use crate::protocol::ast::*; use crate::protocol::inputsource::*; use crate::protocol::parser::{ symbol_table::*, type_table::*, utils::*, }; use super::visitor::{ STMT_BUFFER_INIT_CAPACITY, EXPR_BUFFER_INIT_CAPACITY, TYPE_BUFFER_INIT_CAPACITY, Ctx, Visitor2, VisitorResult }; #[derive(PartialEq, Eq)] enum DefinitionType { None, Primitive(ComponentId), Composite(ComponentId), Function(FunctionId) } impl DefinitionType { fn is_primitive(&self) -> bool { if let Self::Primitive(_) = self { true } else { false } } fn is_composite(&self) -> bool { if let Self::Composite(_) = self { true } else { false } } fn is_function(&self) -> bool { if let Self::Function(_) = self { true } else { false } } } /// This particular visitor will go through the entire AST in a recursive manner /// and check if all statements and expressions are legal (e.g. no "return" /// statements in component definitions), and will link certain AST nodes to /// their appropriate targets (e.g. goto statements, or function calls). /// /// This visitor will not perform control-flow analysis (e.g. making sure that /// each function actually returns) and will also not perform type checking. So /// the linking of function calls and component instantiations will be checked /// and linked to the appropriate definitions, but the return types and/or /// arguments will not be checked for validity. /// /// The visitor visits each statement in a block in a breadth-first manner /// first. We are thereby sure that we have found all variables/labels in a /// particular block. In this phase nodes may queue statements for insertion /// (e.g. the insertion of an `EndIf` statement for a particular `If` /// statement). These will be inserted after visiting every node, after which /// the visitor recurses into each statement in a block. /// /// Because of this scheme expressions will not be visited in the breadth-first /// pass. pub(crate) struct ValidityAndLinkerVisitor { /// `in_sync` is `Some(id)` if the visitor is visiting the children of a /// synchronous statement. A single value is sufficient as nested /// synchronous statements are not allowed in_sync: Option, /// `in_while` contains the last encountered `While` statement. This is used /// to resolve unlabeled `Continue`/`Break` statements. in_while: Option, // Traversal state: current scope (which can be used to find the parent // scope), the definition variant we are considering, and whether the // visitor is performing breadthwise block statement traversal. cur_scope: Option, def_type: DefinitionType, performing_breadth_pass: bool, // Parent expression (the previous stmt/expression we visited that could be // used as an expression parent) expr_parent: ExpressionParent, // Keeping track of relative position in block in the breadth-first pass. // May not correspond to block.statement[index] if any statements are // inserted after the breadth-pass relative_pos_in_block: u32, // Single buffer of statement IDs that we want to traverse in a block. // Required to work around Rust borrowing rules and to prevent constant // cloning of vectors. statement_buffer: Vec, // Another buffer, now with expression IDs, to prevent constant cloning of // vectors while working around rust's borrowing rules expression_buffer: Vec, // Yet another buffer, now with parser type IDs, similar to above parser_type_buffer: Vec, // Statements to insert after the breadth pass in a single block insert_buffer: Vec<(u32, StatementId)>, } impl ValidityAndLinkerVisitor { pub(crate) fn new() -> Self { Self{ in_sync: None, in_while: None, cur_scope: None, expr_parent: ExpressionParent::None, def_type: DefinitionType::None, performing_breadth_pass: false, relative_pos_in_block: 0, statement_buffer: Vec::with_capacity(STMT_BUFFER_INIT_CAPACITY), expression_buffer: Vec::with_capacity(EXPR_BUFFER_INIT_CAPACITY), parser_type_buffer: Vec::with_capacity(TYPE_BUFFER_INIT_CAPACITY), insert_buffer: Vec::with_capacity(32), } } fn reset_state(&mut self) { self.in_sync = None; self.in_while = None; self.cur_scope = None; self.expr_parent = ExpressionParent::None; self.def_type = DefinitionType::None; self.relative_pos_in_block = 0; self.performing_breadth_pass = false; self.statement_buffer.clear(); self.expression_buffer.clear(); self.parser_type_buffer.clear(); self.insert_buffer.clear(); } } impl Visitor2 for ValidityAndLinkerVisitor { //-------------------------------------------------------------------------- // Definition visitors //-------------------------------------------------------------------------- fn visit_component_definition(&mut self, ctx: &mut Ctx, id: ComponentId) -> VisitorResult { self.reset_state(); self.def_type = match &ctx.heap[id].variant { ComponentVariant::Primitive => DefinitionType::Primitive(id), ComponentVariant::Composite => DefinitionType::Composite(id), }; self.cur_scope = Some(Scope::Definition(id.upcast())); self.expr_parent = ExpressionParent::None; // Visit types of parameters debug_assert!(self.parser_type_buffer.is_empty()); let comp_def = &ctx.heap[id]; self.parser_type_buffer.extend( comp_def.parameters .iter() .map(|id| ctx.heap[*id].parser_type) ); let num_types = self.parser_type_buffer.len(); for idx in 0..num_types { self.visit_parser_type(ctx, self.parser_type_buffer[idx])?; } self.parser_type_buffer.clear(); // Visit statements in component body let body_id = ctx.heap[id].body; self.performing_breadth_pass = true; self.visit_stmt(ctx, body_id)?; self.performing_breadth_pass = false; self.visit_stmt(ctx, body_id) } fn visit_function_definition(&mut self, ctx: &mut Ctx, id: FunctionId) -> VisitorResult { self.reset_state(); // Set internal statement indices self.def_type = DefinitionType::Function(id); self.cur_scope = Some(Scope::Definition(id.upcast())); self.expr_parent = ExpressionParent::None; // Visit types of parameters debug_assert!(self.parser_type_buffer.is_empty()); let func_def = &ctx.heap[id]; self.parser_type_buffer.extend( func_def.parameters .iter() .map(|id| ctx.heap[*id].parser_type) ); self.parser_type_buffer.push(func_def.return_type); let num_types = self.parser_type_buffer.len(); for idx in 0..num_types { self.visit_parser_type(ctx, self.parser_type_buffer[idx])?; } self.parser_type_buffer.clear(); // Visit statements in function body let body_id = ctx.heap[id].body; self.performing_breadth_pass = true; self.visit_stmt(ctx, body_id)?; self.performing_breadth_pass = false; self.visit_stmt(ctx, body_id) } //-------------------------------------------------------------------------- // Statement visitors //-------------------------------------------------------------------------- fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult { self.visit_block_stmt_with_hint(ctx, id, None) } fn visit_local_memory_stmt(&mut self, ctx: &mut Ctx, id: MemoryStatementId) -> VisitorResult { if self.performing_breadth_pass { let variable_id = ctx.heap[id].variable; self.checked_local_add(ctx, self.relative_pos_in_block, variable_id)?; } else { let variable_id = ctx.heap[id].variable; let parser_type_id = ctx.heap[variable_id].parser_type; self.visit_parser_type(ctx, parser_type_id); debug_assert_eq!(self.expr_parent, ExpressionParent::None); self.expr_parent = ExpressionParent::Memory(id); self.visit_expr(ctx, ctx.heap[id].initial)?; self.expr_parent = ExpressionParent::None; } Ok(()) } fn visit_local_channel_stmt(&mut self, ctx: &mut Ctx, id: ChannelStatementId) -> VisitorResult { if self.performing_breadth_pass { let (from_id, to_id) = { let stmt = &ctx.heap[id]; (stmt.from, stmt.to) }; self.checked_local_add(ctx, self.relative_pos_in_block, from_id)?; self.checked_local_add(ctx, self.relative_pos_in_block, to_id)?; } else { let chan_stmt = &ctx.heap[id]; let from_type_id = ctx.heap[chan_stmt.from].parser_type; let to_type_id = ctx.heap[chan_stmt.to].parser_type; self.visit_parser_type(ctx, from_type_id)?; self.visit_parser_type(ctx, to_type_id)?; } Ok(()) } fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult { if self.performing_breadth_pass { // Add label to block lookup self.checked_label_add(ctx, id)?; // Modify labeled statement itself let labeled = &mut ctx.heap[id]; labeled.relative_pos_in_block = self.relative_pos_in_block; labeled.in_sync = self.in_sync.clone(); } let body_id = ctx.heap[id].body; self.visit_stmt(ctx, body_id)?; Ok(()) } fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult { if self.performing_breadth_pass { let position = ctx.heap[id].position; let end_if_id = ctx.heap.alloc_end_if_statement(|this| { EndIfStatement { this, start_if: id, position, next: None, } }); let stmt = &mut ctx.heap[id]; stmt.end_if = Some(end_if_id); self.insert_buffer.push((self.relative_pos_in_block + 1, end_if_id.upcast())); } else { // Traverse expression and bodies let (test_id, true_id, false_id) = { let stmt = &ctx.heap[id]; (stmt.test, stmt.true_body, stmt.false_body) }; debug_assert_eq!(self.expr_parent, ExpressionParent::None); self.expr_parent = ExpressionParent::If(id); self.visit_expr(ctx, test_id)?; self.expr_parent = ExpressionParent::None; self.visit_stmt(ctx, true_id)?; self.visit_stmt(ctx, false_id)?; } Ok(()) } fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult { if self.performing_breadth_pass { let position = ctx.heap[id].position; let end_while_id = ctx.heap.alloc_end_while_statement(|this| { EndWhileStatement { this, start_while: id, position, next: None, } }); let stmt = &mut ctx.heap[id]; stmt.end_while = Some(end_while_id); stmt.in_sync = self.in_sync.clone(); self.insert_buffer.push((self.relative_pos_in_block + 1, end_while_id.upcast())); } else { let (test_id, body_id) = { let stmt = &ctx.heap[id]; (stmt.test, stmt.body) }; let old_while = self.in_while.replace(id); debug_assert_eq!(self.expr_parent, ExpressionParent::None); self.expr_parent = ExpressionParent::While(id); self.visit_expr(ctx, test_id)?; self.expr_parent = ExpressionParent::None; self.visit_stmt(ctx, body_id)?; self.in_while = old_while; } Ok(()) } fn visit_break_stmt(&mut self, ctx: &mut Ctx, id: BreakStatementId) -> VisitorResult { if self.performing_breadth_pass { // Should be able to resolve break statements with a label in the // breadth pass, no need to do after resolving all labels let target_end_while = { let stmt = &ctx.heap[id]; let target_while_id = self.resolve_break_or_continue_target(ctx, stmt.position, &stmt.label)?; let target_while = &ctx.heap[target_while_id]; debug_assert!(target_while.end_while.is_some()); target_while.end_while.unwrap() }; let stmt = &mut ctx.heap[id]; stmt.target = Some(target_end_while); } Ok(()) } fn visit_continue_stmt(&mut self, ctx: &mut Ctx, id: ContinueStatementId) -> VisitorResult { if self.performing_breadth_pass { let target_while_id = { let stmt = &ctx.heap[id]; self.resolve_break_or_continue_target(ctx, stmt.position, &stmt.label)? }; let stmt = &mut ctx.heap[id]; stmt.target = Some(target_while_id) } Ok(()) } fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult { if self.performing_breadth_pass { // Check for validity of synchronous statement let cur_sync_position = ctx.heap[id].position; if self.in_sync.is_some() { // Nested synchronous statement let old_sync = &ctx.heap[self.in_sync.unwrap()]; return Err( ParseError2::new_error(&ctx.module.source, cur_sync_position, "Illegal nested synchronous statement") .with_postfixed_info(&ctx.module.source, old_sync.position, "It is nested in this synchronous statement") ); } if !self.def_type.is_primitive() { return Err(ParseError2::new_error( &ctx.module.source, cur_sync_position, "Synchronous statements may only be used in primitive components" )); } // Append SynchronousEnd pseudo-statement let sync_end_id = ctx.heap.alloc_end_synchronous_statement(|this| EndSynchronousStatement{ this, position: cur_sync_position, start_sync: id, next: None, }); let sync_start = &mut ctx.heap[id]; sync_start.end_sync = Some(sync_end_id); self.insert_buffer.push((self.relative_pos_in_block + 1, sync_end_id.upcast())); } else { let sync_body = ctx.heap[id].body; let old = self.in_sync.replace(id); self.visit_stmt_with_hint(ctx, sync_body, Some(id))?; self.in_sync = old; } Ok(()) } fn visit_return_stmt(&mut self, ctx: &mut Ctx, id: ReturnStatementId) -> VisitorResult { if self.performing_breadth_pass { let stmt = &ctx.heap[id]; if !self.def_type.is_function() { return Err( ParseError2::new_error(&ctx.module.source, stmt.position, "Return statements may only appear in function bodies") ); } } else { // If here then we are within a function debug_assert_eq!(self.expr_parent, ExpressionParent::None); self.expr_parent = ExpressionParent::Return(id); self.visit_expr(ctx, ctx.heap[id].expression)?; self.expr_parent = ExpressionParent::None; } Ok(()) } fn visit_assert_stmt(&mut self, ctx: &mut Ctx, id: AssertStatementId) -> VisitorResult { let stmt = &ctx.heap[id]; if self.performing_breadth_pass { if self.def_type.is_function() { // TODO: We probably want to allow this. Mark the function as // using asserts, and then only allow calls to these functions // within components. Such a marker will cascade through any // functions that then call an asserting function return Err( ParseError2::new_error(&ctx.module.source, stmt.position, "Illegal assert statement in a function") ); } // We are in a component of some sort, but we also need to be within a // synchronous statement if self.in_sync.is_none() { return Err( ParseError2::new_error(&ctx.module.source, stmt.position, "Illegal assert statement outside of a synchronous block") ); } } else { debug_assert_eq!(self.expr_parent, ExpressionParent::None); let expr_id = stmt.expression; self.expr_parent = ExpressionParent::Assert(id); self.visit_expr(ctx, expr_id)?; self.expr_parent = ExpressionParent::None; } Ok(()) } fn visit_goto_stmt(&mut self, ctx: &mut Ctx, id: GotoStatementId) -> VisitorResult { if !self.performing_breadth_pass { // Must perform goto label resolving after the breadth pass, this // way we are able to find all the labels in current and outer // scopes. let target_id = self.find_label(ctx, &ctx.heap[id].label)?; ctx.heap[id].target = Some(target_id); let target = &ctx.heap[target_id]; if self.in_sync != target.in_sync { // We can only goto the current scope or outer scopes. Because // nested sync statements are not allowed so if the value does // not match, then we must be inside a sync scope debug_assert!(self.in_sync.is_some()); let goto_stmt = &ctx.heap[id]; let sync_stmt = &ctx.heap[self.in_sync.unwrap()]; return Err( ParseError2::new_error(&ctx.module.source, goto_stmt.position, "Goto may not escape the surrounding synchronous block") .with_postfixed_info(&ctx.module.source, target.position, "This is the target of the goto statement") .with_postfixed_info(&ctx.module.source, sync_stmt.position, "Which will jump past this statement") ); } } Ok(()) } fn visit_new_stmt(&mut self, ctx: &mut Ctx, id: NewStatementId) -> VisitorResult { // Link the call expression following the new statement if self.performing_breadth_pass { // TODO: Cleanup error messages, can be done cleaner // Make sure new statement occurs within a composite component let call_expr_id = ctx.heap[id].expression; if !self.def_type.is_composite() { let new_stmt = &ctx.heap[id]; return Err( ParseError2::new_error(&ctx.module.source, new_stmt.position, "Instantiating components may only be done in composite components") ); } // No fancy recursive parsing, must be followed by a call expression let definition_id = { let call_expr = &ctx.heap[call_expr_id]; if let Method::Symbolic(symbolic) = &call_expr.method { let found_symbol = self.find_symbol_of_type( ctx.module.root_id, &ctx.symbols, &ctx.types, &symbolic.identifier, TypeClass::Component ); match found_symbol { FindOfTypeResult::Found(definition_id) => definition_id, FindOfTypeResult::TypeMismatch(got_type_class) => { return Err(ParseError2::new_error( &ctx.module.source, symbolic.identifier.position, &format!("New must instantiate a component, this identifier points to a {}", got_type_class) )) }, FindOfTypeResult::NotFound => { return Err(ParseError2::new_error( &ctx.module.source, symbolic.identifier.position, "Could not find a defined component with this name" )) } } } else { return Err( ParseError2::new_error(&ctx.module.source, call_expr.position, "Must instantiate a component") ); } }; // Modify new statement's symbolic call to point to the appropriate // definition. let call_expr = &mut ctx.heap[call_expr_id]; match &mut call_expr.method { Method::Symbolic(method) => method.definition = Some(definition_id), _ => unreachable!() } } else { // Performing depth pass. The function definition should have been // resolved in the breadth pass, now we recurse to evaluate the // arguments // TODO: @cleanup Maybe just call `visit_call_expr`? let call_expr_id = ctx.heap[id].expression; let call_expr = &mut ctx.heap[call_expr_id]; call_expr.parent = ExpressionParent::New(id); let old_num_exprs = self.expression_buffer.len(); self.expression_buffer.extend(&call_expr.arguments); let new_num_exprs = self.expression_buffer.len(); let old_expr_parent = self.expr_parent; for arg_expr_idx in old_num_exprs..new_num_exprs { let arg_expr_id = self.expression_buffer[arg_expr_idx]; self.expr_parent = ExpressionParent::Expression(call_expr_id.upcast(), arg_expr_idx as u32); self.visit_expr(ctx, arg_expr_id)?; } self.expression_buffer.truncate(old_num_exprs); self.expr_parent = old_expr_parent; } Ok(()) } fn visit_put_stmt(&mut self, ctx: &mut Ctx, id: PutStatementId) -> VisitorResult { // TODO: Make `put` an expression. Perhaps silly, but much easier to // perform typechecking if self.performing_breadth_pass { let put_stmt = &ctx.heap[id]; if self.in_sync.is_none() { return Err(ParseError2::new_error( &ctx.module.source, put_stmt.position, "Put must be called in a synchronous block" )); } } else { let put_stmt = &ctx.heap[id]; let port = put_stmt.port; let message = put_stmt.message; debug_assert_eq!(self.expr_parent, ExpressionParent::None); self.expr_parent = ExpressionParent::Put(id, 0); self.visit_expr(ctx, port)?; self.expr_parent = ExpressionParent::Put(id, 1); self.visit_expr(ctx, message)?; self.expr_parent = ExpressionParent::None; } Ok(()) } fn visit_expr_stmt(&mut self, ctx: &mut Ctx, id: ExpressionStatementId) -> VisitorResult { if !self.performing_breadth_pass { let expr_id = ctx.heap[id].expression; debug_assert_eq!(self.expr_parent, ExpressionParent::None); self.expr_parent = ExpressionParent::ExpressionStmt(id); self.visit_expr(ctx, expr_id)?; self.expr_parent = ExpressionParent::None; } Ok(()) } //-------------------------------------------------------------------------- // Expression visitors //-------------------------------------------------------------------------- fn visit_assignment_expr(&mut self, ctx: &mut Ctx, id: AssignmentExpressionId) -> VisitorResult { debug_assert!(!self.performing_breadth_pass); let upcast_id = id.upcast(); let assignment_expr = &mut ctx.heap[id]; let left_expr_id = assignment_expr.left; let right_expr_id = assignment_expr.right; let old_expr_parent = self.expr_parent; assignment_expr.parent = old_expr_parent; self.expr_parent = ExpressionParent::Expression(upcast_id, 0); self.visit_expr(ctx, left_expr_id)?; self.expr_parent = ExpressionParent::Expression(upcast_id, 1); self.visit_expr(ctx, right_expr_id)?; self.expr_parent = old_expr_parent; Ok(()) } fn visit_conditional_expr(&mut self, ctx: &mut Ctx, id: ConditionalExpressionId) -> VisitorResult { debug_assert!(!self.performing_breadth_pass); let upcast_id = id.upcast(); let conditional_expr = &mut ctx.heap[id]; let test_expr_id = conditional_expr.test; let true_expr_id = conditional_expr.true_expression; let false_expr_id = conditional_expr.false_expression; let old_expr_parent = self.expr_parent; conditional_expr.parent = old_expr_parent; self.expr_parent = ExpressionParent::Expression(upcast_id, 0); self.visit_expr(ctx, test_expr_id)?; self.expr_parent = ExpressionParent::Expression(upcast_id, 1); self.visit_expr(ctx, true_expr_id)?; self.expr_parent = ExpressionParent::Expression(upcast_id, 2); self.visit_expr(ctx, false_expr_id)?; self.expr_parent = old_expr_parent; Ok(()) } fn visit_binary_expr(&mut self, ctx: &mut Ctx, id: BinaryExpressionId) -> VisitorResult { debug_assert!(!self.performing_breadth_pass); let upcast_id = id.upcast(); let binary_expr = &mut ctx.heap[id]; let left_expr_id = binary_expr.left; let right_expr_id = binary_expr.right; let old_expr_parent = self.expr_parent; binary_expr.parent = old_expr_parent; self.expr_parent = ExpressionParent::Expression(upcast_id, 0); self.visit_expr(ctx, left_expr_id)?; self.expr_parent = ExpressionParent::Expression(upcast_id, 1); self.visit_expr(ctx, right_expr_id)?; self.expr_parent = old_expr_parent; Ok(()) } fn visit_unary_expr(&mut self, ctx: &mut Ctx, id: UnaryExpressionId) -> VisitorResult { debug_assert!(!self.performing_breadth_pass); let unary_expr = &mut ctx.heap[id]; let expr_id = unary_expr.expression; let old_expr_parent = self.expr_parent; unary_expr.parent = old_expr_parent; self.expr_parent = ExpressionParent::Expression(id.upcast(), 0); self.visit_expr(ctx, expr_id)?; self.expr_parent = old_expr_parent; Ok(()) } fn visit_indexing_expr(&mut self, ctx: &mut Ctx, id: IndexingExpressionId) -> VisitorResult { debug_assert!(!self.performing_breadth_pass); let upcast_id = id.upcast(); let indexing_expr = &mut ctx.heap[id]; let subject_expr_id = indexing_expr.subject; let index_expr_id = indexing_expr.index; let old_expr_parent = self.expr_parent; indexing_expr.parent = old_expr_parent; self.expr_parent = ExpressionParent::Expression(upcast_id, 0); self.visit_expr(ctx, subject_expr_id)?; self.expr_parent = ExpressionParent::Expression(upcast_id, 1); self.visit_expr(ctx, index_expr_id)?; self.expr_parent = old_expr_parent; Ok(()) } fn visit_slicing_expr(&mut self, ctx: &mut Ctx, id: SlicingExpressionId) -> VisitorResult { debug_assert!(!self.performing_breadth_pass); let upcast_id = id.upcast(); let slicing_expr = &mut ctx.heap[id]; let subject_expr_id = slicing_expr.subject; let from_expr_id = slicing_expr.from_index; let to_expr_id = slicing_expr.to_index; let old_expr_parent = self.expr_parent; slicing_expr.parent = old_expr_parent; self.expr_parent = ExpressionParent::Expression(upcast_id, 0); self.visit_expr(ctx, subject_expr_id)?; self.expr_parent = ExpressionParent::Expression(upcast_id, 1); self.visit_expr(ctx, from_expr_id)?; self.expr_parent = ExpressionParent::Expression(upcast_id, 2); self.visit_expr(ctx, to_expr_id)?; self.expr_parent = old_expr_parent; Ok(()) } fn visit_select_expr(&mut self, ctx: &mut Ctx, id: SelectExpressionId) -> VisitorResult { debug_assert!(!self.performing_breadth_pass); let select_expr = &mut ctx.heap[id]; let expr_id = select_expr.subject; let old_expr_parent = self.expr_parent; select_expr.parent = old_expr_parent; self.expr_parent = ExpressionParent::Expression(id.upcast(), 0); self.visit_expr(ctx, expr_id)?; self.expr_parent = old_expr_parent; Ok(()) } fn visit_array_expr(&mut self, ctx: &mut Ctx, id: ArrayExpressionId) -> VisitorResult { debug_assert!(!self.performing_breadth_pass); let upcast_id = id.upcast(); let array_expr = &mut ctx.heap[id]; let old_num_exprs = self.expression_buffer.len(); self.expression_buffer.extend(&array_expr.elements); let new_num_exprs = self.expression_buffer.len(); let old_expr_parent = self.expr_parent; array_expr.parent = old_expr_parent; for field_expr_idx in old_num_exprs..new_num_exprs { let field_expr_id = self.expression_buffer[field_expr_idx]; self.expr_parent = ExpressionParent::Expression(upcast_id, field_expr_idx as u32); self.visit_expr(ctx, field_expr_id)?; } self.expression_buffer.truncate(old_num_exprs); self.expr_parent = old_expr_parent; Ok(()) } fn visit_constant_expr(&mut self, ctx: &mut Ctx, id: ConstantExpressionId) -> VisitorResult { debug_assert!(!self.performing_breadth_pass); let constant_expr = &mut ctx.heap[id]; constant_expr.parent = self.expr_parent; Ok(()) } fn visit_call_expr(&mut self, ctx: &mut Ctx, id: CallExpressionId) -> VisitorResult { debug_assert!(!self.performing_breadth_pass); let call_expr = &mut ctx.heap[id]; // Resolve the method to the appropriate definition and check the // legality of the particular method call. match &mut call_expr.method { Method::Create => {}, Method::Fires => { if !self.def_type.is_primitive() { return Err(ParseError2::new_error( &ctx.module.source, call_expr.position, "A call to 'fires' may only occur in primitive component definitions" )); } }, Method::Get => { if !self.def_type.is_primitive() { return Err(ParseError2::new_error( &ctx.module.source, call_expr.position, "A call to 'get' may only occur in primitive component definitions" )); } }, Method::Symbolic(symbolic) => { // Find symbolic method let found_symbol = self.find_symbol_of_type( ctx.module.root_id, &ctx.symbols, &ctx.types, &symbolic.identifier, TypeClass::Function ); let definition_id = match found_symbol { FindOfTypeResult::Found(definition_id) => definition_id, FindOfTypeResult::TypeMismatch(got_type_class) => { return Err(ParseError2::new_error( &ctx.module.source, symbolic.identifier.position, &format!("Only functions can be called, this identifier points to a {}", got_type_class) )) }, FindOfTypeResult::NotFound => { return Err(ParseError2::new_error( &ctx.module.source, symbolic.identifier.position, &format!("Could not find a function with this name") )) } }; symbolic.definition = Some(definition_id); } } // Parse all the arguments in the depth pass as well. Note that we check // the number of arguments in the type checker. let call_expr = &mut ctx.heap[id]; let upcast_id = id.upcast(); let old_num_exprs = self.expression_buffer.len(); self.expression_buffer.extend(&call_expr.arguments); let new_num_exprs = self.expression_buffer.len(); let old_expr_parent = self.expr_parent; call_expr.parent = old_expr_parent; for arg_expr_idx in old_num_exprs..new_num_exprs { let arg_expr_id = self.expression_buffer[arg_expr_idx]; self.expr_parent = ExpressionParent::Expression(upcast_id, arg_expr_idx as u32); self.visit_expr(ctx, arg_expr_id)?; } self.expression_buffer.truncate(old_num_exprs); self.expr_parent = old_expr_parent; Ok(()) } fn visit_variable_expr(&mut self, ctx: &mut Ctx, id: VariableExpressionId) -> VisitorResult { debug_assert!(!self.performing_breadth_pass); let var_expr = &ctx.heap[id]; let variable_id = self.find_variable(ctx, self.relative_pos_in_block, &var_expr.identifier)?; let var_expr = &mut ctx.heap[id]; var_expr.declaration = Some(variable_id); var_expr.parent = self.expr_parent; Ok(()) } //-------------------------------------------------------------------------- // ParserType visitors //-------------------------------------------------------------------------- fn visit_parser_type(&mut self, ctx: &mut Ctx, id: ParserTypeId) -> VisitorResult { // We visit a particular type rooted in a non-ParserType node in the // AST. Within this function we set up a buffer to visit all nested // ParserType nodes. // The goal is to link symbolic ParserType instances to the appropriate // definition or symbolic type. Alternatively to throw an error if we // cannot resolve the ParserType to either of these (polymorphic) types. use ParserTypeVariant as PTV; debug_assert!(!self.performing_breadth_pass); let init_num_types = self.parser_type_buffer.len(); self.parser_type_buffer.push(id); 'resolve_loop: while self.parser_type_buffer.len() > init_num_types { let parser_type_id = self.parser_type_buffer.pop().unwrap(); let parser_type = &ctx.heap[parser_type_id]; let (symbolic_variant, num_inferred_to_allocate) = match &parser_type.variant { PTV::Message | PTV::Bool | PTV::Byte | PTV::Short | PTV::Int | PTV::Long | PTV::String | PTV::IntegerLiteral | PTV::Inferred => { // Builtin types or types that do not require recursion continue 'resolve_loop; }, PTV::Array(subtype_id) | PTV::Input(subtype_id) | PTV::Output(subtype_id) => { // Requires recursing self.parser_type_buffer.push(*subtype_id); continue 'resolve_loop; }, PTV::Symbolic(symbolic) => { // Retrieve poly_vars from function/component definition to // match against. let (definition_id, poly_vars) = match self.def_type { DefinitionType::None => unreachable!(), DefinitionType::Primitive(id) => (id.upcast(), &ctx.heap[id].poly_vars), DefinitionType::Composite(id) => (id.upcast(), &ctx.heap[id].poly_vars), DefinitionType::Function(id) => (id.upcast(), &ctx.heap[id].poly_vars), }; let mut symbolic_variant = None; for (poly_var_idx, poly_var) in poly_vars.iter().enumerate() { if symbolic.identifier.value == poly_var.value { // Type refers to a polymorphic variable. // TODO: @hkt Maybe allow higher-kinded types? if !symbolic.poly_args.is_empty() { return Err(ParseError2::new_error( &ctx.module.source, symbolic.identifier.position, "Polymorphic arguments to a polymorphic variable (higher-kinded types) are not allowed (yet)" )); } symbolic_variant = Some(SymbolicParserTypeVariant::PolyArg(definition_id, poly_var_idx)); } } if let Some(symbolic_variant) = symbolic_variant { (symbolic_variant, 0) } else { // Must be a user-defined type, otherwise an error let found_type = find_type_definition( &ctx.symbols, &ctx.types, ctx.module.root_id, &symbolic.identifier ).as_parse_error(&ctx.module.source)?; symbolic_variant = Some(SymbolicParserTypeVariant::Definition(found_type.ast_definition)); // TODO: @function_ptrs: Allow function pointers at some // point in the future if found_type.definition.type_class().is_proc_type() { return Err(ParseError2::new_error( &ctx.module.source, symbolic.identifier.position, &format!( "This identifier points to a {} type, expected a datatype", found_type.definition.type_class() ) )); } // If the type is polymorphic then we have two cases: if // the programmer did not specify the polyargs then we // assume we're going to infer all of them. Otherwise we // make sure that they match in count. if !found_type.poly_args.is_empty() && symbolic.poly_args.is_empty() { // All inferred ( SymbolicParserTypeVariant::Definition(found_type.ast_definition), found_type.poly_args.len() ) } else if symbolic.poly_args.len() != found_type.poly_args.len() { return Err(ParseError2::new_error( &ctx.module.source, symbolic.identifier.position, &format!( "Expected {} polymorpic arguments (or none, to infer them), but {} were specified", found_type.poly_args.len(), symbolic.poly_args.len() ) )) } else { // If here then the type is not polymorphic, or all // types are properly specified by the user. for specified_poly_arg in &symbolic.poly_args { self.parser_type_buffer.push(*specified_poly_arg); } (SymbolicParserTypeVariant::Definition(found_type.ast_definition), 0) } } } }; // If here then type is symbolic, perform a mutable borrow to set // the target of the symbolic type. for _ in 0..num_inferred_to_allocate { self.parser_type_buffer.push(ctx.heap.alloc_parser_type(|this| ParserType{ this, position: })) } if let PTV::Symbolic(symbolic) = } Ok(()) } } enum FindOfTypeResult { // Identifier was exactly matched, type matched as well Found(DefinitionId), // Identifier was matched, but the type differs from the expected one TypeMismatch(&'static str), // Identifier could not be found NotFound, } impl ValidityAndLinkerVisitor { //-------------------------------------------------------------------------- // Special traversal //-------------------------------------------------------------------------- /// Will visit a statement with a hint about its wrapping statement. This is /// used to distinguish block statements with a wrapping synchronous /// statement from normal block statements. fn visit_stmt_with_hint(&mut self, ctx: &mut Ctx, id: StatementId, hint: Option) -> VisitorResult { if let Statement::Block(block_stmt) = &ctx.heap[id] { let block_id = block_stmt.this; self.visit_block_stmt_with_hint(ctx, block_id, hint) } else { self.visit_stmt(ctx, id) } } fn visit_block_stmt_with_hint(&mut self, ctx: &mut Ctx, id: BlockStatementId, hint: Option) -> VisitorResult { if self.performing_breadth_pass { // Performing a breadth pass, so don't traverse into the statements // of the block. return Ok(()) } // Set parent scope and relative position in the parent scope. Remember // these values to set them back to the old values when we're done with // the traversal of the block's statements. let body = &mut ctx.heap[id]; body.parent_scope = self.cur_scope.clone(); body.relative_pos_in_parent = self.relative_pos_in_block; let old_scope = self.cur_scope.replace(match hint { Some(sync_id) => Scope::Synchronous((sync_id, id)), None => Scope::Regular(id), }); let old_relative_pos = self.relative_pos_in_block; // Copy statement IDs into buffer let old_num_stmts = self.statement_buffer.len(); { let body = &ctx.heap[id]; self.statement_buffer.extend_from_slice(&body.statements); } let new_num_stmts = self.statement_buffer.len(); // Perform the breadth-first pass. Its main purpose is to find labeled // statements such that we can find the `goto`-targets immediately when // performing the depth pass self.performing_breadth_pass = true; for stmt_idx in old_num_stmts..new_num_stmts { self.relative_pos_in_block = (stmt_idx - old_num_stmts) as u32; self.visit_stmt(ctx, self.statement_buffer[stmt_idx])?; } if !self.insert_buffer.is_empty() { let body = &mut ctx.heap[id]; for (insert_idx, (pos, stmt)) in self.insert_buffer.drain(..).enumerate() { body.statements.insert(pos as usize + insert_idx, stmt); } } // And the depth pass. Because we're not actually visiting any inserted // nodes because we're using the statement buffer, we may safely use the // relative_pos_in_block counter. self.performing_breadth_pass = false; for stmt_idx in old_num_stmts..new_num_stmts { self.relative_pos_in_block = (stmt_idx - old_num_stmts) as u32; self.visit_stmt(ctx, self.statement_buffer[stmt_idx])?; } self.cur_scope = old_scope; self.relative_pos_in_block = old_relative_pos; // Pop statement buffer debug_assert!(self.insert_buffer.is_empty(), "insert buffer not empty after depth pass"); self.statement_buffer.truncate(old_num_stmts); Ok(()) } //-------------------------------------------------------------------------- // Utilities //-------------------------------------------------------------------------- /// Adds a local variable to the current scope. It will also annotate the /// `Local` in the AST with its relative position in the block. fn checked_local_add(&mut self, ctx: &mut Ctx, relative_pos: u32, id: LocalId) -> Result<(), ParseError2> { debug_assert!(self.cur_scope.is_some()); // Make sure we do not conflict with any global symbols { let ident = &ctx.heap[id].identifier; if let Some(symbol) = ctx.symbols.resolve_symbol(ctx.module.root_id, &ident.value) { return Err( ParseError2::new_error(&ctx.module.source, ident.position, "Local variable declaration conflicts with symbol") .with_postfixed_info(&ctx.module.source, symbol.position, "Conflicting symbol is found here") ); } } let local = &mut ctx.heap[id]; local.relative_pos_in_block = relative_pos; // Make sure we do not shadow any variables in any of the scopes. Note // that variables in parent scopes may be declared later let local = &ctx.heap[id]; let mut scope = self.cur_scope.as_ref().unwrap(); let mut local_relative_pos = self.relative_pos_in_block; loop { debug_assert!(scope.is_block(), "scope is not a block"); let block = &ctx.heap[scope.to_block()]; for other_local_id in &block.locals { let other_local = &ctx.heap[*other_local_id]; // Position check in case another variable with the same name // is defined in a higher-level scope, but later than the scope // in which the current variable resides. if local.this != *other_local_id && local_relative_pos >= other_local.relative_pos_in_block && local.identifier.value == other_local.identifier.value { // Collision within this scope return Err( ParseError2::new_error(&ctx.module.source, local.position, "Local variable name conflicts with another variable") .with_postfixed_info(&ctx.module.source, other_local.position, "Previous variable is found here") ); } } // Current scope is fine, move to parent scope if any debug_assert!(block.parent_scope.is_some(), "block scope does not have a parent"); scope = block.parent_scope.as_ref().unwrap(); if let Scope::Definition(definition_id) = scope { // At outer scope, check parameters of function/component for parameter_id in ctx.heap[*definition_id].parameters() { let parameter = &ctx.heap[*parameter_id]; if local.identifier.value == parameter.identifier.value { return Err( ParseError2::new_error(&ctx.module.source, local.position, "Local variable name conflicts with parameter") .with_postfixed_info(&ctx.module.source, parameter.position, "Parameter definition is found here") ); } } break; } // If here, then we are dealing with a block-like parent block local_relative_pos = ctx.heap[scope.to_block()].relative_pos_in_parent; } // No collisions at all let block = &mut ctx.heap[self.cur_scope.as_ref().unwrap().to_block()]; block.locals.push(id); Ok(()) } /// Finds a variable in the visitor's scope that must appear before the /// specified relative position within that block. fn find_variable(&self, ctx: &Ctx, mut relative_pos: u32, identifier: &NamespacedIdentifier) -> Result { debug_assert!(self.cur_scope.is_some()); debug_assert!(identifier.num_namespaces > 0); // TODO: Update once globals are possible as well if identifier.num_namespaces > 1 { todo!("Implement namespaced constant seeking") } // TODO: May still refer to an alias of a global symbol using a single // identifier in the namespace. // No need to use iterator over namespaces if here let mut scope = self.cur_scope.as_ref().unwrap(); loop { debug_assert!(scope.is_block()); let block = &ctx.heap[scope.to_block()]; for local_id in &block.locals { let local = &ctx.heap[*local_id]; if local.relative_pos_in_block < relative_pos && local.identifier.value == identifier.value { return Ok(local_id.upcast()); } } debug_assert!(block.parent_scope.is_some()); scope = block.parent_scope.as_ref().unwrap(); if !scope.is_block() { // Definition scope, need to check arguments to definition match scope { Scope::Definition(definition_id) => { let definition = &ctx.heap[*definition_id]; for parameter_id in definition.parameters() { let parameter = &ctx.heap[*parameter_id]; if parameter.identifier.value == identifier.value { return Ok(parameter_id.upcast()); } } }, _ => unreachable!(), } // Variable could not be found return Err(ParseError2::new_error( &ctx.module.source, identifier.position, "This variable is not declared" )); } else { relative_pos = block.relative_pos_in_parent; } } } /// Adds a particular label to the current scope. Will return an error if /// there is another label with the same name visible in the current scope. fn checked_label_add(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> Result<(), ParseError2> { debug_assert!(self.cur_scope.is_some()); // Make sure label is not defined within the current scope or any of the // parent scope. let label = &ctx.heap[id]; let mut scope = self.cur_scope.as_ref().unwrap(); loop { debug_assert!(scope.is_block(), "scope is not a block"); let block = &ctx.heap[scope.to_block()]; for other_label_id in &block.labels { let other_label = &ctx.heap[*other_label_id]; if other_label.label.value == label.label.value { // Collision return Err( ParseError2::new_error(&ctx.module.source, label.position, "Label name conflicts with another label") .with_postfixed_info(&ctx.module.source, other_label.position, "Other label is found here") ); } } debug_assert!(block.parent_scope.is_some(), "block scope does not have a parent"); scope = block.parent_scope.as_ref().unwrap(); if !scope.is_block() { break; } } // No collisions let block = &mut ctx.heap[self.cur_scope.as_ref().unwrap().to_block()]; block.labels.push(id); Ok(()) } /// Finds a particular labeled statement by its identifier. Once found it /// will make sure that the target label does not skip over any variable /// declarations within the scope in which the label was found. fn find_label(&self, ctx: &Ctx, identifier: &Identifier) -> Result { debug_assert!(self.cur_scope.is_some()); let mut scope = self.cur_scope.as_ref().unwrap(); loop { debug_assert!(scope.is_block(), "scope is not a block"); let relative_scope_pos = ctx.heap[scope.to_block()].relative_pos_in_parent; let block = &ctx.heap[scope.to_block()]; for label_id in &block.labels { let label = &ctx.heap[*label_id]; if label.label.value == identifier.value { for local_id in &block.locals { // TODO: Better to do this in control flow analysis, it // is legal to skip over a variable declaration if it // is not actually being used. I might be missing // something here when laying out the bytecode... let local = &ctx.heap[*local_id]; if local.relative_pos_in_block > relative_scope_pos && local.relative_pos_in_block < label.relative_pos_in_block { return Err( ParseError2::new_error(&ctx.module.source, identifier.position, "This target label skips over a variable declaration") .with_postfixed_info(&ctx.module.source, label.position, "Because it jumps to this label") .with_postfixed_info(&ctx.module.source, local.position, "Which skips over this variable") ); } } return Ok(*label_id); } } debug_assert!(block.parent_scope.is_some(), "block scope does not have a parent"); scope = block.parent_scope.as_ref().unwrap(); if !scope.is_block() { return Err(ParseError2::new_error(&ctx.module.source, identifier.position, "Could not find this label")); } } } /// Finds a particular symbol in the symbol table which must correspond to /// a definition of a particular type. // Note: root_id, symbols and types passed in explicitly to prevent // borrowing errors fn find_symbol_of_type( &self, root_id: RootId, symbols: &SymbolTable, types: &TypeTable, identifier: &NamespacedIdentifier, expected_type_class: TypeClass ) -> FindOfTypeResult { // Find symbol associated with identifier let symbol = symbols.resolve_namespaced_symbol(root_id, &identifier); if symbol.is_none() { return FindOfTypeResult::NotFound; } let (symbol, iter) = symbol.unwrap(); if iter.num_remaining() != 0 { return FindOfTypeResult::NotFound; } match &symbol.symbol { Symbol::Definition((_, definition_id)) => { // Make sure definition is of the expected type let definition_type = types.get_base_definition(&definition_id); debug_assert!(definition_type.is_some(), "Found symbol '{}' in symbol table, but not in type table", String::from_utf8_lossy(&identifier.value)); let definition_type_class = definition_type.unwrap().definition.type_class(); if definition_type_class != expected_type_class { FindOfTypeResult::TypeMismatch(definition_type_class.display_name()) } else { FindOfTypeResult::Found(*definition_id) } }, Symbol::Namespace(_) => FindOfTypeResult::TypeMismatch("namespace"), } } /// This function will check if the provided while statement ID has a block /// statement that is one of our current parents. fn has_parent_while_scope(&self, ctx: &Ctx, id: WhileStatementId) -> bool { debug_assert!(self.cur_scope.is_some()); let mut scope = self.cur_scope.as_ref().unwrap(); let while_stmt = &ctx.heap[id]; loop { debug_assert!(scope.is_block()); let block = scope.to_block(); if while_stmt.body == block.upcast() { return true; } let block = &ctx.heap[block]; debug_assert!(block.parent_scope.is_some(), "block scope does not have a parent"); scope = block.parent_scope.as_ref().unwrap(); if !scope.is_block() { return false; } } } /// This function should be called while dealing with break/continue /// statements. It will try to find the targeted while statement, using the /// target label if provided. If a valid target is found then the loop's /// ID will be returned, otherwise a parsing error is constructed. /// The provided input position should be the position of the break/continue /// statement. fn resolve_break_or_continue_target(&self, ctx: &Ctx, position: InputPosition, label: &Option) -> Result { let target = match label { Some(label) => { let target_id = self.find_label(ctx, label)?; // Make sure break target is a while statement let target = &ctx.heap[target_id]; if let Statement::While(target_stmt) = &ctx.heap[target.body] { // Even though we have a target while statement, the break might not be // present underneath this particular labeled while statement if !self.has_parent_while_scope(ctx, target_stmt.this) { ParseError2::new_error(&ctx.module.source, label.position, "Break statement is not nested under the target label's while statement") .with_postfixed_info(&ctx.module.source, target.position, "The targeted label is found here"); } target_stmt.this } else { return Err( ParseError2::new_error(&ctx.module.source, label.position, "Incorrect break target label, it must target a while loop") .with_postfixed_info(&ctx.module.source, target.position, "The targeted label is found here") ); } }, None => { // Use the enclosing while statement, the break must be // nested within that while statement if self.in_while.is_none() { return Err( ParseError2::new_error(&ctx.module.source, position, "Break statement is not nested under a while loop") ); } self.in_while.unwrap() } }; // We have a valid target for the break statement. But we need to // make sure we will not break out of a synchronous block { let target_while = &ctx.heap[target]; if target_while.in_sync != self.in_sync { // Break is nested under while statement, so can only escape a // sync block if the sync is nested inside the while statement. debug_assert!(self.in_sync.is_some()); let sync_stmt = &ctx.heap[self.in_sync.unwrap()]; return Err( ParseError2::new_error(&ctx.module.source, position, "Break may not escape the surrounding synchronous block") .with_postfixed_info(&ctx.module.source, target_while.position, "The break escapes out of this loop") .with_postfixed_info(&ctx.module.source, sync_stmt.position, "And would therefore escape this synchronous block") ); } } Ok(target) } }