use std::fmt::{Display as FmtDisplay, Result as FmtResult, Formatter}; use crate::protocol::eval::{Prompt, EvalError, ValueGroup, PortId as EvalPortId}; use crate::protocol::*; use crate::runtime2::*; use crate::runtime2::communication::*; use super::{CompCtx, CompPDL, CompId}; use super::component_context::*; use super::component_random::*; use super::component_internet::*; use super::control_layer::*; use super::consensus::*; pub enum CompScheduling { Immediate, Requeue, Sleep, Exit, } /// Potential error emitted by a component pub enum CompError { /// Error originating from the code executor. Hence has an associated /// source location. Executor(EvalError), /// Error originating from a component, but not necessarily associated with /// a location in the source. Component(String), // TODO: Maybe a different embedded value in the future? /// Pure runtime error. Not necessarily originating from the component /// itself. Should be treated as a very severe runtime-compromising error. Runtime(RtError), } impl FmtDisplay for CompError { fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult { match self { CompError::Executor(v) => v.fmt(f), CompError::Component(v) => v.fmt(f), CompError::Runtime(v) => v.fmt(f), } } } /// Generic representation of a component (as viewed by a scheduler). pub(crate) trait Component { /// Called upon the creation of the component. Note that the scheduler /// context is officially running another component (the component that is /// creating the new component). fn on_creation(&mut self, comp_id: CompId, sched_ctx: &SchedulerCtx); /// Called when a component crashes or wishes to exit. So is not called /// right before destruction, other components may still hold a handle to /// the component and send it messages! fn on_shutdown(&mut self, sched_ctx: &SchedulerCtx); /// Called if the component is created by another component and the messages /// are being transferred between the two. fn adopt_message(&mut self, comp_ctx: &mut CompCtx, message: DataMessage); /// Called if the component receives a new message. The component is /// responsible for deciding where that messages goes. fn handle_message(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx, message: Message); /// Called if the component's routine should be executed. The return value /// can be used to indicate when the routine should be run again. fn run(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx) -> CompScheduling; } /// Representation of the generic operating mode of a component. Although not /// every state may be used by every kind of (builtin) component, this allows /// writing standard handlers for particular events in a component's lifetime. #[derive(Debug, Copy, Clone, PartialEq, Eq)] pub(crate) enum CompMode { NonSync, // not in sync mode Sync, // in sync mode, can interact with other components SyncEnd, // awaiting a solution, i.e. encountered the end of the sync block BlockedGet, // blocked because we need to receive a message on a particular port BlockedPut, // component is blocked because the port is blocked BlockedSelect, // waiting on message to complete the select statement StartExit, // temporary state: if encountered then we start the shutdown process. BusyExit, // temporary state: waiting for Acks for all the closed ports, potentially waiting for sync round to finish Exit, // exiting: shutdown process started, now waiting until the reference count drops to 0 } impl CompMode { pub(crate) fn is_in_sync_block(&self) -> bool { use CompMode::*; match self { Sync | SyncEnd | BlockedGet | BlockedPut | BlockedSelect => true, NonSync | StartExit | BusyExit | Exit => false, } } pub(crate) fn is_busy_exiting(&self) -> bool { use CompMode::*; match self { NonSync | Sync | SyncEnd | BlockedGet | BlockedPut | BlockedSelect => false, StartExit | BusyExit => true, Exit => false, } } } #[derive(Debug)] pub(crate) enum ExitReason { Termination, // regular termination of component ErrorInSync, ErrorNonSync, } impl ExitReason { pub(crate) fn is_in_sync(&self) -> bool { use ExitReason::*; match self { Termination | ErrorNonSync => false, ErrorInSync => true, } } pub(crate) fn is_error(&self) -> bool { use ExitReason::*; match self { Termination => false, ErrorInSync | ErrorNonSync => true, } } } /// Component execution state: the execution mode along with some descriptive /// fields. Fields are public for ergonomic reasons, use member functions when /// appropriate. pub(crate) struct CompExecState { pub mode: CompMode, pub mode_port: PortId, // valid if blocked on a port (put/get) pub mode_value: ValueGroup, // valid if blocked on a put pub exit_reason: ExitReason, // valid if in StartExit/BusyExit/Exit mode } impl CompExecState { pub(crate) fn new() -> Self { return Self{ mode: CompMode::NonSync, mode_port: PortId::new_invalid(), mode_value: ValueGroup::default(), exit_reason: ExitReason::Termination, } } pub(crate) fn set_as_start_exit(&mut self, reason: ExitReason) { self.mode = CompMode::StartExit; self.exit_reason = reason; } pub(crate) fn set_as_blocked_get(&mut self, port: PortId) { self.mode = CompMode::BlockedGet; self.mode_port = port; debug_assert!(self.mode_value.values.is_empty()); } pub(crate) fn is_blocked_on_get(&self, port: PortId) -> bool { return self.mode == CompMode::BlockedGet && self.mode_port == port; } pub(crate) fn set_as_blocked_put(&mut self, port: PortId, value: ValueGroup) { self.mode = CompMode::BlockedPut; self.mode_port = port; self.mode_value = value; } pub(crate) fn is_blocked_on_put(&self, port: PortId) -> bool { return self.mode == CompMode::BlockedPut && self.mode_port == port; } } // TODO: Replace when implementing port sending. Should probably be incorporated // into CompCtx (and rename CompCtx into CompComms) pub(crate) type InboxMain = Vec>; pub(crate) type InboxMainRef = [Option]; pub(crate) type InboxBackup = Vec; /// Creates a new component based on its definition. Meaning that if it is a /// user-defined component then we set up the PDL code state. Otherwise we /// construct a custom component. This does NOT take care of port and message /// management. pub(crate) fn create_component( protocol: &ProtocolDescription, definition_id: ProcedureDefinitionId, type_id: TypeId, arguments: ValueGroup, num_ports: usize ) -> Box { let definition = &protocol.heap[definition_id]; debug_assert!(definition.kind == ProcedureKind::Primitive || definition.kind == ProcedureKind::Composite); if definition.source.is_builtin() { // Builtin component let component: Box = match definition.source { ProcedureSource::CompRandomU32 => Box::new(ComponentRandomU32::new(arguments)), ProcedureSource::CompTcpClient => Box::new(ComponentTcpClient::new(arguments)), _ => unreachable!(), }; return component; } else { // User-defined component let prompt = Prompt::new( &protocol.types, &protocol.heap, definition_id, type_id, arguments ); let component = CompPDL::new(prompt, num_ports); return Box::new(component); } } // ----------------------------------------------------------------------------- // Generic component messaging utilities (for sending and receiving) // ----------------------------------------------------------------------------- /// Default handling of sending a data message. In case the port is blocked then /// the `ExecState` will become blocked as well. Note that /// `default_handle_control_message` will ensure that the port becomes /// unblocked if so instructed by the receiving component. The returned /// scheduling value must be used. #[must_use] pub(crate) fn default_send_data_message( exec_state: &mut CompExecState, transmitting_port_id: PortId, port_instruction: PortInstruction, value: ValueGroup, sched_ctx: &SchedulerCtx, consensus: &mut Consensus, comp_ctx: &mut CompCtx ) -> Result { debug_assert_eq!(exec_state.mode, CompMode::Sync); let port_handle = comp_ctx.get_port_handle(transmitting_port_id); let port_info = comp_ctx.get_port_mut(port_handle); port_info.last_instruction = port_instruction; let port_info = comp_ctx.get_port(port_handle); debug_assert_eq!(port_info.kind, PortKind::Putter); if port_info.state.is_closed() { // Note: normally peer is eventually consistent, but if it has shut down // then we can be sure it is consistent (I think?) return Err(( port_info.last_instruction, format!("Cannot send on this port, as the peer (id:{}) has shut down", port_info.peer_comp_id.0) )) } else if port_info.state.is_blocked() { // Port is blocked, so we cannot send exec_state.set_as_blocked_put(transmitting_port_id, value); return Ok(CompScheduling::Sleep); } else { // Port is not blocked, so send to the peer let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id); let peer_info = comp_ctx.get_peer(peer_handle); let annotated_message = consensus.annotate_data_message(comp_ctx, port_info, value); peer_info.handle.send_message_logged(sched_ctx, Message::Data(annotated_message), true); return Ok(CompScheduling::Immediate); } } pub(crate) enum IncomingData { PlacedInSlot, SlotFull(DataMessage), } /// Default handling of receiving a data message. In case there is no room for /// the message it is returned from this function. Note that this function is /// different from PDL code performing a `get` on a port; this is the case where /// the message first arrives at the component. // NOTE: This is supposed to be a somewhat temporary implementation. It would be // nicest if the sending component can figure out it cannot send any more data. #[must_use] pub(crate) fn default_handle_incoming_data_message( exec_state: &mut CompExecState, inbox_main: &mut InboxMain, comp_ctx: &mut CompCtx, incoming_message: DataMessage, sched_ctx: &SchedulerCtx, control: &mut ControlLayer ) -> IncomingData { let port_handle = comp_ctx.get_port_handle(incoming_message.data_header.target_port); let port_index = comp_ctx.get_port_index(port_handle); comp_ctx.get_port_mut(port_handle).received_message_for_sync = true; let port_value_slot = &mut inbox_main[port_index]; let target_port_id = incoming_message.data_header.target_port; if port_value_slot.is_none() { // We can put the value in the slot *port_value_slot = Some(incoming_message); // Check if we're blocked on receiving this message. dbg_code!({ // Our port cannot have been blocked itself, because we're able to // directly insert the message into its slot. assert!(!comp_ctx.get_port(port_handle).state.is_blocked()); }); if exec_state.is_blocked_on_get(target_port_id) { // Return to normal operation exec_state.mode = CompMode::Sync; exec_state.mode_port = PortId::new_invalid(); debug_assert!(exec_state.mode_value.values.is_empty()); } return IncomingData::PlacedInSlot } else { // Slot is already full, so if the port was previously opened, it will // now become closed let port_info = comp_ctx.get_port_mut(port_handle); if port_info.state.is_open() { port_info.state.set(PortStateFlag::BlockedDueToFullBuffers); let (peer_handle, message) = control.initiate_port_blocking(comp_ctx, port_handle); let peer = comp_ctx.get_peer(peer_handle); peer.handle.send_message_logged(sched_ctx, Message::Control(message), true); } return IncomingData::SlotFull(incoming_message) } } pub(crate) enum GetResult { Received(DataMessage), NoMessage, Error((PortInstruction, String)), } /// Default attempt at trying to receive from a port (i.e. through a `get`, or /// the equivalent operation for a builtin component). `target_port` is the port /// we're trying to receive from, and the `target_port_instruction` is the /// instruction we're attempting on this port. pub(crate) fn default_attempt_get( exec_state: &mut CompExecState, target_port: PortId, target_port_instruction: PortInstruction, inbox_main: &mut InboxMainRef, inbox_backup: &mut InboxBackup, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, control: &mut ControlLayer, consensus: &mut Consensus ) -> GetResult { let port_handle = comp_ctx.get_port_handle(target_port); let port_index = comp_ctx.get_port_index(port_handle); let port_info = comp_ctx.get_port_mut(port_handle); port_info.last_instruction = target_port_instruction; if port_info.state.is_closed() { let peer_id = port_info.peer_comp_id; return GetResult::Error(( target_port_instruction, format!("Cannot get from this port, as the peer component (id:{}) closed the port", peer_id.0) )); } if let Some(message) = &inbox_main[port_index] { if consensus.try_receive_data_message(sched_ctx, comp_ctx, message) { // We're allowed to receive this message let message = inbox_main[port_index].take().unwrap(); debug_assert_eq!(target_port, message.data_header.target_port); // Note: we can still run into an unrecoverable error when actually // receiving this message match default_handle_received_data_message( target_port, target_port_instruction, inbox_main, inbox_backup, comp_ctx, sched_ctx, control, ) { Ok(()) => return GetResult::Received(message), Err(location_and_message) => return GetResult::Error(location_and_message) } } else { // We're not allowed to receive this message. This means that the // receiver is attempting to receive something out of order with // respect to the sender. return GetResult::Error((target_port_instruction, String::from( "Cannot get from this port, as this causes a deadlock. This happens if you `get` in a different order as another component `put`s" ))); } } else { // We don't have a message waiting for us and the port is not blocked. // So enter the BlockedGet state exec_state.set_as_blocked_get(target_port); return GetResult::NoMessage; } } /// Default handling that has been received through a `get`. Will check if any /// more messages are waiting, and if the corresponding port was blocked because /// of full buffers (hence, will use the control layer to make sure the peer /// will become unblocked). pub(crate) fn default_handle_received_data_message( targeted_port: PortId, port_instruction: PortInstruction, inbox_main: &mut InboxMainRef, inbox_backup: &mut InboxBackup, comp_ctx: &mut CompCtx, sched_ctx: &SchedulerCtx, control: &mut ControlLayer ) -> Result<(), (PortInstruction, String)> { let port_handle = comp_ctx.get_port_handle(targeted_port); let port_index = comp_ctx.get_port_index(port_handle); let slot = &mut inbox_main[port_index]; debug_assert!(slot.is_none()); // because we've just received from it // Modify last-known location where port instruction was retrieved let port_info = comp_ctx.get_port(port_handle); debug_assert_ne!(port_info.last_instruction, PortInstruction::None); // set by caller debug_assert!(port_info.state.is_open()); // checked by caller // Check if there are any more messages in the backup buffer for message_index in 0..inbox_backup.len() { let message = &inbox_backup[message_index]; if message.data_header.target_port == targeted_port { // One more message, place it in the slot let message = inbox_backup.remove(message_index); debug_assert!(comp_ctx.get_port(port_handle).state.is_blocked()); // since we're removing another message from the backup *slot = Some(message); return Ok(()); } } // Did not have any more messages, so if we were blocked, then we need to // unblock the port now (and inform the peer of this unblocking) if port_info.state.is_set(PortStateFlag::BlockedDueToFullBuffers) { let port_info = comp_ctx.get_port_mut(port_handle); port_info.state.clear(PortStateFlag::BlockedDueToFullBuffers); let (peer_handle, message) = control.cancel_port_blocking(comp_ctx, port_handle); let peer_info = comp_ctx.get_peer(peer_handle); peer_info.handle.send_message_logged(sched_ctx, Message::Control(message), true); } return Ok(()); } /// Handles control messages in the default way. Note that this function may /// take a lot of actions in the name of the caller: pending messages may be /// sent, ports may become blocked/unblocked, etc. So the execution /// (`CompExecState`), control (`ControlLayer`) and consensus (`Consensus`) /// state may all change. pub(crate) fn default_handle_control_message( exec_state: &mut CompExecState, control: &mut ControlLayer, consensus: &mut Consensus, message: ControlMessage, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx ) -> Result<(), (PortInstruction, String)> { match message.content { ControlMessageContent::Ack => { default_handle_ack(control, message.id, sched_ctx, comp_ctx); }, ControlMessageContent::BlockPort => { // One of our messages was accepted, but the port should be // blocked. let port_to_block = message.target_port_id.unwrap(); let port_handle = comp_ctx.get_port_handle(port_to_block); let port_info = comp_ctx.get_port_mut(port_handle); debug_assert_eq!(port_info.kind, PortKind::Putter); port_info.state.set(PortStateFlag::BlockedDueToFullBuffers); }, ControlMessageContent::ClosePort(content) => { // Request to close the port. We immediately comply and remove // the component handle as well let port_to_close = message.target_port_id.unwrap(); let port_handle = comp_ctx.get_port_handle(port_to_close); // We're closing the port, so we will always update the peer of the // port (in case of error messages) let port_info = comp_ctx.get_port_mut(port_handle); port_info.peer_comp_id = message.sender_comp_id; port_info.close_at_sync_end = true; // might be redundant (we might set it closed now) let peer_comp_id = port_info.peer_comp_id; let peer_handle = comp_ctx.get_peer_handle(peer_comp_id); // One exception to sending an `Ack` is if we just closed the // port ourselves, meaning that the `ClosePort` messages got // sent to one another. if let Some(control_id) = control.has_close_port_entry(port_handle, comp_ctx) { // The two components (sender and this component) are closing // the channel at the same time. So we don't care about the // content of the `ClosePort` message. default_handle_ack(control, control_id, sched_ctx, comp_ctx); } else { // Respond to the message let port_info = comp_ctx.get_port(port_handle); let last_instruction = port_info.last_instruction; let port_has_had_message = port_info.received_message_for_sync; default_send_ack(message.id, peer_handle, sched_ctx, comp_ctx); comp_ctx.change_port_peer(sched_ctx, port_handle, None); // Handle any possible error conditions (which boil down to: the // port has been used, but the peer has died). If not in sync // mode then we close the port immediately. // Note that `port_was_used` does not mean that any messages // were actually received. It might also mean that e.g. the // component attempted a `get`, but there were no messages, so // now it is in the `BlockedGet` state. let port_was_used = last_instruction != PortInstruction::None; if exec_state.mode.is_in_sync_block() { let closed_during_sync_round = content.closed_in_sync_round && port_was_used; let closed_before_sync_round = !content.closed_in_sync_round && !port_has_had_message; if closed_during_sync_round || closed_before_sync_round { return Err(( last_instruction, format!("Peer component (id:{}) shut down, so communication cannot (have) succeed(ed)", peer_comp_id.0) )); } } else { let port_info = comp_ctx.get_port_mut(port_handle); port_info.state.set(PortStateFlag::Closed); } } }, ControlMessageContent::UnblockPort => { // We were previously blocked (or already closed) let port_to_unblock = message.target_port_id.unwrap(); let port_handle = comp_ctx.get_port_handle(port_to_unblock); let port_info = comp_ctx.get_port_mut(port_handle); debug_assert_eq!(port_info.kind, PortKind::Putter); debug_assert!(port_info.state.is_set(PortStateFlag::BlockedDueToFullBuffers)); port_info.state.clear(PortStateFlag::BlockedDueToFullBuffers); default_handle_recently_unblocked_port(exec_state, consensus, port_handle, sched_ctx, comp_ctx); }, ControlMessageContent::PortPeerChangedBlock => { // The peer of our port has just changed. So we are asked to // temporarily block the port (while our original recipient is // potentially rerouting some of the in-flight messages) and // Ack. Then we wait for the `unblock` call. let port_to_change = message.target_port_id.unwrap(); let port_handle = comp_ctx.get_port_handle(port_to_change); let port_info = comp_ctx.get_port_mut(port_handle); let peer_comp_id = port_info.peer_comp_id; port_info.state.set(PortStateFlag::BlockedDueToPeerChange); let peer_handle = comp_ctx.get_peer_handle(peer_comp_id); default_send_ack(message.id, peer_handle, sched_ctx, comp_ctx); }, ControlMessageContent::PortPeerChangedUnblock(new_port_id, new_comp_id) => { let port_to_change = message.target_port_id.unwrap(); let port_handle = comp_ctx.get_port_handle(port_to_change); let port_info = comp_ctx.get_port(port_handle); debug_assert!(port_info.state.is_set(PortStateFlag::BlockedDueToPeerChange)); let old_peer_id = port_info.peer_comp_id; let port_info = comp_ctx.get_port_mut(port_handle); port_info.peer_port_id = new_port_id; port_info.state.clear(PortStateFlag::BlockedDueToPeerChange); comp_ctx.change_port_peer(sched_ctx, port_handle, Some(new_comp_id)); default_handle_recently_unblocked_port(exec_state, consensus, port_handle, sched_ctx, comp_ctx); } } return Ok(()); } /// Handles a component entering the synchronous block. Will ensure that the /// `Consensus` and the `ComponentCtx` are initialized properly. pub(crate) fn default_handle_sync_start( exec_state: &mut CompExecState, inbox_main: &mut InboxMainRef, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, consensus: &mut Consensus ) { sched_ctx.info("Component starting sync mode"); // If any messages are present for this sync round, set the appropriate flag // and notify the consensus handler of the present messages consensus.notify_sync_start(comp_ctx); for (port_index, message) in inbox_main.iter().enumerate() { if let Some(message) = message { consensus.handle_incoming_data_message(comp_ctx, message); let port_info = comp_ctx.get_port_by_index_mut(port_index); port_info.received_message_for_sync = true; } } // Modify execution state debug_assert_eq!(exec_state.mode, CompMode::NonSync); exec_state.mode = CompMode::Sync; } /// Handles a component that has reached the end of the sync block. This does /// not necessarily mean that the component will go into the `NonSync` mode, as /// it might have to wait for the leader to finish the round for everyone (see /// `default_handle_sync_decision`) pub(crate) fn default_handle_sync_end( exec_state: &mut CompExecState, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, consensus: &mut Consensus ) { sched_ctx.info("Component ending sync mode (but possibly waiting for a solution)"); debug_assert_eq!(exec_state.mode, CompMode::Sync); let decision = consensus.notify_sync_end_success(sched_ctx, comp_ctx); exec_state.mode = CompMode::SyncEnd; default_handle_sync_decision(sched_ctx, exec_state, comp_ctx, decision, consensus); } /// Handles a component initiating the exiting procedure, and closing all of its /// ports. Should only be called once per component (which is ensured by /// checking and modifying the mode in the execution state). #[must_use] pub(crate) fn default_handle_start_exit( exec_state: &mut CompExecState, control: &mut ControlLayer, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, consensus: &mut Consensus ) -> CompScheduling { debug_assert_eq!(exec_state.mode, CompMode::StartExit); sched_ctx.info(&format!("Component starting exit (reason: {:?})", exec_state.exit_reason)); exec_state.mode = CompMode::BusyExit; let exit_inside_sync = exec_state.exit_reason.is_in_sync(); // If exiting while inside sync mode, report to the leader of the current // round that we've failed. if exit_inside_sync { let decision = consensus.notify_sync_end_failure(sched_ctx, comp_ctx); default_handle_sync_decision(sched_ctx, exec_state, comp_ctx, decision, consensus); } // Iterating over ports by index to work around borrowing rules for port_index in 0..comp_ctx.num_ports() { let port = comp_ctx.get_port_by_index_mut(port_index); if port.state.is_closed() || port.close_at_sync_end { // Already closed, or in the process of being closed continue; } // Mark as closed let port_id = port.self_id; port.state.set(PortStateFlag::Closed); // Notify peer of closing let port_handle = comp_ctx.get_port_handle(port_id); let (peer, message) = control.initiate_port_closing(port_handle, exit_inside_sync, comp_ctx); let peer_info = comp_ctx.get_peer(peer); peer_info.handle.send_message_logged(sched_ctx, Message::Control(message), true); } return CompScheduling::Immediate; // to check if we can shut down immediately } /// Handles a component waiting until all peers are notified that it is quitting /// (i.e. after calling `default_handle_start_exit`). #[must_use] pub(crate) fn default_handle_busy_exit( exec_state: &mut CompExecState, control: &ControlLayer, sched_ctx: &SchedulerCtx ) -> CompScheduling { debug_assert_eq!(exec_state.mode, CompMode::BusyExit); if control.has_acks_remaining() { sched_ctx.info("Component busy exiting, still has `Ack`s remaining"); return CompScheduling::Sleep; } else { sched_ctx.info("Component busy exiting, now shutting down"); exec_state.mode = CompMode::Exit; return CompScheduling::Exit; } } /// Handles a potential synchronous round decision. If there was a decision then /// the `Some(success)` value indicates whether the round succeeded or not. /// Might also end up changing the `ExecState`. /// /// Might be called in two cases: /// 1. The component is in regular execution mode, at the end of a sync round, /// and is waiting for a solution to the round. /// 2. The component has encountered an error during a sync round and is /// exiting, hence is waiting for a "Failure" message from the leader. pub(crate) fn default_handle_sync_decision( sched_ctx: &SchedulerCtx, exec_state: &mut CompExecState, comp_ctx: &mut CompCtx, decision: SyncRoundDecision, consensus: &mut Consensus ) -> Option { let success = match decision { SyncRoundDecision::None => return None, SyncRoundDecision::Solution => true, SyncRoundDecision::Failure => false, }; debug_assert!( exec_state.mode == CompMode::SyncEnd || ( exec_state.mode.is_busy_exiting() && exec_state.exit_reason.is_error() ) || ( exec_state.mode.is_in_sync_block() && decision == SyncRoundDecision::Failure ) ); sched_ctx.info(&format!("Handling decision {:?} (in mode: {:?})", decision, exec_state.mode)); consensus.notify_sync_decision(decision); if success { // We cannot get a success message if the component has encountered an // error. for port_index in 0..comp_ctx.num_ports() { let port_info = comp_ctx.get_port_by_index_mut(port_index); if port_info.close_at_sync_end { port_info.state.set(PortStateFlag::Closed); } } debug_assert_eq!(exec_state.mode, CompMode::SyncEnd); exec_state.mode = CompMode::NonSync; return Some(true); } else { // We may get failure both in all possible cases. But we should only // modify the execution state if we're not already in exit mode if !exec_state.mode.is_busy_exiting() { sched_ctx.error("failed synchronous round, initiating exit"); exec_state.set_as_start_exit(ExitReason::ErrorNonSync); } return Some(false); } } /// Performs the default action of printing the provided error, and then putting /// the component in the state where it will shut down. Only to be used for /// builtin components: their error message construction is simpler (and more /// common) as they don't have any source code. pub(crate) fn default_handle_error_for_builtin( exec_state: &mut CompExecState, sched_ctx: &SchedulerCtx, location_and_message: (PortInstruction, String) ) { let (_location, message) = location_and_message; sched_ctx.error(&message); let exit_reason = if exec_state.mode.is_in_sync_block() { ExitReason::ErrorInSync } else { ExitReason::ErrorNonSync }; exec_state.set_as_start_exit(exit_reason); } #[inline] pub(crate) fn default_handle_exit(_exec_state: &CompExecState) -> CompScheduling { debug_assert_eq!(_exec_state.mode, CompMode::Exit); return CompScheduling::Exit; } // ----------------------------------------------------------------------------- // Internal messaging/state utilities // ----------------------------------------------------------------------------- /// Handles an `Ack` for the control layer. fn default_handle_ack( control: &mut ControlLayer, control_id: ControlId, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx ) { // Since an `Ack` may cause another one, handle them in a loop let mut to_ack = control_id; loop { let (action, new_to_ack) = control.handle_ack(to_ack, sched_ctx, comp_ctx); match action { AckAction::SendMessage(target_comp, message) => { // FIX @NoDirectHandle let mut handle = sched_ctx.runtime.get_component_public(target_comp); handle.send_message_logged(sched_ctx, Message::Control(message), true); let _should_remove = handle.decrement_users(); debug_assert!(_should_remove.is_none()); }, AckAction::ScheduleComponent(to_schedule) => { // FIX @NoDirectHandle let mut handle = sched_ctx.runtime.get_component_public(to_schedule); // Note that the component is intentionally not // sleeping, so we just wake it up debug_assert!(!handle.sleeping.load(std::sync::atomic::Ordering::Acquire)); let key = unsafe { to_schedule.upgrade() }; sched_ctx.runtime.enqueue_work(key); let _should_remove = handle.decrement_users(); debug_assert!(_should_remove.is_none()); }, AckAction::None => {} } match new_to_ack { Some(new_to_ack) => to_ack = new_to_ack, None => break, } } } /// Little helper for sending the most common kind of `Ack` fn default_send_ack( causer_of_ack_id: ControlId, peer_handle: LocalPeerHandle, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx ) { let peer_info = comp_ctx.get_peer(peer_handle); peer_info.handle.send_message_logged(sched_ctx, Message::Control(ControlMessage{ id: causer_of_ack_id, sender_comp_id: comp_ctx.id, target_port_id: None, content: ControlMessageContent::Ack }), true); } /// Handles the unblocking of a putter port. In case there is a pending message /// on that port then it will be sent. fn default_handle_recently_unblocked_port( exec_state: &mut CompExecState, consensus: &mut Consensus, port_handle: LocalPortHandle, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, ) { let port_info = comp_ctx.get_port_mut(port_handle); let port_id = port_info.self_id; debug_assert!(!port_info.state.is_blocked()); // should have been done by the caller if exec_state.is_blocked_on_put(port_id) { // Annotate the message that we're going to send let port_info = comp_ctx.get_port(port_handle); // for immutable access debug_assert_eq!(port_info.kind, PortKind::Putter); let to_send = exec_state.mode_value.take(); let to_send = consensus.annotate_data_message(comp_ctx, port_info, to_send); // Retrieve peer to send the message let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id); let peer_info = comp_ctx.get_peer(peer_handle); peer_info.handle.send_message_logged(sched_ctx, Message::Data(to_send), true); exec_state.mode = CompMode::Sync; // because we're blocked on a `put`, we must've started in the sync state. exec_state.mode_port = PortId::new_invalid(); } } #[inline] pub(crate) fn port_id_from_eval(port_id: EvalPortId) -> PortId { return PortId(port_id.id); } #[inline] pub(crate) fn port_id_to_eval(port_id: PortId) -> EvalPortId { return EvalPortId{ id: port_id.0 }; }