(ctx, false_body_case.body)?;
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult {
 
        let while_stmt = &ctx.heap[id];
 

	
 
        let body_id = while_stmt.body;
 
        let test_expr_id = while_stmt.test;
 

	
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_stmt(ctx, body_id)?;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_break_stmt(&mut self, _: &mut Ctx, _: BreakStatementId) -> VisitorResult { return Ok(()) }
 
    fn visit_continue_stmt(&mut self, _: &mut Ctx, _: ContinueStatementId) -> VisitorResult { return Ok(()) }
 

	
 
    fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult {
 
        let sync_stmt = &ctx.heap[id];
 
        let body_id = sync_stmt.body;
 

	
 
        self.visit_stmt(ctx, body_id)
 
    }
 

	
 
    fn visit_fork_stmt(&mut self, ctx: &mut Ctx, id: ForkStatementId) -> VisitorResult {
 
        let fork_stmt = &ctx.heap[id];
 
        let left_body_id = fork_stmt.left_body;
 
        let right_body_id = fork_stmt.right_body;
 

	
 
        self.visit_stmt(ctx, left_body_id)?;
 
        if let Some(right_body_id) = right_body_id {
 
            self.visit_stmt(ctx, right_body_id)?;
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_select_stmt(&mut self, ctx: &mut Ctx, id: SelectStatementId) -> VisitorResult {
 
        let select_stmt = &ctx.heap[id];
 

	
 
        let mut section = self.stmt_buffer.start_section();
 
        let num_cases = select_stmt.cases.len();
 

	
 
        for case in &select_stmt.cases {
 
            section.push(case.guard);
 
            section.push(case.body);
 
        }
 

	
 
        for case_index in 0..num_cases {
 
            let base_index = 2 * case_index;
 
            let guard_stmt_id = section[base_index    ];
 
            let block_stmt_id = section[base_index + 1];
 

	
 
            self.visit_stmt(ctx, guard_stmt_id)?;
 
            self.visit_stmt(ctx, block_stmt_id)?;
 
        }
 
        section.forget();
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_return_stmt(&mut self, ctx: &mut Ctx, id: ReturnStatementId) -> VisitorResult {
 
        let return_stmt = &ctx.heap[id];
 
        debug_assert_eq!(return_stmt.expressions.len(), 1);
 
        let expr_id = return_stmt.expressions[0];
 

	
 
        self.visit_expr(ctx, expr_id)
 
    }
 

	
 
    fn visit_goto_stmt(&mut self, _: &mut Ctx, _: GotoStatementId) -> VisitorResult { return Ok(()) }
 

	
 
    fn visit_new_stmt(&mut self, ctx: &mut Ctx, id: NewStatementId) -> VisitorResult {
 
        let new_stmt = &ctx.heap[id];
 
        let call_expr_id = new_stmt.expression;
 

	
 
        self.visit_call_expr(ctx, call_expr_id)
 
    }
 

	
 
    fn visit_expr_stmt(&mut self, ctx: &mut Ctx, id: ExpressionStatementId) -> VisitorResult {
 
        let expr_stmt = &ctx.heap[id];
 
        let subexpr_id = expr_stmt.expression;
 

	
 
        self.visit_expr(ctx, subexpr_id)
 
    }
 

	
 
    // Expressions
 

	
 
    fn visit_expr(&mut self, ctx: &mut Ctx, id: ExpressionId) -> VisitorResult {
 
        return visitor_recursive_expression_impl!(self, &ctx.heap[id], ctx);
 
    }
 

	
 
    fn visit_assignment_expr(&mut self, ctx: &mut Ctx, id: AssignmentExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let assign_expr = &ctx.heap[id];
 
        let left_expr_id = assign_expr.left;
 
        let right_expr_id = assign_expr.right;
 

	
 
        self.visit_expr(ctx, left_expr_id)?;
 
        self.visit_expr(ctx, right_expr_id)?;
 

	
 
        self.progress_assignment_expr(ctx, id)
 
    }
 

	
 
    fn visit_binding_expr(&mut self, ctx: &mut Ctx, id: BindingExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let binding_expr = &ctx.heap[id];
 
        let bound_to_id = binding_expr.bound_to;
 
        let bound_from_id = binding_expr.bound_from;
 

	
 
        self.visit_expr(ctx, bound_to_id)?;
 
        self.visit_expr(ctx, bound_from_id)?;
 

	
 
        self.progress_binding_expr(ctx, id)
 
    }
 

	
 
    fn visit_conditional_expr(&mut self, ctx: &mut Ctx, id: ConditionalExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let conditional_expr = &ctx.heap[id];
 
        let test_expr_id = conditional_expr.test;
 
        let true_expr_id = conditional_expr.true_expression;
 
        let false_expr_id = conditional_expr.false_expression;
 

	
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_expr(ctx, true_expr_id)?;
 
        self.visit_expr(ctx, false_expr_id)?;
 

	
 
        self.progress_conditional_expr(ctx, id)
 
    }
 

	
 
    fn visit_binary_expr(&mut self, ctx: &mut Ctx, id: BinaryExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
@@ -1406,96 +1442,100 @@ impl Visitor for PassTyping {
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 
        self.insert_initial_call_polymorph_data(ctx, id);
 

	
 
        // By default we set the polymorph idx for calls to 0. If the call ends
 
        // up not being a polymorphic one, then we will select the default
 
        // expression types in the type table
 
        let call_expr = &ctx.heap[id];
 
        self.expr_types[call_expr.unique_id_in_definition as usize].field_or_monomorph_idx = 0;
 

	
 
        // Visit all arguments
 
        let expr_ids = self.expr_buffer.start_section_initialized(call_expr.arguments.as_slice());
 
        for arg_expr_id in expr_ids.iter_copied() {
 
            self.visit_expr(ctx, arg_expr_id)?;
 
        }
 
        expr_ids.forget();
 

	
 
        self.progress_call_expr(ctx, id)
 
    }
 

	
 
    fn visit_variable_expr(&mut self, ctx: &mut Ctx, id: VariableExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let var_expr = &ctx.heap[id];
 
        debug_assert!(var_expr.declaration.is_some());
 

	
 
        // Not pretty: if a binding expression, then this is the first time we
 
        // encounter the variable, so we still need to insert the variable data.
 
        let declaration = &ctx.heap[var_expr.declaration.unwrap()];
 
        if !self.var_types.contains_key(&declaration.this)  {
 
            debug_assert!(declaration.kind == VariableKind::Binding);
 
            let var_type = self.determine_inference_type_from_parser_type_elements(
 
                &declaration.parser_type.elements, true
 
            );
 
            self.var_types.insert(declaration.this, VarData{
 
                var_type,
 
                used_at: vec![upcast_id],
 
                linked_var: None
 
            });
 
        } else {
 
            let var_data = self.var_types.get_mut(&declaration.this).unwrap();
 
            var_data.used_at.push(upcast_id);
 
        }
 

	
 
        self.progress_variable_expr(ctx, id)
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// PassTyping - Type-inference progression
 
// -----------------------------------------------------------------------------
 

	
 
impl PassTyping {
 
    #[allow(dead_code)] // used when debug flag at the top of this file is true.
 
    fn debug_get_display_name(&self, ctx: &Ctx, expr_id: ExpressionId) -> String {
 
        let expr_idx = ctx.heap[expr_id].get_unique_id_in_definition();
 
        let expr_type = &self.expr_types[expr_idx as usize].expr_type;
 
        expr_type.display_name(&ctx.heap)
 
    }
 

	
 
    fn resolve_types(&mut self, ctx: &mut Ctx, queue: &mut ResolveQueue) -> Result<(), ParseError> {
 
        // Keep inferring until we can no longer make any progress
 
        while !self.expr_queued.is_empty() {
 
            // Make as much progress as possible without forced integer
 
            // inference.
 
            while !self.expr_queued.is_empty() {
 
                let next_expr_idx = self.expr_queued.pop_front().unwrap();
 
                self.progress_expr(ctx, next_expr_idx)?;
 
            }
 

	
 
            // Nothing is queued anymore. However we might have integer literals
 
            // whose type cannot be inferred. For convenience's sake we'll
 
            // infer these to be s32.
 
            for (infer_expr_idx, infer_expr) in self.expr_types.iter_mut().enumerate() {
 
                let expr_type = &mut infer_expr.expr_type;
 
                if !expr_type.is_done && expr_type.parts.len() == 1 && expr_type.parts[0] == InferenceTypePart::IntegerLike {
 
                    // Force integer type to s32
 
                    expr_type.parts[0] = InferenceTypePart::SInt32;
 
                    expr_type.is_done = true;
 

	
 
                    // Requeue expression (and its parent, if it exists)
 
                    self.expr_queued.push_back(infer_expr_idx as i32);
 

	
 
                    if let Some(parent_expr) = ctx.heap[infer_expr.expr_id].parent_expr_id() {
 
                        let parent_idx = ctx.heap[parent_expr].get_unique_id_in_definition();
 
                        self.expr_queued.push_back(parent_idx);
 
                    }
 
                }
 
            }
 
        }
 

	
 
        // Helper for transferring polymorphic variables to concrete types and
 
        // checking if they're completely specified
 
        fn inference_type_to_concrete_type(
 
            ctx: &Ctx, expr_id: ExpressionId, inference: &Vec<InferenceType>,
 
            first_concrete_part: ConcreteTypePart,
 
        ) -> Result<ConcreteType, ParseError> {
 
            // Prepare storage vector
 
            let mut num_inference_parts = 0;
 
            for inference_type in inference {
src/protocol/parser/visitor.rs
Show inline comments
 
use crate::protocol::ast::*;
 
use crate::protocol::input_source::ParseError;
 
use crate::protocol::parser::{type_table::*, Module};
 
use crate::protocol::symbol_table::{SymbolTable};
 

	
 
type Unit = ();
 
pub(crate) type VisitorResult = Result<Unit, ParseError>;
 

	
 
/// Globally configured capacity for large-ish buffers in visitor impls
 
pub(crate) const BUFFER_INIT_CAP_LARGE: usize = 256;
 
/// Globally configured capacity for small-ish buffers in visitor impls
 
pub(crate) const BUFFER_INIT_CAP_SMALL: usize = 64;
 

	
 
/// General context structure that is used while traversing the AST.
 
pub(crate) struct Ctx<'p> {
 
    pub heap: &'p mut Heap,
 
    pub modules: &'p mut [Module],
 
    pub module_idx: usize, // currently considered module
 
    pub symbols: &'p mut SymbolTable,
 
    pub types: &'p mut TypeTable,
 
    pub arch: &'p crate::protocol::TargetArch,
 
}
 

	
 
impl<'p> Ctx<'p> {
 
    /// Returns module `modules[module_idx]`
 
    pub(crate) fn module(&self) -> &Module {
 
        &self.modules[self.module_idx]
 
    }
 

	
 
    pub(crate) fn module_mut(&mut self) -> &mut Module {
 
        &mut self.modules[self.module_idx]
 
    }
 
}
 

	
 
/// Visitor is a generic trait that will fully walk the AST. The default
 
/// implementation of the visitors is to not recurse. The exception is the
 
/// top-level `visit_definition`, `visit_stmt` and `visit_expr` methods, which
 
/// call the appropriate visitor function.
 
pub(crate) trait Visitor {
 
    // Entry point
 
    fn visit_module(&mut self, ctx: &mut Ctx) -> VisitorResult {
 
        let mut def_index = 0;
 
        let module_root_id = ctx.modules[ctx.module_idx].root_id;
 
        loop {
 
            let definition_id = {
 
                let root = &ctx.heap[module_root_id];
 
                if def_index >= root.definitions.len() {
 
                    return Ok(())
 
                }
 

	
 
                root.definitions[def_index]
 
            };
 

	
 
            self.visit_definition(ctx, definition_id)?;
 
            def_index += 1;
 
        }
 
    }
 

	
 
    // Definitions
 
    // --- enum matching
 
    fn visit_definition(&mut self, ctx: &mut Ctx, id: DefinitionId) -> VisitorResult {
 
        match &ctx.heap[id] {
 
            Definition::Enum(def) => {
 
                let def = def.this;
 
                self.visit_enum_definition(ctx, def)
 
            },
 
            Definition::Union(def) => {
 
                let def = def.this;
 
                self.visit_union_definition(ctx, def)
 
            }
 
            Definition::Struct(def) => {
 
                let def = def.this;
 
                self.visit_struct_definition(ctx, def)
 
            },
 
            Definition::Component(def) => {
 
                let def = def.this;
 
                self.visit_component_definition(ctx, def)
 
            },
 
            Definition::Function(def) => {
 
                let def = def.this;
 
                self.visit_function_definition(ctx, def)
 
            }
 
        }
 
    }
 

	
 
    // --- enum variant handling
 
    fn visit_enum_definition(&mut self, _ctx: &mut Ctx, _id: EnumDefinitionId) -> VisitorResult { Ok(()) }
 
    fn visit_union_definition(&mut self, _ctx: &mut Ctx, _id: UnionDefinitionId) -> VisitorResult{ Ok(()) }
 
    fn visit_struct_definition(&mut self, _ctx: &mut Ctx, _id: StructDefinitionId) -> VisitorResult { Ok(()) }
 
    fn visit_component_definition(&mut self, _ctx: &mut Ctx, _id: ComponentDefinitionId) -> VisitorResult { Ok(()) }
 
    fn visit_function_definition(&mut self, _ctx: &mut Ctx, _id: FunctionDefinitionId) -> VisitorResult { Ok(()) }
 

	
 
    // Statements
 
    // --- enum matching
 
    fn visit_stmt(&mut self, ctx: &mut Ctx, id: StatementId) -> VisitorResult {
 
        match &ctx.heap[id] {
 
/// Implements the logic that checks the statement union retrieved from the
 
/// AST and calls the appropriate visit function. This entire macro assumes that
 
/// `$this` points to `self`, `$stmt` is the statement of type `Statement`,
 
/// `$ctx` is the context passed to all the visitor calls (of the form
 
/// `visit_x_stmt(context, id)`) and `$default_return` is the default return
 
/// value for the statements that will not be visited.
 
macro_rules! visitor_recursive_statement_impl {
 
    ($this:expr, $stmt:expr, $ctx:expr, $default_return:expr) => {
 
        match $stmt {
 
            Statement::Block(stmt) => {
 
                let this = stmt.this;
 
                self.visit_block_stmt(ctx, this)
 
                $this.visit_block_stmt($ctx, this)
 
            },
 
            Statement::EndBlock(_stmt) => Ok(()),
 
            Statement::EndBlock(_stmt) => $default_return,
 
            Statement::Local(stmt) => {
 
                let this = stmt.this();
 
                self.visit_local_stmt(ctx, this)
 
                $this.visit_local_stmt($ctx, this)
 
            },
 
            Statement::Labeled(stmt) => {
 
                let this = stmt.this;
 
                self.visit_labeled_stmt(ctx, this)
 
                $this.visit_labeled_stmt($ctx, this)
 
            },
 
            Statement::If(stmt) => {
 
                let this = stmt.this;
 
                self.visit_if_stmt(ctx, this)
 
                $this.visit_if_stmt($ctx, this)
 
            },
 
            Statement::EndIf(_stmt) => Ok(()),
 
            Statement::EndIf(_stmt) => $default_return,
 
            Statement::While(stmt) => {
 
                let this = stmt.this;
 
                self.visit_while_stmt(ctx, this)
 
                $this.visit_while_stmt($ctx, this)
 
            },
 
            Statement::EndWhile(_stmt) => Ok(()),
 
            Statement::EndWhile(_stmt) => $default_return,
 
            Statement::Break(stmt) => {
 
                let this = stmt.this;
 
                self.visit_break_stmt(ctx, this)
 
                $this.visit_break_stmt($ctx, this)
 
            },
 
            Statement::Continue(stmt) => {
 
                let this = stmt.this;
 
                self.visit_continue_stmt(ctx, this)
 
                $this.visit_continue_stmt($ctx, this)
 
            },
 
            Statement::Synchronous(stmt) => {
 
                let this = stmt.this;
 
                self.visit_synchronous_stmt(ctx, this)
 
                $this.visit_synchronous_stmt($ctx, this)
 
            },
 
            Statement::EndSynchronous(_stmt) => Ok(()),
 
            Statement::EndSynchronous(_stmt) => $default_return,
 
            Statement::Fork(stmt) => {
 
                let this = stmt.this;
 
                self.visit_fork_stmt(ctx, this)
 
                $this.visit_fork_stmt($ctx, this)
 
            },
 
            Statement::EndFork(_stmt) => Ok(()),
 
            Statement::EndFork(_stmt) => $default_return,
 
            Statement::Select(stmt) => {
 
                let this = stmt.this;
 
                self.visit_select_stmt(ctx, this)
 
                $this.visit_select_stmt($ctx, this)
 
            },
 
            Statement::EndSelect(_stmt) => Ok(()),
 
            Statement::EndSelect(_stmt) => $default_return,
 
            Statement::Return(stmt) => {
 
                let this = stmt.this;
 
                self.visit_return_stmt(ctx, this)
 
                $this.visit_return_stmt($ctx, this)
 
            },
 
            Statement::Goto(stmt) => {
 
                let this = stmt.this;
 
                self.visit_goto_stmt(ctx, this)
 
                $this.visit_goto_stmt($ctx, this)
 
            },
 
            Statement::New(stmt) => {
 
                let this = stmt.this;
 
                self.visit_new_stmt(ctx, this)
 
                $this.visit_new_stmt($ctx, this)
 
            },
 
            Statement::Expression(stmt) => {
 
                let this = stmt.this;
 
                self.visit_expr_stmt(ctx, this)
 
                $this.visit_expr_stmt($ctx, this)
 
            }
 
        }
 
    };
 
}
 

	
 
macro_rules! visitor_recursive_local_impl {
 
    ($this:expr, $local:expr, $ctx:expr) => {
 
        match $local {
 
            LocalStatement::Channel(local) => {
 
                let this = local.this;
 
                $this.visit_local_channel_stmt($ctx, this)
 
            },
 
            LocalStatement::Memory(local) => {
 
                let this = local.this;
 
                $this.visit_local_memory_stmt($ctx, this)
 
            }
 
        }
 
    }
 
}
 

	
 
    fn visit_local_stmt(&mut self, ctx: &mut Ctx, id: LocalStatementId) -> VisitorResult {
 
        match &ctx.heap[id] {
 
            LocalStatement::Channel(stmt) => {
 
                let this = stmt.this;
 
                self.visit_local_channel_stmt(ctx, this)
 
macro_rules! visitor_recursive_definition_impl {
 
    ($this:expr, $definition:expr, $ctx:expr) => {
 
        match $definition {
 
            Definition::Enum(def) => {
 
                let def = def.this;
 
                $this.visit_enum_definition($ctx, def)
 
            },
 
            LocalStatement::Memory(stmt) => {
 
                let this = stmt.this;
 
                self.visit_local_memory_stmt(ctx, this)
 
            Definition::Union(def) => {
 
                let def = def.this;
 
                $this.visit_union_definition($ctx, def)
 
            },
 
            Definition::Struct(def) => {
 
                let def = def.this;
 
                $this.visit_struct_definition($ctx, def)
 
            },
 
            Definition::Component(def) => {
 
                let def = def.this;
 
                $this.visit_component_definition($ctx, def)
 
            },
 
            Definition::Function(def) => {
 
                let def = def.this;
 
                $this.visit_function_definition($ctx, def)
 
            },
 
        }
 
    }
 
}
 

	
 
    // --- enum variant handling
 
    fn visit_block_stmt(&mut self, _ctx: &mut Ctx, _id: BlockStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_local_memory_stmt(&mut self, _ctx: &mut Ctx, _id: MemoryStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_local_channel_stmt(&mut self, _ctx: &mut Ctx, _id: ChannelStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_labeled_stmt(&mut self, _ctx: &mut Ctx, _id: LabeledStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_if_stmt(&mut self, _ctx: &mut Ctx, _id: IfStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_while_stmt(&mut self, _ctx: &mut Ctx, _id: WhileStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_break_stmt(&mut self, _ctx: &mut Ctx, _id: BreakStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_continue_stmt(&mut self, _ctx: &mut Ctx, _id: ContinueStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_synchronous_stmt(&mut self, _ctx: &mut Ctx, _id: SynchronousStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_fork_stmt(&mut self, _ctx: &mut Ctx, _id: ForkStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_select_stmt(&mut self, _ctx: &mut Ctx, _id: SelectStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_return_stmt(&mut self, _ctx: &mut Ctx, _id: ReturnStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_goto_stmt(&mut self, _ctx: &mut Ctx, _id: GotoStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_new_stmt(&mut self, _ctx: &mut Ctx, _id: NewStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_expr_stmt(&mut self, _ctx: &mut Ctx, _id: ExpressionStatementId) -> VisitorResult { Ok(()) }
 

	
 
    // Expressions
 
    // --- enum matching
 
    fn visit_expr(&mut self, ctx: &mut Ctx, id: ExpressionId) -> VisitorResult {
 
        match &ctx.heap[id] {
 
macro_rules! visitor_recursive_expression_impl {
 
    ($this:expr, $expression:expr, $ctx:expr) => {
 
        match $expression {
 
            Expression::Assignment(expr) => {
 
                let this = expr.this;
 
                self.visit_assignment_expr(ctx, this)
 
                $this.visit_assignment_expr($ctx, this)
 
            },
 
            Expression::Binding(expr) => {
 
                let this = expr.this;
 
                self.visit_binding_expr(ctx, this)
 
            }
 
                $this.visit_binding_expr($ctx, this)
 
            },
 
            Expression::Conditional(expr) => {
 
                let this = expr.this;
 
                self.visit_conditional_expr(ctx, this)
 
            }
 
                $this.visit_conditional_expr($ctx, this)
 
            },
 
            Expression::Binary(expr) => {
 
                let this = expr.this;
 
                self.visit_binary_expr(ctx, this)
 
            }
 
                $this.visit_binary_expr($ctx, this)
 
            },
 
            Expression::Unary(expr) => {
 
                let this = expr.this;
 
                self.visit_unary_expr(ctx, this)
 
            }
 
                $this.visit_unary_expr($ctx, this)
 
            },
 
            Expression::Indexing(expr) => {
 
                let this = expr.this;
 
                self.visit_indexing_expr(ctx, this)
 
            }
 
                $this.visit_indexing_expr($ctx, this)
 
            },
 
            Expression::Slicing(expr) => {
 
                let this = expr.this;
 
                self.visit_slicing_expr(ctx, this)
 
            }
 
                $this.visit_slicing_expr($ctx, this)
 
            },
 
            Expression::Select(expr) => {
 
                let this = expr.this;
 
                self.visit_select_expr(ctx, this)
 
            }
 
                $this.visit_select_expr($ctx, this)
 
            },
 
            Expression::Literal(expr) => {
 
                let this = expr.this;
 
                self.visit_literal_expr(ctx, this)
 
            }
 
                $this.visit_literal_expr($ctx, this)
 
            },
 
            Expression::Cast(expr) => {
 
                let this = expr.this;
 
                self.visit_cast_expr(ctx, this)
 
            }
 
                $this.visit_cast_expr($ctx, this)
 
            },
 
            Expression::Call(expr) => {
 
                let this = expr.this;
 
                self.visit_call_expr(ctx, this)
 
            }
 
                $this.visit_call_expr($ctx, this)
 
            },
 
            Expression::Variable(expr) => {
 
                let this = expr.this;
 
                self.visit_variable_expr(ctx, this)
 
            }
 
                $this.visit_variable_expr($ctx, this)
 
            },
 
        }
 
    };
 
}
 

	
 
/// Visitor is a generic trait that will fully walk the AST. The default
 
/// implementation of the visitors is to not recurse. The exception is the
 
/// top-level `visit_definition`, `visit_stmt` and `visit_expr` methods, which
 
/// call the appropriate visitor function.
 
pub(crate) trait Visitor {
 
    // Entry point
 
    fn visit_module(&mut self, ctx: &mut Ctx) -> VisitorResult {
 
        let mut def_index = 0;
 
        let module_root_id = ctx.modules[ctx.module_idx].root_id;
 
        loop {
 
            let definition_id = {
 
                let root = &ctx.heap[module_root_id];
 
                if def_index >= root.definitions.len() {
 
                    return Ok(())
 
                }
 

	
 
                root.definitions[def_index]
 
            };
 

	
 
            self.visit_definition(ctx, definition_id)?;
 
            def_index += 1;
 
        }
 
    }
 

	
 
    // Definitions
 
    // --- enum matching
 
    fn visit_definition(&mut self, ctx: &mut Ctx, id: DefinitionId) -> VisitorResult {
 
        return visitor_recursive_definition_impl!(self, &ctx.heap[id], ctx);
 
    }
 

	
 
    // --- enum variant handling
 
    fn visit_enum_definition(&mut self, _ctx: &mut Ctx, _id: EnumDefinitionId) -> VisitorResult { Ok(()) }
 
    fn visit_union_definition(&mut self, _ctx: &mut Ctx, _id: UnionDefinitionId) -> VisitorResult{ Ok(()) }
 
    fn visit_struct_definition(&mut self, _ctx: &mut Ctx, _id: StructDefinitionId) -> VisitorResult { Ok(()) }
 
    fn visit_component_definition(&mut self, _ctx: &mut Ctx, _id: ComponentDefinitionId) -> VisitorResult { Ok(()) }
 
    fn visit_function_definition(&mut self, _ctx: &mut Ctx, _id: FunctionDefinitionId) -> VisitorResult { Ok(()) }
 

	
 
    // Statements
 
    // --- enum matching
 
    fn visit_stmt(&mut self, ctx: &mut Ctx, id: StatementId) -> VisitorResult {
 
        return visitor_recursive_statement_impl!(self, &ctx.heap[id], ctx, Ok(()));
 
    }
 

	
 
    fn visit_local_stmt(&mut self, ctx: &mut Ctx, id: LocalStatementId) -> VisitorResult {
 
        return visitor_recursive_local_impl!(self, &ctx.heap[id], ctx);
 
    }
 

	
 
    // --- enum variant handling
 
    fn visit_block_stmt(&mut self, _ctx: &mut Ctx, _id: BlockStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_local_memory_stmt(&mut self, _ctx: &mut Ctx, _id: MemoryStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_local_channel_stmt(&mut self, _ctx: &mut Ctx, _id: ChannelStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_labeled_stmt(&mut self, _ctx: &mut Ctx, _id: LabeledStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_if_stmt(&mut self, _ctx: &mut Ctx, _id: IfStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_while_stmt(&mut self, _ctx: &mut Ctx, _id: WhileStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_break_stmt(&mut self, _ctx: &mut Ctx, _id: BreakStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_continue_stmt(&mut self, _ctx: &mut Ctx, _id: ContinueStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_synchronous_stmt(&mut self, _ctx: &mut Ctx, _id: SynchronousStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_fork_stmt(&mut self, _ctx: &mut Ctx, _id: ForkStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_select_stmt(&mut self, _ctx: &mut Ctx, _id: SelectStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_return_stmt(&mut self, _ctx: &mut Ctx, _id: ReturnStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_goto_stmt(&mut self, _ctx: &mut Ctx, _id: GotoStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_new_stmt(&mut self, _ctx: &mut Ctx, _id: NewStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_expr_stmt(&mut self, _ctx: &mut Ctx, _id: ExpressionStatementId) -> VisitorResult { Ok(()) }
 

	
 
    // Expressions
 
    // --- enum matching
 
    fn visit_expr(&mut self, ctx: &mut Ctx, id: ExpressionId) -> VisitorResult {
 
        return visitor_recursive_expression_impl!(self, &ctx.heap[id], ctx);
 
    }
 

	
 
    fn visit_assignment_expr(&mut self, _ctx: &mut Ctx, _id: AssignmentExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_binding_expr(&mut self, _ctx: &mut Ctx, _id: BindingExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_conditional_expr(&mut self, _ctx: &mut Ctx, _id: ConditionalExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_binary_expr(&mut self, _ctx: &mut Ctx, _id: BinaryExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_unary_expr(&mut self, _ctx: &mut Ctx, _id: UnaryExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_indexing_expr(&mut self, _ctx: &mut Ctx, _id: IndexingExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_slicing_expr(&mut self, _ctx: &mut Ctx, _id: SlicingExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_select_expr(&mut self, _ctx: &mut Ctx, _id: SelectExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_literal_expr(&mut self, _ctx: &mut Ctx, _id: LiteralExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_cast_expr(&mut self, _ctx: &mut Ctx, _id: CastExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_call_expr(&mut self, _ctx: &mut Ctx, _id: CallExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_variable_expr(&mut self, _ctx: &mut Ctx, _id: VariableExpressionId) -> VisitorResult { Ok(()) }
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)