Changeset - febea00022c7
[Not reviewed]
0 1 0
mh - 3 years ago 2022-03-04 16:35:47
contact@maxhenger.nl
WIP: Start fixing consensus issues
1 file changed with 51 insertions and 25 deletions:
0 comments (0 inline, 0 general)
src/runtime2/component/consensus.rs
Show inline comments
 
use crate::protocol::eval::ValueGroup;
 
use crate::runtime2::scheduler::*;
 
use crate::runtime2::runtime::*;
 
use crate::runtime2::communication::*;
 

	
 
use super::component_context::*;
 

	
 
pub struct PortAnnotation {
 
    self_comp_id: CompId,
 
    self_port_id: PortId,
 
    peer_comp_id: CompId, // only valid for getter ports
 
    peer_port_id: PortId, // only valid for getter ports
 
    peer_discovered: bool, // only valid for getter ports
 
    mapping: Option<u32>,
 
    kind: PortKind,
 
}
 

	
 
impl PortAnnotation {
 
    fn new(comp_id: CompId, port_id: PortId, kind: PortKind) -> Self {
 
        return Self{
 
            self_comp_id: comp_id,
 
            self_port_id: port_id,
 
            peer_comp_id: CompId::new_invalid(),
 
            peer_port_id: PortId::new_invalid(),
 
            peer_discovered: false,
 
            mapping: None,
 
            kind,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Eq, PartialEq)]
 
enum Mode {
 
    NonSync,
 
    SyncBusy,
 
    SyncAwaitingSolution,
 
    SelectBusy,
 
    SelectWait,
 
}
 

	
 
struct SolutionCombiner {
 
    solution: SyncPartialSolution,
 
    matched_channels: usize,
 
}
 

	
 
impl SolutionCombiner {
 
    fn new() -> Self {
 
        return Self {
 
            solution: SyncPartialSolution::default(),
 
            matched_channels: 0,
 
        }
 
    }
 

	
 
    #[inline]
 
    fn has_contributions(&self) -> bool {
 
        return !self.solution.channel_mapping.is_empty();
 
    }
 

	
 
    /// Returns a decision for the current round. If there is no decision (yet)
 
    /// then `RoundDecision::None` is returned.
 
    fn get_decision(&self) -> SyncRoundDecision {
 
        if self.matched_channels == self.solution.channel_mapping.len() {
 
            debug_assert_ne!(self.solution.decision, SyncRoundDecision::None);
 
            return self.solution.decision;
 
        }
 

	
 
        return SyncRoundDecision::None; // even in case of failure: wait for everyone.
 
    }
 

	
 
    fn combine_with_partial_solution(&mut self, partial: SyncPartialSolution) {
 
        debug_assert_ne!(self.solution.decision, SyncRoundDecision::Solution);
 
        debug_assert_ne!(partial.decision, SyncRoundDecision::Solution);
 

	
 
        if partial.decision == SyncRoundDecision::Failure {
 
            self.solution.decision = SyncRoundDecision::Failure;
 
        }
 

	
 
        for entry in partial.channel_mapping {
 
            let channel_index = if entry.getter.is_some() && entry.putter.is_some() {
 
                let channel_index = self.solution.channel_mapping.len();
 
                self.solution.channel_mapping.push(entry);
 
                self.matched_channels += 1;
 

	
 
                channel_index
 
            } else if let Some(putter) = entry.putter {
 
                self.combine_with_putter_port(putter)
 
            } else if let Some(getter) = entry.getter {
 
                self.combine_with_getter_port(getter)
 
            } else {
 
                unreachable!(); // both putter and getter are None
 
            };
 

	
 
            let channel = &self.solution.channel_mapping[channel_index];
 
            if let Some(consistent) = Self::channel_is_consistent(channel) {
 
                if !consistent {
 
                    self.solution.decision = SyncRoundDecision::Failure;
 
                }
 
                self.matched_channels += 1;
 
            }
 
        }
 

	
 
        self.update_solution();
 
    }
 

	
 
    /// Combines the currently stored global solution (if any) with the newly
 
    /// provided local solution. Make sure to check the `has_decision` return
 
    /// value afterwards.
 
    fn combine_with_local_solution(&mut self, _comp_id: CompId, solution: SyncLocalSolution) {
 
        debug_assert_ne!(self.solution.decision, SyncRoundDecision::Solution);
 

	
 
        // Combine partial solution with the local solution entries
 
        for entry in solution {
 
            // Match the current entry up with its peer endpoint, or add a new
 
            // entry.
 
            let channel_index = match entry {
 
                SyncLocalSolutionEntry::Putter(putter) => {
 
                    self.combine_with_putter_port(putter)
 
                },
 
                SyncLocalSolutionEntry::Getter(getter) => {
 
                    self.combine_with_getter_port(getter)
 
                }
 
            };
 

	
 
            // Check if channel is now consistent
 
            let channel = &self.solution.channel_mapping[channel_index];
 
            if let Some(consistent) = Self::channel_is_consistent(channel) {
 
                if !consistent {
 
                    self.solution.decision = SyncRoundDecision::Failure;
 
                }
 
                self.matched_channels += 1;
 
            }
 
        }
 

	
 
        self.update_solution();
 
    }
 

	
 
    /// Takes whatever partial solution is present in the solution combiner and
 
    /// returns it. The solution combiner's solution will end up being empty.
 
    /// This is used when a new leader is found and we need to pass along our
 
    /// partial results.
 
    fn take_partial_solution(&mut self) -> SyncPartialSolution {
 
        let mut partial_solution = SyncPartialSolution::default();
 
        std::mem::swap(&mut partial_solution, &mut self.solution);
 
        self.clear();
 

	
 
        return partial_solution;
 
    }
 

	
 
    fn clear(&mut self) {
 
        self.solution.channel_mapping.clear();
 
        self.solution.decision = SyncRoundDecision::None;
 
        self.matched_channels = 0;
 
    }
 

	
 
    // --- Small utilities for combining solutions
 

	
 
    fn combine_with_putter_port(&mut self, putter: SyncSolutionPutterPort) -> usize {
 
        let channel_index = self.get_channel_index_for_putter(putter.self_comp_id, putter.self_port_id);
 
        if let Some(channel_index) = channel_index {
 
            let channel = &mut self.solution.channel_mapping[channel_index];
 
            debug_assert!(channel.putter.is_none());
 
            channel.putter = Some(putter);
 

	
 
            return channel_index;
 
        } else {
 
            let channel_index = self.solution.channel_mapping.len();
 
            self.solution.channel_mapping.push(SyncSolutionChannel{
 
                putter: Some(putter),
 
                getter: None,
 
            });
 

	
 
            return channel_index;
 
        }
 
    }
 

	
 
    fn combine_with_getter_port(&mut self, getter: SyncSolutionGetterPort) -> usize {
 
        let channel_index = self.get_channel_index_for_getter(getter.peer_comp_id, getter.peer_port_id);
 
        if let Some(channel_index) = channel_index {
 
            let channel = &mut self.solution.channel_mapping[channel_index];
 
            debug_assert!(channel.getter.is_none());
 
            channel.getter = Some(getter);
 

	
 
            return channel_index;
 
        } else {
 
            let channel_index = self.solution.channel_mapping.len();
 
            self.solution.channel_mapping.push(SyncSolutionChannel{
 
                putter: None,
 
                getter: Some(getter)
 
            });
 

	
 
            return channel_index;
 
        }
 
    }
 

	
 
    /// Retrieve index of the channel containing a getter port that has received
 
    /// from the specified putter port.
 
    fn get_channel_index_for_putter(&self, putter_comp_id: CompId, putter_port_id: PortId) -> Option<usize> {
 
        for (channel_index, channel) in self.solution.channel_mapping.iter().enumerate() {
 
            if let Some(getter) = &channel.getter {
 
                if getter.peer_comp_id == putter_comp_id && getter.peer_port_id == putter_port_id {
 
                    return Some(channel_index);
 
                }
 
            }
 
        }
 

	
 
        return None;
 
    }
 

	
 
    /// Retrieve index of the channel for a getter port. To find this channel
 
    /// the **peer** component/port IDs of the getter port are used.
 
    fn get_channel_index_for_getter(&self, peer_comp_id: CompId, peer_port_id: PortId) -> Option<usize> {
 
        for (channel_index, channel) in self.solution.channel_mapping.iter().enumerate() {
 
            if let Some(putter) = &channel.putter {
 
                if putter.self_comp_id == peer_comp_id && putter.self_port_id == peer_port_id {
 
                    return Some(channel_index);
 
                }
 
            }
 
        }
 

	
 
        return None;
 
    }
 

	
 
    fn channel_is_consistent(channel: &SyncSolutionChannel) -> Option<bool> {
 
        if channel.putter.is_none() || channel.getter.is_none() {
 
            return None;
 
        }
 

	
 
        let putter = channel.putter.as_ref().unwrap();
 
        let getter = channel.getter.as_ref().unwrap();
 
        return Some(putter.mapping == getter.mapping);
 
    }
 

	
 
    /// Determines the global solution if all components have contributed their
 
    /// local solutions.
 
    fn update_solution(&mut self) {
 
        if self.matched_channels == self.solution.channel_mapping.len() {
 
            if self.solution.decision != SyncRoundDecision::Failure {
 
                self.solution.decision = SyncRoundDecision::Solution;
 
            }
 
        }
 
    }
 
}
 

	
 
/// Tracking consensus state
 
pub struct Consensus {
 
    // General state of consensus manager
 
    mapping_counter: u32,
 
    mode: Mode,
 
    // State associated with sync round
 
    round_index: u32,
 
    highest_id: CompId,
 
    ports: Vec<PortAnnotation>,
 
    // State associated with arriving at a solution and being a (temporary)
 
    // leader in the consensus round
 
    solution: SolutionCombiner,
 
}
 

	
 
impl Consensus {
 
    pub(crate) fn new() -> Self {
 
        return Self{
 
            round_index: 0,
 
            highest_id: CompId::new_invalid(),
 
            ports: Vec::new(),
 
            mapping_counter: 0,
 
            mode: Mode::NonSync,
 
            solution: SolutionCombiner::new(),
 
        }
 
    }
 

	
 
    // -------------------------------------------------------------------------
 
    // Managing sync state
 
    // -------------------------------------------------------------------------
 

	
 
    /// Notifies the consensus management that the PDL code has reached the
 
    /// start of a sync block.
 
    pub(crate) fn notify_sync_start(&mut self, comp_ctx: &CompCtx) {
 
        debug_assert_eq!(self.mode, Mode::NonSync);
 
        self.highest_id = comp_ctx.id;
 
        self.mapping_counter = 0;
 
        self.mode = Mode::SyncBusy;
 
        self.make_ports_consistent_with_ctx(comp_ctx);
 

	
 
        // Make the internally stored port annotation array consistent with the
 
        // ports that the component currently owns. They should match by index
 
        // (i.e. annotation at index `i` corresponds to port `i` in `comp_ctx`).
 
        let mut needs_setting_ports = false;
 
        if comp_ctx.num_ports() != self.ports.len() {
 
            needs_setting_ports = true;
 
        } else {
 
            for (idx, port) in comp_ctx.iter_ports().enumerate() {
 
                let comp_port_id = port.self_id;
 
                let cons_port_id = self.ports[idx].self_port_id;
 
                if comp_port_id != cons_port_id {
 
                    needs_setting_ports = true;
 
                    break;
 
                }
 
            }
 
        }
 

	
 
        if needs_setting_ports {
 
            // Reset all ports
 
            self.ports.clear();
 
            self.ports.reserve(comp_ctx.num_ports());
 
            for port in comp_ctx.iter_ports() {
 
                self.ports.push(PortAnnotation::new(comp_ctx.id, port.self_id, port.kind));
 
            }
 
        } else {
 
            // Make sure that we consider all peers as undiscovered again
 
            for annotation in self.ports.iter_mut() {
 
                annotation.peer_discovered = false;
 
            }
 
        }
 
    }
 

	
 
    /// Notifies the consensus management that the PDL code has reached the end
 
    /// of a sync block. A local solution will be submitted, after which we wait
 
    /// until the participants in the round (hopefully) reach a conclusion.
 
    pub(crate) fn notify_sync_end(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx) -> SyncRoundDecision {
 
        debug_assert_eq!(self.mode, Mode::SyncBusy);
 
        self.mode = Mode::SyncAwaitingSolution;
 

	
 
        // Submit our port mapping as a solution
 
        let mut local_solution = Vec::with_capacity(self.ports.len());
 
        for port in &self.ports {
 
            if let Some(mapping) = port.mapping {
 
                let port_handle = comp_ctx.get_port_handle(port.self_port_id);
 
                let port_info = comp_ctx.get_port(port_handle);
 
                let new_entry = match port_info.kind {
 
                    PortKind::Putter => SyncLocalSolutionEntry::Putter(SyncSolutionPutterPort{
 
                        self_comp_id: comp_ctx.id,
 
                        self_port_id: port_info.self_id,
 
                        mapping
 
                    }),
 
                    PortKind::Getter => SyncLocalSolutionEntry::Getter(SyncSolutionGetterPort{
 
                        self_comp_id: comp_ctx.id,
 
                        self_port_id: port_info.self_id,
 
                        peer_comp_id: port.peer_comp_id,
 
                        peer_port_id: port.peer_port_id,
 
                        mapping
 
                    })
 
                };
 
                local_solution.push(new_entry);
 
            }
 
        }
 

	
 
        let decision = self.handle_local_solution(sched_ctx, comp_ctx, comp_ctx.id, local_solution);
 
        return decision;
 
    }
 

	
 
    /// Notifies that a decision has been reached. Note that the caller should
 
    /// still take the appropriate actions based on the decision it is supplying
 
    /// to the consensus layer.
 
    pub(crate) fn notify_sync_decision(&mut self, _decision: SyncRoundDecision) {
 
        // Reset everything for the next round
 
        debug_assert_eq!(self.mode, Mode::SyncAwaitingSolution);
 
        self.mode = Mode::NonSync;
 
        self.round_index = self.round_index.wrapping_add(1);
 

	
 
        for port in self.ports.iter_mut() {
 
            port.mapping = None;
 
        }
 

	
 
        self.solution.clear();
 
    }
 

	
 
    fn make_ports_consistent_with_ctx(&mut self, comp_ctx: &CompCtx) {
 
        let mut needs_setting_ports = false;
 
        if comp_ctx.num_ports() != self.ports.len() {
 
            needs_setting_ports = true;
 
        } else {
 
            for (idx, port) in comp_ctx.iter_ports().enumerate() {
 
                let comp_port_id = port.self_id;
 
                let cons_port_id = self.ports[idx].self_port_id;
 
                if comp_port_id != cons_port_id {
 
                    needs_setting_ports = true;
 
                    break;
 
                }
 
            }
 
        }
 

	
 
        if needs_setting_ports {
 
            self.ports.clear();
 
            self.ports.reserve(comp_ctx.num_ports());
 
            for port in comp_ctx.iter_ports() {
 
                self.ports.push(PortAnnotation::new(comp_ctx.id, port.self_id, port.kind));
 
            }
 
        }
 
    }
 

	
 
    // -------------------------------------------------------------------------
 
    // Handling inbound and outbound messages
 
    // -------------------------------------------------------------------------
 

	
 
    /// Prepares a set of values to be sent of a channel.
 
    pub(crate) fn annotate_data_message(&mut self, comp_ctx: &CompCtx, port_info: &Port, content: ValueGroup) -> DataMessage {
 
        debug_assert_eq!(self.mode, Mode::SyncBusy); // can only send between sync start and sync end
 
        debug_assert!(self.ports.iter().any(|v| v.self_port_id == port_info.self_id));
 
        let data_header = self.create_data_header_and_update_mapping(port_info);
 
        let sync_header = self.create_sync_header(comp_ctx);
 

	
 
        return DataMessage{ data_header, sync_header, content };
 
    }
 

	
 
    /// Handles the arrival of a new data message (needs to be called for every
 
    /// new data message, even though it might not end up being received). This
 
    /// is used to determine peers of `get`ter ports.
 
    pub(crate) fn handle_new_data_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, message: &DataMessage) -> bool {
 
        let target_handle = comp_ctx.get_port_handle(message.data_header.target_port);
 
        let target_index = comp_ctx.get_port_index(target_handle);
 
        let annotation = &mut self.ports[target_index];
 
        debug_assert!(
 
            !annotation.peer_discovered || (
 
                annotation.peer_comp_id == message.sync_header.sending_id &&
 
                annotation.peer_port_id == message.data_header.source_port
 
            )
 
        );
 
        annotation.peer_comp_id = message.sync_header.sending_id;
 
        annotation.
 
    }
 

	
 
    /// Checks if the data message can be received (due to port annotations), if
 
    /// it can then `true` is returned and the caller is responsible for handing
 
    /// the message of to the PDL code. Otherwise the message cannot be
 
    /// received.
 
    pub(crate) fn try_receive_data_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: &DataMessage) -> bool {
 
        debug_assert_eq!(self.mode, Mode::SyncBusy);
 
        debug_assert!(self.ports.iter().any(|v| v.self_port_id == message.data_header.target_port));
 

	
 
        // Make sure the expected mapping matches the currently stored mapping
 
        for (expected_id, expected_annotation) in &message.data_header.expected_mapping {
 
            let got_annotation = self.get_annotation(*expected_id);
 
            if got_annotation != *expected_annotation {
 
                return false;
 
            }
 
        }
 

	
 
        // Expected mapping matches current mapping, so we will receive the message
 
        self.set_annotation(message.sync_header.sending_id, &message.data_header);
 

	
 
        // Handle the sync header embedded within the data message
 
        self.handle_sync_header(sched_ctx, comp_ctx, &message.sync_header);
 

	
 
        return true;
 
    }
 

	
 
    /// Receives the sync message and updates the consensus state appropriately.
 
    pub(crate) fn receive_sync_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: SyncMessage) -> SyncRoundDecision {
 
        // Whatever happens: handle the sync header (possibly changing the
 
        // currently registered leader)
 
        self.handle_sync_header(sched_ctx, comp_ctx, &message.sync_header);
 

	
 
        match message.content {
 
            SyncMessageContent::NotificationOfLeader => {
 
                return SyncRoundDecision::None;
 
            },
 
            SyncMessageContent::LocalSolution(solution_generator_id, local_solution) => {
 
                return self.handle_local_solution(sched_ctx, comp_ctx, solution_generator_id, local_solution);
 
            },
 
            SyncMessageContent::PartialSolution(partial_solution) => {
 
                return self.handle_partial_solution(sched_ctx, comp_ctx, partial_solution);
 
            },
 
            SyncMessageContent::GlobalSolution => {
 
                debug_assert_eq!(self.mode, Mode::SyncAwaitingSolution); // leader can only find global- if we submitted local solution
 
                return SyncRoundDecision::Solution;
 
            },
 
            SyncMessageContent::GlobalFailure => {
 
                debug_assert_eq!(self.mode, Mode::SyncAwaitingSolution);
 
                return SyncRoundDecision::Failure;
 
            }
 
        }
 
    }
 

	
 
    fn handle_sync_header(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, header: &MessageSyncHeader) {
 
        if header.highest_id.0 > self.highest_id.0 {
 
            // Sender knows of someone with a higher ID. So store highest ID,
 
            // notify all peers, and forward local solutions
 
            self.highest_id = header.highest_id;
 
            for peer in comp_ctx.iter_peers() {
 
                if peer.id == header.sending_id {
 
                    continue; // do not send to sender: it has the higher ID
 
                }
 

	
 
                // also: only send if we received a message in this round
 
                let mut performed_communication = false; // TODO: Revise, temporary fix
 
                for port in self.ports.iter() {
 
                    if port.peer_comp_id == peer.id && port.mapping.is_some() {
 
                        performed_communication = true;
 
                        break;
 
                    }
 
                }
 

	
 
                if !performed_communication {
 
                    continue;
 
                }
 

	
 
                let message = SyncMessage{
 
                    sync_header: self.create_sync_header(comp_ctx),
 
                    content: SyncMessageContent::NotificationOfLeader,
 
                };
 
                peer.handle.send_message(sched_ctx, Message::Sync(message), true);
 
            }
 

	
 
            self.forward_partial_solution(sched_ctx, comp_ctx);
 
        } else if header.highest_id.0 < self.highest_id.0 {
 
            // Sender has a lower ID, so notify it of our higher one
 
            let message = SyncMessage{
 
                sync_header: self.create_sync_header(comp_ctx),
 
                content: SyncMessageContent::NotificationOfLeader,
 
            };
 
            let peer_handle = comp_ctx.get_peer_handle(header.sending_id);
 
            let peer_info = comp_ctx.get_peer(peer_handle);
 
            peer_info.handle.send_message(sched_ctx, Message::Sync(message), true);
 
        } // else: exactly equal
 
    }
 

	
 
    fn get_annotation(&self, port_id: PortId) -> Option<u32> {
 
        for annotation in self.ports.iter() {
 
            if annotation.self_port_id == port_id {
 
                return annotation.mapping;
 
            }
 
        }
 

	
 
        debug_assert!(false);
 
        return None;
 
    }
 

	
 
    fn set_annotation(&mut self, source_comp_id: CompId, data_header: &MessageDataHeader) {
 
        for annotation in self.ports.iter_mut() {
 
            if annotation.self_port_id == data_header.target_port {
 
                annotation.peer_comp_id = source_comp_id;
 
                annotation.peer_port_id = data_header.source_port;
 
                annotation.mapping = Some(data_header.new_mapping);
 
            }
 
        }
 
    }
 

	
 
    // -------------------------------------------------------------------------
 
    // Leader-related methods
 
    // -------------------------------------------------------------------------
 

	
 
    fn forward_partial_solution(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
 
        debug_assert_ne!(self.highest_id, comp_ctx.id); // not leader
 

	
 
        // Make sure that we have something to send
 
        if !self.solution.has_contributions() {
 
            return;
 
        }
 

	
 
        // Swap the container with the partial solution and then send it along
 
        let partial_solution = self.solution.take_partial_solution();
 
        self.send_to_leader(sched_ctx, comp_ctx, Message::Sync(SyncMessage{
 
            sync_header: self.create_sync_header(comp_ctx),
 
            content: SyncMessageContent::PartialSolution(partial_solution),
 
        }));
 
    }
 

	
 
    fn handle_local_solution(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, solution_sender_id: CompId, solution: SyncLocalSolution) -> SyncRoundDecision {
 
        if self.highest_id == comp_ctx.id {
 
            // We are the leader
 
            self.solution.combine_with_local_solution(solution_sender_id, solution);
 
            let round_decision = self.solution.get_decision();
 
            if round_decision != SyncRoundDecision::None {
 
                self.broadcast_decision(sched_ctx, comp_ctx, round_decision);
 
            }
 
            return round_decision;
 
        } else {
 
            // Forward the solution
 
            let message = SyncMessage{
 
                sync_header: self.create_sync_header(comp_ctx),
 
                content: SyncMessageContent::LocalSolution(solution_sender_id, solution),
 
            };
 
            self.send_to_leader(sched_ctx, comp_ctx, Message::Sync(message));
 
            return SyncRoundDecision::None;
 
        }
 
    }
 

	
 
    fn handle_partial_solution(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, solution: SyncPartialSolution) -> SyncRoundDecision {
 
        if self.highest_id == comp_ctx.id {
 
            // We are the leader, combine existing and new solution
 
            self.solution.combine_with_partial_solution(solution);
 
            let round_decision = self.solution.get_decision();
 
            if round_decision != SyncRoundDecision::None {
 
                self.broadcast_decision(sched_ctx, comp_ctx, round_decision);
 
            }
 
            return round_decision;
 
        } else {
 
            // Forward the partial solution
 
            let message = SyncMessage{
 
                sync_header: self.create_sync_header(comp_ctx),
 
                content: SyncMessageContent::PartialSolution(solution),
 
            };
 
            self.send_to_leader(sched_ctx, comp_ctx, Message::Sync(message));
 
            return SyncRoundDecision::None;
 
        }
 
    }
 

	
 
    fn broadcast_decision(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, decision: SyncRoundDecision) {
 
        debug_assert_eq!(self.highest_id, comp_ctx.id);
 

	
 
        let is_success = match decision {
 
            SyncRoundDecision::None => unreachable!(),
 
            SyncRoundDecision::Solution => true,
 
            SyncRoundDecision::Failure => false,
 
        };
 

	
 
        let mut peers = Vec::with_capacity(self.solution.solution.channel_mapping.len()); // TODO: @Performance
 

	
 
        for channel in self.solution.solution.channel_mapping.iter() {
 
            let getter = channel.getter.as_ref().unwrap();
 
            if getter.self_comp_id != comp_ctx.id && !peers.contains(&getter.self_comp_id) {
 
                peers.push(getter.self_comp_id);
 
            }
0 comments (0 inline, 0 general)