use std::collections::VecDeque; use std::sync::{Arc, Mutex, Condvar}; use std::sync::atomic::Ordering; use crate::protocol::ComponentCreationError; use crate::protocol::eval::ValueGroup; use super::{ConnectorKey, ConnectorId, RuntimeInner}; use super::scheduler::{SchedulerCtx, ComponentCtxFancy}; use super::port::{Port, PortIdLocal, Channel, PortKind}; use super::branch::{Branch}; use super::consensus::find_ports_in_value_group; use super::connector2::{ConnectorScheduling, ConnectorPDL}; use super::inbox2::{MessageFancy, ControlContent, ControlMessageFancy}; /// Generic connector interface from the scheduler's point of view. pub(crate) trait Connector { /// Should run the connector's behaviour up until the next blocking point. /// One should generally request and handle new messages from the component /// context. Then perform any logic the component has to do, and in the /// process perhaps queue up some state changes using the same context. fn run(&mut self, sched_ctx: SchedulerCtx, comp_ctx: &mut ComponentCtxFancy) -> ConnectorScheduling; } type SyncDone = Arc<(Mutex, Condvar)>; type JobQueue = Arc>>; enum ApplicationJob { NewChannel((Port, Port)), NewConnector(ConnectorPDL, Vec), Shutdown, } /// The connector which an application can directly interface with. Once may set /// up the next synchronous round, and retrieve the data afterwards. pub struct ConnectorApplication { sync_done: SyncDone, job_queue: JobQueue, } impl ConnectorApplication { pub(crate) fn new(runtime: Arc) -> (Self, ApplicationInterface) { let sync_done = Arc::new(( Mutex::new(false), Condvar::new() )); let job_queue = Arc::new(Mutex::new(VecDeque::with_capacity(32))); let connector = ConnectorApplication { sync_done: sync_done.clone(), job_queue: job_queue.clone() }; let interface = ApplicationInterface::new(sync_done, job_queue, runtime); return (connector, interface); } } impl Connector for ConnectorApplication { fn run(&mut self, _sched_ctx: SchedulerCtx, comp_ctx: &mut ComponentCtxFancy) -> ConnectorScheduling { // Handle any incoming messages if we're participating in a round while let Some(message) = comp_ctx.read_next_message() { match message { MessageFancy::Data(_) => todo!("data message in API connector"), MessageFancy::Sync(_) => todo!("sync message in API connector"), MessageFancy::Control(_) => todo!("impossible control message"), } } // Handle requests coming from the API { let mut queue = self.job_queue.lock().unwrap(); while let Some(job) = queue.pop_front() { match job { ApplicationJob::NewChannel((endpoint_a, endpoint_b)) => { println!("DEBUG: API adopting ports"); comp_ctx.push_port(endpoint_a); comp_ctx.push_port(endpoint_b); } ApplicationJob::NewConnector(connector, initial_ports) => { println!("DEBUG: API creating connector"); comp_ctx.push_component(connector, initial_ports); }, ApplicationJob::Shutdown => { debug_assert!(queue.is_empty()); return ConnectorScheduling::Exit; } } } } return ConnectorScheduling::NotNow; } } /// The interface to a `ApplicationConnector`. This allows setting up the /// interactions the `ApplicationConnector` performs within a synchronous round. pub struct ApplicationInterface { sync_done: SyncDone, job_queue: JobQueue, runtime: Arc, connector_id: ConnectorId, owned_ports: Vec, } impl ApplicationInterface { fn new(sync_done: SyncDone, job_queue: JobQueue, runtime: Arc) -> Self { return Self{ sync_done, job_queue, runtime, connector_id: ConnectorId::new_invalid(), owned_ports: Vec::new(), } } /// Creates a new channel. pub fn create_channel(&mut self) -> Channel { let (getter_port, putter_port) = self.runtime.create_channel(self.connector_id); debug_assert_eq!(getter_port.kind, PortKind::Getter); let getter_id = getter_port.self_id; let putter_id = putter_port.self_id; { let mut lock = self.job_queue.lock().unwrap(); lock.push_back(ApplicationJob::NewChannel((getter_port, putter_port))); } // Add to owned ports for error checking while creating a connector self.owned_ports.reserve(2); self.owned_ports.push(putter_id); self.owned_ports.push(getter_id); return Channel{ putter_id, getter_id }; } /// Creates a new connector. Note that it is not scheduled immediately, but /// depends on the `ApplicationConnector` to run, followed by the created /// connector being scheduled. // TODO: Yank out scheduler logic for common use. pub fn create_connector(&mut self, module: &str, routine: &str, arguments: ValueGroup) -> Result<(), ComponentCreationError> { // Retrieve ports and make sure that we own the ones that are currently // specified. This is also checked by the scheduler, but that is done // asynchronously. let mut initial_ports = Vec::new(); find_ports_in_value_group(&arguments, &mut initial_ports); for initial_port in &initial_ports { if !self.owned_ports.iter().any(|v| v == initial_port) { return Err(ComponentCreationError::UnownedPort); } } // We own all ports, so remove them on this side for initial_port in &initial_ports { let position = self.owned_ports.iter().position(|v| *v == initial_port).unwrap(); self.owned_ports.remove(position); } let state = self.runtime.protocol_description.new_component_v2(module.as_bytes(), routine.as_bytes(), arguments)?; let connector = ConnectorPDL::new(state); // Put on job queue { let mut queue = self.job_queue.lock().unwrap(); queue.push_back(ApplicationJob::NewConnector(connector, initial_ports)); } self.wake_up_connector_with_ping(); return Ok(()); } /// Check if the next sync-round is finished. pub fn try_wait(&self) -> bool { let (is_done, _) = &*self.sync_done; let lock = is_done.lock().unwrap(); return *lock; } /// Wait until the next sync-round is finished pub fn wait(&self) { let (is_done, condition) = &*self.sync_done; let lock = is_done.lock().unwrap(); condition.wait_while(lock, |v| !*v).unwrap(); // wait while not done } /// Called by runtime to set associated connector's ID. pub(crate) fn set_connector_id(&mut self, id: ConnectorId) { self.connector_id = id; } fn wake_up_connector_with_ping(&self) { let connector = self.runtime.get_component_public(self.connector_id); connector.inbox.insert_message(MessageFancy::Control(ControlMessageFancy{ id: 0, sending_component_id: self.connector_id, content: ControlContent::Ack })); let should_wake_up = connector.sleeping .compare_exchange(true, false, Ordering::SeqCst, Ordering::Acquire) .is_ok(); if should_wake_up { println!("DEBUG: Waking up connector"); let key = unsafe{ ConnectorKey::from_id(self.connector_id) }; self.runtime.push_work(key); } else { println!("DEBUG: NOT waking up connector"); } } } impl Drop for ApplicationInterface { fn drop(&mut self) { { let mut lock = self.job_queue.lock().unwrap(); lock.push_back(ApplicationJob::Shutdown); } self.wake_up_connector_with_ping(); self.runtime.decrement_active_interfaces(); } }