use crate::protocol::ast::*; use crate::protocol::inputsource::*; use crate::protocol::library; use crate::protocol::parser::{symbol_table::*, type_table::*, LexedModule}; type Unit = (); pub(crate) type VisitorResult = Result; pub(crate) struct Ctx<'p> { heap: &'p mut Heap, module: &'p LexedModule, symbols: &'p mut SymbolTable, types: &'p mut TypeTable, } pub(crate) trait Visitor2 { // Entry point fn visit_module(&mut self, ctx: &mut Ctx) -> VisitorResult { let mut def_index = 0; loop { let definition_id = { let root = &ctx.heap[ctx.module.root_id]; if def_index >= root.definitions.len() { return Ok(()) } root.definitions[def_index] }; self.visit_definition(ctx, definition_id) } } // Definitions // --- enum matching fn visit_definition(&mut self, ctx: &mut Ctx, id: DefinitionId) -> VisitorResult { match &ctx.heap[id] { Definition::Enum(def) => self.visit_enum_definition(ctx, def.this), Definition::Struct(def) => self.visit_struct_definition(ctx, def.this), Definition::Component(def) => self.visit_component_definition(ctx, def.this), Definition::Function(def) => self.visit_function_definition(ctx, def.this) } } // --- enum variant handling fn visit_enum_definition(&mut self, _ctx: &mut Ctx, id: EnumId) -> VisitorResult { Ok(()) } fn visit_struct_definition(&mut self, _ctx: &mut Ctx, id: StructId) -> VisitorResult { Ok(()) } fn visit_component_definition(&mut self, _ctx: &mut Ctx, id: ComponentId) -> VisitorResult { Ok(()) } fn visit_function_definition(&mut self, _ctx: &mut Ctx, id: FunctionId) -> VisitorResult { Ok(()) } // Statements // --- enum matching fn visit_stmt(&mut self, ctx: &mut Ctx, id: StatementId) -> VisitorResult { match &ctx.heap[id] { Statement::Block(stmt) => self.visit_block_stmt(ctx, stmt.this), Statement::Local(stmt) => self.visit_local_stmt(ctx, stmt.this), Statement::Skip(stmt) => self.visit_skip_stmt(ctx, stmt.this), Statement::Labeled(stmt) => self.visit_labeled_stmt(ctx, stmt.this), Statement::If(stmt) => self.visit_if_stmt(ctx, stmt.this), Statement::EndIf(_stmt) => Ok(()), Statement::While(stmt) => self.visit_while_stmt(ctx, stmt.this), Statement::EndWhile(_stmt) => Ok(()), Statement::Break(stmt) => self.visit_break_stmt(ctx, stmt.this), Statement::Continue(stmt) => self.visit_continue_stmt(ctx, stmt.this), Statement::Synchronous(stmt) => self.visit_synchronous_stmt(ctx, stmt.this), Statement::EndSynchronous(_stmt) => Ok(()), Statement::Return(stmt) => self.visit_return_stmt(ctx, stmt.this), Statement::Assert(stmt) => self.visit_assert_stmt(ctx, stmt.this), Statement::Goto(stmt) => self.visit_goto_stmt(ctx, stmt.this), Statement::New(stmt) => self.visit_new_stmt(ctx, stmt.this), Statement::Put(stmt) => self.visit_put_stmt(ctx, stmt.this), Statement::Expression(stmt) => self.visit_expr_stmt(ctx, stmt.this), } } fn visit_local_stmt(&mut self, ctx: &mut Ctx, id: LocalStatementId) -> VisitorResult { match &ctx.heap[id] { LocalStatement::Channel(stmt) => self.visit_local_channel_stmt(ctx, stmt.this), LocalStatement::Memory(stmt) => self.visit_local_memory_stmt(ctx, stmt.this), } } // --- enum variant handling fn visit_block_stmt(&mut self, _ctx: &mut Ctx, _id: BlockStatementId) -> VisitorResult { Ok(()) } fn visit_local_memory_stmt(&mut self, _ctx: &mut Ctx, _id: MemoryStatementId) -> VisitorResult { Ok(()) } fn visit_local_channel_stmt(&mut self, _ctx: &mut Ctx, _id: ChannelStatementId) -> VisitorResult { Ok(()) } fn visit_skip_stmt(&mut self, _ctx: &mut Ctx, _id: SkipStatementId) -> VisitorResult { Ok(()) } fn visit_labeled_stmt(&mut self, _ctx: &mut Ctx, _id: LabeledStatementId) -> VisitorResult { Ok(()) } fn visit_if_stmt(&mut self, _ctx: &mut Ctx, _id: IfStatementId) -> VisitorResult { Ok(()) } fn visit_while_stmt(&mut self, _ctx: &mut Ctx, _id: WhileStatementId) -> VisitorResult { Ok(()) } fn visit_break_stmt(&mut self, _ctx: &mut Ctx, _id: BreakStatementId) -> VisitorResult { Ok(()) } fn visit_continue_stmt(&mut self, _ctx: &mut Ctx, _id: ContinueStatementId) -> VisitorResult { Ok(()) } fn visit_synchronous_stmt(&mut self, _ctx: &mut Ctx, _id: SynchronousStatementId) -> VisitorResult { Ok(()) } fn visit_return_stmt(&mut self, _ctx: &mut Ctx, _id: ReturnStatementId) -> VisitorResult { Ok(()) } fn visit_assert_stmt(&mut self, _ctx: &mut Ctx, _id: AssertStatementId) -> VisitorResult { Ok(()) } fn visit_goto_stmt(&mut self, _ctx: &mut Ctx, _id: GotoStatementId) -> VisitorResult { Ok(()) } fn visit_new_stmt(&mut self, _ctx: &mut Ctx, _id: NewStatementId) -> VisitorResult { Ok(()) } fn visit_put_stmt(&mut self, _ctx: &mut Ctx, _id: PutStatementId) -> VisitorResult { Ok(()) } fn visit_expr_stmt(&mut self, _ctx: &mut Ctx, _id: ExpressionStatementId) -> VisitorResult { Ok(()) } // Expressions // --- enum matching fn visit_expr(&mut self, ctx: &mut Ctx, id: ExpressionId) -> VisitorResult { match &ctx.heap[id] { Expression::Assignment(expr) => self.visit_assignment_expr(ctx, expr.this), Expression::Conditional(expr) => self.visit_conditional_expr(ctx, expr.this), Expression::Binary(expr) => self.visit_binary_expr(ctx, expr.this), Expression::Unary(expr) => self.visit_unary_expr(ctx, expr.this), Expression::Indexing(expr) => self.visit_indexing_expr(ctx, expr.this), Expression::Slicing(expr) => self.visit_slicing_expr(ctx, expr.this), Expression::Select(expr) => self.visit_select_expr(ctx, expr.this), Expression::Array(expr) => self.visit_array_expr(ctx, expr.this), Expression::Constant(expr) => self.visit_constant_expr(ctx, expr.this), Expression::Call(expr) => self.visit_call_expr(ctx, expr.this), Expression::Variable(expr) => self.visit_variable_expr(ctx, expr.this), } } fn visit_assignment_expr(&mut self, _ctx: &mut Ctx, _id: AssignmentExpressionId) -> VisitorResult { Ok(()) } fn visit_conditional_expr(&mut self, _ctx: &mut Ctx, _id: ConditionalExpressionId) -> VisitorResult { Ok(()) } fn visit_binary_expr(&mut self, _ctx: &mut Ctx, _id: BinaryExpressionId) -> VisitorResult { Ok(()) } fn visit_unary_expr(&mut self, _ctx: &mut Ctx, _id: UnaryExpressionId) -> VisitorResult { Ok(()) } fn visit_indexing_expr(&mut self, _ctx: &mut Ctx, _id: IndexingExpressionId) -> VisitorResult { Ok(()) } fn visit_slicing_expr(&mut self, _ctx: &mut Ctx, _id: SlicingExpressionId) -> VisitorResult { Ok(()) } fn visit_select_expr(&mut self, _ctx: &mut Ctx, _id: SelectExpressionId) -> VisitorResult { Ok(()) } fn visit_array_expr(&mut self, _ctx: &mut Ctx, _id: ArrayExpressionId) -> VisitorResult { Ok(()) } fn visit_constant_expr(&mut self, _ctx: &mut Ctx, _id: ConstantExpressionId) -> VisitorResult { Ok(()) } fn visit_call_expr(&mut self, _ctx: &mut Ctx, _id: CallExpressionId) -> VisitorResult { Ok(()) } fn visit_variable_expr(&mut self, _ctx: &mut Ctx, _id: VariableExpressionId) -> VisitorResult { Ok(()) } } enum DefinitionType { Primitive, Composite, Function } struct NoNameYet { in_sync: Option, in_while: Option, cur_scope: Option, def_type: DefinitionType, performing_breadth_pass: bool, // Keeping track of relative position in block in the breadth-first pass. // May not correspond to block.statement[index] if any statements are // inserted after the breadth-pass relative_pos_in_block: u32, // Single buffer of statement IDs that we want to traverse in a block. // Required to work around Rust borrowing rules // TODO: Maybe remove this in the future statement_buffer: Vec, // Statements to insert after the breadth pass in a single block insert_buffer: Vec<(u32, StatementId)>, } impl NoNameYet { fn new() -> Self { Self{ in_sync: None, in_while: None, cur_scope: None, def_type: DefinitionType::Primitive, performing_breadth_pass: false, relative_pos_in_block: 0, statement_buffer: Vec::with_capacity(256), insert_buffer: Vec::with_capacity(32), } } fn reset_state(&mut self) { self.in_sync = None; self.in_while = None; self.cur_scope = None; self.def_type = DefinitionType::Primitive; self.relative_pos_in_block = 0; self.performing_breadth_pass = false; self.statement_buffer.clear(); self.insert_buffer.clear(); } } impl Visitor2 for NoNameYet { //-------------------------------------------------------------------------- // Definition visitors //-------------------------------------------------------------------------- fn visit_component_definition(&mut self, ctx: &mut Ctx, id: ComponentId) -> VisitorResult { self.reset_state(); let block_id = { let def = &ctx.heap[id]; match def.variant { ComponentVariant::Primitive => self.def_type = DefinitionType::Primitive, ComponentVariant::Composite => self.def_type = DefinitionType::Composite, } let body = ctx.heap[def.body].as_block_mut(); self.statement_buffer.extend_from_slice(&body.statements); self.statement_stack_indices.push(0); body.this }; self.cur_scope = Some(Scope { variant: ScopeVariant::Definition(id.upcast()), parent: None, }); self.performing_breadth_pass = true; self.visit_block_stmt(ctx, block_id)?; self.performing_breadth_pass = false; self.visit_block_stmt(ctx, block_id) } fn visit_function_definition(&mut self, ctx: &mut Ctx, id: FunctionId) -> VisitorResult { self.reset_state(); // Set internal statement indices let block_id = { let def = &ctx.heap[id]; self.def_type = DefinitionType::Function; let body = ctx.heap[def.body].as_block_mut(); self.statement_buffer.extend_from_slice(&body.statements); self.statement_stack_indices.push(0); body.this }; self.cur_scope = Some(Scope { variant: ScopeVariant::Definition(id.upcast()), parent: None, }); self.performing_breadth_pass = true; self.visit_block_stmt(ctx, block_id)?; self.performing_breadth_pass = false; self.visit_block_stmt(ctx, block_id) } //-------------------------------------------------------------------------- // Statement visitors //-------------------------------------------------------------------------- fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult { if self.performing_breadth_pass { // Our parent is performing a breadth-pass. We do this simple stuff // here let body = &mut ctx.heap[id]; body.parent_scope = self.cur_scope.clone(); body.relative_pos_in_parent = self.relative_pos_in_block; return Ok(()) } // We may descend into children of this block. However, this is // where we first perform a breadth-first pass self.performing_breadth_pass = true; self.cur_scope = Some(Scope::Block(id)); let first_statement_index = self.statement_buffer.len(); { let body = &ctx.heap[id]; self.statement_buffer.extend_from_slice(&body.statements); } let mut stmt_index = first_statement_index; while stmt_index < self.statement_buffer.len() { self.relative_pos_in_block = (stmt_index - first_statement_index) as u32; self.visit_stmt(ctx, self.statement_buffer[stmt_index])?; stmt_index += 1; } if !self.insert_buffer.is_empty() { let body = &mut ctx.heap[id]; for (pos, stmt) in self.insert_buffer.drain(..) { body.statements.insert(pos as usize, stmt); } } // And the depth pass self.performing_breadth_pass = false; stmt_index = first_statement_index; while stmt_index < self.statement_buffer.len() { self.visit_stmt(ctx, self.statement_buffer[stmt_index])?; stmt_index += 1; } // Pop statement buffer debug_assert!(self.insert_buffer.is_empty(), "insert buffer not empty after depth pass"); self.statement_buffer.truncate(first_statement_index); Ok(()) } fn visit_local_memory_stmt(&mut self, ctx: &mut Ctx, id: MemoryStatementId) -> VisitorResult { if self.performing_breadth_pass { let stmt = &ctx.heap[id]; stmt.relative_pos_in_block = self.relative_pos_in_block; self.checked_local_add(ctx, stmt.variable)?; } self.visit_expr(ctx, ctx.heap[id].initial)?; Ok(()) } fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult { if self.performing_breadth_pass { // Retrieve scope let scope = self.cur_scope.as_ref().unwrap(); debug_assert!(scope.statement.is_some(), "expected scope statement at labeled stmt"); debug_assert_eq!( scope.variant == ScopeVariant::Synchronous, self.in_sync.is_some(), "in synchronous scope variant, but 'in_sync' not set" ); // Add label to block lookup self.checked_label_add(ctx, id)?; // Modify labeled statement itself let labeled = &mut ctx.heap[id]; labeled.relative_pos_in_block = self.relative_pos_in_block; labeled.in_sync = if scope.variant == ScopeVariant::Synchronous { self.in_sync.clone() } else { None }; } let body_id = ctx.heap[id].body; self.visit_stmt(ctx, body_id)?; Ok(()) } fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult { if self.performing_breadth_pass { let position = ctx.heap[id].position; let end_if_id = ctx.heap.alloc_end_if_statement(|this| { EndIfStatement { this, start_if: id, position, next: None, } }); let stmt = &mut ctx.heap[id]; stmt.end_if = Some(end_if_id); self.insert_buffer.push((self.relative_pos_in_block + 1, end_if_id.upcast())); } // Traverse expression and bodies let (test_id, true_id, false_id) = { let stmt = &ctx.heap[id]; (stmt.test, stmt.true_body, stmt.false_body) }; self.visit_expr(ctx, test_id)?; self.visit_stmt(ctx, true_id)?; self.visit_stmt(ctx, false_id)?; Ok(()) } fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult { if self.performing_breadth_pass { let scope = self.cur_scope.as_ref().unwrap(); let position = ctx.heap[id].position; debug_assert_eq!( scope.variant == ScopeVariant::Synchronous, self.in_sync.is_some(), "in synchronous scope variant, but 'in_sync' not set" ); let end_while_id = ctx.heap.alloc_end_while_statement(|this| { EndWhileStatement { this, start_while: Some(id), position, next: None, } }); let stmt = &mut ctx.heap[id]; stmt.end_while = Some(end_while_id); stmt.in_sync = self.in_sync.clone(); self.insert_buffer.push((self.relative_pos_in_block + 1, end_while_id.upcast())); } let (test_id, body_id) = { let stmt = &ctx.heap[id]; (stmt.test, stmt.body) }; let old_while = self.in_while.replace(id); self.visit_expr(ctx, test_id)?; self.visit_stmt(ctx, body_id)?; self.in_while = old_while; Ok(()) } fn visit_break_stmt(&mut self, ctx: &mut Ctx, id: BreakStatementId) -> VisitorResult { if self.performing_breadth_pass { // Should be able to resolve break statements with a label in the // breadth pass, no need to do after resolving all labels let target_end_while = { let stmt = &ctx.heap[id]; let target_while_id = self.resolve_break_or_continue_target(ctx, stmt.position, &stmt.label)?; let target_while = &ctx.heap[target_while_id]; debug_assert!(target_while.end_while.is_some()); target_while.end_while.unwrap() }; let stmt = &mut ctx.heap[id]; stmt.target = Some(target_end_while); } Ok(()) } fn visit_continue_stmt(&mut self, ctx: &mut Ctx, id: ContinueStatementId) -> VisitorResult { if self.performing_breadth_pass { let target_while_id = { let stmt = &ctx.heap[id]; self.resolve_break_or_continue_target(ctx, stmt.position, &stmt.label)? }; let stmt = &mut ctx.heap[id]; stmt.target = Some(target_while_id) } Ok(()) } fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult { let stmt = &ctx.heap[id]; stmt. } } impl NoNameYet { //-------------------------------------------------------------------------- // Utilities //-------------------------------------------------------------------------- fn checked_local_add(&mut self, ctx: &mut Ctx, id: LocalId) -> Result<(), ParseError2> { debug_assert!(self.cur_scope.is_some()); // Make sure we do not conflict with any global symbols { let ident = &ctx.heap[id].identifier; if let Some(symbol) = ctx.symbols.resolve_symbol(ctx.module.root_id, &ident.value) { return Err( ParseError2::new_error(&ctx.module.source, ident.position, "Local variable declaration conflicts with symbol") .with_postfixed_info(&ctx.module.source, symbol.position, "Conflicting symbol is found here") ); } } // Make sure we do not shadow any variables in any of the scopes. Note // that variables in parent scopes may be declared later let local = &ctx.heap[id]; let mut scope = self.cur_scope.as_ref().unwrap(); let mut local_relative_pos = self.relative_pos_in_block; loop { debug_assert!(scope.is_block(), "scope is not a block"); let block = &ctx.heap[scope.to_block()]; for other_local_id in &block.locals { let other_local = &ctx.heap[*other_local_id]; // Position check in case another variable with the same name // is defined in a higher-level scope, but later than the scope // in which the current variable resides. if local_relative_pos >= other_local.relative_pos_in_block && local.identifier.value == other_local.identifier.pos { // Collision within this scope return Err( ParseError2::new_error(&ctx.module.source, local.position, "Local variable name conflicts with another variable") .with_postfixed_info(&ctx.module.source, other_local.position, "Previous variable is found here") ); } } // Current scope is fine, move to parent scope if any debug_assert!(scope.parent.is_some(), "block scope does not have a parent"); scope = scope.parent.as_ref().unwrap(); if let ScopeVariant::Definition(definition_id) = scope.variant { // At outer scope, check parameters of function/component for parameter_id in ctx.heap[definition_id].parameters() { let parameter = &ctx.heap[*parameter_id]; if local.identifier.value == parameter.identifier.value { return Err( ParseError2::new_error(&ctx.module.source, local.position, "Local variable name conflicts with parameter") .with_postfixed_info(&ctx.module.source, parameter.position, "Parameter definition is found here") ); } } break; } // If here, then we are dealing with a block-like parent block local_relative_pos = ctx.heap[scope.to_block()].relative_pos_in_parent; } // No collisions at all let block = &mut ctx.heap[self.cur_scope.as_ref().unwrap().to_block()]; block.locals.push(id); Ok(()) } fn checked_label_add(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> Result<(), ParseError2> { debug_assert!(self.cur_scope.is_some()); // Make sure label is not defined within the current scope or any of the // parent scope. let label = &ctx.heap[id]; let mut scope = self.cur_scope.as_ref().unwrap(); loop { debug_assert!(scope.is_block(), "scope is not a block"); let block = &ctx.heap[scope.to_block()]; for other_label_id in &block.labels { let other_label = &ctx.heap[*other_label_id]; if other_label.label.value == label.label.value { // Collision return Err( ParseError2::new_error(&ctx.module.source, label.position, "Label name conflicts with another label") .with_postfixed_info(&ctx.module.source, other_label.position, "Other label is found here") ); } } debug_assert!(scope.parent.is_some(), "block scope does not have a parent"); scope = scope.parent.as_ref().unwrap(); if !scope.is_block() { break; } } // No collisions let block = &mut ctx.heap[self.cur_scope.as_ref().unwrap().to_block()]; block.labels.push(id); Ok(()) } fn find_label(&self, ctx: &Ctx, identifier: &Identifier) -> Result { debug_assert!(self.cur_scope.is_some()); let mut scope = self.cur_scope.as_ref().unwrap(); loop { debug_assert!(scope.is_block(), "scope is not a block"); let block = &ctx.heap[scope.to_block()]; for label_id in &block.labels { let label = &ctx.heap[*label_id]; if label.label.value == identifier.value { return Ok(*label_id); } } debug_assert!(scope.parent.is_some(), "block scope does not have a parent"); scope = scope.parent.as_ref().unwrap(); if !scope.is_block() { return Err(ParseError2::new_error(&ctx.module.source, identifier.position, "Could not find this label")); } } } /// This function will check if the provided while statement ID has a block /// statement that is one of our current parents. fn has_parent_while_scope(&self, ctx: &Ctx, id: WhileStatementId) -> bool { debug_assert!(self.cur_scope.is_some()); let mut scope = self.cur_scope.as_ref().unwrap(); let while_stmt = &ctx.heap[id]; loop { debug_assert!(scope.is_block()); let block = scope.to_block(); if while_stmt.body == block.upcast() { return true; } debug_assert!(scope.parent.is_some(), "block scope does not have a parent"); scope = scope.parent.as_ref().unwrap(); if !scope.is_block() { return false; } } } /// This function should be called while dealing with break/continue /// statements. It will try to find the targeted while statement, using the /// target label if provided. If a valid target is found then the loop's /// ID will be returned, otherwise a parsing error is constructed. /// The provided input position should be the position of the break/continue /// statement. fn resolve_break_or_continue_target(&self, ctx: &Ctx, position: InputPosition, label: &Option) -> Result { let target = match label { Some(label) => { let target_id = self.find_label(ctx, label)?; // Make sure break target is a while statement let target = &ctx.heap[target_id]; if let Statement::While(target_stmt) = &target.body { // Even though we have a target while statement, the break might not be // present underneath this particular labeled while statement if !self.has_parent_while_scope(ctx, target_stmt.this) { ParseError2::new_error(&ctx.module.source, label.position, "Break statement is not nested under the target label's while statement") .with_postfixed_info(&ctx.module.source, target.position, "The targeted label is found here"); } target_stmt.this } else { return Err( ParseError2::new_error(&ctx.module.source, label.position, "Incorrect break target label, it must target a while loop") .with_postfixed_info(&ctx.module.source, target.position, "The targeted label is found here") ); } }, None => { // Use the enclosing while statement, the break must be // nested within that while statement if self.in_while.is_none() { return Err( ParseError2::new_error(&ctx.module.source, position, "Break statement is not nested under a while loop") ); } self.in_while.unwrap() } }; // We have a valid target for the break statement. But we need to // make sure we will not break out of a synchronous block { let target_while = &ctx.heap[target]; if target_while.in_sync != self.in_sync { // Break is nested under while statement, so can only escape a // sync block if the sync is nested inside the while statement. debug_assert!(self.in_sync.is_some()); let sync_stmt = &ctx.heap[self.in_sync.unwrap()]; return Err( ParseError2::new_error(&ctx.module.source, position, "Break may not escape the surrounding synchronous block") .with_postfixed_info(&ctx.module.source, target_while.position, "The break escapes out of this loop") .with_postfixed_info(&ctx.module.source, sync_stmt.position, "And would therefore escape this synchronous block") ); } } Ok(target) } }