Changeset - fdaf709bf0ca
[Not reviewed]
1 9 1
MH - 4 years ago 2021-03-11 15:49:56
contact@maxhenger.nl
reimplemented type table to somewhat support polymorphism
7 files changed:
0 comments (0 inline, 0 general)
src/protocol/ast.rs
Show inline comments
 
@@ -378,200 +378,193 @@ impl Heap {
 
    }
 
    pub fn alloc_put_statement(
 
        &mut self,
 
        f: impl FnOnce(PutStatementId) -> PutStatement,
 
    ) -> PutStatementId {
 
        PutStatementId(
 
            self.statements.alloc_with_id(|id| Statement::Put(f(PutStatementId(id)))),
 
        )
 
    }
 
    pub fn alloc_labeled_statement(
 
        &mut self,
 
        f: impl FnOnce(LabeledStatementId) -> LabeledStatement,
 
    ) -> LabeledStatementId {
 
        LabeledStatementId(
 
            self.statements
 
                .alloc_with_id(|id| Statement::Labeled(f(LabeledStatementId(id)))),
 
        )
 
    }
 
    pub fn alloc_expression_statement(
 
        &mut self,
 
        f: impl FnOnce(ExpressionStatementId) -> ExpressionStatement,
 
    ) -> ExpressionStatementId {
 
        ExpressionStatementId(
 
            self.statements.alloc_with_id(|id| {
 
                Statement::Expression(f(ExpressionStatementId(id)))
 
            }),
 
        )
 
    }
 
    pub fn alloc_struct_definition(&mut self, f: impl FnOnce(StructId) -> StructDefinition) -> StructId {
 
        StructId(self.definitions.alloc_with_id(|id| {
 
            Definition::Struct(f(StructId(id)))
 
        }))
 
    }
 
    pub fn alloc_enum_definition(&mut self, f: impl FnOnce(EnumId) -> EnumDefinition) -> EnumId {
 
        EnumId(self.definitions.alloc_with_id(|id| {
 
            Definition::Enum(f(EnumId(id)))
 
        }))
 
    }
 
    pub fn alloc_component(&mut self, f: impl FnOnce(ComponentId) -> Component) -> ComponentId {
 
        ComponentId(self.definitions.alloc_with_id(|id| {
 
            Definition::Component(f(ComponentId(id)))
 
        }))
 
    }
 
    pub fn alloc_function(&mut self, f: impl FnOnce(FunctionId) -> Function) -> FunctionId {
 
        FunctionId(
 
            self.definitions
 
                .alloc_with_id(|id| Definition::Function(f(FunctionId(id)))),
 
        )
 
    }
 
    pub fn alloc_pragma(&mut self, f: impl FnOnce(PragmaId) -> Pragma) -> PragmaId {
 
        self.pragmas.alloc_with_id(|id| f(id))
 
    }
 
    pub fn alloc_import(&mut self, f: impl FnOnce(ImportId) -> Import) -> ImportId {
 
        self.imports.alloc_with_id(|id| f(id))
 
    }
 
    pub fn alloc_protocol_description(&mut self, f: impl FnOnce(RootId) -> Root) -> RootId {
 
        self.protocol_descriptions.alloc_with_id(|id| f(id))
 
    }
 
}
 

	
 
impl Index<RootId> for Heap {
 
    type Output = Root;
 
    fn index(&self, index: RootId) -> &Self::Output {
 
        &self.protocol_descriptions[index]
 
    }
 
}
 

	
 
impl IndexMut<RootId> for Heap {
 
    fn index_mut(&mut self, index: RootId) -> &mut Self::Output {
 
        &mut self.protocol_descriptions[index]
 
    }
 
}
 

	
 
impl Index<PragmaId> for Heap {
 
    type Output = Pragma;
 
    fn index(&self, index: PragmaId) -> &Self::Output {
 
        &self.pragmas[index]
 
    }
 
}
 

	
 
impl Index<ImportId> for Heap {
 
    type Output = Import;
 
    fn index(&self, index: ImportId) -> &Self::Output {
 
        &self.imports[index]
 
    }
 
}
 

	
 
impl IndexMut<ImportId> for Heap {
 
    fn index_mut(&mut self, index: ImportId) -> &mut Self::Output {
 
        &mut self.imports[index]
 
    }
 
}
 

	
 
impl Index<ParserTypeId> for Heap {
 
    type Output = ParserType;
 
    fn index(&self, index: ParserTypeId) -> &Self::Output {
 
        &self.parser_types[index.index]
 
    }
 
}
 

	
 
impl Index<TypeAnnotationId> for Heap {
 
    type Output = TypeAnnotation;
 
    fn index(&self, index: TypeAnnotationId) -> &Self::Output {
 
        &self.type_annotations[index]
 
        &self.parser_types[index]
 
    }
 
}
 

	
 
impl Index<VariableId> for Heap {
 
    type Output = Variable;
 
    fn index(&self, index: VariableId) -> &Self::Output {
 
        &self.variables[index]
 
    }
 
}
 

	
 
impl Index<ParameterId> for Heap {
 
    type Output = Parameter;
 
    fn index(&self, index: ParameterId) -> &Self::Output {
 
        &self.variables[index.0].as_parameter()
 
    }
 
}
 

	
 
impl Index<LocalId> for Heap {
 
    type Output = Local;
 
    fn index(&self, index: LocalId) -> &Self::Output {
 
        &self.variables[index.0].as_local()
 
    }
 
}
 

	
 
impl IndexMut<LocalId> for Heap {
 
    fn index_mut(&mut self, index: LocalId) -> &mut Self::Output {
 
        self.variables[index.0].as_local_mut()
 
    }
 
}
 

	
 
impl Index<DefinitionId> for Heap {
 
    type Output = Definition;
 
    fn index(&self, index: DefinitionId) -> &Self::Output {
 
        &self.definitions[index]
 
    }
 
}
 

	
 
impl Index<ComponentId> for Heap {
 
    type Output = Component;
 
    fn index(&self, index: ComponentId) -> &Self::Output {
 
        &self.definitions[index.0].as_component()
 
    }
 
}
 

	
 
impl Index<FunctionId> for Heap {
 
    type Output = Function;
 
    fn index(&self, index: FunctionId) -> &Self::Output {
 
        &self.definitions[index.0].as_function()
 
    }
 
}
 

	
 
impl Index<StatementId> for Heap {
 
    type Output = Statement;
 
    fn index(&self, index: StatementId) -> &Self::Output {
 
        &self.statements[index]
 
    }
 
}
 

	
 
impl IndexMut<StatementId> for Heap {
 
    fn index_mut(&mut self, index: StatementId) -> &mut Self::Output {
 
        &mut self.statements[index]
 
    }
 
}
 

	
 
impl Index<BlockStatementId> for Heap {
 
    type Output = BlockStatement;
 
    fn index(&self, index: BlockStatementId) -> &Self::Output {
 
        &self.statements[index.0].as_block()
 
    }
 
}
 

	
 
impl IndexMut<BlockStatementId> for Heap {
 
    fn index_mut(&mut self, index: BlockStatementId) -> &mut Self::Output {
 
        (&mut self.statements[index.0]).as_block_mut()
 
    }
 
}
 

	
 
impl Index<LocalStatementId> for Heap {
 
    type Output = LocalStatement;
 
    fn index(&self, index: LocalStatementId) -> &Self::Output {
 
        &self.statements[index.0].as_local()
 
    }
 
}
 

	
 
impl Index<MemoryStatementId> for Heap {
 
    type Output = MemoryStatement;
 
    fn index(&self, index: MemoryStatementId) -> &Self::Output {
 
        &self.statements[index.0.0].as_memory()
 
    }
 
}
 

	
 
impl Index<ChannelStatementId> for Heap {
 
    type Output = ChannelStatement;
 
    fn index(&self, index: ChannelStatementId) -> &Self::Output {
 
        &self.statements[index.0.0].as_channel()
 
    }
 
@@ -944,509 +937,491 @@ pub struct ImportSymbols {
 
    pub module_id: Option<RootId>,
 
    // Phase 1&2
 
    // if symbols is empty, then we implicitly import all symbols without any
 
    // aliases for them. If it is not empty, then symbols are explicitly
 
    // specified, and optionally given an alias.
 
    pub symbols: Vec<AliasedSymbol>,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct Identifier {
 
    pub position: InputPosition,
 
    pub value: Vec<u8>
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct NamespacedIdentifier {
 
    pub position: InputPosition,
 
    pub num_namespaces: u8,
 
    pub value: Vec<u8>,
 
}
 

	
 
impl NamespacedIdentifier {
 
    pub(crate) fn iter(&self) -> NamespacedIdentifierIter {
 
        NamespacedIdentifierIter{
 
            value: &self.value,
 
            cur_offset: 0,
 
            num_returned: 0,
 
            num_total: self.num_namespaces
 
        }
 
    }
 
}
 

	
 
impl PartialEq for NamespacedIdentifier {
 
    fn eq(&self, other: &Self) -> bool {
 
        return self.value == other.value
 
    }
 
}
 
impl Eq for NamespacedIdentifier{}
 

	
 
// TODO: Just keep ref to NamespacedIdentifier
 
pub(crate) struct NamespacedIdentifierIter<'a> {
 
    value: &'a Vec<u8>,
 
    cur_offset: usize,
 
    num_returned: u8,
 
    num_total: u8,
 
}
 

	
 
impl<'a> NamespacedIdentifierIter<'a> {
 
    pub(crate) fn num_returned(&self) -> u8 {
 
        return self.num_returned;
 
    }
 
    pub(crate) fn num_remaining(&self) -> u8 {
 
        return self.num_total - self.num_returned
 
    }
 
}
 

	
 
impl<'a> Iterator for NamespacedIdentifierIter<'a> {
 
    type Item = &'a [u8];
 
    fn next(&mut self) -> Option<Self::Item> {
 
        if self.cur_offset >= self.value.len() {
 
            debug_assert_eq!(self.num_returned, self.num_total);
 
            None
 
        } else {
 
            debug_assert!(self.num_returned < self.num_total);
 
            let start = self.cur_offset;
 
            let mut end = start;
 
            while end < self.value.len() - 1 {
 
                if self.value[end] == b':' && self.value[end + 1] == b':' {
 
                    self.cur_offset = end + 2;
 
                    self.num_returned += 1;
 
                    return Some(&self.value[start..end]);
 
                }
 
                end += 1;
 
            }
 

	
 
            // If NamespacedIdentifier is constructed properly, then we cannot
 
            // end with "::" in the value, so
 
            debug_assert!(end == 0 || (self.value[end - 1] != b':' && self.value[end] != b':'));
 
            debug_assert_eq!(self.num_returned + 1, self.num_total);
 
            self.cur_offset = self.value.len();
 
            self.num_returned += 1;
 
            return Some(&self.value[start..]);
 
        }
 
    }
 
}
 

	
 
impl Display for Identifier {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        // A source identifier is in ASCII range.
 
        write!(f, "{}", String::from_utf8_lossy(&self.value))
 
    }
 
}
 

	
 
/// TODO: @cleanup Maybe handle this differently, preallocate in heap? The
 
///     reason I'm handling it like this now is so we don't allocate types in
 
///     the `Arena` structure if they're the common types defined here.
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum ParserTypeVariant {
 
    // Basic builtin
 
    Message,
 
    Bool,
 
    Byte,
 
    Short,
 
    Int,
 
    Long,
 
    String,
 
    // Literals (need to get concrete builtin type during typechecking)
 
    IntegerLiteral,
 
    Inferred,
 
    // Complex builtins
 
    Array(ParserTypeId), // array of a type
 
    Input(ParserTypeId), // typed input endpoint of a channel
 
    Output(ParserTypeId), // typed output endpoint of a channel
 
    Symbolic(SymbolicParserType), // symbolic type (definition or polyarg)
 
}
 

	
 
impl ParserTypeVariant {
 
    pub(crate) fn supports_polymorphic_args(&self) -> bool {
 
        use ParserTypeVariant::*;
 
        match ParserTypeVariant {
 
        match self {
 
            Message | Bool | Byte | Short | Int | Long | String | IntegerLiteral | Inferred => false,
 
            _ => true
 
        }
 
    }
 
}
 

	
 
/// ParserType is a specification of a type during the parsing phase and initial
 
/// linker/validator phase of the compilation process. These types may be
 
/// (partially) inferred or represent literals (e.g. a integer whose bytesize is
 
/// not yet determined).
 
#[derive(Debug, Clone, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct ParserType {
 
    pub this: ParserTypeId,
 
    pub pos: InputPosition,
 
    pub variant: ParserTypeVariant,
 
}
 

	
 
/// SymbolicParserType is the specification of a symbolic type. During the
 
/// parsing phase we will only store the identifier of the type. During the
 
/// validation phase we will determine whether it refers to a user-defined type,
 
/// or a polymorphic argument. After the validation phase it may still be the
 
/// case that the resulting `variant` will not pass the typechecker.
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct SymbolicParserType {
 
    // Phase 1: parser
 
    pub identifier: NamespacedIdentifier,
 
    /// The user-specified polymorphic arguments. Zero-length implies that the
 
    /// user did not specify any of them, and they're either not needed or all
 
    /// need to be inferred. Otherwise the number of polymorphic arguments must
 
    /// match those of the corresponding definition
 
    pub poly_args: Vec<ParserTypeId>,
 
    // Phase 2: validation/linking
 
    // Phase 2: validation/linking (for types in function/component bodies) and
 
    //  type table construction (for embedded types of structs/unions)
 
    pub variant: Option<SymbolicParserTypeVariant>
 
}
 

	
 
/// Specifies whether the symbolic type points to an actual user-defined type,
 
/// or whether it points to a polymorphic argument within the definition (e.g.
 
/// a defined variable `T var` within a function `int func<T>()`
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum SymbolicParserTypeVariant {
 
    Definition(DefinitionId),
 
    PolyArg((DefinitionId, u32)), // index of polyarg in the definition
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
 
pub enum PrimitiveType {
 
    Input,
 
    Output,
 
    Message,
 
    Boolean,
 
    Byte,
 
    Short,
 
    Int,
 
    Long,
 
    Symbolic(PrimitiveSymbolic)
 
}
 

	
 
// TODO: @cleanup, remove PartialEq implementations
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct PrimitiveSymbolic {
 
    // Phase 1: parser
 
    pub(crate) identifier: NamespacedIdentifier,
 
    // Phase 2: typing
 
    pub(crate) definition: Option<DefinitionId>
 
}
 

	
 
impl PartialEq for PrimitiveSymbolic {
 
    fn eq(&self, other: &Self) -> bool {
 
        self.identifier == other.identifier
 
    }
 
}
 
impl Eq for PrimitiveSymbolic{}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
 
pub struct Type {
 
    pub primitive: PrimitiveType,
 
    pub array: bool,
 
}
 

	
 
#[allow(dead_code)]
 
impl Type {
 
    pub const INPUT: Type = Type { primitive: PrimitiveType::Input, array: false };
 
    pub const OUTPUT: Type = Type { primitive: PrimitiveType::Output, array: false };
 
    pub const MESSAGE: Type = Type { primitive: PrimitiveType::Message, array: false };
 
    pub const BOOLEAN: Type = Type { primitive: PrimitiveType::Boolean, array: false };
 
    pub const BYTE: Type = Type { primitive: PrimitiveType::Byte, array: false };
 
    pub const SHORT: Type = Type { primitive: PrimitiveType::Short, array: false };
 
    pub const INT: Type = Type { primitive: PrimitiveType::Int, array: false };
 
    pub const LONG: Type = Type { primitive: PrimitiveType::Long, array: false };
 

	
 
    pub const INPUT_ARRAY: Type = Type { primitive: PrimitiveType::Input, array: true };
 
    pub const OUTPUT_ARRAY: Type = Type { primitive: PrimitiveType::Output, array: true };
 
    pub const MESSAGE_ARRAY: Type = Type { primitive: PrimitiveType::Message, array: true };
 
    pub const BOOLEAN_ARRAY: Type = Type { primitive: PrimitiveType::Boolean, array: true };
 
    pub const BYTE_ARRAY: Type = Type { primitive: PrimitiveType::Byte, array: true };
 
    pub const SHORT_ARRAY: Type = Type { primitive: PrimitiveType::Short, array: true };
 
    pub const INT_ARRAY: Type = Type { primitive: PrimitiveType::Int, array: true };
 
    pub const LONG_ARRAY: Type = Type { primitive: PrimitiveType::Long, array: true };
 
}
 

	
 
impl Display for Type {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        match &self.primitive {
 
            PrimitiveType::Input => {
 
                write!(f, "in")?;
 
            }
 
            PrimitiveType::Output => {
 
                write!(f, "out")?;
 
            }
 
            PrimitiveType::Message => {
 
                write!(f, "msg")?;
 
            }
 
            PrimitiveType::Boolean => {
 
                write!(f, "boolean")?;
 
            }
 
            PrimitiveType::Byte => {
 
                write!(f, "byte")?;
 
            }
 
            PrimitiveType::Short => {
 
                write!(f, "short")?;
 
            }
 
            PrimitiveType::Int => {
 
                write!(f, "int")?;
 
            }
 
            PrimitiveType::Long => {
 
                write!(f, "long")?;
 
            }
 
            PrimitiveType::Symbolic(data) => {
 
                // Type data is in ASCII range.
 
                if let Some(id) = &data.definition {
 
                    write!(
 
                        f, "Symbolic({}, id: {})", 
 
                        String::from_utf8_lossy(&data.identifier.value),
 
                        id.index
 
                    )?;
 
                } else {
 
                    write!(
 
                        f, "Symbolic({}, id: Unresolved)",
 
                        String::from_utf8_lossy(&data.identifier.value)
 
                    )?;
 
                }
 
            }
 
        }
 
        if self.array {
 
            write!(f, "[]")
 
        } else {
 
            Ok(())
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct TypeAnnotation {
 
    pub this: TypeAnnotationId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub the_type: Type,
 
}
 

	
 
impl SyntaxElement for TypeAnnotation {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
type CharacterData = Vec<u8>;
 
type IntegerData = i64;
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Constant {
 
    Null, // message
 
    True,
 
    False,
 
    Character(CharacterData),
 
    Integer(IntegerData),
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Method {
 
    Get,
 
    Fires,
 
    Create,
 
    Symbolic(MethodSymbolic)
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct MethodSymbolic {
 
    pub(crate) identifier: NamespacedIdentifier,
 
    pub(crate) definition: Option<DefinitionId>
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Field {
 
    Length,
 
    Symbolic(Identifier),
 
}
 
impl Field {
 
    pub fn is_length(&self) -> bool {
 
        match self {
 
            Field::Length => true,
 
            _ => false,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, serde::Serialize, serde::Deserialize)]
 
pub enum Scope {
 
    Definition(DefinitionId),
 
    Regular(BlockStatementId),
 
    Synchronous((SynchronousStatementId, BlockStatementId)),
 
}
 

	
 
impl Scope {
 
    pub fn is_block(&self) -> bool {
 
        match &self {
 
            Scope::Definition(_) => false,
 
            Scope::Regular(_) => true,
 
            Scope::Synchronous(_) => true,
 
        }
 
    }
 
    pub fn to_block(&self) -> BlockStatementId {
 
        match &self {
 
            Scope::Regular(id) => *id,
 
            Scope::Synchronous((_, id)) => *id,
 
            _ => panic!("unable to get BlockStatement from Scope")
 
        }
 
    }
 
}
 

	
 
pub trait VariableScope {
 
    fn parent_scope(&self, h: &Heap) -> Option<Scope>;
 
    fn get_variable(&self, h: &Heap, id: &Identifier) -> Option<VariableId>;
 
}
 

	
 
impl VariableScope for Scope {
 
    fn parent_scope(&self, h: &Heap) -> Option<Scope> {
 
        match self {
 
            Scope::Definition(def) => h[*def].parent_scope(h),
 
            Scope::Regular(stmt) => h[*stmt].parent_scope(h),
 
            Scope::Synchronous((stmt, _)) => h[*stmt].parent_scope(h),
 
        }
 
    }
 
    fn get_variable(&self, h: &Heap, id: &Identifier) -> Option<VariableId> {
 
        match self {
 
            Scope::Definition(def) => h[*def].get_variable(h, id),
 
            Scope::Regular(stmt) => h[*stmt].get_variable(h, id),
 
            Scope::Synchronous((stmt, _)) => h[*stmt].get_variable(h, id),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Variable {
 
    Parameter(Parameter),
 
    Local(Local),
 
}
 

	
 
impl Variable {
 
    pub fn identifier(&self) -> &Identifier {
 
        match self {
 
            Variable::Parameter(var) => &var.identifier,
 
            Variable::Local(var) => &var.identifier,
 
        }
 
    }
 
    pub fn is_parameter(&self) -> bool {
 
        match self {
 
            Variable::Parameter(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub fn as_parameter(&self) -> &Parameter {
 
        match self {
 
            Variable::Parameter(result) => result,
 
            _ => panic!("Unable to cast `Variable` to `Parameter`"),
 
        }
 
    }
 
    pub fn as_local(&self) -> &Local {
 
        match self {
 
            Variable::Local(result) => result,
 
            _ => panic!("Unable to cast `Variable` to `Local`"),
 
        }
 
    }
 
    pub fn as_local_mut(&mut self) -> &mut Local {
 
        match self {
 
            Variable::Local(result) => result,
 
            _ => panic!("Unable to cast 'Variable' to 'Local'"),
 
        }
 
    }
 
    pub fn the_type<'b>(&self, h: &'b Heap) -> &'b Type {
 
        match self {
 
            Variable::Parameter(param) => &h[param.type_annotation].the_type,
 
            Variable::Local(local) => &h[local.type_annotation].the_type,
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for Variable {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            Variable::Parameter(decl) => decl.position(),
 
            Variable::Local(decl) => decl.position(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct Parameter {
 
    pub this: ParameterId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub parser_type: ParserTypeId,
 
    pub identifier: Identifier,
 
}
 

	
 
impl SyntaxElement for Parameter {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct Local {
 
    pub this: LocalId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub parser_type: ParserTypeId,
 
    pub identifier: Identifier,
 
    // Phase 2: linker
 
    pub relative_pos_in_block: u32,
 
}
 
impl SyntaxElement for Local {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Definition {
 
    Struct(StructDefinition),
 
    Enum(EnumDefinition),
 
    Component(Component),
 
    Function(Function),
 
}
 

	
 
impl Definition {
 
    pub fn is_struct(&self) -> bool {
 
        match self {
 
            Definition::Struct(_) => true,
 
            _ => false
 
        }
 
    }
 
    pub fn as_struct(&self) -> &StructDefinition {
 
        match self {
 
            Definition::Struct(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'StructDefinition'"),
 
        }
 
    }
 
    pub fn is_enum(&self) -> bool {
 
        match self {
 
            Definition::Enum(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub fn as_enum(&self) -> &EnumDefinition {
 
        match self {
 
            Definition::Enum(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'EnumDefinition'"),
 
        }
 
    }
 
    pub fn is_component(&self) -> bool {
 
        match self {
 
            Definition::Component(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub fn as_component(&self) -> &Component {
 
        match self {
 
            Definition::Component(result) => result,
 
            _ => panic!("Unable to cast `Definition` to `Component`"),
 
        }
 
    }
 
    pub fn as_function(&self) -> &Function {
 
        match self {
 
            Definition::Function(result) => result,
 
            _ => panic!("Unable to cast `Definition` to `Function`"),
 
        }
 
    }
 
    pub fn identifier(&self) -> &Identifier {
 
        match self {
 
            Definition::Struct(def) => &def.identifier,
 
@@ -1489,254 +1464,254 @@ impl VariableScope for Definition {
 
    fn parent_scope(&self, _h: &Heap) -> Option<Scope> {
 
        None
 
    }
 
    fn get_variable(&self, h: &Heap, id: &Identifier) -> Option<VariableId> {
 
        for &parameter_id in self.parameters().iter() {
 
            let parameter = &h[parameter_id];
 
            if parameter.identifier.value == id.value {
 
                return Some(parameter_id.0);
 
            }
 
        }
 
        None
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct StructFieldDefinition {
 
    pub position: InputPosition,
 
    pub field: Identifier,
 
    pub parser_type: ParserTypeId,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct StructDefinition {
 
    pub this: StructId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    pub fields: Vec<StructFieldDefinition>
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize, PartialEq)]
 
pub enum EnumVariantValue {
 
    None,
 
    Integer(i64),
 
    Type(ParserTypeId),
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct EnumVariantDefinition {
 
    pub position: InputPosition,
 
    pub identifier: Identifier,
 
    pub value: EnumVariantValue,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct EnumDefinition {
 
    pub this: EnumId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    pub variants: Vec<EnumVariantDefinition>,
 
}
 

	
 
#[derive(Debug, Clone, Copy, serde::Serialize, serde::Deserialize)]
 
pub enum ComponentVariant {
 
    Primitive,
 
    Composite,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct Component {
 
    pub this: ComponentId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub variant: ComponentVariant,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    pub parameters: Vec<ParameterId>,
 
    pub body: StatementId,
 
}
 

	
 
impl SyntaxElement for Component {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct Function {
 
    pub this: FunctionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub return_type: ParserTypeId,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    pub parameters: Vec<ParameterId>,
 
    pub body: StatementId,
 
}
 

	
 
impl SyntaxElement for Function {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Signature {
 
    Component(ComponentSignature),
 
    Function(FunctionSignature),
 
}
 

	
 
impl Signature {
 
    pub fn from_definition(h: &Heap, def: DefinitionId) -> Signature {
 
        // TODO: Fix this
 
        match &h[def] {
 
            Definition::Component(com) => Signature::Component(ComponentSignature {
 
                identifier: com.identifier.clone(), // TODO: @fix
 
                arity: Signature::convert_parameters(h, &com.parameters),
 
            }),
 
            Definition::Function(fun) => Signature::Function(FunctionSignature {
 
                return_type: h[fun.return_type].the_type.clone(),
 
                identifier: fun.identifier.clone(), // TODO: @fix
 
                arity: Signature::convert_parameters(h, &fun.parameters),
 
            }),
 
            _ => panic!("cannot retrieve signature (for StructDefinition or EnumDefinition)")
 
        }
 
    }
 
    fn convert_parameters(h: &Heap, params: &Vec<ParameterId>) -> Vec<Type> {
 
        let mut result = Vec::new();
 
        for &param in params.iter() {
 
            result.push(h[h[param].type_annotation].the_type.clone());
 
        }
 
        result
 
    }
 
    fn identifier(&self) -> &Identifier {
 
        match self {
 
            Signature::Component(com) => &com.identifier,
 
            Signature::Function(fun) => &fun.identifier,
 
        }
 
    }
 
    pub fn is_component(&self) -> bool {
 
        match self {
 
            Signature::Component(_) => true,
 
            Signature::Function(_) => false,
 
        }
 
    }
 
    pub fn is_function(&self) -> bool {
 
        match self {
 
            Signature::Component(_) => false,
 
            Signature::Function(_) => true,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct ComponentSignature {
 
    pub identifier: Identifier,
 
    pub arity: Vec<Type>,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct FunctionSignature {
 
    pub return_type: Type,
 
    pub identifier: Identifier,
 
    pub arity: Vec<Type>,
 
}
 
// TODO: @remove ???
 
// #[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
// pub enum Signature {
 
//     Component(ComponentSignature),
 
//     Function(FunctionSignature),
 
// }
 
//
 
// impl Signature {
 
//     pub fn from_definition(h: &Heap, def: DefinitionId) -> Signature {
 
//         // TODO: Fix this
 
//         match &h[def] {
 
//             Definition::Component(com) => Signature::Component(ComponentSignature {
 
//                 identifier: com.identifier.clone(), // TODO: @fix
 
//                 arity: Signature::convert_parameters(h, &com.parameters),
 
//             }),
 
//             Definition::Function(fun) => Signature::Function(FunctionSignature {
 
//                 return_type: h[fun.return_type].the_type.clone(),
 
//                 identifier: fun.identifier.clone(), // TODO: @fix
 
//                 arity: Signature::convert_parameters(h, &fun.parameters),
 
//             }),
 
//             _ => panic!("cannot retrieve signature (for StructDefinition or EnumDefinition)")
 
//         }
 
//     }
 
//     fn convert_parameters(h: &Heap, params: &Vec<ParameterId>) -> Vec<Type> {
 
//         let mut result = Vec::new();
 
//         for &param in params.iter() {
 
//             result.push(h[h[param].type_annotation].the_type.clone());
 
//         }
 
//         result
 
//     }
 
//     fn identifier(&self) -> &Identifier {
 
//         match self {
 
//             Signature::Component(com) => &com.identifier,
 
//             Signature::Function(fun) => &fun.identifier,
 
//         }
 
//     }
 
//     pub fn is_component(&self) -> bool {
 
//         match self {
 
//             Signature::Component(_) => true,
 
//             Signature::Function(_) => false,
 
//         }
 
//     }
 
//     pub fn is_function(&self) -> bool {
 
//         match self {
 
//             Signature::Component(_) => false,
 
//             Signature::Function(_) => true,
 
//         }
 
//     }
 
// }
 
//
 
// #[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
// pub struct ComponentSignature {
 
//     pub identifier: Identifier,
 
//     pub arity: Vec<Type>,
 
// }
 
//
 
// #[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
// pub struct FunctionSignature {
 
//     pub return_type: Type,
 
//     pub identifier: Identifier,
 
//     pub arity: Vec<Type>,
 
// }
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Statement {
 
    Block(BlockStatement),
 
    Local(LocalStatement),
 
    Skip(SkipStatement),
 
    Labeled(LabeledStatement),
 
    If(IfStatement),
 
    EndIf(EndIfStatement),
 
    While(WhileStatement),
 
    EndWhile(EndWhileStatement),
 
    Break(BreakStatement),
 
    Continue(ContinueStatement),
 
    Synchronous(SynchronousStatement),
 
    EndSynchronous(EndSynchronousStatement),
 
    Return(ReturnStatement),
 
    Assert(AssertStatement),
 
    Goto(GotoStatement),
 
    New(NewStatement),
 
    Put(PutStatement),
 
    Expression(ExpressionStatement),
 
}
 

	
 
impl Statement {
 
    pub fn as_block(&self) -> &BlockStatement {
 
        match self {
 
            Statement::Block(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `BlockStatement`"),
 
        }
 
    }
 
    pub fn as_block_mut(&mut self) -> &mut BlockStatement {
 
        match self {
 
            Statement::Block(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `BlockStatement`"),
 
        }
 
    }
 
    pub fn as_local(&self) -> &LocalStatement {
 
        match self {
 
            Statement::Local(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `LocalStatement`"),
 
        }
 
    }
 
    pub fn as_memory(&self) -> &MemoryStatement {
 
        self.as_local().as_memory()
 
    }
 
    pub fn as_channel(&self) -> &ChannelStatement {
 
        self.as_local().as_channel()
 
    }
 
    pub fn as_skip(&self) -> &SkipStatement {
 
        match self {
 
            Statement::Skip(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `SkipStatement`"),
 
        }
 
    }
 
    pub fn as_labeled(&self) -> &LabeledStatement {
 
        match self {
 
            Statement::Labeled(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `LabeledStatement`"),
 
        }
 
    }
 
    pub fn as_labeled_mut(&mut self) -> &mut LabeledStatement {
 
        match self {
 
            Statement::Labeled(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `LabeledStatement`"),
 
        }
 
    }
 
    pub fn as_if(&self) -> &IfStatement {
 
        match self {
 
            Statement::If(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `IfStatement`"),
 
        }
 
    }
 
    pub fn as_if_mut(&mut self) -> &mut IfStatement {
 
        match self {
 
            Statement::If(result) => result,
 
            _ => panic!("Unable to cast 'Statement' to 'IfStatement'"),
 
        }
 
    }
 
    pub fn as_end_if(&self) -> &EndIfStatement {
 
        match self {
 
            Statement::EndIf(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `EndIfStatement`"),
 
        }
 
    }
 
    pub fn is_while(&self) -> bool {
 
        match self {
 
            Statement::While(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub fn as_while(&self) -> &WhileStatement {
 
        match self {
 
            Statement::While(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `WhileStatement`"),
 
        }
 
    }
src/protocol/ast_printer.rs
Show inline comments
 
@@ -196,193 +196,193 @@ impl ASTWriter {
 
        let root = &heap[root_id];
 
        self.kv(1).with_s_key("Pragmas");
 
        for pragma_id in &root.pragmas {
 
            self.write_pragma(heap, *pragma_id, 2);
 
        }
 

	
 
        self.kv(1).with_s_key("Imports");
 
        for import_id in &root.imports {
 
            self.write_import(heap, *import_id, 2);
 
        }
 

	
 
        self.kv(1).with_s_key("Definitions");
 
        for def_id in &root.definitions {
 
            self.write_definition(heap, *def_id, 2);
 
        }
 
    }
 

	
 
    fn write_pragma(&mut self, heap: &Heap, pragma_id: PragmaId, indent: usize) {
 
        match &heap[pragma_id] {
 
            Pragma::Version(pragma) => {
 
                self.kv(indent).with_id(PREFIX_PRAGMA_ID, pragma.this.index)
 
                    .with_s_key("PragmaVersion")
 
                    .with_disp_val(&pragma.version);
 
            },
 
            Pragma::Module(pragma) => {
 
                self.kv(indent).with_id(PREFIX_PRAGMA_ID, pragma.this.index)
 
                    .with_s_key("PragmaModule")
 
                    .with_ascii_val(&pragma.value);
 
            }
 
        }
 
    }
 

	
 
    fn write_import(&mut self, heap: &Heap, import_id: ImportId, indent: usize) {
 
        let import = &heap[import_id];
 
        let indent2 = indent + 1;
 

	
 
        match import {
 
            Import::Module(import) => {
 
                self.kv(indent).with_id(PREFIX_IMPORT_ID, import.this.index)
 
                    .with_s_key("ImportModule");
 

	
 
                self.kv(indent2).with_s_key("Name").with_ascii_val(&import.module_name);
 
                self.kv(indent2).with_s_key("Alias").with_ascii_val(&import.alias);
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(import.module_id.as_ref().map(|v| &v.index));
 
            },
 
            Import::Symbols(import) => {
 
                self.kv(indent).with_id(PREFIX_IMPORT_ID, import.this.index)
 
                    .with_s_key("ImportSymbol");
 

	
 
                self.kv(indent2).with_s_key("Name").with_ascii_val(&import.module_name);
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(import.module_id.as_ref().map(|v| &v.index));
 

	
 
                self.kv(indent2).with_s_key("Symbols");
 

	
 
                let indent3 = indent2 + 1;
 
                let indent4 = indent3 + 1;
 
                for symbol in &import.symbols {
 
                    self.kv(indent3).with_s_key("AliasedSymbol");
 
                    self.kv(indent4).with_s_key("Name").with_ascii_val(&symbol.name);
 
                    self.kv(indent4).with_s_key("Alias").with_ascii_val(&symbol.alias);
 
                    self.kv(indent4).with_s_key("Definition")
 
                        .with_opt_disp_val(symbol.definition_id.as_ref().map(|v| &v.index));
 
                }
 
            }
 
        }
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Top-level definition writing
 
    //--------------------------------------------------------------------------
 

	
 
    fn write_definition(&mut self, heap: &Heap, def_id: DefinitionId, indent: usize) {
 
        let indent2 = indent + 1;
 
        let indent3 = indent2 + 1;
 
        let indent4 = indent3 + 1;
 

	
 
        match &heap[def_id] {
 
            Definition::Struct(_) => todo!("implement Definition::Struct"),
 
            Definition::Enum(_) => todo!("implement Definition::Enum"),
 
            Definition::Function(_) => todo!("implement Definition::Function"),
 
            Definition::Component(def) => {
 
                self.kv(indent).with_id(PREFIX_COMPONENT_ID,def.this.0.index)
 
                    .with_s_key("DefinitionComponent");
 

	
 
                self.kv(indent2).with_s_key("Name").with_ascii_val(&def.identifier.value);
 
                self.kv(indent2).with_s_key("Variant").with_debug_val(&def.variant);
 

	
 
                self.kv(indent2).with_s_key("Parameters");
 
                for param_id in &def.parameters {
 
                    let param = &heap[*param_id];
 
                    self.kv(indent3).with_id(PREFIX_PARAMETER_ID, param_id.0.index)
 
                        .with_s_key("Parameter");
 

	
 
                    self.kv(indent4).with_s_key("Name").with_ascii_val(&param.identifier.value);
 
                    self.kv(indent4).with_s_key("Type").with_custom_val(|w| write_type(w, &heap[param.type_annotation]));
 
                    self.kv(indent4).with_s_key("Type").with_custom_val(|w| write_type(w, heap, &heap[param.parser_type]));
 
                }
 

	
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, def.body, indent3);
 
            }
 
        }
 
    }
 

	
 
    fn write_stmt(&mut self, heap: &Heap, stmt_id: StatementId, indent: usize) {
 
        let stmt = &heap[stmt_id];
 
        let indent2 = indent + 1;
 
        let indent3 = indent2 + 1;
 

	
 
        match stmt {
 
            Statement::Block(stmt) => {
 
                self.kv(indent).with_id(PREFIX_BLOCK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Block");
 

	
 
                for stmt_id in &stmt.statements {
 
                    self.write_stmt(heap, *stmt_id, indent2);
 
                }
 
            },
 
            Statement::Local(stmt) => {
 
                match stmt {
 
                    LocalStatement::Channel(stmt) => {
 
                        self.kv(indent).with_id(PREFIX_CHANNEL_STMT_ID, stmt.this.0.0.index)
 
                            .with_s_key("LocalChannel");
 

	
 
                        self.kv(indent2).with_s_key("From");
 
                        self.write_local(heap, stmt.from, indent3);
 
                        self.kv(indent2).with_s_key("To");
 
                        self.write_local(heap, stmt.to, indent3);
 
                        self.kv(indent2).with_s_key("Next")
 
                            .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
                    },
 
                    LocalStatement::Memory(stmt) => {
 
                        self.kv(indent).with_id(PREFIX_MEM_STMT_ID, stmt.this.0.0.index)
 
                            .with_s_key("LocalMemory");
 

	
 
                        self.kv(indent2).with_s_key("Variable");
 
                        self.write_local(heap, stmt.variable, indent3);
 
                        self.kv(indent2).with_s_key("initial");
 
                        self.write_expr(heap, stmt.initial, indent3);
 
                        self.kv(indent2).with_s_key("Next")
 
                            .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
                    }
 
                }
 
            },
 
            Statement::Skip(stmt) => {
 
                self.kv(indent).with_id(PREFIX_SKIP_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Skip");
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            },
 
            Statement::Labeled(stmt) => {
 
                self.kv(indent).with_id(PREFIX_LABELED_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Labeled");
 

	
 
                self.kv(indent2).with_s_key("Label").with_ascii_val(&stmt.label.value);
 
                self.kv(indent2).with_s_key("Statement");
 
                self.write_stmt(heap, stmt.body, indent3);
 
            },
 
            Statement::If(stmt) => {
 
                self.kv(indent).with_id(PREFIX_IF_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("If");
 

	
 
                self.kv(indent2).with_s_key("EndIf")
 
                    .with_opt_disp_val(stmt.end_if.as_ref().map(|v| &v.0.index));
 

	
 
                self.kv(indent2).with_s_key("Condition");
 
                self.write_expr(heap, stmt.test, indent3);
 

	
 
                self.kv(indent2).with_s_key("TrueBody");
 
                self.write_stmt(heap, stmt.true_body, indent3);
 

	
 
                self.kv(indent2).with_s_key("FalseBody");
 
                self.write_stmt(heap, stmt.false_body, indent3);
 
            },
 
            Statement::EndIf(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDIF_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndIf");
 
                self.kv(indent2).with_s_key("StartIf").with_disp_val(&stmt.start_if.0.index);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            },
 
            Statement::While(stmt) => {
 
                self.kv(indent).with_id(PREFIX_WHILE_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("While");
 

	
 
                self.kv(indent2).with_s_key("EndWhile")
 
                    .with_opt_disp_val(stmt.end_while.as_ref().map(|v| &v.0.index));
 
                self.kv(indent2).with_s_key("InSync")
 
                    .with_opt_disp_val(stmt.in_sync.as_ref().map(|v| &v.0.index));
 
                self.kv(indent2).with_s_key("Condition");
 
                self.write_expr(heap, stmt.test, indent3);
 
                self.kv(indent2).with_s_key("Body");
 
@@ -520,142 +520,153 @@ impl ASTWriter {
 
                self.kv(indent).with_id(PREFIX_INDEXING_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("IndexingExpr");
 
                self.kv(indent2).with_s_key("Subject");
 
                self.write_expr(heap, expr.subject, indent3);
 
                self.kv(indent2).with_s_key("Index");
 
                self.write_expr(heap, expr.index, indent3);
 
            },
 
            Expression::Slicing(expr) => {
 
                self.kv(indent).with_id(PREFIX_SLICING_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("SlicingExpr");
 
                self.kv(indent2).with_s_key("Subject");
 
                self.write_expr(heap, expr.subject, indent3);
 
                self.kv(indent2).with_s_key("FromIndex");
 
                self.write_expr(heap, expr.from_index, indent3);
 
                self.kv(indent2).with_s_key("ToIndex");
 
                self.write_expr(heap, expr.to_index, indent3);
 
            },
 
            Expression::Select(expr) => {
 
                self.kv(indent).with_id(PREFIX_SELECT_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("SelectExpr");
 
                self.kv(indent2).with_s_key("Subject");
 
                self.write_expr(heap, expr.subject, indent3);
 

	
 
                match &expr.field {
 
                    Field::Length => {
 
                        self.kv(indent2).with_s_key("Field").with_s_val("length");
 
                    },
 
                    Field::Symbolic(field) => {
 
                        self.kv(indent2).with_s_key("Field").with_ascii_val(&field.value);
 
                    }
 
                }
 
            },
 
            Expression::Array(expr) => {
 
                self.kv(indent).with_id(PREFIX_ARRAY_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("ArrayExpr");
 
                self.kv(indent2).with_s_key("Elements");
 
                for expr_id in &expr.elements {
 
                    self.write_expr(heap, *expr_id, indent3);
 
                }
 
            },
 
            Expression::Constant(expr) => {
 
                self.kv(indent).with_id(PREFIX_CONST_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("ConstantExpr");
 

	
 
                let val = self.kv(indent2).with_s_key("Value");
 
                match &expr.value {
 
                    Constant::Null => { val.with_s_val("null"); },
 
                    Constant::True => { val.with_s_val("true"); },
 
                    Constant::False => { val.with_s_val("false"); },
 
                    Constant::Character(char) => { val.with_ascii_val(char); },
 
                    Constant::Integer(int) => { val.with_disp_val(int); },
 
                }
 
            },
 
            Expression::Call(expr) => {
 
                self.kv(indent).with_id(PREFIX_CALL_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("CallExpr");
 

	
 
                // Method
 
                let method = self.kv(indent2).with_s_key("Method");
 
                match &expr.method {
 
                    Method::Get => { method.with_s_val("get"); },
 
                    Method::Fires => { method.with_s_val("fires"); },
 
                    Method::Create => { method.with_s_val("create"); },
 
                    Method::Symbolic(symbolic) => {
 
                        method.with_s_val("symbolic");
 
                        self.kv(indent3).with_s_key("Name").with_ascii_val(&symbolic.identifier.value);
 
                        self.kv(indent3).with_s_key("Definition")
 
                            .with_opt_disp_val(symbolic.definition.as_ref().map(|v| &v.index));
 
                    }
 
                }
 

	
 
                // Arguments
 
                self.kv(indent2).with_s_key("Arguments");
 
                for arg_id in &expr.arguments {
 
                    self.write_expr(heap, *arg_id, indent3);
 
                }
 
            },
 
            Expression::Variable(expr) => {
 
                self.kv(indent).with_id(PREFIX_VARIABLE_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("VariableExpr");
 
                self.kv(indent2).with_s_key("Name").with_ascii_val(&expr.identifier.value);
 
                self.kv(indent2).with_s_key("Definition")
 
                    .with_opt_disp_val(expr.declaration.as_ref().map(|v| &v.index));
 
            }
 
        }
 
    }
 

	
 
    fn write_local(&mut self, heap: &Heap, local_id: LocalId, indent: usize) {
 
        let local = &heap[local_id];
 
        let indent2 = indent + 1;
 

	
 
        self.kv(indent).with_id(PREFIX_LOCAL_ID, local_id.0.index)
 
            .with_s_key("Local");
 

	
 
        self.kv(indent2).with_s_key("Name").with_ascii_val(&local.identifier.value);
 
        self.kv(indent2).with_s_key("Type")
 
            .with_custom_val(|w| write_type(w, &heap[local.type_annotation]));
 
            .with_custom_val(|w| write_type(w, heap, &heap[local.parser_type]));
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Printing Utilities
 
    //--------------------------------------------------------------------------
 

	
 
    fn kv(&mut self, indent: usize) -> KV {
 
        KV::new(&mut self.buffer, &mut self.temp1, &mut self.temp2, indent)
 
    }
 

	
 
    fn flush<W: IOWrite>(&mut self, w: &mut W) {
 
        w.write(self.buffer.as_bytes()).unwrap();
 
        self.buffer.clear()
 
    }
 
}
 

	
 
fn write_option<V: Display>(target: &mut String, value: Option<V>) {
 
    target.clear();
 
    match &value {
 
        Some(v) => write!(target, "Some({})", v),
 
        None => target.write_str("None")
 
    };
 
}
 

	
 
fn write_type(target: &mut String, t: &TypeAnnotation) {
 
    match &t.the_type.primitive {
 
        PrimitiveType::Input => target.write_str("in"),
 
        PrimitiveType::Output => target.write_str("out"),
 
        PrimitiveType::Message => target.write_str("msg"),
 
        PrimitiveType::Boolean => target.write_str("bool"),
 
        PrimitiveType::Byte => target.write_str("byte"),
 
        PrimitiveType::Short => target.write_str("short"),
 
        PrimitiveType::Int => target.write_str("int"),
 
        PrimitiveType::Long => target.write_str("long"),
 
        PrimitiveType::Symbolic(symbolic) => {
 
            let mut temp = String::new();
 
            write_option(&mut temp, symbolic.definition.map(|v| v.index));
 
            write!(target, "Symbolic(name: {}, target: {})", String::from_utf8_lossy(&symbolic.identifier.value), &temp)
 
fn write_type(target: &mut String, heap: &Heap, t: &ParserType) {
 
    use ParserTypeVariant as PTV;
 

	
 
    let mut embedded = Vec::new();
 
    match &t.variant {
 
        PTV::Input(id) => { target.write_str("in"); embedded.push(*id); }
 
        PTV::Output(id) => { target.write_str("out"); embedded.push(*id) }
 
        PTV::Array(id) => { target.write_str("array"); embedded.push(*id) }
 
        PTV::Message => { target.write_str("msg"); }
 
        PTV::Bool => { target.write_str("bool"); }
 
        PTV::Byte => { target.write_str("byte"); }
 
        PTV::Short => { target.write_str("short"); }
 
        PTV::Int => { target.write_str("int"); }
 
        PTV::Long => { target.write_str("long"); }
 
        PTV::String => { target.write_str("str"); }
 
        PTV::IntegerLiteral => { target.write_str("int_lit"); }
 
        PTV::Inferred => { target.write_str("auto"); }
 
        PTV::Symbolic(symbolic) => {
 
            target.write_str(&String::from_utf8_lossy(&symbolic.identifier.value));
 
            embedded.extend(&symbolic.poly_args);
 
        }
 
    };
 

	
 
    if t.the_type.array {
 
        target.push_str("[]");
 
    if !embedded.is_empty() {
 
        target.write_str("<");
 
        for (idx, embedded_id) in embedded.into_iter().enumerate() {
 
            if idx != 0 { target.write_str(", "); }
 
            write_type(target, heap, &heap[embedded_id]);
 
        }
 
        target.write_str(">");
 
    }
 
}
 
\ No newline at end of file
src/protocol/eval.rs
Show inline comments
 
use std::collections::HashMap;
 
use std::fmt;
 
use std::fmt::{Debug, Display, Formatter};
 
use std::{i16, i32, i64, i8};
 

	
 
use crate::common::*;
 

	
 
use crate::protocol::ast::*;
 
use crate::protocol::EvalContext;
 

	
 
// const MAX_RECURSION: usize = 1024;
 

	
 
const BYTE_MIN: i64 = i8::MIN as i64;
 
const BYTE_MAX: i64 = i8::MAX as i64;
 
const SHORT_MIN: i64 = i16::MIN as i64;
 
const SHORT_MAX: i64 = i16::MAX as i64;
 
const INT_MIN: i64 = i32::MIN as i64;
 
const INT_MAX: i64 = i32::MAX as i64;
 

	
 
const MESSAGE_MAX_LENGTH: i64 = SHORT_MAX;
 

	
 
const ONE: Value = Value::Byte(ByteValue(1));
 

	
 
// TODO: All goes one day anyway, so dirty typechecking hack
 
trait ValueImpl {
 
    fn exact_type(&self) -> Type;
 
    fn is_type_compatible(&self, t: &Type) -> bool;
 
    fn is_type_compatible(&self, h: &Heap, t: &ParserType) -> bool {
 
        Self::is_type_compatible_hack(h, t)
 
    }
 
    fn is_type_compatible_hack(h: &Heap, t: &ParserType) -> bool;
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Value {
 
    Input(InputValue),
 
    Output(OutputValue),
 
    Message(MessageValue),
 
    Boolean(BooleanValue),
 
    Byte(ByteValue),
 
    Short(ShortValue),
 
    Int(IntValue),
 
    Long(LongValue),
 
    InputArray(InputArrayValue),
 
    OutputArray(OutputArrayValue),
 
    MessageArray(MessageArrayValue),
 
    BooleanArray(BooleanArrayValue),
 
    ByteArray(ByteArrayValue),
 
    ShortArray(ShortArrayValue),
 
    IntArray(IntArrayValue),
 
    LongArray(LongArrayValue),
 
}
 
impl Value {
 
    pub fn receive_message(buffer: &Payload) -> Value {
 
        Value::Message(MessageValue(Some(buffer.clone())))
 
    }
 
    fn create_message(length: Value) -> Value {
 
        match length {
 
            Value::Byte(_) | Value::Short(_) | Value::Int(_) | Value::Long(_) => {
 
                let length: i64 = i64::from(length);
 
                if length < 0 || length > MESSAGE_MAX_LENGTH {
 
                    // Only messages within the expected length are allowed
 
                    Value::Message(MessageValue(None))
 
                } else {
 
                    Value::Message(MessageValue(Some(Payload::new(length as usize))))
 
                }
 
            }
 
            _ => unimplemented!(),
 
        }
 
    }
 
    fn from_constant(constant: &Constant) -> Value {
 
        match constant {
 
            Constant::Null => Value::Message(MessageValue(None)),
 
            Constant::True => Value::Boolean(BooleanValue(true)),
 
            Constant::False => Value::Boolean(BooleanValue(false)),
 
            Constant::Integer(val) => {
 
                // Convert raw ASCII data to UTF-8 string
 
                let val = *val;
 
                if val >= BYTE_MIN && val <= BYTE_MAX {
 
                    Value::Byte(ByteValue(val as i8))
 
                } else if val >= SHORT_MIN && val <= SHORT_MAX {
 
                    Value::Short(ShortValue(val as i16))
 
                } else if val >= INT_MIN && val <= INT_MAX {
 
                    Value::Int(IntValue(val as i32))
 
                } else {
 
                    Value::Long(LongValue(val))
 
                }
 
            }
 
            Constant::Character(_data) => unimplemented!(),
 
        }
 
    }
 
    fn set(&mut self, index: &Value, value: &Value) -> Option<Value> {
 
        // The index must be of integer type, and non-negative
 
        let the_index: usize;
 
        match index {
 
            Value::Byte(_) | Value::Short(_) | Value::Int(_) | Value::Long(_) => {
 
                let index = i64::from(index);
 
                if index < 0 || index >= MESSAGE_MAX_LENGTH {
 
                    // It is inconsistent to update out of bounds
 
                    return None;
 
                }
 
                the_index = index.try_into().unwrap();
 
            }
 
            _ => unreachable!(),
 
        }
 
        // The subject must be either a message or an array
 
        // And the value and the subject must be compatible
 
        match (self, value) {
 
            (Value::Message(MessageValue(None)), _) => {
 
                // It is inconsistent to update the null message
 
                None
 
            }
 
            (Value::Message(MessageValue(Some(payload))), Value::Byte(ByteValue(b))) => {
 
                if *b < 0 {
 
                    // It is inconsistent to update with a negative value
 
                    return None;
 
                }
 
                if let Some(slot) = payload.as_mut_vec().get_mut(the_index) {
 
                    *slot = (*b).try_into().unwrap();
 
                    Some(value.clone())
 
                } else {
 
                    // It is inconsistent to update out of bounds
 
                    None
 
                }
 
            }
 
            (Value::Message(MessageValue(Some(payload))), Value::Short(ShortValue(b))) => {
 
                if *b < 0 || *b > BYTE_MAX as i16 {
 
@@ -745,759 +749,684 @@ impl From<Value> for i8 {
 
        }
 
    }
 
}
 
impl From<&Value> for i8 {
 
    fn from(val: &Value) -> Self {
 
        match val {
 
            Value::Byte(ByteValue(b)) => *b,
 
            _ => unimplemented!(),
 
        }
 
    }
 
}
 

	
 
impl From<Value> for i16 {
 
    fn from(val: Value) -> Self {
 
        match val {
 
            Value::Byte(ByteValue(b)) => i16::from(b),
 
            Value::Short(ShortValue(s)) => s,
 
            _ => unimplemented!(),
 
        }
 
    }
 
}
 
impl From<&Value> for i16 {
 
    fn from(val: &Value) -> Self {
 
        match val {
 
            Value::Byte(ByteValue(b)) => i16::from(*b),
 
            Value::Short(ShortValue(s)) => *s,
 
            _ => unimplemented!(),
 
        }
 
    }
 
}
 

	
 
impl From<Value> for i32 {
 
    fn from(val: Value) -> Self {
 
        match val {
 
            Value::Byte(ByteValue(b)) => i32::from(b),
 
            Value::Short(ShortValue(s)) => i32::from(s),
 
            Value::Int(IntValue(i)) => i,
 
            _ => unimplemented!(),
 
        }
 
    }
 
}
 
impl From<&Value> for i32 {
 
    fn from(val: &Value) -> Self {
 
        match val {
 
            Value::Byte(ByteValue(b)) => i32::from(*b),
 
            Value::Short(ShortValue(s)) => i32::from(*s),
 
            Value::Int(IntValue(i)) => *i,
 
            _ => unimplemented!(),
 
        }
 
    }
 
}
 

	
 
impl From<Value> for i64 {
 
    fn from(val: Value) -> Self {
 
        match val {
 
            Value::Byte(ByteValue(b)) => i64::from(b),
 
            Value::Short(ShortValue(s)) => i64::from(s),
 
            Value::Int(IntValue(i)) => i64::from(i),
 
            Value::Long(LongValue(l)) => l,
 
            _ => unimplemented!(),
 
        }
 
    }
 
}
 
impl From<&Value> for i64 {
 
    fn from(val: &Value) -> Self {
 
        match val {
 
            Value::Byte(ByteValue(b)) => i64::from(*b),
 
            Value::Short(ShortValue(s)) => i64::from(*s),
 
            Value::Int(IntValue(i)) => i64::from(*i),
 
            Value::Long(LongValue(l)) => *l,
 
            _ => unimplemented!(),
 
        }
 
    }
 
}
 

	
 
impl ValueImpl for Value {
 
    fn exact_type(&self) -> Type {
 
        match self {
 
            Value::Input(val) => val.exact_type(),
 
            Value::Output(val) => val.exact_type(),
 
            Value::Message(val) => val.exact_type(),
 
            Value::Boolean(val) => val.exact_type(),
 
            Value::Byte(val) => val.exact_type(),
 
            Value::Short(val) => val.exact_type(),
 
            Value::Int(val) => val.exact_type(),
 
            Value::Long(val) => val.exact_type(),
 
            Value::InputArray(val) => val.exact_type(),
 
            Value::OutputArray(val) => val.exact_type(),
 
            Value::MessageArray(val) => val.exact_type(),
 
            Value::BooleanArray(val) => val.exact_type(),
 
            Value::ByteArray(val) => val.exact_type(),
 
            Value::ShortArray(val) => val.exact_type(),
 
            Value::IntArray(val) => val.exact_type(),
 
            Value::LongArray(val) => val.exact_type(),
 
        }
 
    }
 
    fn is_type_compatible(&self, t: &Type) -> bool {
 
    fn is_type_compatible(&self, h: &Heap, t: &ParserType) -> bool {
 
        match self {
 
            Value::Input(val) => val.is_type_compatible(t),
 
            Value::Output(val) => val.is_type_compatible(t),
 
            Value::Message(val) => val.is_type_compatible(t),
 
            Value::Boolean(val) => val.is_type_compatible(t),
 
            Value::Byte(val) => val.is_type_compatible(t),
 
            Value::Short(val) => val.is_type_compatible(t),
 
            Value::Int(val) => val.is_type_compatible(t),
 
            Value::Long(val) => val.is_type_compatible(t),
 
            Value::InputArray(val) => val.is_type_compatible(t),
 
            Value::OutputArray(val) => val.is_type_compatible(t),
 
            Value::MessageArray(val) => val.is_type_compatible(t),
 
            Value::BooleanArray(val) => val.is_type_compatible(t),
 
            Value::ByteArray(val) => val.is_type_compatible(t),
 
            Value::ShortArray(val) => val.is_type_compatible(t),
 
            Value::IntArray(val) => val.is_type_compatible(t),
 
            Value::LongArray(val) => val.is_type_compatible(t),
 
        }
 
    }
 
            Value::Input(_) => InputValue::is_type_compatible_hack(h, t),
 
            Value::Output(_) => OutputValue::is_type_compatible_hack(h, t),
 
            Value::Message(_) => MessageValue::is_type_compatible_hack(h, t),
 
            Value::Boolean(_) => BooleanValue::is_type_compatible_hack(h, t),
 
            Value::Byte(_) => ByteValue::is_type_compatible_hack(h, t),
 
            Value::Short(_) => ShortValue::is_type_compatible_hack(h, t),
 
            Value::Int(_) => IntValue::is_type_compatible_hack(h, t),
 
            Value::Long(_) => LongValue::is_type_compatible_hack(h, t),
 
            Value::InputArray(_) => InputArrayValue::is_type_compatible_hack(h, t),
 
            Value::OutputArray(_) => OutputArrayValue::is_type_compatible_hack(h, t),
 
            Value::MessageArray(_) => MessageArrayValue::is_type_compatible_hack(h, t),
 
            Value::BooleanArray(_) => BooleanArrayValue::is_type_compatible_hack(h, t),
 
            Value::ByteArray(_) => ByteArrayValue::is_type_compatible_hack(h, t),
 
            Value::ShortArray(_) => ShortArrayValue::is_type_compatible_hack(h, t),
 
            Value::IntArray(_) => InputArrayValue::is_type_compatible_hack(h, t),
 
            Value::LongArray(_) => LongArrayValue::is_type_compatible_hack(h, t),
 
        }
 
    }
 
    fn is_type_compatible_hack(_h: &Heap, _t: &ParserType) -> bool { false }
 
}
 

	
 
impl Display for Value {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        let disp: &dyn Display;
 
        match self {
 
            Value::Input(val) => disp = val,
 
            Value::Output(val) => disp = val,
 
            Value::Message(val) => disp = val,
 
            Value::Boolean(val) => disp = val,
 
            Value::Byte(val) => disp = val,
 
            Value::Short(val) => disp = val,
 
            Value::Int(val) => disp = val,
 
            Value::Long(val) => disp = val,
 
            Value::InputArray(val) => disp = val,
 
            Value::OutputArray(val) => disp = val,
 
            Value::MessageArray(val) => disp = val,
 
            Value::BooleanArray(val) => disp = val,
 
            Value::ByteArray(val) => disp = val,
 
            Value::ShortArray(val) => disp = val,
 
            Value::IntArray(val) => disp = val,
 
            Value::LongArray(val) => disp = val,
 
        }
 
        disp.fmt(f)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct InputValue(pub PortId);
 

	
 
impl Display for InputValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "#in")
 
    }
 
}
 

	
 
impl ValueImpl for InputValue {
 
    fn exact_type(&self) -> Type {
 
        Type::INPUT
 
    }
 
    fn is_type_compatible(&self, t: &Type) -> bool {
 
        let Type { primitive, array } = t;
 
        if *array {
 
            return false;
 
        }
 
        match primitive {
 
            PrimitiveType::Input => true,
 
            _ => false,
 
        }
 
    fn is_type_compatible_hack(_h: &Heap, t: &ParserType) -> bool {
 
        return if let ParserTypeVariant::Input(_) = t.variant { true } else { false }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct OutputValue(pub PortId);
 

	
 
impl Display for OutputValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "#out")
 
    }
 
}
 

	
 
impl ValueImpl for OutputValue {
 
    fn exact_type(&self) -> Type {
 
        Type::OUTPUT
 
    }
 
    fn is_type_compatible(&self, t: &Type) -> bool {
 
        let Type { primitive, array } = t;
 
        if *array {
 
            return false;
 
        }
 
        match primitive {
 
            PrimitiveType::Output => true,
 
            _ => false,
 
        }
 
    fn is_type_compatible_hack(_h: &Heap, t: &ParserType) -> bool {
 
        return if let ParserTypeVariant::Output(_) = t.variant { true } else { false }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct MessageValue(pub Option<Payload>);
 

	
 
impl Display for MessageValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        match &self.0 {
 
            None => write!(f, "null"),
 
            Some(payload) => {
 
                // format print up to 10 bytes
 
                let mut slice = payload.as_slice();
 
                if slice.len() > 10 {
 
                    slice = &slice[..10];
 
                }
 
                f.debug_list().entries(slice.iter().copied()).finish()
 
            }
 
        }
 
    }
 
}
 

	
 
impl ValueImpl for MessageValue {
 
    fn exact_type(&self) -> Type {
 
        Type::MESSAGE
 
    }
 
    fn is_type_compatible(&self, t: &Type) -> bool {
 
        let Type { primitive, array } = t;
 
        if *array {
 
            return false;
 
        }
 
        match primitive {
 
            PrimitiveType::Message => true,
 
            _ => false,
 
        }
 
    fn is_type_compatible_hack(_h: &Heap, t: &ParserType) -> bool {
 
        return if let ParserTypeVariant::Message = t.variant { true } else { false };
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct BooleanValue(bool);
 

	
 
impl Display for BooleanValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{}", self.0)
 
    }
 
}
 

	
 
impl ValueImpl for BooleanValue {
 
    fn exact_type(&self) -> Type {
 
        Type::BOOLEAN
 
    }
 
    fn is_type_compatible(&self, t: &Type) -> bool {
 
        let Type { primitive, array } = t;
 
        if *array {
 
            return false;
 
        }
 
        match primitive {
 
            PrimitiveType::Boolean => true,
 
            PrimitiveType::Byte => true,
 
            PrimitiveType::Short => true,
 
            PrimitiveType::Int => true,
 
            PrimitiveType::Long => true,
 
            _ => false,
 
    fn is_type_compatible_hack(_h: &Heap, t: &ParserType) -> bool {
 
        use ParserTypeVariant::*;
 
        match t.variant {
 
            Bool | Byte | Short | Int | Long => true,
 
            _ => false
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct ByteValue(i8);
 

	
 
impl Display for ByteValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{}", self.0)
 
    }
 
}
 

	
 
impl ValueImpl for ByteValue {
 
    fn exact_type(&self) -> Type {
 
        Type::BYTE
 
    }
 
    fn is_type_compatible(&self, t: &Type) -> bool {
 
        let Type { primitive, array } = t;
 
        if *array {
 
            return false;
 
        }
 
        match primitive {
 
            PrimitiveType::Byte => true,
 
            PrimitiveType::Short => true,
 
            PrimitiveType::Int => true,
 
            PrimitiveType::Long => true,
 
            _ => false,
 
    fn is_type_compatible_hack(_h: &Heap, t: &ParserType) -> bool {
 
        use ParserTypeVariant::*;
 
        match t.variant {
 
            Byte | Short | Int | Long => true,
 
            _ => false
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct ShortValue(i16);
 

	
 
impl Display for ShortValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{}", self.0)
 
    }
 
}
 

	
 
impl ValueImpl for ShortValue {
 
    fn exact_type(&self) -> Type {
 
        Type::SHORT
 
    }
 
    fn is_type_compatible(&self, t: &Type) -> bool {
 
        let Type { primitive, array } = t;
 
        if *array {
 
            return false;
 
        }
 
        match primitive {
 
            PrimitiveType::Short => true,
 
            PrimitiveType::Int => true,
 
            PrimitiveType::Long => true,
 
            _ => false,
 
    fn is_type_compatible_hack(_h: &Heap, t: &ParserType) -> bool {
 
        use ParserTypeVariant::*;
 
        match t.variant {
 
            Short | Int | Long => true,
 
            _ => false
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct IntValue(i32);
 

	
 
impl Display for IntValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{}", self.0)
 
    }
 
}
 

	
 
impl ValueImpl for IntValue {
 
    fn exact_type(&self) -> Type {
 
        Type::INT
 
    }
 
    fn is_type_compatible(&self, t: &Type) -> bool {
 
        let Type { primitive, array } = t;
 
        if *array {
 
            return false;
 
        }
 
        match primitive {
 
            PrimitiveType::Int => true,
 
            PrimitiveType::Long => true,
 
            _ => false,
 
    fn is_type_compatible_hack(_h: &Heap, t: &ParserType) -> bool {
 
        use ParserTypeVariant::*;
 
        match t.variant {
 
            Int | Long => true,
 
            _ => false
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct LongValue(i64);
 

	
 
impl Display for LongValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{}", self.0)
 
    }
 
}
 

	
 
impl ValueImpl for LongValue {
 
    fn exact_type(&self) -> Type {
 
        Type::LONG
 
    }
 
    fn is_type_compatible(&self, t: &Type) -> bool {
 
        let Type { primitive, array } = t;
 
        if *array {
 
            return false;
 
        }
 
        match primitive {
 
            PrimitiveType::Long => true,
 
            _ => false,
 
        }
 
    fn is_type_compatible_hack(_h: &Heap, t: &ParserType) -> bool {
 
        return if let ParserTypeVariant::Long = t.variant { true } else { false }
 
    }
 
}
 

	
 
fn get_array_inner(t: &ParserType) -> Option<ParserTypeId> {
 
    match t.variant {
 
        ParserTypeVariant::Array(inner) => Some(inner),
 
        _ => None
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct InputArrayValue(Vec<InputValue>);
 

	
 
impl Display for InputArrayValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{{")?;
 
        let mut first = true;
 
        for v in self.0.iter() {
 
            if !first {
 
                write!(f, ",")?;
 
            }
 
            write!(f, "{}", v)?;
 
            first = false;
 
        }
 
        write!(f, "}}")
 
    }
 
}
 

	
 
impl ValueImpl for InputArrayValue {
 
    fn exact_type(&self) -> Type {
 
        Type::INPUT_ARRAY
 
    }
 
    fn is_type_compatible(&self, t: &Type) -> bool {
 
        let Type { primitive, array } = t;
 
        if !*array {
 
            return false;
 
        }
 
        match primitive {
 
            PrimitiveType::Input => true,
 
            _ => false,
 
        }
 
    fn is_type_compatible_hack(h: &Heap, t: &ParserType) -> bool {
 
        get_array_inner(t)
 
            .map(|v| InputValue::is_type_compatible_hack(h, &h[v]))
 
            .unwrap_or(false)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct OutputArrayValue(Vec<OutputValue>);
 

	
 
impl Display for OutputArrayValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{{")?;
 
        let mut first = true;
 
        for v in self.0.iter() {
 
            if !first {
 
                write!(f, ",")?;
 
            }
 
            write!(f, "{}", v)?;
 
            first = false;
 
        }
 
        write!(f, "}}")
 
    }
 
}
 

	
 
impl ValueImpl for OutputArrayValue {
 
    fn exact_type(&self) -> Type {
 
        Type::OUTPUT_ARRAY
 
    }
 
    fn is_type_compatible(&self, t: &Type) -> bool {
 
        let Type { primitive, array } = t;
 
        if !*array {
 
            return false;
 
        }
 
        match primitive {
 
            PrimitiveType::Output => true,
 
            _ => false,
 
        }
 
    fn is_type_compatible_hack(h: &Heap, t: &ParserType) -> bool {
 
        get_array_inner(t)
 
            .map(|v| OutputValue::is_type_compatible_hack(h, &h[v]))
 
            .unwrap_or(false)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct MessageArrayValue(Vec<MessageValue>);
 

	
 
impl Display for MessageArrayValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{{")?;
 
        let mut first = true;
 
        for v in self.0.iter() {
 
            if !first {
 
                write!(f, ",")?;
 
            }
 
            write!(f, "{}", v)?;
 
            first = false;
 
        }
 
        write!(f, "}}")
 
    }
 
}
 

	
 
impl ValueImpl for MessageArrayValue {
 
    fn exact_type(&self) -> Type {
 
        Type::MESSAGE_ARRAY
 
    }
 
    fn is_type_compatible(&self, t: &Type) -> bool {
 
        let Type { primitive, array } = t;
 
        if !*array {
 
            return false;
 
        }
 
        match primitive {
 
            PrimitiveType::Message => true,
 
            _ => false,
 
        }
 
    fn is_type_compatible_hack(h: &Heap, t: &ParserType) -> bool {
 
        get_array_inner(t)
 
            .map(|v| MessageValue::is_type_compatible_hack(h, &h[v]))
 
            .unwrap_or(false)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct BooleanArrayValue(Vec<BooleanValue>);
 

	
 
impl Display for BooleanArrayValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{{")?;
 
        let mut first = true;
 
        for v in self.0.iter() {
 
            if !first {
 
                write!(f, ",")?;
 
            }
 
            write!(f, "{}", v)?;
 
            first = false;
 
        }
 
        write!(f, "}}")
 
    }
 
}
 

	
 
impl ValueImpl for BooleanArrayValue {
 
    fn exact_type(&self) -> Type {
 
        Type::BOOLEAN_ARRAY
 
    }
 
    fn is_type_compatible(&self, t: &Type) -> bool {
 
        let Type { primitive, array } = t;
 
        if !*array {
 
            return false;
 
        }
 
        match primitive {
 
            PrimitiveType::Boolean => true,
 
            _ => false,
 
        }
 
    fn is_type_compatible_hack(h: &Heap, t: &ParserType) -> bool {
 
        get_array_inner(t)
 
            .map(|v| BooleanValue::is_type_compatible_hack(h, &h[v]))
 
            .unwrap_or(false)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct ByteArrayValue(Vec<ByteValue>);
 

	
 
impl Display for ByteArrayValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{{")?;
 
        let mut first = true;
 
        for v in self.0.iter() {
 
            if !first {
 
                write!(f, ",")?;
 
            }
 
            write!(f, "{}", v)?;
 
            first = false;
 
        }
 
        write!(f, "}}")
 
    }
 
}
 

	
 
impl ValueImpl for ByteArrayValue {
 
    fn exact_type(&self) -> Type {
 
        Type::BYTE_ARRAY
 
    }
 
    fn is_type_compatible(&self, t: &Type) -> bool {
 
        let Type { primitive, array } = t;
 
        if !*array {
 
            return false;
 
        }
 
        match primitive {
 
            PrimitiveType::Byte => true,
 
            _ => false,
 
        }
 
    fn is_type_compatible_hack(h: &Heap, t: &ParserType) -> bool {
 
        get_array_inner(t)
 
            .map(|v| ByteValue::is_type_compatible_hack(h, &h[v]))
 
            .unwrap_or(false)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct ShortArrayValue(Vec<ShortValue>);
 

	
 
impl Display for ShortArrayValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{{")?;
 
        let mut first = true;
 
        for v in self.0.iter() {
 
            if !first {
 
                write!(f, ",")?;
 
            }
 
            write!(f, "{}", v)?;
 
            first = false;
 
        }
 
        write!(f, "}}")
 
    }
 
}
 

	
 
impl ValueImpl for ShortArrayValue {
 
    fn exact_type(&self) -> Type {
 
        Type::SHORT_ARRAY
 
    }
 
    fn is_type_compatible(&self, t: &Type) -> bool {
 
        let Type { primitive, array } = t;
 
        if !*array {
 
            return false;
 
        }
 
        match primitive {
 
            PrimitiveType::Short => true,
 
            _ => false,
 
        }
 
    fn is_type_compatible_hack(h: &Heap, t: &ParserType) -> bool {
 
        get_array_inner(t)
 
            .map(|v| ShortValue::is_type_compatible_hack(h, &h[v]))
 
            .unwrap_or(false)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct IntArrayValue(Vec<IntValue>);
 

	
 
impl Display for IntArrayValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{{")?;
 
        let mut first = true;
 
        for v in self.0.iter() {
 
            if !first {
 
                write!(f, ",")?;
 
            }
 
            write!(f, "{}", v)?;
 
            first = false;
 
        }
 
        write!(f, "}}")
 
    }
 
}
 

	
 
impl ValueImpl for IntArrayValue {
 
    fn exact_type(&self) -> Type {
 
        Type::INT_ARRAY
 
    }
 
    fn is_type_compatible(&self, t: &Type) -> bool {
 
        let Type { primitive, array } = t;
 
        if !*array {
 
            return false;
 
        }
 
        match primitive {
 
            PrimitiveType::Int => true,
 
            _ => false,
 
        }
 
    fn is_type_compatible_hack(h: &Heap, t: &ParserType) -> bool {
 
        get_array_inner(t)
 
            .map(|v| IntValue::is_type_compatible_hack(h, &h[v]))
 
            .unwrap_or(false)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct LongArrayValue(Vec<LongValue>);
 

	
 
impl Display for LongArrayValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{{")?;
 
        let mut first = true;
 
        for v in self.0.iter() {
 
            if !first {
 
                write!(f, ",")?;
 
            }
 
            write!(f, "{}", v)?;
 
            first = false;
 
        }
 
        write!(f, "}}")
 
    }
 
}
 

	
 
impl ValueImpl for LongArrayValue {
 
    fn exact_type(&self) -> Type {
 
        Type::LONG_ARRAY
 
    }
 
    fn is_type_compatible(&self, t: &Type) -> bool {
 
        let Type { primitive, array } = t;
 
        if !*array {
 
            return false;
 
        }
 
        match primitive {
 
            PrimitiveType::Long => true,
 
            _ => false,
 
        }
 
    fn is_type_compatible_hack(h: &Heap, t: &ParserType) -> bool {
 
        get_array_inner(t)
 
            .map(|v| LongValue::is_type_compatible_hack(h, &h[v]))
 
            .unwrap_or(false)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
struct Store {
 
    map: HashMap<VariableId, Value>,
 
}
 
impl Store {
 
    fn new() -> Self {
 
        Store { map: HashMap::new() }
 
    }
 
    fn initialize(&mut self, h: &Heap, var: VariableId, value: Value) {
 
        // Ensure value is compatible with type of variable
 
        let the_type = h[var].the_type(h);
 
        assert!(value.is_type_compatible(the_type));
 
        let parser_type = match &h[var] {
 
            Variable::Local(v) => v.parser_type,
 
            Variable::Parameter(v) => v.parser_type,
 
        };
 
        assert!(value.is_type_compatible(h, &h[parser_type]));
 
        // Overwrite mapping
 
        self.map.insert(var, value.clone());
 
    }
 
    fn update(
 
        &mut self,
 
        h: &Heap,
 
        ctx: &mut EvalContext,
 
        lexpr: ExpressionId,
 
        value: Value,
 
    ) -> EvalResult {
 
        match &h[lexpr] {
 
            Expression::Variable(var) => {
 
                let var = var.declaration.unwrap();
 
                // Ensure value is compatible with type of variable
 
                let the_type = h[var].the_type(h);
 
                assert!(value.is_type_compatible(the_type));
 
                let parser_type_id = match &h[var] {
 
                    Variable::Local(v) => v.parser_type,
 
                    Variable::Parameter(v) => v.parser_type
 
                };
 
                let parser_type = &h[parser_type_id];
 
                assert!(value.is_type_compatible(h, parser_type));
 
                // Overwrite mapping
 
                self.map.insert(var, value.clone());
 
                Ok(value)
 
            }
 
            Expression::Indexing(indexing) => {
 
                // Evaluate index expression, which must be some integral type
 
                let index = self.eval(h, ctx, indexing.index)?;
 
                // Mutable reference to the subject
 
                let subject;
 
                match &h[indexing.subject] {
 
                    Expression::Variable(var) => {
 
                        let var = var.declaration.unwrap();
 
                        subject = self.map.get_mut(&var).unwrap();
 
                    }
 
                    _ => unreachable!(),
 
                }
 
                match subject.set(&index, &value) {
 
                    Some(value) => Ok(value),
 
                    None => Err(EvalContinuation::Inconsistent),
 
                }
 
            }
 
            _ => unimplemented!("{:?}", h[lexpr]),
 
        }
 
    }
 
    fn get(&mut self, h: &Heap, ctx: &mut EvalContext, rexpr: ExpressionId) -> EvalResult {
 
        match &h[rexpr] {
 
            Expression::Variable(var) => {
 
                let var_id = var.declaration.unwrap();
 
                let value = self
 
                    .map
 
                    .get(&var_id)
 
                    .expect(&format!("Uninitialized variable {:?}", String::from_utf8_lossy(&var.identifier.value)));
 
                Ok(value.clone())
 
            }
 
            Expression::Indexing(indexing) => {
 
                // Evaluate index expression, which must be some integral type
 
                let index = self.eval(h, ctx, indexing.index)?;
 
                // Reference to subject
 
                let subject;
 
                match &h[indexing.subject] {
 
                    Expression::Variable(var) => {
 
                        let var = var.declaration.unwrap();
 
                        subject = self.map.get(&var).unwrap();
 
                    }
 
                    q => unreachable!("Reached {:?}", q),
 
                }
 
                match subject.get(&index) {
 
                    Some(value) => Ok(value),
 
                    None => Err(EvalContinuation::Inconsistent),
 
                }
 
            }
 
            Expression::Select(selecting) => {
 
                // Reference to subject
 
                let subject;
 
                match &h[selecting.subject] {
 
                    Expression::Variable(var) => {
 
                        let var = var.declaration.unwrap();
 
                        subject = self.map.get(&var).unwrap();
 
                    }
 
                    q => unreachable!("Reached {:?}", q),
 
                }
 
                match subject.length() {
 
                    Some(value) => Ok(value),
 
                    None => Err(EvalContinuation::Inconsistent),
 
                }
 
            }
 
            _ => unimplemented!("{:?}", h[rexpr]),
 
        }
 
    }
 
    fn eval(&mut self, h: &Heap, ctx: &mut EvalContext, expr: ExpressionId) -> EvalResult {
 
        match &h[expr] {
 
            Expression::Assignment(expr) => {
 
                let value = self.eval(h, ctx, expr.right)?;
 
                match expr.operation {
 
                    AssignmentOperator::Set => {
 
                        self.update(h, ctx, expr.left, value.clone())?;
 
                    }
 
                    AssignmentOperator::Added => {
 
                        let old = self.get(h, ctx, expr.left)?;
 
                        self.update(h, ctx, expr.left, old.plus(&value))?;
 
                    }
 
                    AssignmentOperator::Subtracted => {
 
                        let old = self.get(h, ctx, expr.left)?;
 
                        self.update(h, ctx, expr.left, old.minus(&value))?;
 
                    }
 
                    _ => unimplemented!("{:?}", expr),
 
                }
 
                Ok(value)
 
            }
 
            Expression::Conditional(expr) => {
 
                let test = self.eval(h, ctx, expr.test)?;
 
                if test.as_boolean().0 {
 
                    self.eval(h, ctx, expr.true_expression)
 
                } else {
 
                    self.eval(h, ctx, expr.false_expression)
 
                }
 
@@ -1538,194 +1467,194 @@ impl Store {
 
                }
 
            }
 
            Expression::Unary(expr) => {
 
                let mut value = self.eval(h, ctx, expr.expression)?;
 
                match expr.operation {
 
                    UnaryOperation::PostIncrement => {
 
                        self.update(h, ctx, expr.expression, value.plus(&ONE))?;
 
                    }
 
                    UnaryOperation::PreIncrement => {
 
                        value = value.plus(&ONE);
 
                        self.update(h, ctx, expr.expression, value.clone())?;
 
                    }
 
                    UnaryOperation::PostDecrement => {
 
                        self.update(h, ctx, expr.expression, value.minus(&ONE))?;
 
                    }
 
                    UnaryOperation::PreDecrement => {
 
                        value = value.minus(&ONE);
 
                        self.update(h, ctx, expr.expression, value.clone())?;
 
                    }
 
                    _ => unimplemented!(),
 
                }
 
                Ok(value)
 
            }
 
            Expression::Indexing(expr) => self.get(h, ctx, expr.this.upcast()),
 
            Expression::Slicing(_expr) => unimplemented!(),
 
            Expression::Select(expr) => self.get(h, ctx, expr.this.upcast()),
 
            Expression::Array(expr) => {
 
                let mut elements = Vec::new();
 
                for &elem in expr.elements.iter() {
 
                    elements.push(self.eval(h, ctx, elem)?);
 
                }
 
                todo!()
 
            }
 
            Expression::Constant(expr) => Ok(Value::from_constant(&expr.value)),
 
            Expression::Call(expr) => match &expr.method {
 
                Method::Create => {
 
                    assert_eq!(1, expr.arguments.len());
 
                    let length = self.eval(h, ctx, expr.arguments[0])?;
 
                    Ok(Value::create_message(length))
 
                }
 
                Method::Fires => {
 
                    assert_eq!(1, expr.arguments.len());
 
                    let value = self.eval(h, ctx, expr.arguments[0])?;
 
                    match ctx.fires(value.clone()) {
 
                        None => Err(EvalContinuation::BlockFires(value)),
 
                        Some(result) => Ok(result),
 
                    }
 
                }
 
                Method::Get => {
 
                    assert_eq!(1, expr.arguments.len());
 
                    let value = self.eval(h, ctx, expr.arguments[0])?;
 
                    match ctx.get(value.clone()) {
 
                        None => Err(EvalContinuation::BlockGet(value)),
 
                        Some(result) => Ok(result),
 
                    }
 
                }
 
                Method::Symbolic(_symbol) => unimplemented!(),
 
            },
 
            Expression::Variable(expr) => self.get(h, ctx, expr.this.upcast()),
 
        }
 
    }
 
}
 

	
 
type EvalResult = Result<Value, EvalContinuation>;
 
pub enum EvalContinuation {
 
    Stepping,
 
    Inconsistent,
 
    Terminal,
 
    SyncBlockStart,
 
    SyncBlockEnd,
 
    NewComponent(DefinitionId, Vec<Value>),
 
    BlockFires(Value),
 
    BlockGet(Value),
 
    Put(Value, Value),
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub(crate) struct Prompt {
 
    definition: DefinitionId,
 
    store: Store,
 
    position: Option<StatementId>,
 
}
 

	
 
impl Prompt {
 
    pub fn new(h: &Heap, def: DefinitionId, args: &Vec<Value>) -> Self {
 
        let mut prompt =
 
            Prompt { definition: def, store: Store::new(), position: Some((&h[def]).body()) };
 
        prompt.set_arguments(h, args);
 
        prompt
 
    }
 
    fn set_arguments(&mut self, h: &Heap, args: &Vec<Value>) {
 
        let def = &h[self.definition];
 
        let params = def.parameters();
 
        assert_eq!(params.len(), args.len());
 
        for (param, value) in params.iter().zip(args.iter()) {
 
            let hparam = &h[*param];
 
            let type_annot = &h[hparam.type_annotation];
 
            assert!(value.is_type_compatible(&type_annot.the_type));
 
            let parser_type = &h[hparam.parser_type];
 
            assert!(value.is_type_compatible(h, parser_type));
 
            self.store.initialize(h, param.upcast(), value.clone());
 
        }
 
    }
 
    pub fn step(&mut self, h: &Heap, ctx: &mut EvalContext) -> EvalResult {
 
        if self.position.is_none() {
 
            return Err(EvalContinuation::Terminal);
 
        }
 

	
 
        let stmt = &h[self.position.unwrap()];
 
        match stmt {
 
            Statement::Block(stmt) => {
 
                // Continue to first statement
 
                self.position = Some(stmt.first());
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::Local(stmt) => {
 
                match stmt {
 
                    LocalStatement::Memory(stmt) => {
 
                        // Evaluate initial expression
 
                        let value = self.store.eval(h, ctx, stmt.initial)?;
 
                        // Update store
 
                        self.store.initialize(h, stmt.variable.upcast(), value);
 
                    }
 
                    LocalStatement::Channel(stmt) => {
 
                        let [from, to] = ctx.new_channel();
 
                        // Store the values in the declared variables
 
                        self.store.initialize(h, stmt.from.upcast(), from);
 
                        self.store.initialize(h, stmt.to.upcast(), to);
 
                    }
 
                }
 
                // Continue to next statement
 
                self.position = stmt.next();
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::Skip(stmt) => {
 
                // Continue to next statement
 
                self.position = stmt.next;
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::Labeled(stmt) => {
 
                // Continue to next statement
 
                self.position = Some(stmt.body);
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::If(stmt) => {
 
                // Evaluate test
 
                let value = self.store.eval(h, ctx, stmt.test)?;
 
                // Continue with either branch
 
                if value.as_boolean().0 {
 
                    self.position = Some(stmt.true_body);
 
                } else {
 
                    self.position = Some(stmt.false_body);
 
                }
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::EndIf(stmt) => {
 
                // Continue to next statement
 
                self.position = stmt.next;
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::While(stmt) => {
 
                // Evaluate test
 
                let value = self.store.eval(h, ctx, stmt.test)?;
 
                // Either continue with body, or go to next
 
                if value.as_boolean().0 {
 
                    self.position = Some(stmt.body);
 
                } else {
 
                    self.position = stmt.end_while.map(|x| x.upcast());
 
                }
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::EndWhile(stmt) => {
 
                // Continue to next statement
 
                self.position = stmt.next;
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::Synchronous(stmt) => {
 
                // Continue to next statement, and signal upward
 
                self.position = Some(stmt.body);
 
                Err(EvalContinuation::SyncBlockStart)
 
            }
 
            Statement::EndSynchronous(stmt) => {
 
                // Continue to next statement, and signal upward
 
                self.position = stmt.next;
 
                Err(EvalContinuation::SyncBlockEnd)
 
            }
 
            Statement::Break(stmt) => {
 
                // Continue to end of while
 
                self.position = stmt.target.map(EndWhileStatementId::upcast);
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::Continue(stmt) => {
 
                // Continue to beginning of while
 
                self.position = stmt.target.map(WhileStatementId::upcast);
 
                Err(EvalContinuation::Stepping)
 
            }
src/protocol/lexer.rs
Show inline comments
 
@@ -63,192 +63,199 @@ fn is_integer_rest(x: Option<u8>) -> bool {
 
        false
 
    }
 
}
 

	
 
fn lowercase(x: u8) -> u8 {
 
    if x >= b'A' && x <= b'Z' {
 
        x - b'A' + b'a'
 
    } else {
 
        x
 
    }
 
}
 

	
 
pub struct Lexer<'a> {
 
    source: &'a mut InputSource,
 
    level: usize,
 
}
 

	
 
impl Lexer<'_> {
 
    pub fn new(source: &mut InputSource) -> Lexer {
 
        Lexer { source, level: 0 }
 
    }
 
    fn error_at_pos(&self, msg: &str) -> ParseError2 {
 
        ParseError2::new_error(self.source, self.source.pos(), msg)
 
    }
 
    fn consume_line(&mut self) -> Result<Vec<u8>, ParseError2> {
 
        let mut result: Vec<u8> = Vec::new();
 
        let mut next = self.source.next();
 
        while next.is_some() && next != Some(b'\n') && next != Some(b'\r') {
 
            if !(is_vchar(next) || is_wsp(next)) {
 
                return Err(self.error_at_pos("Expected visible character or whitespace"));
 
            }
 
            result.push(next.unwrap());
 
            self.source.consume();
 
            next = self.source.next();
 
        }
 
        if next.is_some() {
 
            self.source.consume();
 
        }
 
        if next == Some(b'\r') && self.source.next() == Some(b'\n') {
 
            self.source.consume();
 
        }
 
        Ok(result)
 
    }
 
    fn consume_whitespace(&mut self, expected: bool) -> Result<(), ParseError2> {
 
        let mut found = false;
 
        let mut next = self.source.next();
 
        while next.is_some() {
 
            if next == Some(b' ')
 
                || next == Some(b'\t')
 
                || next == Some(b'\r')
 
                || next == Some(b'\n')
 
            {
 
                self.source.consume();
 
                next = self.source.next();
 
                found = true;
 
                continue;
 
            }
 
            if next == Some(b'/') {
 
                next = self.source.lookahead(1);
 
                if next == Some(b'/') {
 
                    self.source.consume(); // slash
 
                    self.source.consume(); // slash
 
                    self.consume_line()?;
 
                    next = self.source.next();
 
                    found = true;
 
                    continue;
 
                }
 
                if next == Some(b'*') {
 
                    self.source.consume(); // slash
 
                    self.source.consume(); // star
 
                    next = self.source.next();
 
                    while next.is_some() {
 
                        if next == Some(b'*') {
 
                            next = self.source.lookahead(1);
 
                            if next == Some(b'/') {
 
                                self.source.consume(); // star
 
                                self.source.consume(); // slash
 
                                break;
 
                            }
 
                        }
 
                        self.source.consume();
 
                        next = self.source.next();
 
                    }
 
                    next = self.source.next();
 
                    found = true;
 
                    continue;
 
                }
 
            }
 
            break;
 
        }
 
        if expected && !found {
 
            Err(self.error_at_pos("Expected whitespace"))
 
        } else {
 
            Ok(())
 
        }
 
    }
 
    fn consume_any_chars(&mut self) {
 
        if !is_ident_start(self.source.next()) { return }
 
        self.source.consume();
 
        while is_ident_rest(self.source.next()) {
 
            self.source.consume()
 
        }
 
    }
 
    fn has_keyword(&self, keyword: &[u8]) -> bool {
 
        if !self.source.has(keyword) {
 
            return false;
 
        }
 

	
 
        // Word boundary
 
        if let Some(next) = self.source.lookahead(keyword.len()) {
 
            !(next >= b'A' && next <= b'Z' || next >= b'a' && next <= b'z')
 
        } else {
 
            true
 
        }
 
    }
 
    fn consume_keyword(&mut self, keyword: &[u8]) -> Result<(), ParseError2> {
 
        let len = keyword.len();
 
        for i in 0..len {
 
            let expected = Some(lowercase(keyword[i]));
 
            let next = self.source.next();
 
            if next != expected {
 
                return Err(self.error_at_pos(&format!("Expected keyword '{}'", String::from_utf8_lossy(keyword))));
 
            }
 
            self.source.consume();
 
        }
 
        if let Some(next) = self.source.next() {
 
            if next >= b'A' && next <= b'Z' || next >= b'a' && next <= b'z' || next >= b'0' && next <= b'9' {
 
                return Err(self.error_at_pos(&format!("Expected word boundary after '{}'", String::from_utf8_lossy(keyword))));
 
            }
 
        }
 
        Ok(())
 
    }
 
    fn has_string(&self, string: &[u8]) -> bool {
 
        self.source.has(string)
 
    }
 
    fn consume_string(&mut self, string: &[u8]) -> Result<(), ParseError2> {
 
        let len = string.len();
 
        for i in 0..len {
 
            let expected = Some(string[i]);
 
            let next = self.source.next();
 
            if next != expected {
 
                return Err(self.error_at_pos(&format!("Expected {}", String::from_utf8_lossy(string))));
 
            }
 
            self.source.consume();
 
        }
 
        Ok(())
 
    }
 
    fn consume_ident(&mut self) -> Result<Vec<u8>, ParseError2> {
 
        if !self.has_identifier() {
 
            return Err(self.error_at_pos("Expected identifier"));
 
        }
 
        let mut result = Vec::new();
 
        let mut next = self.source.next();
 
        result.push(next.unwrap());
 
        self.source.consume();
 
        next = self.source.next();
 
        while is_ident_rest(next) {
 
            result.push(next.unwrap());
 
            self.source.consume();
 
            next = self.source.next();
 
        }
 
        Ok(result)
 
    }
 
    fn has_integer(&mut self) -> bool {
 
        is_integer_start(self.source.next())
 
    }
 
    fn consume_integer(&mut self) -> Result<i64, ParseError2> {
 
        let position = self.source.pos();
 
        let mut data = Vec::new();
 
        let mut next = self.source.next();
 
        while is_integer_rest(next) {
 
            data.push(next.unwrap());
 
            self.source.consume();
 
            next = self.source.next();
 
        }
 

	
 
        let data_len = data.len();
 
        debug_assert_ne!(data_len, 0);
 
        if data_len == 1 {
 
            debug_assert!(data[0] >= b'0' && data[0] <= b'9');
 
            return Ok((data[0] - b'0') as i64);
 
        } else {
 
            // TODO: Fix, u64 should be supported as well
 
            let parsed = if data[1] == b'b' {
 
                let data = String::from_utf8_lossy(&data[2..]);
 
                i64::from_str_radix(&data, 2)
 
            } else if data[1] == b'o' {
 
                let data = String::from_utf8_lossy(&data[2..]);
 
                i64::from_str_radix(&data, 8)
 
            } else if data[1] == b'x' {
 
                let data = String::from_utf8_lossy(&data[2..]);
 
                i64::from_str_radix(&data, 16)
 
            } else {
 
                // Assume decimal
 
                let data = String::from_utf8_lossy(&data);
 
                i64::from_str_radix(&data, 10)
 
            };
 

	
 
            if let Err(_err) = parsed {
 
@@ -274,486 +281,552 @@ impl Lexer<'_> {
 
            || self.has_keyword(b"goto")
 
            || self.has_keyword(b"new")
 
            || self.has_keyword(b"put") // TODO: @fix, should be a function, even though it has sideeffects
 
    }
 
    fn has_type_keyword(&self) -> bool {
 
        self.has_keyword(b"in")
 
            || self.has_keyword(b"out")
 
            || self.has_keyword(b"msg")
 
            || self.has_keyword(b"boolean")
 
            || self.has_keyword(b"byte")
 
            || self.has_keyword(b"short")
 
            || self.has_keyword(b"int")
 
            || self.has_keyword(b"long")
 
            || self.has_keyword(b"auto")
 
    }
 
    fn has_builtin_keyword(&self) -> bool {
 
        self.has_keyword(b"get")
 
            || self.has_keyword(b"fires")
 
            || self.has_keyword(b"create")
 
            || self.has_keyword(b"length")
 
    }
 
    fn has_reserved(&self) -> bool {
 
        self.has_statement_keyword()
 
            || self.has_type_keyword()
 
            || self.has_builtin_keyword()
 
            || self.has_keyword(b"let")
 
            || self.has_keyword(b"struct")
 
            || self.has_keyword(b"enum")
 
            || self.has_keyword(b"true")
 
            || self.has_keyword(b"false")
 
            || self.has_keyword(b"null")
 
    }
 

	
 
    // Identifiers
 

	
 
    fn has_identifier(&self) -> bool {
 
        if self.has_statement_keyword() || self.has_type_keyword() || self.has_builtin_keyword() {
 
            return false;
 
        }
 
        let next = self.source.next();
 
        is_ident_start(next)
 
    }
 
    fn consume_identifier(&mut self) -> Result<Identifier, ParseError2> {
 
        if self.has_statement_keyword() || self.has_type_keyword() || self.has_builtin_keyword() {
 
            return Err(self.error_at_pos("Expected identifier"));
 
        }
 
        let position = self.source.pos();
 
        let value = self.consume_ident()?;
 
        Ok(Identifier{ position, value })
 
    }
 
    fn consume_identifier_spilled(&mut self) -> Result<(), ParseError2> {
 
        if self.has_statement_keyword() || self.has_type_keyword() || self.has_builtin_keyword() {
 
            return Err(self.error_at_pos("Expected identifier"));
 
        }
 
        self.consume_ident()?;
 
        Ok(())
 
    }
 
    fn has_namespaced_identifier(&self) -> bool { 
 
        self.has_identifier() 
 
    }
 
    fn consume_namespaced_identifier(&mut self) -> Result<NamespacedIdentifier, ParseError2> {
 
        if self.has_reserved() {
 
            return Err(self.error_at_pos("Encountered reserved keyword"));
 
        }
 

	
 
        let position = self.source.pos();
 
        let mut ns_ident = self.consume_ident()?;
 
        let mut num_namespaces = 1;
 
        while self.has_string(b"::") {
 
            if num_namespaces >= MAX_NAMESPACES {
 
                return Err(self.error_at_pos("Too many namespaces in identifier"));
 
            }
 
            let new_ident = self.consume_ident()?;
 
            ns_ident.extend(b"::");
 
            ns_ident.extend(new_ident);
 
            num_namespaces += 1;
 
        }
 

	
 
        Ok(NamespacedIdentifier{
 
            position,
 
            value: ns_ident,
 
            num_namespaces,
 
        })
 
    }
 

	
 
    // Types and type annotations
 

	
 
    /// Consumes a type definition. When called the input position should be at
 
    /// the type specification. When done the input position will be at the end
 
    /// of the type specifications (hence may be at whitespace).
 
    fn consume_type2(&mut self, h: &mut Heap, allow_inference: bool) -> Result<ParserTypeId, ParseError2> {
 
        // Small helper function to convert in/out polymorphic arguments
 
        let reduce_port_poly_args = |
 
            heap: &mut Heap,
 
            port_pos: &InputPosition,
 
            args: Vec<ParserTypeId>,
 
        | {
 
        | -> Result<ParserTypeId, ()> {
 
            match args.len() {
 
                0 => Ok(h.alloc_parser_type(|this| ParserType{
 
                0 => Ok(heap.alloc_parser_type(|this| ParserType{
 
                        this,
 
                        pos: port_pos.clone(),
 
                        variant: ParserTypeVariant::Inferred
 
                })),
 
                1 => Ok(args[0]),
 
                _ => Err(())
 
            }
 
        };
 

	
 
        // Consume the type
 
        let pos = self.source.pos();
 
        let parser_type_variant = if self.has_keyword(b"msg") {
 
            self.consume_keyword(b"msg");
 
            ParserTypeVariant::Message
 
        } else if self.has_keyword(b"boolean") {
 
            self.consume_keyword(b"boolean");
 
            ParserTypeVariant::Bool
 
        } else if self.has_keyword(b"byte") {
 
            self.consume_keyword(b"byte");
 
            ParserTypeVariant::Byte
 
        } else if self.has_keyword(b"short") {
 
            self.consume_keyword(b"short");
 
            ParserTypeVariant::Short
 
        } else if self.has_keyword(b"int") {
 
            self.consume_keyword(b"int");
 
            ParserTypeVariant::Int
 
        } else if self.has_keyword(b"long") {
 
            self.consume_keyword(b"long");
 
            ParserTypeVariant::Long
 
        } else if self.has_keyword(b"str") {
 
            self.consume_keyword(b"str");
 
            ParserTypeVariant::String
 
        } else if self.has_keyword(b"auto") {
 
            if !allow_inference {
 
                return Err(ParseError2::new_error(
 
                        &self.source, pos,
 
                        "Type inference is not allowed here"
 
                ));
 
            }
 

	
 
            self.consume_keyword(b"auto");
 
            ParserTypeVariant::Inferred
 
        } else if self.has_keyword(b"in") {
 
            // TODO: @cleanup: not particularly neat to have this special case
 
            //  where we enforce polyargs in the parser-phase
 
            self.consume_keyword(b"in");
 
            let poly_args = self.consume_polymorphic_args(h, allow_inference)?;
 
            let poly_arg = reduce_port_poly_args(h, &pos, poly_args)
 
                .map_err(|| ParseError2::new_error(
 
                .map_err(|_| ParseError2::new_error(
 
                    &self.source, pos, "'in' type only accepts up to 1 polymorphic argument"
 
                ))?;
 
            ParserTypeVariant::Input(poly_arg)
 
        } else if self.has_keyword(b"out") {
 
            self.consume_keyword(b"out");
 
            let poly_args = self.consume_polymorphic_args(h, allow_inference)?;
 
            let poly_arg = reduce_port_poly_args(h, &pos, poly_args)
 
                .map_err(|| ParseError2::new_error(
 
                .map_err(|_| ParseError2::new_error(
 
                    &self.source, pos, "'out' type only accepts up to 1 polymorphic argument"
 
                ))?;
 
            ParserTypeVariant::Output(poly_arg)
 
        } else {
 
            // Must be a symbolic type
 
            let identifier = self.consume_namespaced_identifier()?;
 
            let poly_args = self.consume_polymorphic_args(h, allow_inference)?;
 
            ParserTypeVariant::Symbolic(SymbolicParserType{identifier, poly_args, variant: None})
 
        };
 

	
 
        // If the type was a basic type (not supporting polymorphic type
 
        // arguments), then we make sure the user did not specify any of them.
 
        let mut backup_pos = self.source.pos();
 
        if !parser_type.supports_polymorphic_args() {
 
        if !parser_type_variant.supports_polymorphic_args() {
 
            self.consume_whitespace(false)?;
 
            if let Some(b'<') = self.source.next() {
 
                return Err(ParseError2::new_error(
 
                    &self.source, self.source.pos(),
 
                    "This type does not allow polymorphic arguments"
 
                ));
 
            }
 

	
 
            self.source.seek(backup_pos);
 
        }
 

	
 
        let mut parser_type_id = h.alloc_parser_type(|this| ParserType{
 
            this, pos, variant: parser_type_variant
 
        });
 

	
 
        // If we're dealing with arrays, then we need to wrap the currently
 
        // parsed type in array types
 
        self.consume_whitespace(false)?;
 
        while let Some(b'[') = self.source.next() {
 
            let pos = self.source.pos();
 
            self.source.consume();
 
            self.consume_whitespace(false)?;
 
            if let Some(b']') = self.source.next() {
 
                // Type is wrapped in an array
 
                self.source.consume();
 
                parser_type_id = h.alloc_parser_type(|this| ParserType{
 
                    this, pos, variant: ParserTypeVariant::Array(parser_type_id)
 
                });
 
                backup_pos = self.source.pos();
 

	
 
                // In case we're dealing with another array
 
                self.consume_whitespace(false)?;
 
            } else {
 
                return Err(ParseError2::new_error(
 
                    &self.source, pos,
 
                    "Expected a closing ']'"
 
                ));
 
            }
 
        }
 

	
 
        self.source.seek(backup_pos);
 
        Ok(parser_type_id)
 
    }
 

	
 
    /// Consumes things that look like types. If everything seems to look like
 
    /// a type then `true` will be returned and the input position will be
 
    /// placed after the type. If it doesn't appear to be a type then `false`
 
    /// will be returned.
 
    /// TODO: @cleanup, this is not particularly pretty or robust, methinks
 
    fn maybe_consume_type_spilled(&mut self) -> bool {
 
        // Spilling polymorphic args. Don't care about the input position
 
        fn maybe_consume_polymorphic_args(v: &mut Lexer) -> bool {
 
            if v.consume_whitespace(false).is_err() { return false; }
 
            if let Some(b'<') = v.source.next() {
 
                v.source.consume();
 
                if v.consume_whitespace(false).is_err() { return false; }
 
                loop {
 
                    if !maybe_consume_type_inner(v) { return false; }
 
                    if v.consume_whitespace(false).is_err() { return false; }
 
                    let has_comma = v.source.next() == Some(b',');
 
                    if has_comma {
 
                        v.source.consume();
 
                        if v.consume_whitespace(false).is_err() { return false; }
 
                    }
 
                    if let Some(b'>') = v.source.next() {
 
                        v.source.consume();
 
                        break;
 
                    } else if !has_comma {
 
                        return false;
 
                    }
 
                }
 
            }
 
            return true;
 
        }
 

	
 
        // Inner recursive type parser. This method simply advances the lexer
 
        // and does not store the backup position in case parsing fails
 
        fn maybe_consume_type_inner(v: &mut Lexer) -> bool {
 
            // Consume type identifier and optional polymorphic args
 
            if v.has_type_keyword() {
 
                v.consume_any_chars()
 
            } else {
 
                let ident = v.consume_namespaced_identifier();
 
                if ident.is_err() { return false }
 
            }
 

	
 
            if !maybe_consume_polymorphic_args(v) { return false; }
 

	
 
            // Check if wrapped in array
 
            if v.consume_whitespace(false).is_err() { return false }
 
            while let Some(b'[') = v.source.next() {
 
                v.source.consume();
 
                if v.consume_whitespace(false).is_err() { return false; }
 
                if Some(b']') != v.source.next() { return false; }
 
                v.source.consume();
 
            }
 

	
 
            return true;
 
        }
 

	
 
        let backup_pos = self.source.pos();
 
        if !maybe_consume_type_inner(self) {
 
            // Not a type
 
            self.source.seek(backup_pos);
 
            return false;
 
        }
 

	
 
        return true;
 
    }
 

	
 
    /// Consumes polymorphic arguments and its delimiters if specified. The
 
    /// input position may be at whitespace. If polyargs are present then the
 
    /// whitespace and the args are consumed and the input position will be
 
    /// placed after the polyarg list. If polyargs are not present then the
 
    /// input position will remain unmodified and an empty vector will be
 
    /// returned.
 
    ///
 
    /// Polymorphic arguments represent the specification of the parametric
 
    /// types of a polymorphic type: they specify the value of the polymorphic
 
    /// type's polymorphic variables.
 
    fn consume_polymorphic_args(&mut self, h: &mut Heap, allow_inference: bool) -> Result<Vec<ParserTypeId>, ParseError2> {
 
        let backup_pos = self.source.pos();
 
        self.consume_whitespace(false)?;
 
        if let Some(b'<') = self.source.next() {
 
            // Has polymorphic args, at least one type must be specified
 
            self.source.consume();
 
            self.consume_whitespace(false)?;
 
            let mut poly_args = Vec::new();
 

	
 
            loop {
 
                // TODO: @cleanup, remove the no_more_types var
 
                poly_args.push(self.consume_type2(h, allow_inference)?);
 
                self.consume_whitespace(false)?;
 

	
 
                let has_comma = self.source.next() == Some(b',');
 
                if has_comma {
 
                    // We might not actually be getting more types when the
 
                    // comma is at the end of the line, and we get a closing
 
                    // angular bracket on the next line.
 
                    self.source.consume();
 
                    self.consume_whitespace(false)?;
 
                }
 

	
 
                if let Some(b'>') = self.source.next() {
 
                    self.source.consume();
 
                    break;
 
                } else if !has_comma {
 
                    return Err(ParseError2::new_error(
 
                        &self.source, self.source.pos(),
 
                        "Expected the end of the polymorphic argument list"
 
                    ))
 
                }
 
            }
 

	
 
            Ok(poly_args)
 
        } else {
 
            // No polymorphic args
 
            self.source.seek(backup_pos);
 
            Ok(vec!())
 
        }
 
    }
 

	
 
    /// Consumes polymorphic variables. These are identifiers that are used
 
    /// within polymorphic types. The input position may be at whitespace. If
 
    /// polymorphic variables are present then the whitespace, wrapping
 
    /// delimiters and the polymorphic variables are consumed. Otherwise the
 
    /// input position will stay where it is. If no polymorphic variables are
 
    /// present then an empty vector will be returned.
 
    fn consume_polymorphic_vars(&mut self) -> Result<Vec<Identifier>, ParseError2> {
 
        let backup_pos = self.source.pos();
 
        self.consume_whitespace(false)?;
 
        if let Some(b'<') = self.source.next() {
 
            // Found the opening delimiter, we want at least one polyvar
 
            self.source.consume();
 
            self.consume_whitespace(false)?;
 
            let mut poly_vars = Vec::new();
 

	
 
            loop {
 
                poly_vars.push(self.consume_identifier()?);
 
                self.consume_whitespace(false)?;
 

	
 
                let has_comma = self.source.next() == Some(b',');
 
                if has_comma {
 
                    // We may get another variable
 
                    self.source.consume();
 
                    self.consume_whitespace(false)?;
 
                }
 

	
 
                if let Some(b'>') = self.source.next() {
 
                    self.source.consume();
 
                    break;
 
                } else if !has_comma {
 
                    return Err(ParseError2::new_error(
 
                        &self.source, self.source.pos(),
 
                        "Expected the end of the polymorphic variable list"
 
                    ))
 
                }
 
            }
 

	
 
            Ok(poly_vars)
 
        } else {
 
            // No polymorphic args
 
            self.source.seek(backup_pos);
 
            Ok(vec!())
 
        }
 
    }
 

	
 
    fn consume_primitive_type(&mut self) -> Result<PrimitiveType, ParseError2> {
 
        if self.has_keyword(b"in") {
 
            self.consume_keyword(b"in")?;
 
            Ok(PrimitiveType::Input)
 
        } else if self.has_keyword(b"out") {
 
            self.consume_keyword(b"out")?;
 
            Ok(PrimitiveType::Output)
 
        } else if self.has_keyword(b"msg") {
 
            self.consume_keyword(b"msg")?;
 
            Ok(PrimitiveType::Message)
 
        } else if self.has_keyword(b"boolean") {
 
            self.consume_keyword(b"boolean")?;
 
            Ok(PrimitiveType::Boolean)
 
        } else if self.has_keyword(b"byte") {
 
            self.consume_keyword(b"byte")?;
 
            Ok(PrimitiveType::Byte)
 
        } else if self.has_keyword(b"short") {
 
            self.consume_keyword(b"short")?;
 
            Ok(PrimitiveType::Short)
 
        } else if self.has_keyword(b"int") {
 
            self.consume_keyword(b"int")?;
 
            Ok(PrimitiveType::Int)
 
        } else if self.has_keyword(b"long") {
 
            self.consume_keyword(b"long")?;
 
            Ok(PrimitiveType::Long)
 
        } else if self.has_keyword(b"auto") {
 
            // TODO: @types
 
            return Err(self.error_at_pos("inferred types using 'auto' are reserved, but not yet implemented"));
 
        } else {
 
            let identifier = self.consume_namespaced_identifier()?;
 
            Ok(PrimitiveType::Symbolic(PrimitiveSymbolic{
 
                identifier,
 
                definition: None
 
            }))
 
        }
 
    }
 
    fn has_array(&mut self) -> bool {
 
        let backup_pos = self.source.pos();
 
        let mut result = false;
 
        match self.consume_whitespace(false) {
 
            Ok(_) => result = self.has_string(b"["),
 
            Err(_) => {}
 
        }
 
        self.source.seek(backup_pos);
 
        return result;
 
    }
 
    fn consume_type(&mut self) -> Result<Type, ParseError2> {
 
        let primitive = self.consume_primitive_type()?;
 
        let array;
 
        if self.has_array() {
 
            self.consume_string(b"[]")?;
 
            array = true;
 
        } else {
 
            array = false;
 
        }
 
        Ok(Type { primitive, array })
 
    }
 
    fn create_type_annotation_input(&self, h: &mut Heap) -> Result<TypeAnnotationId, ParseError2> {
 
        let position = self.source.pos();
 
        let the_type = Type::INPUT;
 
        let id = h.alloc_type_annotation(|this| TypeAnnotation { this, position, the_type });
 
        Ok(id)
 
    }
 
    fn create_type_annotation_output(&self, h: &mut Heap) -> Result<TypeAnnotationId, ParseError2> {
 
        let position = self.source.pos();
 
        let the_type = Type::OUTPUT;
 
        let id = h.alloc_type_annotation(|this| TypeAnnotation { this, position, the_type });
 
        Ok(id)
 
    }
 
    fn consume_type_annotation(&mut self, h: &mut Heap) -> Result<TypeAnnotationId, ParseError2> {
 
        let position = self.source.pos();
 
        let the_type = self.consume_type()?;
 
        let id = h.alloc_type_annotation(|this| TypeAnnotation { this, position, the_type });
 
        Ok(id)
 
    }
 
    fn consume_type_annotation_spilled(&mut self) -> Result<(), ParseError2> {
 
        self.consume_type()?;
 
        Ok(())
 
    }
 
    // fn consume_primitive_type(&mut self) -> Result<PrimitiveType, ParseError2> {
 
    //     if self.has_keyword(b"in") {
 
    //         self.consume_keyword(b"in")?;
 
    //         Ok(PrimitiveType::Input)
 
    //     } else if self.has_keyword(b"out") {
 
    //         self.consume_keyword(b"out")?;
 
    //         Ok(PrimitiveType::Output)
 
    //     } else if self.has_keyword(b"msg") {
 
    //         self.consume_keyword(b"msg")?;
 
    //         Ok(PrimitiveType::Message)
 
    //     } else if self.has_keyword(b"boolean") {
 
    //         self.consume_keyword(b"boolean")?;
 
    //         Ok(PrimitiveType::Boolean)
 
    //     } else if self.has_keyword(b"byte") {
 
    //         self.consume_keyword(b"byte")?;
 
    //         Ok(PrimitiveType::Byte)
 
    //     } else if self.has_keyword(b"short") {
 
    //         self.consume_keyword(b"short")?;
 
    //         Ok(PrimitiveType::Short)
 
    //     } else if self.has_keyword(b"int") {
 
    //         self.consume_keyword(b"int")?;
 
    //         Ok(PrimitiveType::Int)
 
    //     } else if self.has_keyword(b"long") {
 
    //         self.consume_keyword(b"long")?;
 
    //         Ok(PrimitiveType::Long)
 
    //     } else if self.has_keyword(b"auto") {
 
    //         // TODO: @types
 
    //         return Err(self.error_at_pos("inferred types using 'auto' are reserved, but not yet implemented"));
 
    //     } else {
 
    //         let identifier = self.consume_namespaced_identifier()?;
 
    //         Ok(PrimitiveType::Symbolic(PrimitiveSymbolic{
 
    //             identifier,
 
    //             definition: None
 
    //         }))
 
    //     }
 
    // }
 
    // fn has_array(&mut self) -> bool {
 
    //     let backup_pos = self.source.pos();
 
    //     let mut result = false;
 
    //     match self.consume_whitespace(false) {
 
    //         Ok(_) => result = self.has_string(b"["),
 
    //         Err(_) => {}
 
    //     }
 
    //     self.source.seek(backup_pos);
 
    //     return result;
 
    // }
 
    // fn consume_type(&mut self) -> Result<Type, ParseError2> {
 
    //     let primitive = self.consume_primitive_type()?;
 
    //     let array;
 
    //     if self.has_array() {
 
    //         self.consume_string(b"[]")?;
 
    //         array = true;
 
    //     } else {
 
    //         array = false;
 
    //     }
 
    //     Ok(Type { primitive, array })
 
    // }
 
    // fn create_type_annotation_input(&self, h: &mut Heap) -> Result<TypeAnnotationId, ParseError2> {
 
    //     let position = self.source.pos();
 
    //     let the_type = Type::INPUT;
 
    //     let id = h.alloc_type_annotation(|this| TypeAnnotation { this, position, the_type });
 
    //     Ok(id)
 
    // }
 
    // fn create_type_annotation_output(&self, h: &mut Heap) -> Result<TypeAnnotationId, ParseError2> {
 
    //     let position = self.source.pos();
 
    //     let the_type = Type::OUTPUT;
 
    //     let id = h.alloc_type_annotation(|this| TypeAnnotation { this, position, the_type });
 
    //     Ok(id)
 
    // }
 
    // fn consume_type_annotation(&mut self, h: &mut Heap) -> Result<TypeAnnotationId, ParseError2> {
 
    //     let position = self.source.pos();
 
    //     let the_type = self.consume_type()?;
 
    //     let id = h.alloc_type_annotation(|this| TypeAnnotation { this, position, the_type });
 
    //     Ok(id)
 
    // }
 
    // fn consume_type_annotation_spilled(&mut self) -> Result<(), ParseError2> {
 
    //     self.consume_type()?;
 
    //     Ok(())
 
    // }
 

	
 
    // Parameters
 

	
 
    fn consume_parameter(&mut self, h: &mut Heap) -> Result<ParameterId, ParseError2> {
 
        let parser_type = self.consume_type2(h, false)?;
 
        self.consume_whitespace(true)?;
 
        let position = self.source.pos();
 
        let identifier = self.consume_identifier()?;
 
        let id =
 
            h.alloc_parameter(|this| Parameter { this, position, parser_type, identifier });
 
        Ok(id)
 
    }
 
    fn consume_parameters(
 
        &mut self,
 
        h: &mut Heap,
 
        params: &mut Vec<ParameterId>,
 
    ) -> Result<(), ParseError2> {
 
        self.consume_string(b"(")?;
 
        self.consume_whitespace(false)?;
 
        if !self.has_string(b")") {
 
            while self.source.next().is_some() {
 
                params.push(self.consume_parameter(h)?);
 
                self.consume_whitespace(false)?;
 
                if self.has_string(b")") {
 
                    break;
 
                }
 
                self.consume_string(b",")?;
 
                self.consume_whitespace(false)?;
 
            }
 
        }
 
        self.consume_string(b")")?;
 

	
 
        Ok(())
 
    }
 

	
 
    // ====================
 
    // Expressions
 
    // ====================
 

	
 
    fn consume_paren_expression(&mut self, h: &mut Heap) -> Result<ExpressionId, ParseError2> {
 
        self.consume_string(b"(")?;
 
        self.consume_whitespace(false)?;
 
        let result = self.consume_expression(h)?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b")")?;
 
        Ok(result)
 
    }
 
    fn consume_expression(&mut self, h: &mut Heap) -> Result<ExpressionId, ParseError2> {
 
        if self.level >= MAX_LEVEL {
 
            return Err(self.error_at_pos("Too deeply nested expression"));
 
        }
 
        self.level += 1;
 
        let result = self.consume_assignment_expression(h);
 
        self.level -= 1;
 
        result
 
    }
 
    fn consume_assignment_expression(&mut self, h: &mut Heap) -> Result<ExpressionId, ParseError2> {
 
        let result = self.consume_conditional_expression(h)?;
 
        self.consume_whitespace(false)?;
 
        if self.has_assignment_operator() {
 
            let position = self.source.pos();
 
            let left = result;
 
            let operation = self.consume_assignment_operator()?;
 
            self.consume_whitespace(false)?;
 
            let right = self.consume_expression(h)?;
 
            Ok(h.alloc_assignment_expression(|this| AssignmentExpression {
 
                this,
 
                position,
 
                left,
 
                operation,
 
                right,
 
            })
 
            .upcast())
 
        } else {
 
            Ok(result)
 
        }
 
    }
 
    fn has_assignment_operator(&self) -> bool {
 
        self.has_string(b"=")
 
            || self.has_string(b"*=")
 
            || self.has_string(b"/=")
 
            || self.has_string(b"%=")
 
            || self.has_string(b"+=")
 
            || self.has_string(b"-=")
 
            || self.has_string(b"<<=")
 
            || self.has_string(b">>=")
 
            || self.has_string(b"&=")
 
            || self.has_string(b"^=")
 
            || self.has_string(b"|=")
 
    }
 
    fn consume_assignment_operator(&mut self) -> Result<AssignmentOperator, ParseError2> {
 
        if self.has_string(b"=") {
 
            self.consume_string(b"=")?;
 
            Ok(AssignmentOperator::Set)
 
        } else if self.has_string(b"*=") {
 
            self.consume_string(b"*=")?;
 
@@ -1435,272 +1508,274 @@ impl Lexer<'_> {
 
        if self.level >= MAX_LEVEL {
 
            return Err(self.error_at_pos("Too deeply nested statement"));
 
        }
 
        self.level += 1;
 
        let result = self.consume_statement_impl(h, wrap_in_block);
 
        self.level -= 1;
 
        result
 
    }
 
    fn has_label(&mut self) -> bool {
 
        /* To prevent ambiguity with expression statements consisting
 
        only of an identifier, we look ahead and match the colon
 
        that signals a labeled statement. */
 
        let backup_pos = self.source.pos();
 
        let mut result = false;
 
        match self.consume_identifier_spilled() {
 
            Ok(_) => match self.consume_whitespace(false) {
 
                Ok(_) => {
 
                    result = self.has_string(b":");
 
                }
 
                Err(_) => {}
 
            },
 
            Err(_) => {}
 
        }
 
        self.source.seek(backup_pos);
 
        return result;
 
    }
 
    fn consume_statement_impl(&mut self, h: &mut Heap, wrap_in_block: bool) -> Result<StatementId, ParseError2> {
 
        // Parse and allocate statement
 
        let mut must_wrap = true;
 
        let mut stmt_id = if self.has_string(b"{") {
 
            must_wrap = false;
 
            self.consume_block_statement(h)?
 
        } else if self.has_keyword(b"skip") {
 
            must_wrap = false;
 
            self.consume_skip_statement(h)?.upcast()
 
        } else if self.has_keyword(b"if") {
 
            self.consume_if_statement(h)?.upcast()
 
        } else if self.has_keyword(b"while") {
 
            self.consume_while_statement(h)?.upcast()
 
        } else if self.has_keyword(b"break") {
 
            self.consume_break_statement(h)?.upcast()
 
        } else if self.has_keyword(b"continue") {
 
            self.consume_continue_statement(h)?.upcast()
 
        } else if self.has_keyword(b"synchronous") {
 
            self.consume_synchronous_statement(h)?.upcast()
 
        } else if self.has_keyword(b"return") {
 
            self.consume_return_statement(h)?.upcast()
 
        } else if self.has_keyword(b"assert") {
 
            self.consume_assert_statement(h)?.upcast()
 
        } else if self.has_keyword(b"goto") {
 
            self.consume_goto_statement(h)?.upcast()
 
        } else if self.has_keyword(b"new") {
 
            self.consume_new_statement(h)?.upcast()
 
        } else if self.has_keyword(b"put") {
 
            self.consume_put_statement(h)?.upcast()
 
        } else if self.has_label() {
 
            self.consume_labeled_statement(h)?.upcast()
 
        } else {
 
            self.consume_expression_statement(h)?.upcast()
 
        };
 

	
 
        // Wrap if desired and if needed
 
        if must_wrap && wrap_in_block {
 
            let position = h[stmt_id].position();
 
            let block_wrapper = h.alloc_block_statement(|this| BlockStatement{
 
                this,
 
                position,
 
                statements: vec![stmt_id],
 
                parent_scope: None,
 
                relative_pos_in_parent: 0,
 
                locals: Vec::new(),
 
                labels: Vec::new()
 
            });
 

	
 
            stmt_id = block_wrapper.upcast();
 
        }
 

	
 
        Ok(stmt_id)
 
    }
 
    fn has_local_statement(&mut self) -> bool {
 
        /* To avoid ambiguity, we look ahead to find either the
 
        channel keyword that signals a variable declaration, or
 
        a type annotation followed by another identifier.
 
        Example:
 
          my_type[] x = {5}; // memory statement
 
          my_var[5] = x; // assignment expression, expression statement
 
        Note how both the local and the assignment
 
        start with arbitrary identifier followed by [. */
 
        if self.has_keyword(b"channel") {
 
            return true;
 
        }
 
        if self.has_statement_keyword() {
 
            return false;
 
        }
 
        let backup_pos = self.source.pos();
 
        let mut result = false;
 
        if let Ok(_) = self.consume_type_annotation_spilled() {
 
            if let Ok(_) = self.consume_whitespace(false) {
 
        if self.maybe_consume_type_spilled() {
 
            // We seem to have a valid type, do we now have an identifier?
 
            if self.consume_whitespace(false).is_ok() {
 
                result = self.has_identifier();
 
            }
 
        }
 

	
 
        self.source.seek(backup_pos);
 
        return result;
 
    }
 
    fn consume_block_statement(&mut self, h: &mut Heap) -> Result<StatementId, ParseError2> {
 
        let position = self.source.pos();
 
        let mut statements = Vec::new();
 
        self.consume_string(b"{")?;
 
        self.consume_whitespace(false)?;
 
        while self.has_local_statement() {
 
            statements.push(self.consume_local_statement(h)?.upcast());
 
            self.consume_whitespace(false)?;
 
        }
 
        while !self.has_string(b"}") {
 
            statements.push(self.consume_statement(h, false)?);
 
            self.consume_whitespace(false)?;
 
        }
 
        self.consume_string(b"}")?;
 
        if statements.is_empty() {
 
            Ok(h.alloc_skip_statement(|this| SkipStatement { this, position, next: None }).upcast())
 
        } else {
 
            Ok(h.alloc_block_statement(|this| BlockStatement {
 
                this,
 
                position,
 
                statements,
 
                parent_scope: None,
 
                relative_pos_in_parent: 0,
 
                locals: Vec::new(),
 
                labels: Vec::new(),
 
            })
 
            .upcast())
 
        }
 
    }
 
    fn consume_local_statement(&mut self, h: &mut Heap) -> Result<LocalStatementId, ParseError2> {
 
        if self.has_keyword(b"channel") {
 
            Ok(self.consume_channel_statement(h)?.upcast())
 
        } else {
 
            Ok(self.consume_memory_statement(h)?.upcast())
 
        }
 
    }
 
    fn consume_channel_statement(
 
        &mut self,
 
        h: &mut Heap,
 
    ) -> Result<ChannelStatementId, ParseError2> {
 
        // Consume channel statement and polymorphic argument if specified
 
        let position = self.source.pos();
 
        self.consume_keyword(b"channel")?;
 

	
 
        let poly_args = self.consume_polymorphic_args(h, true)?;
 
        let poly_arg_id = match poly_args.len() {
 
            0 => h.alloc_parser_type(|this| ParserType{
 
                this, pos: position.clone(), variant: ParserTypeVariant::Inferred,
 
            }),
 
            1 => poly_args[0],
 
            _ => return Err(ParseError2::new_error(
 
                &self.source, self.source.pos(),
 
                "port construction using 'channel' accepts up to 1 polymorphic argument"
 
            ))
 
        };
 
        self.consume_whitespace(true)?;
 

	
 
        // Consume the output port
 
        let out_parser_type = h.alloc_parser_type(|this| ParserType{
 
            this, pos: position.clone(), variant: ParserTypeVariant::Output(poly_arg_id)
 
        });
 
        let out_identifier = self.consume_identifier()?;
 

	
 
        // Consume the "->" syntax
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b"->")?;
 
        self.consume_whitespace(false)?;
 

	
 
        // Consume the input port
 
        // TODO: Unsure about this, both ports refer to the same ParserType, is this ok?
 
        let in_parser_type = h.alloc_parser_type(|this| ParserType{
 
            this, pos: position.clone(), variant: ParserTypeVariant::Output(poly_arg_id)
 
            this, pos: position.clone(), variant: ParserTypeVariant::Input(poly_arg_id)
 
        });
 
        let in_identifier = self.consume_identifier()?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b";")?;
 
        let out_port = h.alloc_local(|this| Local {
 
            this,
 
            position,
 
            parser_type: out_parser_type,
 
            identifier: out_identifier,
 
            relative_pos_in_block: 0
 
        });
 
        let in_port = h.alloc_local(|this| Local {
 
            this,
 
            position,
 
            parser_type: in_parser_type,
 
            identifier: in_identifier,
 
            relative_pos_in_block: 0
 
        });
 
        Ok(h.alloc_channel_statement(|this| ChannelStatement {
 
            this,
 
            position,
 
            from: out_port,
 
            to: in_port,
 
            relative_pos_in_block: 0,
 
            next: None,
 
        }))
 
    }
 
    fn consume_memory_statement(&mut self, h: &mut Heap) -> Result<MemoryStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        let parser_type = self.consume_type2(h, true)?;
 
        self.consume_whitespace(true)?;
 
        let identifier = self.consume_identifier()?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b"=")?;
 
        self.consume_whitespace(false)?;
 
        let initial = self.consume_expression(h)?;
 
        let variable = h.alloc_local(|this| Local {
 
            this,
 
            position,
 
            parser_type,
 
            identifier,
 
            relative_pos_in_block: 0
 
        });
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b";")?;
 
        Ok(h.alloc_memory_statement(|this| MemoryStatement {
 
            this,
 
            position,
 
            variable,
 
            initial,
 
            next: None,
 
        }))
 
    }
 
    fn consume_labeled_statement(
 
        &mut self,
 
        h: &mut Heap,
 
    ) -> Result<LabeledStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        let label = self.consume_identifier()?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b":")?;
 
        self.consume_whitespace(false)?;
 
        let body = self.consume_statement(h, false)?;
 
        Ok(h.alloc_labeled_statement(|this| LabeledStatement {
 
            this,
 
            position,
 
            label,
 
            body,
 
            relative_pos_in_block: 0,
 
            in_sync: None,
 
        }))
 
    }
 
    fn consume_skip_statement(&mut self, h: &mut Heap) -> Result<SkipStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        self.consume_keyword(b"skip")?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b";")?;
 
        Ok(h.alloc_skip_statement(|this| SkipStatement { this, position, next: None }))
 
    }
 
    fn consume_if_statement(&mut self, h: &mut Heap) -> Result<IfStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        self.consume_keyword(b"if")?;
 
        self.consume_whitespace(false)?;
 
        let test = self.consume_paren_expression(h)?;
 
        self.consume_whitespace(false)?;
 
        let true_body = self.consume_statement(h, true)?;
 
        self.consume_whitespace(false)?;
 
        let false_body = if self.has_keyword(b"else") {
 
            self.consume_keyword(b"else")?;
 
            self.consume_whitespace(false)?;
 
            self.consume_statement(h, true)?
 
        } else {
 
            h.alloc_skip_statement(|this| SkipStatement { this, position, next: None }).upcast()
 
        };
 
        Ok(h.alloc_if_statement(|this| IfStatement { this, position, test, true_body, false_body, end_if: None }))
 
    }
 
@@ -1996,193 +2071,193 @@ impl Lexer<'_> {
 
                position: variant_position,
 
                identifier: variant_ident,
 
                value: variant_value
 
            });
 

	
 
            // If we have a comma, then we may or may not have another variant,
 
            // otherwise we expect the enum is fully defined
 
            next = self.source.next();
 
            if let Some(b',') = next {
 
                self.source.consume();
 
                self.consume_whitespace(false)?;
 
                next = self.source.next();
 
            } else {
 
                break;
 
            }
 
        }
 

	
 
        self.consume_string(b"}")?;
 

	
 
        // An enum without variants is somewhat valid, but completely useless
 
        // within the language
 
        if variants.is_empty() {
 
            return Err(ParseError2::new_error(self.source, enum_pos, "enum definition without variants"));
 
        }
 

	
 
        Ok(h.alloc_enum_definition(|this| EnumDefinition{
 
            this,
 
            position: enum_pos,
 
            identifier: enum_ident,
 
            poly_vars,
 
            variants,
 
        }))
 
    }
 
    fn consume_component_definition(&mut self, h: &mut Heap) -> Result<ComponentId, ParseError2> {
 
        // TODO: Cleanup
 
        if self.has_keyword(b"composite") {
 
            Ok(self.consume_composite_definition(h)?)
 
        } else {
 
            Ok(self.consume_primitive_definition(h)?)
 
        }
 
    }
 
    fn consume_composite_definition(&mut self, h: &mut Heap) -> Result<ComponentId, ParseError2> {
 
        // Parse keyword, optional polyvars and the identifier
 
        let position = self.source.pos();
 
        self.consume_keyword(b"composite")?;
 
        self.consume_whitespace(true)?;
 
        let identifier = self.consume_identifier()?;
 
        let poly_vars = self.consume_polymorphic_vars()?;
 
        self.consume_whitespace(false)?;
 

	
 
        // Consume parameters
 
        let mut parameters = Vec::new();
 
        self.consume_parameters(h, &mut parameters)?;
 
        self.consume_whitespace(false)?;
 

	
 
        // Parse body
 
        let body = self.consume_block_statement(h)?;
 
        Ok(h.alloc_component(|this| Component { 
 
            this,
 
            variant: ComponentVariant::Composite,
 
            position,
 
            identifier,
 
            poly_vars,
 
            parameters,
 
            body
 
        }))
 
    }
 
    fn consume_primitive_definition(&mut self, h: &mut Heap) -> Result<ComponentId, ParseError2> {
 
        // Consume keyword, optional polyvars and identifier
 
        let position = self.source.pos();
 
        self.consume_keyword(b"primitive")?;
 
        self.consume_whitespace(true)?;
 
        let identifier = self.consume_identifier()?;
 
        let poly_vars = self.consume_polymorphic_vars()?;
 
        self.consume_whitespace(false)?;
 

	
 
        // Consume parameters
 
        let mut parameters = Vec::new();
 
        self.consume_parameters(h, &mut parameters)?;
 
        self.consume_whitespace(false)?;
 

	
 
        // Consume body
 
        let body = self.consume_block_statement(h)?;
 
        Ok(h.alloc_component(|this| Component { 
 
            this,
 
            variant: ComponentVariant::Primitive,
 
            position,
 
            identifier,
 
            poly_vars,
 
            parameters,
 
            body
 
        }))
 
    }
 
    fn consume_function_definition(&mut self, h: &mut Heap) -> Result<FunctionId, ParseError2> {
 
        // Consume return type, optional polyvars and identifier
 
        let position = self.source.pos();
 
        let return_type = self.consume_type_annotation(h)?;
 
        let return_type = self.consume_type2(h, false)?;
 
        self.consume_whitespace(true)?;
 
        let identifier = self.consume_identifier()?;
 
        let poly_vars = self.consume_polymorphic_vars()?;
 
        self.consume_whitespace(false)?;
 

	
 
        // Consume parameters
 
        let mut parameters = Vec::new();
 
        self.consume_parameters(h, &mut parameters)?;
 
        self.consume_whitespace(false)?;
 

	
 
        // Consume body
 
        let body = self.consume_block_statement(h)?;
 
        Ok(h.alloc_function(|this| Function {
 
            this,
 
            position,
 
            return_type,
 
            identifier,
 
            poly_vars,
 
            parameters,
 
            body,
 
        }))
 
    }
 
    fn has_pragma(&self) -> bool {
 
        if let Some(c) = self.source.next() {
 
            c == b'#'
 
        } else {
 
            false
 
        }
 
    }
 
    fn consume_pragma(&mut self, h: &mut Heap) -> Result<PragmaId, ParseError2> {
 
        let position = self.source.pos();
 
        let next = self.source.next();
 
        if next != Some(b'#') {
 
            return Err(self.error_at_pos("Expected pragma"));
 
        }
 
        self.source.consume();
 
        if !is_vchar(self.source.next()) {
 
            return Err(self.error_at_pos("Expected pragma"));
 
        }
 
        if self.has_string(b"version") {
 
            self.consume_string(b"version")?;
 
            self.consume_whitespace(true)?;
 
            if !self.has_integer() {
 
                return Err(self.error_at_pos("Expected integer constant"));
 
            }
 
            let version = self.consume_integer()?;
 
            debug_assert!(version >= 0);
 
            return Ok(h.alloc_pragma(|this| Pragma::Version(PragmaVersion{
 
                this, position, version: version as u64
 
            })))
 
        } else if self.has_string(b"module") {
 
            self.consume_string(b"module")?;
 
            self.consume_whitespace(true)?;
 
            if !self.has_identifier() {
 
                return Err(self.error_at_pos("Expected identifier"));
 
            }
 
            let mut value = Vec::new();
 
            let mut ident = self.consume_ident()?;
 
            value.append(&mut ident);
 
            while self.has_string(b".") {
 
                self.consume_string(b".")?;
 
                value.push(b'.');
 
                ident = self.consume_ident()?;
 
                value.append(&mut ident);
 
            }
 
            return Ok(h.alloc_pragma(|this| Pragma::Module(PragmaModule{
 
                this, position, value
 
            })));
 
        } else {
 
            return Err(self.error_at_pos("Unknown pragma"));
 
        }
 
    }
 

	
 
    fn has_import(&self) -> bool {
 
        self.has_keyword(b"import")
 
    }
 
    fn consume_import(&mut self, h: &mut Heap) -> Result<ImportId, ParseError2> {
 
        // Parse the word "import" and the name of the module
 
        let position = self.source.pos();
 
        self.consume_keyword(b"import")?;
 
        self.consume_whitespace(true)?;
 
        let mut value = Vec::new();
 
        let mut ident = self.consume_ident()?;
 
        value.append(&mut ident);
 
        let mut last_ident_start = 0;
 

	
 
        while self.has_string(b".") {
 
            self.consume_string(b".")?;
 
            value.push(b'.');
 
            ident = self.consume_ident()?;
 
            last_ident_start = value.len();
 
            value.append(&mut ident);
 
        }
 

	
 

	
 
        self.consume_whitespace(false)?;
 
@@ -2252,396 +2327,418 @@ impl Lexer<'_> {
 
                    if let Some(b',') = next {
 
                        self.source.consume();
 
                        self.consume_whitespace(false)?;
 
                        next = self.source.next();
 
                    } else {
 
                        break;
 
                    }
 
                }
 

	
 
                if let Some(b'}') = next {
 
                    // We are fine, push the imported symbols
 
                    self.source.consume();
 
                    if symbols.is_empty() {
 
                        return Err(ParseError2::new_error(self.source, position, "empty symbol import list"));
 
                    }
 

	
 
                    h.alloc_import(|this| Import::Symbols(ImportSymbols{
 
                        this,
 
                        position,
 
                        module_name: value,
 
                        module_id: None,
 
                        symbols,
 
                    }))
 
                } else {
 
                    return Err(self.error_at_pos("Expected '}'"));
 
                }
 
            } else if let Some(b'*') = self.source.next() {
 
                // Import all symbols without alias
 
                self.source.consume();
 
                h.alloc_import(|this| Import::Symbols(ImportSymbols{
 
                    this,
 
                    position,
 
                    module_name: value,
 
                    module_id: None,
 
                    symbols: Vec::new()
 
                }))
 
            } else {
 
                return Err(self.error_at_pos("Expected '*' or '{'"));
 
            }
 
        } else {
 
            // No explicit alias or subimports, so implicit alias
 
            let alias = Vec::from(&value[last_ident_start..]);
 
            h.alloc_import(|this| Import::Module(ImportModule{
 
                this,
 
                position,
 
                module_name: value,
 
                alias,
 
                module_id: None,
 
            }))
 
        };
 

	
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b";")?;
 
        Ok(import)
 
    }
 
    pub fn consume_protocol_description(&mut self, h: &mut Heap) -> Result<RootId, ParseError2> {
 
        let position = self.source.pos();
 
        let mut pragmas = Vec::new();
 
        let mut imports = Vec::new();
 
        let mut definitions = Vec::new();
 
        self.consume_whitespace(false)?;
 
        while self.has_pragma() {
 
            let pragma = self.consume_pragma(h)?;
 
            pragmas.push(pragma);
 
            self.consume_whitespace(false)?;
 
        }
 
        while self.has_import() {
 
            let import = self.consume_import(h)?;
 
            imports.push(import);
 
            self.consume_whitespace(false)?;
 
        }
 
        while self.has_symbol_definition() {
 
            let def = self.consume_symbol_definition(h)?;
 
            definitions.push(def);
 
            self.consume_whitespace(false)?;
 
        }
 
        // end of file
 
        if !self.source.is_eof() {
 
            return Err(self.error_at_pos("Expected end of file"));
 
        }
 
        Ok(h.alloc_protocol_description(|this| Root {
 
            this,
 
            position,
 
            pragmas,
 
            imports,
 
            definitions,
 
        }))
 
    }
 
}
 

	
 
#[cfg(test)]
 
mod tests {
 
    use crate::protocol::ast::*;
 
    use crate::protocol::lexer::*;
 
    use crate::protocol::inputsource::*;
 

	
 
    #[derive(Debug, Eq, PartialEq)]
 
    enum ParserTypeClass {
 
        Message, Bool, Byte, Short, Int, Long, String, Array, Nope
 
    }
 
    impl ParserTypeClass {
 
        fn from(v: &ParserType) -> ParserTypeClass {
 
            use ParserTypeVariant as PTV;
 
            use ParserTypeClass as PTC;
 
            match &v.variant {
 
                PTV::Message => PTC::Message,
 
                PTV::Bool => PTC::Bool,
 
                PTV::Byte => PTC::Byte,
 
                PTV::Short => PTC::Short,
 
                PTV::Int => PTC::Int,
 
                PTV::Long => PTC::Long,
 
                PTV::String => PTC::String,
 
                PTV::Array(_) => PTC::Array,
 
                _ => PTC::Nope,
 
            }
 
        }
 
    }
 

	
 
    #[test]
 
    fn test_pragmas() {
 
        let mut h = Heap::new();
 
        let mut input = InputSource::from_string("
 
        #version 0o7777
 
        #module something.dot.separated
 
        ").expect("new InputSource");
 
        let mut lex = Lexer::new(&mut input);
 
        let lexed = lex.consume_protocol_description(&mut h)
 
            .expect("lex input source");
 
        let root = &h[lexed];
 
        assert_eq!(root.pragmas.len(), 2);
 
        let pv = &h[root.pragmas[0]];
 
        let pm = &h[root.pragmas[1]];
 

	
 
        if let Pragma::Version(v) = pv {
 
            assert_eq!(v.version, 0o7777)
 
        } else {
 
            assert!(false, "first pragma not version");
 
        }
 
        if let Pragma::Module(m) = pm {
 
            assert_eq!(m.value, b"something.dot.separated");
 
        } else {
 
            assert!(false, "second pragma not module");
 
        }
 
    }
 

	
 
    #[test]
 
    fn test_import() {
 
        let mut h = Heap::new();
 
        let mut input = InputSource::from_string("
 
        // Module imports, with optional and explicit aliasing
 
        import single_module;
 
        import std.reo;
 
        import something.other as alias;
 
        // Symbol imports
 
        import some_module::*;
 
        import some_module::{Foo as Bar, Qux, Dix as Flu};
 
        import std.reo::{
 
            Foo as Bar, // because thing
 
            Qux as Mox, // more explanations
 
            Dix, /* yesh, import me */
 
        };
 
        ").unwrap();
 
        let mut lex = Lexer::new(&mut input);
 
        let lexed = lex.consume_protocol_description(&mut h).unwrap();
 
        let root = &h[lexed];
 
        assert_eq!(root.imports.len(), 6);
 
        let no_alias_single = h[root.imports[0]].as_module();
 
        let no_alias_multi = h[root.imports[1]].as_module();
 
        let with_alias = h[root.imports[2]].as_module();
 

	
 
        assert_eq!(no_alias_single.module_name, b"single_module");
 
        assert_eq!(no_alias_single.alias, b"single_module");
 
        assert_eq!(no_alias_multi.module_name, b"std.reo");
 
        assert_eq!(no_alias_multi.alias, b"reo");
 
        assert_eq!(with_alias.module_name, b"something.other");
 
        assert_eq!(with_alias.alias, b"alias");
 

	
 
        let all_symbols = h[root.imports[3]].as_symbols();
 
        let single_line_symbols = h[root.imports[4]].as_symbols();
 
        let multi_line_symbols = h[root.imports[5]].as_symbols();
 

	
 
        assert_eq!(all_symbols.module_name, b"some_module");
 
        assert!(all_symbols.symbols.is_empty());
 
        assert_eq!(single_line_symbols.module_name, b"some_module");
 
        assert_eq!(single_line_symbols.symbols.len(), 3);
 
        assert_eq!(single_line_symbols.symbols[0].name, b"Foo");
 
        assert_eq!(single_line_symbols.symbols[0].alias, b"Bar");
 
        assert_eq!(single_line_symbols.symbols[1].name, b"Qux");
 
        assert_eq!(single_line_symbols.symbols[1].alias, b"Qux");
 
        assert_eq!(single_line_symbols.symbols[2].name, b"Dix");
 
        assert_eq!(single_line_symbols.symbols[2].alias, b"Flu");
 
        assert_eq!(multi_line_symbols.module_name, b"std.reo");
 
        assert_eq!(multi_line_symbols.symbols.len(), 3);
 
        assert_eq!(multi_line_symbols.symbols[0].name, b"Foo");
 
        assert_eq!(multi_line_symbols.symbols[0].alias, b"Bar");
 
        assert_eq!(multi_line_symbols.symbols[1].name, b"Qux");
 
        assert_eq!(multi_line_symbols.symbols[1].alias, b"Mox");
 
        assert_eq!(multi_line_symbols.symbols[2].name, b"Dix");
 
        assert_eq!(multi_line_symbols.symbols[2].alias, b"Dix");
 
    }
 

	
 
    #[test]
 
    fn test_struct_definition() {
 
        let mut h = Heap::new();
 
        let mut input = InputSource::from_string("
 
        struct Foo {
 
            byte one,
 
            short two,
 
            Bar three,
 
        }
 
        struct Bar{int[] one, int[] two, Qux[] three}
 
        ").unwrap();
 
        let mut lex = Lexer::new(&mut input);
 
        let lexed = lex.consume_protocol_description(&mut h);
 
        if let Err(err) = &lexed {
 
            println!("{}", err);
 
        }
 
        let lexed = lexed.unwrap();
 
        let root = &h[lexed];
 

	
 
        assert_eq!(root.definitions.len(), 2);
 

	
 
        let symbolic_type = |v: &PrimitiveType| -> Vec<u8> {
 
            if let PrimitiveType::Symbolic(v) = v {
 
                v.identifier.value.clone()
 
            } else {
 
                assert!(false);
 
                unreachable!();
 
            }
 
        };
 
        // let symbolic_type = |v: &PrimitiveType| -> Vec<u8> {
 
        //     if let PrimitiveType::Symbolic(v) = v {
 
        //         v.identifier.value.clone()
 
        //     } else {
 
        //         assert!(false);
 
        //         unreachable!();
 
        //     }
 
        // };
 

	
 
        let foo_def = h[root.definitions[0]].as_struct();
 
        assert_eq!(foo_def.identifier.value, b"Foo");
 
        assert_eq!(foo_def.fields.len(), 3);
 
        assert_eq!(foo_def.fields[0].field.value, b"one");
 
        assert_eq!(h[foo_def.fields[0].the_type].the_type, Type::BYTE);
 
        assert_eq!(ParserTypeClass::from(&h[foo_def.fields[0].parser_type]), ParserTypeClass::Byte);
 
        assert_eq!(foo_def.fields[1].field.value, b"two");
 
        assert_eq!(h[foo_def.fields[1].the_type].the_type, Type::SHORT);
 
        assert_eq!(ParserTypeClass::from(&h[foo_def.fields[1].parser_type]), ParserTypeClass::Short);
 
        assert_eq!(foo_def.fields[2].field.value, b"three");
 
        assert_eq!(
 
            symbolic_type(&h[foo_def.fields[2].the_type].the_type.primitive), 
 
            Vec::from("Bar".as_bytes())
 
        );
 
        // assert_eq!(
 
        //     symbolic_type(&h[foo_def.fields[2].the_type].the_type.primitive),
 
        //     Vec::from("Bar".as_bytes())
 
        // );
 

	
 
        let bar_def = h[root.definitions[1]].as_struct();
 
        assert_eq!(bar_def.identifier.value, b"Bar");
 
        assert_eq!(bar_def.fields.len(), 3);
 
        assert_eq!(bar_def.fields[0].field.value, b"one");
 
        assert_eq!(h[bar_def.fields[0].the_type].the_type, Type::INT_ARRAY);
 
        assert_eq!(ParserTypeClass::from(&h[bar_def.fields[0].parser_type]), ParserTypeClass::Array);
 
        assert_eq!(bar_def.fields[1].field.value, b"two");
 
        assert_eq!(h[bar_def.fields[1].the_type].the_type, Type::INT_ARRAY);
 
        assert_eq!(ParserTypeClass::from(&h[bar_def.fields[1].parser_type]), ParserTypeClass::Array);
 
        assert_eq!(bar_def.fields[2].field.value, b"three");
 
        assert_eq!(h[bar_def.fields[2].the_type].the_type.array, true);
 
        assert_eq!(
 
            symbolic_type(&h[bar_def.fields[2].the_type].the_type.primitive), 
 
            Vec::from("Qux".as_bytes())
 
        );
 
        assert_eq!(ParserTypeClass::from(&h[bar_def.fields[2].parser_type]), ParserTypeClass::Array);
 
        // assert_eq!(
 
        //     symbolic_type(&h[bar_def.fields[2].parser_type].the_type.primitive),
 
        //     Vec::from("Qux".as_bytes())
 
        // );
 
    }
 

	
 
    #[test]
 
    fn test_enum_definition() {
 
        let mut h = Heap::new();
 
        let mut input = InputSource::from_string("
 
        enum Foo {
 
            A = 0,
 
            B = 5,
 
            C,
 
            D = 0xFF,
 
        }
 
        enum Bar { Ayoo, Byoo, Cyoo,}
 
        enum Qux { A(byte[]), B(Bar[]), C(byte)
 
        }
 
        ").unwrap();
 
        let mut lex = Lexer::new(&mut input);
 
        let lexed = lex.consume_protocol_description(&mut h).unwrap();
 
        let root = &h[lexed];
 

	
 
        assert_eq!(root.definitions.len(), 3);
 

	
 
        let foo_def = h[root.definitions[0]].as_enum();
 
        assert_eq!(foo_def.identifier.value, b"Foo");
 
        assert_eq!(foo_def.variants.len(), 4);
 
        assert_eq!(foo_def.variants[0].identifier.value, b"A");
 
        assert_eq!(foo_def.variants[0].value, EnumVariantValue::Integer(0));
 
        assert_eq!(foo_def.variants[1].identifier.value, b"B");
 
        assert_eq!(foo_def.variants[1].value, EnumVariantValue::Integer(5));
 
        assert_eq!(foo_def.variants[2].identifier.value, b"C");
 
        assert_eq!(foo_def.variants[2].value, EnumVariantValue::None);
 
        assert_eq!(foo_def.variants[3].identifier.value, b"D");
 
        assert_eq!(foo_def.variants[3].value, EnumVariantValue::Integer(0xFF));
 

	
 
        let bar_def = h[root.definitions[1]].as_enum();
 
        assert_eq!(bar_def.identifier.value, b"Bar");
 
        assert_eq!(bar_def.variants.len(), 3);
 
        assert_eq!(bar_def.variants[0].identifier.value, b"Ayoo");
 
        assert_eq!(bar_def.variants[0].value, EnumVariantValue::None);
 
        assert_eq!(bar_def.variants[1].identifier.value, b"Byoo");
 
        assert_eq!(bar_def.variants[1].value, EnumVariantValue::None);
 
        assert_eq!(bar_def.variants[2].identifier.value, b"Cyoo");
 
        assert_eq!(bar_def.variants[2].value, EnumVariantValue::None);
 

	
 
        let qux_def = h[root.definitions[2]].as_enum();
 
        let enum_type = |value: &EnumVariantValue| -> &TypeAnnotation {
 
        let enum_type = |value: &EnumVariantValue| -> &ParserType {
 
            if let EnumVariantValue::Type(t) = value {
 
                &h[*t]
 
            } else {
 
                assert!(false);
 
                unreachable!();
 
            }
 
        };
 
        assert_eq!(qux_def.identifier.value, b"Qux");
 
        assert_eq!(qux_def.variants.len(), 3);
 
        assert_eq!(qux_def.variants[0].identifier.value, b"A");
 
        assert_eq!(enum_type(&qux_def.variants[0].value).the_type, Type::BYTE_ARRAY);
 
        assert_eq!(ParserTypeClass::from(enum_type(&qux_def.variants[0].value)), ParserTypeClass::Array);
 
        assert_eq!(qux_def.variants[1].identifier.value, b"B");
 
        assert_eq!(enum_type(&qux_def.variants[1].value).the_type.array, true);
 
        if let PrimitiveType::Symbolic(t) = &enum_type(&qux_def.variants[1].value).the_type.primitive {
 
            assert_eq!(t.identifier.value, Vec::from("Bar".as_bytes()));
 
        } else { assert!(false) }
 
        assert_eq!(ParserTypeClass::from(enum_type(&qux_def.variants[1].value)), ParserTypeClass::Array);
 
        // if let PrimitiveType::Symbolic(t) = &enum_type(&qux_def.variants[1].value).the_type.primitive {
 
        //     assert_eq!(t.identifier.value, Vec::from("Bar".as_bytes()));
 
        // } else { assert!(false) }
 

	
 
        assert_eq!(qux_def.variants[2].identifier.value, b"C");
 
        assert_eq!(enum_type(&qux_def.variants[2].value).the_type, Type::BYTE);
 
        assert_eq!(ParserTypeClass::from(enum_type(&qux_def.variants[2].value)), ParserTypeClass::Byte);
 
    }
 

	
 
//     #[test]
 
//     fn test_lowercase() {
 
//         assert_eq!(lowercase(b'a'), b'a');
 
//         assert_eq!(lowercase(b'A'), b'a');
 
//         assert_eq!(lowercase(b'z'), b'z');
 
//         assert_eq!(lowercase(b'Z'), b'z');
 
//     }
 

	
 
//     #[test]
 
//     fn test_basic_expression() {
 
//         let mut h = Heap::new();
 
//         let mut is = InputSource::from_string("a+b;").unwrap();
 
//         let mut lex = Lexer::new(&mut is);
 
//         match lex.consume_expression(&mut h) {
 
//             Ok(expr) => {
 
//                 println!("{:?}", expr);
 
//                 if let Binary(bin) = &h[expr] {
 
//                     if let Variable(left) = &h[bin.left] {
 
//                         if let Variable(right) = &h[bin.right] {
 
//                             assert_eq!("a", format!("{}", h[left.identifier]));
 
//                             assert_eq!("b", format!("{}", h[right.identifier]));
 
//                             assert_eq!(Some(b';'), is.next());
 
//                             return;
 
//                         }
 
//                     }
 
//                 }
 
//                 assert!(false);
 
//             }
 
//             Err(err) => {
 
//                 err.print(&is);
 
//                 assert!(false);
 
//             }
 
//         }
 
//     }
 

	
 
//     #[test]
 
//     fn test_paren_expression() {
 
//         let mut h = Heap::new();
 
//         let mut is = InputSource::from_string("(true)").unwrap();
 
//         let mut lex = Lexer::new(&mut is);
 
//         match lex.consume_paren_expression(&mut h) {
 
//             Ok(expr) => {
 
//                 println!("{:#?}", expr);
 
//                 if let Constant(con) = &h[expr] {
 
//                     if let ast::Constant::True = con.value {
 
//                         return;
 
//                     }
 
//                 }
 
//                 assert!(false);
 
//             }
 
//             Err(err) => {
 
//                 err.print(&is);
 
//                 assert!(false);
 
//             }
 
//         }
 
//     }
 

	
 
//     #[test]
 
//     fn test_expression() {
 
//         let mut h = Heap::new();
 
//         let mut is = InputSource::from_string("(x(1+5,get(y))-w[5])+z++\n").unwrap();
 
//         let mut lex = Lexer::new(&mut is);
 
//         match lex.consume_expression(&mut h) {
 
//             Ok(expr) => {
 
//                 println!("{:#?}", expr);
 
//             }
 
//             Err(err) => {
 
//                 err.print(&is);
 
//                 assert!(false);
 
//             }
 
//         }
 
//     }
 

	
 
//     #[test]
 
//     fn test_basic_statement() {
 
//         let mut h = Heap::new();
 
//         let mut is = InputSource::from_string("while (true) { skip; }").unwrap();
 
//         let mut lex = Lexer::new(&mut is);
 
//         match lex.consume_statement(&mut h) {
 
//             Ok(stmt) => {
 
//                 println!("{:#?}", stmt);
 
//                 if let Statement::While(w) = &h[stmt] {
 
//                     if let Expression::Constant(_) = h[w.test] {
 
//                         if let Statement::Block(_) = h[w.body] {
 
//                             return;
 
//                         }
 
//                     }
 
//                 }
 
//                 assert!(false);
 
//             }
 
//             Err(err) => {
 
//                 err.print(&is);
 
//                 assert!(false);
 
//             }
src/protocol/mod.rs
Show inline comments
 
mod arena;
 
// mod ast;
 
mod eval;
 
pub(crate) mod inputsource;
 
// mod lexer;
 
mod parser;
 

	
 
// TODO: Remove when not benchmarking
 
pub(crate) mod ast;
 
pub(crate) mod ast_printer;
 
pub(crate) mod lexer;
 

	
 
lazy_static::lazy_static! {
 
    /// Conveniently-provided protocol description initialized with a zero-length PDL string.
 
    /// Exposed to minimize repeated initializations of this common protocol description.
 
    pub static ref TRIVIAL_PD: std::sync::Arc<ProtocolDescription> = {
 
        std::sync::Arc::new(ProtocolDescription::parse(b"").unwrap())
 
    };
 
}
 

	
 
use crate::common::*;
 
use crate::protocol::ast::*;
 
use crate::protocol::eval::*;
 
use crate::protocol::inputsource::*;
 
use crate::protocol::parser::*;
 

	
 
/// Description of a protocol object, used to configure new connectors.
 
/// (De)serializable.
 
#[derive(serde::Serialize, serde::Deserialize)]
 
#[repr(C)]
 
pub struct ProtocolDescription {
 
    heap: Heap,
 
    source: InputSource,
 
    root: RootId,
 
}
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub(crate) struct ComponentState {
 
    prompt: Prompt,
 
}
 
pub(crate) enum EvalContext<'a> {
 
    Nonsync(&'a mut NonsyncProtoContext<'a>),
 
    Sync(&'a mut SyncProtoContext<'a>),
 
    // None,
 
}
 
//////////////////////////////////////////////
 

	
 
impl std::fmt::Debug for ProtocolDescription {
 
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
 
        write!(f, "(An opaque protocol description)")
 
    }
 
}
 
impl ProtocolDescription {
 
    pub fn parse(buffer: &[u8]) -> Result<Self, String> {
 
        // TODO: @fixme, keep code compilable, but needs support for multiple
 
        //  input files.
 
        let source = InputSource::from_buffer(buffer).unwrap();
 
        let mut parser = Parser::new();
 
        parser.feed(source).expect("failed to parse source");
 
        match parser.parse() {
 
            Ok(root) => {
 
                return Ok(ProtocolDescription { heap: parser.heap, source: parser.modules[0].source.clone(), root });
 
            }
 
            Err(err) => {
 
                println!("ERROR:\n{}", err);
 
                Err(format!("{}", err))
 
            }
 
        }
 
    }
 
    pub(crate) fn component_polarities(
 
        &self,
 
        identifier: &[u8],
 
    ) -> Result<Vec<Polarity>, AddComponentError> {
 
        use AddComponentError::*;
 
        let h = &self.heap;
 
        let root = &h[self.root];
 
        let def = root.get_definition_ident(h, identifier);
 
        if def.is_none() {
 
            return Err(NoSuchComponent);
 
        }
 
        let def = &h[def.unwrap()];
 
        if !def.is_component() {
 
            return Err(NoSuchComponent);
 
        }
 
        for &param in def.parameters().iter() {
 
            let param = &h[param];
 
            let type_annot = &h[param.type_annotation];
 
            if type_annot.the_type.array {
 
                return Err(NonPortTypeParameters);
 
            }
 
            match type_annot.the_type.primitive {
 
                PrimitiveType::Input | PrimitiveType::Output => continue,
 
            let parser_type = &h[param.parser_type];
 

	
 
            match parser_type.variant {
 
                ParserTypeVariant::Input(_) | ParserTypeVariant::Output(_) => continue,
 
                _ => {
 
                    return Err(NonPortTypeParameters);
 
                }
 
            }
 
        }
 
        let mut result = Vec::new();
 
        for &param in def.parameters().iter() {
 
            let param = &h[param];
 
            let type_annot = &h[param.type_annotation];
 
            let ptype = &type_annot.the_type.primitive;
 
            if ptype == &PrimitiveType::Input {
 
            let parser_type = &h[param.parser_type];
 

	
 
            if let ParserTypeVariant::Input(_) = parser_type.variant {
 
                result.push(Polarity::Getter)
 
            } else if ptype == &PrimitiveType::Output {
 
            } else if let ParserTypeVariant::Output(_) = parser_type.variant {
 
                result.push(Polarity::Putter)
 
            } else {
 
                unreachable!()
 
            }
 
        }
 
        Ok(result)
 
    }
 
    // expects port polarities to be correct
 
    pub(crate) fn new_component(&self, identifier: &[u8], ports: &[PortId]) -> ComponentState {
 
        let mut args = Vec::new();
 
        for (&x, y) in ports.iter().zip(self.component_polarities(identifier).unwrap()) {
 
            match y {
 
                Polarity::Getter => args.push(Value::Input(InputValue(x))),
 
                Polarity::Putter => args.push(Value::Output(OutputValue(x))),
 
            }
 
        }
 
        let h = &self.heap;
 
        let root = &h[self.root];
 
        let def = root.get_definition_ident(h, identifier).unwrap();
 
        ComponentState { prompt: Prompt::new(h, def, &args) }
 
    }
 
}
 
impl ComponentState {
 
    pub(crate) fn nonsync_run<'a: 'b, 'b>(
 
        &'a mut self,
 
        context: &'b mut NonsyncProtoContext<'b>,
 
        pd: &'a ProtocolDescription,
 
    ) -> NonsyncBlocker {
 
        let mut context = EvalContext::Nonsync(context);
 
        loop {
 
            let result = self.prompt.step(&pd.heap, &mut context);
 
            match result {
 
                // In component definitions, there are no return statements
 
                Ok(_) => unreachable!(),
 
                Err(cont) => match cont {
 
                    EvalContinuation::Stepping => continue,
 
                    EvalContinuation::Inconsistent => return NonsyncBlocker::Inconsistent,
 
                    EvalContinuation::Terminal => return NonsyncBlocker::ComponentExit,
 
                    EvalContinuation::SyncBlockStart => return NonsyncBlocker::SyncBlockStart,
 
                    // Not possible to end sync block if never entered one
 
                    EvalContinuation::SyncBlockEnd => unreachable!(),
 
                    EvalContinuation::NewComponent(definition_id, args) => {
 
                        // Look up definition (TODO for now, assume it is a definition)
 
                        let h = &pd.heap;
 
                        let init_state = ComponentState { prompt: Prompt::new(h, definition_id, &args) };
 
                        context.new_component(&args, init_state);
 
                        // Continue stepping
 
                        continue;
 
                    }
 
                    // Outside synchronous blocks, no fires/get/put happens
 
                    EvalContinuation::BlockFires(_) => unreachable!(),
 
                    EvalContinuation::BlockGet(_) => unreachable!(),
 
                    EvalContinuation::Put(_, _) => unreachable!(),
 
                },
 
            }
 
        }
 
    }
 

	
 
    pub(crate) fn sync_run<'a: 'b, 'b>(
 
        &'a mut self,
 
        context: &'b mut SyncProtoContext<'b>,
 
        pd: &'a ProtocolDescription,
 
    ) -> SyncBlocker {
 
        let mut context = EvalContext::Sync(context);
 
        loop {
 
            let result = self.prompt.step(&pd.heap, &mut context);
 
            match result {
 
                // Inside synchronous blocks, there are no return statements
 
                Ok(_) => unreachable!(),
 
                Err(cont) => match cont {
 
                    EvalContinuation::Stepping => continue,
 
                    EvalContinuation::Inconsistent => return SyncBlocker::Inconsistent,
 
                    // First need to exit synchronous block before definition may end
 
                    EvalContinuation::Terminal => unreachable!(),
 
                    // No nested synchronous blocks
 
                    EvalContinuation::SyncBlockStart => unreachable!(),
 
                    EvalContinuation::SyncBlockEnd => return SyncBlocker::SyncBlockEnd,
 
                    // Not possible to create component in sync block
 
                    EvalContinuation::NewComponent(_, _) => unreachable!(),
 
                    EvalContinuation::BlockFires(port) => match port {
 
                        Value::Output(OutputValue(port)) => {
 
                            return SyncBlocker::CouldntCheckFiring(port);
 
                        }
 
                        Value::Input(InputValue(port)) => {
 
                            return SyncBlocker::CouldntCheckFiring(port);
 
                        }
 
                        _ => unreachable!(),
 
                    },
 
                    EvalContinuation::BlockGet(port) => match port {
 
                        Value::Output(OutputValue(port)) => {
 
                            return SyncBlocker::CouldntReadMsg(port);
 
                        }
 
                        Value::Input(InputValue(port)) => {
 
                            return SyncBlocker::CouldntReadMsg(port);
 
                        }
 
                        _ => unreachable!(),
src/protocol/parser/depth_visitor.rs
Show inline comments
 
@@ -807,193 +807,193 @@ impl Visitor for BuildScope {
 
        recursive_block_statement(self, h, stmt)?;
 
        // Move scope back up
 
        self.scope = old;
 
        Ok(())
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        assert!(!self.scope.is_none());
 
        let old = self.scope;
 
        // First store the current scope
 
        h[stmt].parent_scope = self.scope;
 
        // Then move scope down to current sync
 
        // TODO: Should be legal-ish, but very wrong
 
        self.scope = Some(Scope::Synchronous((stmt, BlockStatementId(stmt.upcast()))));
 
        recursive_synchronous_statement(self, h, stmt)?;
 
        // Move scope back up
 
        self.scope = old;
 
        Ok(())
 
    }
 
    fn visit_expression(&mut self, _h: &mut Heap, _expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
pub(crate) struct UniqueStatementId(StatementId);
 

	
 
pub(crate) struct LinkStatements {
 
    prev: Option<UniqueStatementId>,
 
}
 

	
 
impl LinkStatements {
 
    pub(crate) fn new() -> Self {
 
        LinkStatements { prev: None }
 
    }
 
}
 

	
 
impl Visitor for LinkStatements {
 
    fn visit_symbol_definition(&mut self, h: &mut Heap, def: DefinitionId) -> VisitorResult {
 
        assert!(self.prev.is_none());
 
        recursive_symbol_definition(self, h, def)?;
 
        // Clear out last statement
 
        self.prev = None;
 
        Ok(())
 
    }
 
    fn visit_statement(&mut self, h: &mut Heap, stmt: StatementId) -> VisitorResult {
 
        if let Some(UniqueStatementId(prev)) = self.prev.take() {
 
            h[prev].link_next(stmt);
 
        }
 
        recursive_statement(self, h, stmt)
 
    }
 
    fn visit_local_statement(&mut self, _h: &mut Heap, stmt: LocalStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_labeled_statement(&mut self, h: &mut Heap, stmt: LabeledStatementId) -> VisitorResult {
 
        recursive_labeled_statement(self, h, stmt)
 
    }
 
    fn visit_skip_statement(&mut self, _h: &mut Heap, stmt: SkipStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_if_statement(&mut self, h: &mut Heap, stmt: IfStatementId) -> VisitorResult {
 
        // Link the two branches to the corresponding EndIf pseudo-statement
 
        let end_if_id = h[stmt].end_if;
 
        assert!(end_if_id.is_some());
 
        let end_if_id = end_if_id.unwrap();
 

	
 
        assert!(self.prev.is_none());
 
        self.visit_statement(h, h[stmt].true_body)?;
 
        if let Some(UniqueStatementId(prev)) = self.prev.take() {
 
            h[prev].link_next(end_if_id.upcast());
 
        }
 

	
 
        assert!(self.prev.is_none());
 
        self.visit_statement(h, h[stmt].false_body)?;
 
        if let Some(UniqueStatementId(prev)) = self.prev.take() {
 
            h[prev].link_next(end_if_id.upcast());
 
        }
 

	
 
        // Use the pseudo-statement as the statement where to update the next pointer
 
        // self.prev = Some(UniqueStatementId(end_if_id.upcast()));
 
        Ok(())
 
    }
 
    fn visit_end_if_statement(&mut self, _h: &mut Heap, stmt: EndIfStatementId) -> VisitorResult {
 
        assert!(self.prev.is_none());
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_while_statement(&mut self, h: &mut Heap, stmt: WhileStatementId) -> VisitorResult {
 
        // We allocate a pseudo-statement, to which the break statement finds its target
 
        // Update the while's next statement to point to the pseudo-statement
 
        let end_while_id = h[stmt].end_while;
 
        assert!(end_while_id.is_some());
 
        let end_while_id = end_while_id.unwrap();
 
        // let end_while_id = end_while_id.unwrap();
 

	
 
        assert!(self.prev.is_none());
 
        self.visit_statement(h, h[stmt].body)?;
 
        // The body's next statement loops back to the while statement itself
 
        // Note: continue statements also loop back to the while statement itself
 
        if let Some(UniqueStatementId(prev)) = self.prev.take() {
 
            h[prev].link_next(stmt.upcast());
 
        }
 
        // Use the while statement as the statement where the next pointer is updated
 
        // self.prev = Some(UniqueStatementId(end_while_id.upcast()));
 
        Ok(())
 
    }
 
    fn visit_end_while_statement(&mut self, _h: &mut Heap, stmt: EndWhileStatementId) -> VisitorResult {
 
        assert!(self.prev.is_none());
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_break_statement(&mut self, _h: &mut Heap, _stmt: BreakStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_continue_statement(
 
        &mut self,
 
        _h: &mut Heap,
 
        _stmt: ContinueStatementId,
 
    ) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
        stmt: SynchronousStatementId,
 
    ) -> VisitorResult {
 
        // Allocate a pseudo-statement, that is added for helping the evaluator to issue a command
 
        // that marks the end of the synchronous block. Every evaluation has to pause at this
 
        // point, only to resume later when the thread is selected as unique thread to continue.
 
        let end_sync_id = h[stmt].end_sync;
 
        assert!(end_sync_id.is_some());
 
        let end_sync_id = end_sync_id.unwrap();
 

	
 
        assert!(self.prev.is_none());
 
        self.visit_statement(h, h[stmt].body)?;
 
        // The body's next statement points to the pseudo element
 
        if let Some(UniqueStatementId(prev)) = self.prev.take() {
 
            h[prev].link_next(end_sync_id.upcast());
 
        }
 
        // Use the pseudo-statement as the statement where the next pointer is updated
 
        // self.prev = Some(UniqueStatementId(end_sync_id.upcast()));
 
        Ok(())
 
    }
 
    fn visit_end_synchronous_statement(&mut self, _h: &mut Heap, stmt: EndSynchronousStatementId) -> VisitorResult {
 
        assert!(self.prev.is_none());
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_return_statement(&mut self, _h: &mut Heap, _stmt: ReturnStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_assert_statement(&mut self, _h: &mut Heap, stmt: AssertStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_goto_statement(&mut self, _h: &mut Heap, _stmt: GotoStatementId) -> VisitorResult {
 
        Ok(())
 
    }
 
    fn visit_new_statement(&mut self, _h: &mut Heap, stmt: NewStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_put_statement(&mut self, _h: &mut Heap, stmt: PutStatementId) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_expression_statement(
 
        &mut self,
 
        _h: &mut Heap,
 
        stmt: ExpressionStatementId,
 
    ) -> VisitorResult {
 
        self.prev = Some(UniqueStatementId(stmt.upcast()));
 
        Ok(())
 
    }
 
    fn visit_expression(&mut self, _h: &mut Heap, _expr: ExpressionId) -> VisitorResult {
 
        Ok(())
 
    }
 
}
 

	
 
pub(crate) struct BuildLabels {
 
    block: Option<BlockStatementId>,
 
    sync_enclosure: Option<SynchronousStatementId>,
 
}
 

	
 
impl BuildLabels {
 
    pub(crate) fn new() -> Self {
 
        BuildLabels { block: None, sync_enclosure: None }
 
    }
 
}
 

	
src/protocol/parser/mod.rs
Show inline comments
 
mod depth_visitor;
 
mod symbol_table;
 
// mod type_table_old;
 
mod type_table;
 
mod type_table2;
 
mod type_resolver;
 
mod visitor;
 
mod visitor_linker;
 

	
 
use depth_visitor::*;
 
use symbol_table::SymbolTable;
 
use visitor::Visitor2;
 
use visitor_linker::ValidityAndLinkerVisitor;
 
use type_table::TypeTable;
 
use type_table::{TypeTable, TypeCtx};
 

	
 
use crate::protocol::ast::*;
 
use crate::protocol::inputsource::*;
 
use crate::protocol::lexer::*;
 

	
 
use std::collections::HashMap;
 
use crate::protocol::ast_printer::ASTWriter;
 

	
 
// TODO: @fixme, pub qualifier
 
pub(crate) struct LexedModule {
 
    pub(crate) source: InputSource,
 
    module_name: Vec<u8>,
 
    version: Option<u64>,
 
    root_id: RootId,
 
}
 

	
 
pub struct Parser {
 
    pub(crate) heap: Heap,
 
    pub(crate) modules: Vec<LexedModule>,
 
    pub(crate) module_lookup: HashMap<Vec<u8>, usize>, // from (optional) module name to `modules` idx
 
}
 

	
 
impl Parser {
 
    pub fn new() -> Self {
 
        Parser{
 
            heap: Heap::new(),
 
            modules: Vec::new(),
 
            module_lookup: HashMap::new()
 
        }
 
    }
 

	
 
    // TODO: @fix, temporary implementation to keep code compilable
 
    pub fn new_with_source(source: InputSource) -> Result<Self, ParseError2> {
 
        let mut parser = Parser::new();
 
        parser.feed(source)?;
 
        Ok(parser)
 
    }
 

	
 
    pub fn feed(&mut self, mut source: InputSource) -> Result<RootId, ParseError2> {
 
        // Lex the input source
 
        let mut lex = Lexer::new(&mut source);
 
        let pd = lex.consume_protocol_description(&mut self.heap)?;
 

	
 
        // Seek the module name and version
 
        let root = &self.heap[pd];
 
        let mut module_name_pos = InputPosition::default();
 
        let mut module_name = Vec::new();
 
        let mut module_version_pos = InputPosition::default();
 
        let mut module_version = None;
 

	
 
        for pragma in &root.pragmas {
 
            match &self.heap[*pragma] {
 
                Pragma::Module(module) => {
 
                    if !module_name.is_empty() {
 
                        return Err(
 
                            ParseError2::new_error(&source, module.position, "Double definition of module name in the same file")
 
                                .with_postfixed_info(&source, module_name_pos, "Previous definition was here")
 
                        )
 
                    }
 

	
 
                    module_name_pos = module.position.clone();
 
                    module_name = module.value.clone();
 
                },
 
                Pragma::Version(version) => {
 
                    if module_version.is_some() {
 
                        return Err(
 
                            ParseError2::new_error(&source, version.position, "Double definition of module version")
 
                                .with_postfixed_info(&source, module_version_pos, "Previous definition was here")
 
                        )
 
                    }
 

	
 
                    module_version_pos = version.position.clone();
 
                    module_version = Some(version.version);
 
                },
 
            }
 
        }
 

	
 
        // Add module to list of modules and prevent naming conflicts
 
        let cur_module_idx = self.modules.len();
 
        if let Some(prev_module_idx) = self.module_lookup.get(&module_name) {
 
            // Find `#module` statement in other module again
 
            let prev_module = &self.modules[*prev_module_idx];
 
            let prev_module_pos = self.heap[prev_module.root_id].pragmas
 
                .iter()
 
                .find_map(|p| {
 
                    match &self.heap[*p] {
 
                        Pragma::Module(module) => Some(module.position.clone()),
 
                        _ => None
 
                    }
 
                })
 
                .unwrap_or(InputPosition::default());
 

	
 
            let module_name_msg = if module_name.is_empty() {
 
                format!("a nameless module")
 
            } else {
 
                format!("module '{}'", String::from_utf8_lossy(&module_name))
 
            };
 

	
 
            return Err(
 
                ParseError2::new_error(&source, module_name_pos, &format!("Double definition of {} across files", module_name_msg))
 
                    .with_postfixed_info(&prev_module.source, prev_module_pos, "Other definition was here")
 
            );
 
        }
 

	
 
        self.modules.push(LexedModule{
 
            source,
 
            module_name: module_name.clone(),
 
            version: module_version,
 
            root_id: pd
 
        });
 
        self.module_lookup.insert(module_name, cur_module_idx);
 
        Ok(pd)
 
    }
 

	
 
    pub fn compile(&mut self) {
 
        // Build module lookup
 
    }
 

	
 
    fn resolve_symbols_and_types(&mut self) -> Result<(SymbolTable, TypeTable), ParseError2> {
 
        // Construct the symbol table to resolve any imports and/or definitions,
 
        // then use the symbol table to actually annotate all of the imports.
 
        // If the type table is constructed correctly then all imports MUST be
 
        // resolvable.
 
        // TODO: Update once namespaced identifiers are implemented
 
        let symbol_table = SymbolTable::new(&self.heap, &self.modules)?;
 

	
 
        // Not pretty, but we need to work around rust's borrowing rules, it is
 
        // totally safe to mutate the contents of an AST element that we are
 
        // not borrowing anywhere else.
 
        // TODO: Maybe directly access heap's members to allow borrowing from
 
        //  mutliple members of Heap? Not pretty though...
 
        let mut module_index = 0;
 
        let mut import_index = 0;
 
        loop {
 
            if module_index >= self.modules.len() {
 
                break;
 
            }
 

	
 
            let module_root_id = self.modules[module_index].root_id;
 
            let import_id = {
 
                let root = &self.heap[module_root_id];
 
                if import_index >= root.imports.len() {
 
                    module_index += 1;
 
                    import_index = 0;
 
                    continue
 
                }
 
                root.imports[import_index]
 
            };
 

	
 
            let import = &mut self.heap[import_id];
 
            match import {
 
                Import::Module(import) => {
 
                    debug_assert!(import.module_id.is_none(), "module import already resolved");
 
                    let target_module_id = symbol_table.resolve_module(&import.module_name)
 
                        .expect("module import is resolved by symbol table");
 
                    import.module_id = Some(target_module_id)
 
                },
 
                Import::Symbols(import) => {
 
                    debug_assert!(import.module_id.is_none(), "module of symbol import already resolved");
 
                    let target_module_id = symbol_table.resolve_module(&import.module_name)
 
                        .expect("symbol import's module is resolved by symbol table");
 
                    import.module_id = Some(target_module_id);
 

	
 
                    for symbol in &mut import.symbols {
 
                        debug_assert!(symbol.definition_id.is_none(), "symbol import already resolved");
 
                        let (_, target_definition_id) = symbol_table.resolve_symbol(module_root_id, &symbol.alias)
 
                            .expect("symbol import is resolved by symbol table")
 
                            .as_definition()
 
                            .expect("symbol import does not resolve to namespace symbol");
 
                        symbol.definition_id = Some(target_definition_id);
 
                    }
 
                }
 
            }
 
        }
 

	
 
        // All imports in the AST are now annotated. We now use the symbol table
 
        // to construct the type table.
 
        let type_table = TypeTable::new(&symbol_table, &self.heap, &self.modules)?;
 
        let type_ctx = TypeCtx::new(&symbol_table, &self.heap, &self.modules);
 
        let type_table = TypeTable::new(&type_ctx)?;
 

	
 
        Ok((symbol_table, type_table))
 
    }
 

	
 
    // TODO: @fix, temporary impl to keep code compilable
 
    pub fn parse(&mut self) -> Result<RootId, ParseError2> {
 
        assert_eq!(self.modules.len(), 1, "Fix meeeee");
 
        let root_id = self.modules[0].root_id;
 

	
 
        let (mut symbol_table, mut type_table) = self.resolve_symbols_and_types()?;
 

	
 
        // TODO: @cleanup
 
        let mut ctx = visitor::Ctx{
 
            heap: &mut self.heap,
 
            module: &self.modules[0],
 
            symbols: &mut symbol_table,
 
            types: &mut type_table,
 
        };
 
        let mut visit = ValidityAndLinkerVisitor::new();
 
        visit.visit_module(&mut ctx)?;
 

	
 
        if let Err((position, message)) = Self::parse_inner(&mut self.heap, root_id) {
 
            return Err(ParseError2::new_error(&self.modules[0].source, position, &message))
 
        }
 

	
 
        // let mut writer = ASTWriter::new();
 
        // let mut file = std::fs::File::create(std::path::Path::new("ast.txt")).unwrap();
 
        // writer.write_ast(&mut file, &self.heap);
 
        let mut writer = ASTWriter::new();
 
        let mut file = std::fs::File::create(std::path::Path::new("ast.txt")).unwrap();
 
        writer.write_ast(&mut file, &self.heap);
 

	
 
        Ok(root_id)
 
    }
 

	
 
    pub fn parse_inner(h: &mut Heap, pd: RootId) -> VisitorResult {
 
        // TODO: @cleanup, slowly phasing out old compiler
 
        // NestedSynchronousStatements::new().visit_protocol_description(h, pd)?;
 
        // ChannelStatementOccurrences::new().visit_protocol_description(h, pd)?;
 
        // FunctionStatementReturns::new().visit_protocol_description(h, pd)?;
 
        // ComponentStatementReturnNew::new().visit_protocol_description(h, pd)?;
 
        // CheckBuiltinOccurrences::new().visit_protocol_description(h, pd)?;
 
        // BuildSymbolDeclarations::new().visit_protocol_description(h, pd)?;
 
        // LinkCallExpressions::new().visit_protocol_description(h, pd)?;
 
        // BuildScope::new().visit_protocol_description(h, pd)?;
 
        // ResolveVariables::new().visit_protocol_description(h, pd)?;
 
        LinkStatements::new().visit_protocol_description(h, pd)?;
 
        // BuildLabels::new().visit_protocol_description(h, pd)?;
 
        // ResolveLabels::new().visit_protocol_description(h, pd)?;
 
        AssignableExpressions::new().visit_protocol_description(h, pd)?;
 
        IndexableExpressions::new().visit_protocol_description(h, pd)?;
 
        SelectableExpressions::new().visit_protocol_description(h, pd)?;
 

	
 
        Ok(())
 
    }
 
}
 

	
 
#[cfg(test)]
 
mod tests {
 
    use std::fs::File;
 
    use std::io::Read;
 
    use std::path::Path;
 

	
 
    use super::*;
 

	
 
    // #[test]
 
    fn positive_tests() {
 
        for resource in TestFileIter::new("testdata/parser/positive", "pdl") {
 
            let resource = resource.expect("read testdata filepath");
 
            // println!(" * running: {}", &resource);
 
            let path = Path::new(&resource);
 
            let source = InputSource::from_file(&path).unwrap();
 
            // println!("DEBUG -- input:\n{}", String::from_utf8_lossy(&source.input));
 
            let mut parser = Parser::new_with_source(source).expect("parse source");
 
            match parser.parse() {
 
                Ok(_) => {}
 
                Err(err) => {
 
                    println!(" > file: {}", &resource);
 
                    println!("{}", err);
 
                    assert!(false);
 
                }
 
            }
 
        }
 
    }
 

	
 
    // #[test]
 
    fn negative_tests() {
 
        for resource in TestFileIter::new("testdata/parser/negative", "pdl") {
 
            let resource = resource.expect("read testdata filepath");
 
            let path = Path::new(&resource);
 
            let expect = path.with_extension("txt");
 
            let mut source = InputSource::from_file(&path).unwrap();
 
            let mut parser = Parser::new_with_source(source).expect("construct parser");
 
            match parser.parse() {
 
                Ok(pd) => {
 
                    println!("Expected parse error:");
 

	
 
                    let mut cev: Vec<u8> = Vec::new();
 
                    let mut f = File::open(expect).unwrap();
 
                    f.read_to_end(&mut cev).unwrap();
 
                    println!("{}", String::from_utf8_lossy(&cev));
 
                    assert!(false);
 
                }
 
                Err(err) => {
 
                    let expected = format!("{}", err);
 
                    println!("{}", &expected);
 

	
 
                    let mut cev: Vec<u8> = Vec::new();
 
                    let mut f = File::open(expect).unwrap();
 
                    f.read_to_end(&mut cev).unwrap();
 
                    println!("{}", String::from_utf8_lossy(&cev));
 

	
 
                    assert_eq!(expected.as_bytes(), cev);
 
                }
 
            }
 
        }
 
    }
 

	
 
    // #[test]
 
    fn counterexample_tests() {
 
        for resource in TestFileIter::new("testdata/parser/counterexamples", "pdl") {
 
            let resource = resource.expect("read testdata filepath");
 
            let path = Path::new(&resource);
 
            let source = InputSource::from_file(&path).unwrap();
 
            let mut parser = Parser::new_with_source(source).expect("construct parser");
 

	
 
            fn print_header(s: &str) {

Changeset was too big and was cut off... Show full diff anyway

0 comments (0 inline, 0 general)