Affine Systems of ODEs in Isabelle/HOL for
Hybrid-Program Verification™

Jonathan Julidn Huerta y Munivel0000—0003—3279-3685]

University of Sheffield, Western Bank, Sheffield, S10 2TN, South Yorkshire, UK
jjhuertaymunivel@sheffield.ac.uk

Abstract. We formalise mathematical components for solving affine
and linear systems of ordinary differential equations in Isabelle/HOL.
The formalisation integrates the theory stacks of linear algebra and anal-
ysis and substantially adds content to both of them. It also serves to
improve extant verification components for hybrid systems by increas-
ing proof automation, removing certification procedures, and decreasing
the number of proof obligations. We showcase these advantages through
examples.

Keywords: Hybrid systems - Formal verification- Proof assistants

1 Introduction

With the increased number of computers controlling physical mechanisms, also
known as cyber-physical systems, proofs of their correctness become more rel-
evant. An important approach is differential dynamic logic (d£) [21]. It is an
extension of dynamic logic with inference rules to reason about flows and in-
variants of ordinary differential equations (ODEs). Numerous case studies apply
it and its domain-specific proof assistant, KeYmaera X [I6J/14]. Despite other
approaches to verification [Il2], we focus on dL-style deductive verification.

Our recent d£L-inspired components allow the verification of hybrid programs
in the general purpose proof assistant Isabelle/HOL [I7IT9l7]. Using a shallow
embedding and Kleene algebras instead of dynamic logics, the implementation
of these components makes them modular and extensible. Their modularity has
been explored before in various ways, however their extensibility for the benefit
of proof performance has not yet been pursued. In particular, extensions of
Isabelle’s mathematical components for ordinary differential equations to specific
classes promises significant benefits in this regard.

Linear and affine systems of ODEs, for example, those described by linear
(resp. affine) transformations, are among the simplest and most studied variants.
They enjoy desirable mathematical properties like existence and uniqueness of
solutions to their associated initial value problems (IVPs), and come with various
methods for solving them. In particular, there is an explicit way to compute the
general solution for their time-independent versions [I0I22]. Although there is

* This work was funded by CONACYT’s scholarship no. 440404.

2 J. J. Huerta y Munive

much work in extending both the ODE libraries [I3IT2IT1] and the linear algebra
libraries [236], there are no formalisations in Isabelle connecting both theory
stacks and this reverberates in the verification process with our components.
For instance, formalising existence and uniqueness results for affine and linear
systems reduces the proofs that users have to supply. Also, where users have to
find solutions to the time-independent versions, we can provide the general one.

Thus, inspired by the deductive approach to verification of hybrid systems,
our main contribution is the first formalisation of linear and affine systems of
ODEs in a proof assistant by combining the theory stacks of linear algebra and
ODEs. We add to this integration by extending these libraries with properties
about operator norms, diagonal matrices, and derivatives involving matrix-vector
multiplication. In addition, we provide evidence that the study and analysis of
these systems with a proof assistant is feasible.

Moreover, we extend the Kleene algebra verification components for hybrid
systems by improving their tactics for checking if a function is a derivative of
another one. We use these tactics to formalise the fact that all linear and affine
systems of ODEs have unique solutions, and we certify the general solution for
the time-independent case. In the cases where the linear transformation has
a diagonalisable representation, we also prove lemmas that include a simpler
representation of the general solution. Finally, we add proof automation for
operations with the list-representation of nxn matrices.

The Isabelle formalisation itself forms a major contribution of this paper.
It adds new mathematical components to an important field of analysis and
improves our verification components for hybrid systems. The formalisations are
available in the reviewed Archive of Formal Proofs [I§].

2 Affine Systems of ODEs

We first review the mathematical definitions and results for differential equations
needed for our formalisation.

Dynamical systems describe the time dependency of points in a state space
S. Formally, they are monoid actions ¢ : T'— S — S that satisfy

@t +1t2) = ptiopts and 00 =1d,

where the monoid (T, +,0) represents time. A dynamical system is a flow or
continuous if T'= R or T' = R, the non-negative real numbers. Flows emerge
from solutions to systems of ordinary differential equations as explained below.

In a system of ODEs X't = f(t,X ¢), the function f : T x S — R™ is a
vector field; it assigns a vector to each point in 7' x S with T'C R and S C R"™,
it is continuous and it suffices to describe the system [I0I22]. An initial value
problem then consists of a vector field f and an initial condition (tg,s) € T' x S,
where tg and s represent the initial time and state of the system. Therefore, a
solution to this system is a continuously differentiable function X : T — S that
satisfies X't = f(¢,X¢) for all t € T. This function also solves the IVP if it
satisfies X tg = s. Finally, if for each s € S there is a unique solution or trajectory

Affine Systems of ODEs in Isabelle/HOL for Hybrid-Program Verification 3

¢} : T — S to the IVP given by f and (0, s), then the equation ¢pts = !t
defines the flow ¢ : T — S — S of f. Geometrically, the trajectory ¢! is the
only curve in S that passes through s and is always tangential to f.
Picard-Lindeldf’s theorem guarantees local existence and uniqueness of so-
lutions for some IVPs [I0I22)]. It requires the domain T x S of f to be open with
(to,s) € Tx S, and f to be locally Lipschitz continuous in S. That is, there must
be £ > 0 and £ > 0 such that for all t € B.(tg) N T and all sq,s2 € B:(s) N S,

Hf(tasl) - f(ta 52)” < €||$1 - 32”)

where ||—|| denotes the euclidean norm in R™ and B:(t) = {7 | |7 —t| < ¢}.
If these conditions are satisfied, then the theorem asserts the existence of an
interval T, C T where a unique local solution ¢f : T, — S for the IVP exists,
that is (pf) t = f (t, ol t)and @l to = sforallt € Ty. Iftg =0 and T = Uses Ts,
then the flow ¢ of f exists and is a monoid action [22].

An important class of vector fields with unique solutions are those represent-

ing affine systems of ODEs. They satisfy the equation
(Y t=At-olt+ Bt,

for matrix-vector multiplication -, n X n matrices At and vectors B¢, where A
and B are continuous functions on T'. Equally important are the corresponding
linear systems where Bt =0 for all t € T

Affine systems of ODEs are Lipschitz continuous with respect to the operator
norm || M|, = Sup {||M - s[| | ||s]| = 1}, where M is a matrix with real coeffi-
cients and Sup denotes the supremum of a set. Indeed, with Lipschitz constant
¢ = Sup{||At|,, | t € B.(s)},

[(At) - 51— (A1) - sa = [[(AT) - (s1 = s2)l| < [[ALl[,, 51 — s2ll < L]ls1 — sal|-

Constant ¢ exists by continuity of A and ||—||, and compactness of B.(s). Picard-
Lindel6f thus guarantees a unique local solution for the associated IVPs. In
particular, in the time-independent or autonomous case where A and B are
constant functions, their unique solutions are well-characterised and globally
defined. That is, flows ¢ for autonomous affine systems exist and satisfy

t
pts=exp(tA) -s+exp(tA)- / (exp (—TA) - B) dr,
0
where exp is the matrix exponential exp A =),y %Al
Computing such exponentials may be computationally expensive due to the
iteration of matrix multiplication. Exceptions are diagonalisable matrices A

which are similar to a diagonal matrix D in the sense that there is an invertible
P such that A = P~ DP. For these matrices,

exp A =exp (P 'DP) =P !(exp D)P,

where exp D in the right hand side is diagonal and easy to characterise: its
entries in the main diagonal are the exponential of those in D. Therefore, when
working with solutions of autonomous affine (or linear) systems, it is preferable
to work with those in diagonal form.

4 J. J. Huerta y Munive
3 Isabelle Components for Affine Systems of ODEs

We describe our Isabelle formalisation of the mathematical concepts outlined in
Section [2] More specifically, we explain our addendum of definitions and lemmas
for an integration of the existing libraries for ODEs and linear algebra. We finish
with an instance of Picard-Lindel6f’s theorem for affine and linear systems.

As Isabelle only allows total functions, we formalise the type of vector fields
as real = 'a = (’a :: real-normed-vector), which by currying is isomorphic to
RxV — V, where V is a normed vector space over R. We then restrict domains
and codomains of solutions using our definition in [I9].
definition ivp-sols :: (real = 'a = (’a :: real-normed-vector)) = real set = 'a set =

real = 'a = (real = 'a) set (Sols)
where Sols fT Sto s ={X |X. (DX =Xt. ft (Xt)onT)ANXtg=sANXeT— S}

The first conjunct D X = (At. f¢ (X t)) in the definiendum above translates
to X't = f(t,Xt), the second states that X :: real = ’a is a solution to the
associated IVP, and the third that X maps elements of T" into S.

We use R™, with n > 0, as our default vector space. It is formalised using
Isabelle’s type (real,’n) wvec (abbreviated as real”'n) of real valued vectors of
dimension n. Isabelle’s HOL-Library builds this type using a bijection to the type
of functions 'n = real with finite n. For s :: real "'n, the expression s$: denotes
the ¢th coordinate of s. That is, $ is the bijection from real”'n to 'n = real. Its
inverse is written with a binder y that replaces A-abstraction. Thus, yi. s$i = s
and (xi. ¢)$i = ¢ for all s :: real”'n and c :: real.

Matrices are then vectors of vectors—an m xn matrix A has type real”'n” 'm.
The product of matrix A with vector s is denoted A *v s; the scaling of vector s
by real number c is written ¢ *p s. In Isabelle, a solution X to an affine system
of ODEs with A :: real = real”'n"'n and B :: real = real”'n then satisfies the
predicate D X = (A\t. At «v Xt + Bt) on T.

We use a formalisation of Picard-Lindel6f’s theorem from [19]. The locale
picard-lindeloef groups its assumptions. If picard-lindeloef f T S tg holds, then
T and S are open, tg € T, s € S, At. fts is continuous on T, and f is lo-
cally Lipschitz continuous. The context of the locale also contains the lemma
picard-lindeloef .unique-solution, stating that any two functions solving an IVP

(D X = ()\t f t (X t)) on {to——t}) Xto=s X € {to——t} — S

are equal at ¢t € T. Here, {tc——t} is Isabelle notation for the set of all numbers
between t and ¢y where ¢t can be above or below tg. Our following lemma then
yields a generic instance of picard-lindeloef .unique-solution for affine systems.

lemma picard-lindeloef-affine:
fixes A :: real = real”’'n"'n
assumes Ahyp: matriz-continuous-on T A
and At e. 7 € T = ¢ > 0 = bdd-above {||A t||,, [t. dist T ¢t < e}
and Bhyp: continuous-on T B and open S
and to € T and Thyp: open T is-interval T
shows picard-lindeloef (A ts. At xvs+ Bt) TS to

(proof)

Affine Systems of ODEs in Isabelle/HOL for Hybrid-Program Verification 5

Assumptions Ahyp and Bhyp state that functions A and B are continuous.
The second one requires that the image of B;(¢) for 7 € T' under At. [[At]],,
is bounded above. The remaining ones are direct conditions of Picard-Lindel6f’s
theorem. Continuity in Ahyp is different from that in Bhyp because Isabelle’s
default norm for matrices A :: real "’'n"'m is the Euclidean norm, not the operator
norm from Section [2l Thus, for the lemma above, we formalise the Lipschitz
continuity argument at the end of Section [2]starting with the following definition.

abbreviation op-norm :: (‘a::real-normed-algebra-1) "'n"'m = real (20-1l,,)
where || 4], = onorm (Az. A xv z)

Function onorm lives in Isabelle’s HOL-Analysis library and it is an alter-
native definition of the operator norm onorm f = Sup {||f x|/ ||z| | x € V}.
However, for many proofs, the definition of ||—||,, in Section [2| is more conve-
nient. Hence we formalise the equivalence as shown below.

lemma op-norm-def: ||A|,, = Sup {||A v z| | . ||z]| = 1}

(proof)

We omit its proof because lack of automation for suprema in Isabelle/HOL

makes it an 8-line script. We also show that [|—||,, satisfies the norm axioms.

lemma op-norm-ge-0: 0 < [|A]|,,

using ez-norm-eq-1 norm-ge-zero norm-matriz-le-op-norm basic-trans-rules(23) by blast

lemma op-norm-zero-iff: (||A|l,, = 0) = (A = 0)
unfolding onorm-eq-0[OF blin-matriz-vector-mult] using matriz-azis-0[of 1 A] by fastforce

lemma op-norm-triangle: |A + Bll,, < (|All,,) + (IBll,,)
using onorm-triangle[OF blin-matriz-vector-mult[of A] blin-matriz-vector-mult[of B]]
matriz-vector-mult-add-rdistrib[symmetric, of A - B] by simp
lemma op-norm-scaleR: ||c xr All,, = |c| = (||All,,)
unfolding onorm-scaleR[OF blin-matriz-vector-mult, symmetric] scaleR-vector-assoc ..

With this norm, we can define continuity for time-dependent matrix functions
and prove Lipschitz continuity.

definition matriz-continuous-on :: real set = (real = ('a::real-normed-algebra-1)"'n"'m) = bool
where matriz-continuous-on T A = Vt€T.Ve>0.36>0V7€T. [T — t|<d — |[AT — At][,,<e

lemma lipschitz-cond-affine:
fixes A :: real = real”’'n"'m and T::real set
defines L = Sup {||A ¢l|,, [t. t € T}

assumes ¢ € T and bdd-above {||A t||,, [t. t € T}
shows [|[A t xvz — At xvy| < Lx* (|lz — y|)

(proof)

Using the constant UNIV, the universal set for a given type, we prove the
fact that solutions for the autonomous affine and linear case are globally defined.
The proofs are just an instantiation of picard-lindeloef-affine.

lemma picard-lindeloef (At s. A v s + B) UNIV UNIV 0
using picard-lindeloef-affine[of - At. A At. B] by (simp only: diff-self op-norm0, auto)

lemma picard-lindeloef (A t. (xv) A) UNIV UNIV 0
using picard-lindeloef-affine-constant[of A 0] by force

6 J. J. Huerta y Munive

All the lemmas and abbreviations displayed above are part of a new addition
to Isabelle’s Archive of Formal Proofs [I8]. Our work in this section covers over 10
pages of proofs and definitions about matrix limits, norms, and operations. This
is equivalent to more than 600 lines of code. It also includes various tangential
concepts to affine systems of ODEs like the maximum norm for matrices and its
relation to the operator norm [22].

4 Flows for Affine Systems of ODEs in Isabelle

One part is still missing from our formalisation: the general solution for au-
tonomous affine and linear systems of ODEs. This is the focus of this section.
Moreover, we prove that these solutions are proper flows in the sense that they
are defined over the entire monoid R and state space R".

The general solution for autonomous affine systems was introduced in Sec-
tion [2} Similarly, the general solution for the respective autonomous linear sys-
tems of ODEsis X t = (exp ((t —tog) A))-s for s € R™. The exponential operation
exp T =) oy %x”, however, is available in Isabelle only within the type-class
real-normed-algebra-1 with an identity element 1 satisfying ||1]] = 1. As this is
not true for real”'n"'n, because ||(x 4. 1)|| # 1, we define a sub-type of square
matrices and show that it is an instance of real-normed-algebra-1 and banach.

typedef 'm sq-mtx = UNIV::(real”'m”'m) set
morphisms to-vec sq-mtz-chi by simp

instance s¢g-mtz :: (finite) real-normed-algebra-1

(proofy

instance sq-mtz :: (finite) banach
(proof)

The command morphisms introduces the bijection to-vec and its inverse
to-mtx between 'n s¢-mtz and real”’'n”"'n. Both instantiations require proving
that matrices form normed vector spaces. Beyond that, the first instantiation
requires showing that they also form a ring. The second instantiation formalises
the fact that every Cauchy sequence of square matrices converges.

As many properties in previous sections apply to matrices as vectors of vec-
tors, we lift various operations from this type to our new type of square matrices.

lift-definition sg-mtz-ith = 'm sg-mtz = 'm = (real”’m) (infixl $$ 90) is ($) .

lift-definition sg-mtz-vec-mult :: 'm sq-mtz = (real”’m) = (real”’m) (infixl xy 90) is (xv) .

1 [90]) is matriz-inv .

lift-definition sg-mtz-inv :: ('m::finite) sqg-mtx = 'm sq-mtz (-~

This means that we can write $$ and xy instead of $ and *v respectively,
and we can convert proofs between the new and the old type. We thus obtain
the same results as before in the new type, including Picard-Lindel6f’s theorem.

lemma picard-lindeloef-sq-mtz-affine:
assumes continuous-on T A and continuous-on T B
and to9 € T is-interval T open T and open S
shows picard-lindeloef (At s. At xy s+ Bt) TSty

(proof)

Affine Systems of ODEs in Isabelle/HOL for Hybrid-Program Verification 7

Next we extend the derivative tactics in [I9] that determine whether one
function is a derivative of another. We extend them by adding derivative rules
for (xy). This allows us to formalise the general solution for autonomous linear
and affine systems of ODEs.
lemma has-vderiv-on-sq-mtz-linear:

D (Xt. exp ((t — to) *r A) *v s) = (M. A xy (exp ((t — to) *r A) v s)) on {to——1t}
by (rule poly-derivatives)+ (auto simp: exp-times-scaleR-commute sq-mtz-times-vec-assoc)

lemma has-vderiv-on-sq-mtz-affine:
fixes to::real and A :: ('a::finite) sq-mtx
defines [Sol ¢ t = exp ((¢ * (t — tg)) *r A)
shows D (At. ISol 1 t xy s + 1Sol 1 t xv ([40" (ISol (—=1) T v B) 971)) =
(At. A xy (ISol 1t xv s + 1Sol 1t xv ([0" (ISol (—=1) T v B) 87)) + B) on {to——t}
(proof)

As no conditions on the parameter t are given, these general solutions are
flows. We formalise these results with the locale local-flow of [19].
lemma local-flow-sq-mtz-affine: local-flow (As. A v s + B) UNIV UNIV

(At s. exp (t xr A) *v s + exp (t xp A) *v ([o(exp (= 7 *r A) xv B)IT))
(proof)

lemma local-flow-sq-mtz-linear:
local-flow ((xv) A) UNIV UNIV (At s. exp (t xg A) *v s)
(proof)

As reasoning with general solutions is easier for diagonalisable matrices, we
formalise matrix invertibility, similarity and diagonal matrices from linear alge-
bra. We also characterise the exponential of a matrix in terms of these concepts.

lemma mtz-invertible-def: mtz-invertible A +— (A’ A'x A=1NAx A ' =1)

(proofy

definition similar-sg-mtz :: ('n:finite) sg-mtz = 'n sq-mtz = bool (infixr ~ 25)
where (A ~ B) «+— (3 P. mtz-invertible P A A = P~! x B % P)

definition diag-mat f = (x i j. if i = j then f i else 0)

lemma exp-scaleR-diagonall:
assumes miz-invertible P and A = P~ 1 x (diag . fi) * P
shows exp (t xr A) = P~ x (diag i. exp (¢t * f1)) * P

(proof)

The first three concepts and related properties are available for matrices of
type real”'n"'n and 'n sq-mtz. The exponential is only available for the latter.
For example, the notation (diag i. f 1) is the 'n sg-mizx version of diag-mat f.

Our development of the type 'm sq-mitz and the diagonalisation of square
matrices is over 16 pages long. It spans over 900 lines of code or more than 200
lemmas whose proofs are long due to the various convergence arguments and
instantiations. Yet, the substantial formalisation in this section is new and it
allows Isabelle users to prove facts involving derivatives of matrix operations.

8 J. J. Huerta y Munive
5 Working with Linear Systems in Isabelle

The mathematical development so far supports several ways of proving prop-
erties of affine systems of ODEs in Isabelle/HOL. In this section, we discuss
various use cases of our components, including their limitations. Our classifica-
tion depends on whether users know a solution to an affine system

X't=At-Xt+ Bt. (1)

In the autonomous case At = A, it also depends on the diagonalisability of A.

Firstly, users may want to certify that a function ¢f : T — S solves sys-
tem , with 7" C R and S C R”™. If they formalise equation in Isabelle
by substituting ¢f for X, then they can use tactic poly-derivatives to check
that both sides of the equation reduce to the same expression as in lemma
has-vderiv-on-sq-mtz-linear of Section [

Alternatively, users might want to relate two different characterisations ga{ , @g
of the solution to an IVP X't = At-X t+ Bt with X ty = s. Using uniqueness, as
provided by Picard-Lindel6f’s theorem, they can convert easily between one char-
acterisation to the other by firstly formalising that <p{ t= <p£ tforallt e T CR.
Our most general uniqueness lemma is picard-lindeloef .unique-solution of Sec-
tion [3] but we have derived specific instances for the autonomous affine case
X't =A-Xt+ B, linear case X't = A- X t, and the case when t; = 0 and ¢
is the general solution in terms of the matrix exponential.

A particular case where our uniqueness lemmas are useful is in d£-style veri-
fication of hybrid systems [21]]. Its postconditions must hold for all the points in
all solutions of an IVP or along all points of the flow [7I20/19]. Uniqueness there-
fore simplifies the verification procedure by restricting it to only one solution.
We further explore this in Sections [7] and

So far we have covered cases where users have a solution to system . Oth-
erwise, our formalisation provides the general solution for autonomous affine
systems X't = A- Xt + B in terms of the matrix exponential with lemmas
has-vderiv-on-sq-mtz-affine and has-vderiv-on-sq-mitz-linear for the type of ma-
trices 'n sq-mtz of Section

A formalisation of the general solution for the non-autonomous case is harder
and left for future work. The difficulty resides in that one usually needs a solution
to the associated linear system X't = At- X ¢ [§] which can be difficult to find.
With this solution, one can use the variation of parameters method to generate
the corresponding solution to the affine system [10]. An alternative approach
consists in finding the solution to an equivalent linear system of ODEs in one
more dimension. Indeed, the system

X't\ _ ((At) (Bt)\ (Xt\ _ (At-Xt+ Bt
) \o" o 1) 0
subsumes system in its first entry. Here, 07 is a transposed zero-vector with
the same length as Bt and 0,1 € R. Thus, if the solution to any of those two

Affine Systems of ODEs in Isabelle/HOL for Hybrid-Program Verification 9

linear systems is known, our components are the basis for solving the affine
system of interest.

Yet, working with the general solution might require the simplifications at
the end of Section [2] via the diagonalisation A = P~'DP provided that the
associated diagonal D and change of basis P matrices are known. In Section [4
Lemma exp-scaleR-diagonall includes the simplification based on this proviso.

If matrices are non-diagonalisable, the general solution is left for future work
as we need Jordan Normal forms to formalise this result [22]. However, many non-
diagonalisable matrices can still be tackled with our components. An example
of this are nilpotent matrices that satisfy the condition A¥ = 0 for some k& > 0.
If k is small, the exponential is still easy to characterise as exp A = Zf:o %Ai.
We exemplify how to use our components in such cases in Sections [6] and

Finally, users may want to work with the flow ¢t s of the autonomous affine
system of ODEs X't = A (X ¢) + B with initial condition X 0 = s. For this,
they must use the type 'n sq-mtzx and the locale local-flow applied to the general
solution. With this locale, users can change between characterisations of the flow
via uniqueness theorems or use the lemma that formalises the monoid-action
behaviour of the flow over R.

6 Examples

In this section, we analyse two systems of ODEs and characterise their flows with
our Isabelle formalisation. In the first example, we diagonalise the associated
matrix and use this to describe the general solution more conveniently. For the
second one, we construct the general solution by computing the associated matrix
exponential directly.

Ezample 1 (Diagonalizable matriz). An ubiquitous second order ODE in physics
and engineering is
2t =a(xt)+ b(z't).

Fixing a = —% and b = —% yields the damped harmonic oscillator equation of
a mass m attached to a spring with constant k sliding along a horizontal track
with damping factor d. Alternatively, with a = & and b = %, we obtain an
ODE for modelling the current of a closed circuit where a resistor (R), inductor
(L) and capacitor (C) are in series with a source of constant voltage [10].

Introducing variable y such that =’ ¢t = yt yields the linear system

(i) = () G2

In Isabelle, we use our function mtz that turns lists into the type 'n sq-mtz.

abbreviation mtz-hOsc :: real = real = 2 sq-mtx (A)
where A a b = miz
([o, 1] #
[a, b] # [1)

10 J. J. Huerta y Munive

We use WolframAlpha@®) to diagonalise it: generate its eigenvalues t1, Lo and
its change of basis matrix P. Then we formalise these entities and certify the
diagonalisation as follows.

abbreviation mtz-chB-hOsc :: real = real = 2 sq-mtx (P)
where P a b = mtx
([a, b] #
(1, 11 # 1)

lemma mtz-hOsc-diagonalizable:
defines 1 = (b — sqrt (b"2+4xa))/2 and 12 = (b + sqrt (b"2+4%*a))/2
assumes b2 + a x 4 > 0 and a # 0
shows A a b = P (—t2/a) (—t1/a) * (diag 4. if i = 1 then ¢y else v2) * (P (—t2/a) (—t1/a)) " *
(proof)

Integrating a computer algebra system directly into Isabelle, so that inputs and
certification are done automatically, is beyond our research goals in this article.
Although we omit the proof, it is a simple 4-line script thanks to the addition
of our lemmas about standard matrix operations to Isabelle’s simplifier.
Finally, we use this diagonalisation to compute the general solution of the
ODEs generated by A a b and instantiate local-flow-sq-mtz-linear to this result.

lemma mtz-hOsc-solution-eq:
defines 11 = (b — sqrt (b2+4%a))/2 and 1o = (b + sqrt (b>+4%a))/2
defines @ t = mtzx (
[toxexp(t*e1) — t1xexp(txia), exp(txig)—exp(t*er)])#
laxexp(txia) — axexp(txiy), takxexp(txia)—tykexp(t*er)]#[])
assumes b2 + a x 4 > 0 and a # 0
shows P (—t2/a) (—t1/a) * (diag i. exp (t * (if i=1 then 1y else 12))) * (P (—ta/a) (—t1/a))"*
= (1/sqrt (0 + a % 4)) *n (& 1)
(proof)

lemma local-flow-mtz-hOsc:
defines 1 = (b — sqrt (b"2+4xa))/2 and t2 = (b + sqrt (b"2+4%*a))/2
defines @ t = mitz (
[toxexp(t*e1) — t1xexp(txia), exp(txig)—exp(t*ey)]#
laxexp(txia) — axexp(txir), takxexp(txig)—tykexp(t*er)|#[])
assumesb2+a*4>0anda7£0
shows local-flow ((*v) (A a b)) UNIV UNIV (At. (xv) ((1/sqrt (b% 4+ a * 4)) *r 1))
(proof)

Our matrix operation lemmas make the proof of both results easy to tackle for
the experimented Isabelle user. The last lemma yields an automated certification
of the uniqueness and the monoid-action behavior of this flow. These results will
be useful later in the verification of a simple hybrid program.

Ezample 2 (Non-diagonalizable matriz). To derive the equations for constantly
accelerated motion in one dimension, we start with the ODE 2z’ ¢ = 0. This is
equivalent to the linear system

z't 010 Tt
vt] =001 |wvt],
a't 000 at

where x,v and a represent the position, velocity and acceleration of the mo-
tion. Although the matrix in this system is non-diagonalisable, it is nilpotent as
formalised below.

Affine Systems of ODEs in Isabelle/HOL for Hybrid-Program Verification 11

abbreviation mtz-cnst-acc 1 3 sg-mtz (K)
where K = mtz (
[0,1,0] #
[0,0,1] #
(0,0,01 # [1)

lemma powN-scaleR-mtz-cnst-acc: n > 2 => (t xg K) 'n =0

(proof)

We can use this fact to obtain the general solution and the kinematics equa-
tions for constantly accelerated motion with initial state s = (s$1, s$2, s$3).
lemma ezp-miz-cnst-acc: exp (t xr K) = ((t *xr K)?>/r 2) + (t g K) + 1

unfolding ezp-def apply(subst suminf-eq-sum[of 2])
using powN-scaleR-mtz-cnst-acc by (simp-all add: numeral-2-eq-2)

lemma exp-mtz-cnst-acc-vec-mult-eq: exp (t *r K) *y s =
vector [s$3 * t°2/2 + s$2 x t + s$1, s$3 * t + s$2, s$3]
(proofy

Here, vector is a function that turns lists into vectors. From this, a simple
instantiation shows that the kinematics equations describe the flow of the ODE.
lemma local-flow-mtz-cnst-acc:

local-flow ((xv) K) UNIV UNIV (Mt s. ((t *r K)?>/r 2 4+ (t xr K) + 1) *v s)
using local-flow-sq-mtz-linear[of K| unfolding exp-mtz-cnst-acc .

Throughout this section, formalisation and proofs are relatively simple. This
is because our lemmas about matrix operations, if added to Isabelle’s simplifier,
improve proof automation.

7 Applications in Hybrid Program Verification

To illustrate an application of our formalisation, we use our Isabelle verifica-
tion components for hybrid programs [I7]. This approach starts with an algebra
(K,+,;,0,1,*) for simple while-programs that also supports a boolean subal-
gebra (B,+,;,0,1,-) of tests such as a Kleene algebra with tests or a modal
Kleene algebra [I5l4]. With the interpretation of elements of K as programs, +
as nondeterministic choice, ; as sequential composition, * as finite iteration, and
0 and 1 as the aborting and ineffective programs respectively, the equations

if p then « else 8 = p; o + —p; B,
while p do a = (p;a)*;—p

model the behaviour of while-programs. These algebras allow us to write correct-
ness specifications via Hoare-triples {—} — {—} or weakest liberal preconditions
wlp [913]. This means that we can derive the rules of Hoare-logic and/or those
of the wlp-calculus. In Isabelle, this approach accelerates the verification process
as our Kleene algebra components automatically generate domain-specific con-
ditions by handling the program-structure without intervention from the user.
Moreover, these algebras have state transformer models where elements of
the algebra are interpreted as functions of type S — P .S for a given set S. In

12 J. J. Huerta y Munive

this setting, Kleisli composition (fox g)s=U{gs | s’ € f s} interprets ;, + is
pointwise union As. fsUgs, 0is As. 0, 1 is the Kleisli unit ng s = {s}, and *
is f*< s =J{f"s|n >0}, where f =ng and f"*!' = f" o f [19].

Given a finite set of program variables V', the isomorphism between R™ and
RY allows us to work in the state transformer semantics of S C R, effectively
giving us hybrid stores. Defining fla — bla = b and fla — bt = ft if t # a,
the function As. {s[z — es]} is a state transformer. It maps a store s € S to
the singleton of that store with variable x € V updated to e s, for e : § — R. In
particular, it models program assignments

(z:=¢)s={s[x— es]}.

Similarly, for an interval U C T such that 0 € U, the orbit map v¥ : S — P .S
defined by ¥ s = P ! U is a state transformer. It sends each s € S to the set of
all the points in the trajectory ¢f for the IVP induced by f and (0, s). However,
for modelling boundary conditions, an alternative G-guarded version is better.
For predicate G : S — B, we use the evolution command state transformer

(' =f&@)s={plt|tecUANTelt G(pl)},

where “z’ =" is syntactic sugar to resemble ODEs, and | t = {r € U | 7 < t}.

By adding assignments and evolution commands to the language of these
algebras of programs, we get hybrid programs. In particular, we also have cor-
rectness specifications for these commands

s Qs es))} 2= e {Q),

AseS Vel (Vrelt. G(plr) = Q(plt) 2'=f&G {Q}.
The above definition of evolution commands requires uniqueness of the so-
lution to the IVP X' = f(¢,X¢) and X0 = s. For a more general definition
where this is not needed see [I9]. Yet, affine and linear systems have unique

solutions for specific IVPs. Thus, our formalisation of affine and linear systems
is compositional with respect to the verification style described in [19/7].

8 Verification Examples

In this section, we verify two simple hybrid programs using the components
of [I9] and our formalisation of linear systems of ODEs. Both verifications follow
directly from our results in Section [6]

Ezample 3 (Overdamped door-closing mechanism). We use the system of ODEs

't 01 Tt Tt
()= () - Gi) = o (32).
with a = — and b = —% to model a damped harmonic oscillator as described
in Example The expression b? + 4 - a dictates the behaviour of the system. If

Affine Systems of ODEs in Isabelle/HOL for Hybrid-Program Verification 13

b%2+4-a < 0, the damping factor is too big and there is no oscillation. Otherwise,
the oscillation continues. Overdamping is a desired property of some oscillators
inside door mechanisms where the engineer does not want the doors to slam or
open on the opposite side.

We use Isabelle’s s$1 and s$2 to formalise respectively the position (z) and
velocity (y) of one of these door-oscillators. We represent a closed door with the
equation s$1 = 0. Hence, an open door immediately after being pushed by a
person corresponds to the conjunction s$1 > 0 A s$2 = 0. We can prove that
once this happens, the door will never open on the opposite side, that is s$1 > 0,
if its oscillator is overdamped.
lemma overdamped-door:

assumes b> + a* 4 > 0and a < 0 and b < 0 and 0 < ¢t
shows PRE (Xs. s$1 = 0)
HP (LOOP

(As. {s. s81 > 0 N s$2 = 0});

(z'=(*v) (A ab) & G on {0..t} UNIV @ 0)

INV (As. 0 < s81))
POST (As. 0 < s$ 1)
apply(rule fboz-loopl, simp-all add: le-fun-def)
apply (subst local-flow.fboz-g-ode-iwl[OF local-flow-mtz-hOsc[OF assms(1)]])
using assms apply(simp-all add: le-fun-def fboz-def)
unfolding sq-mtz-scaleR-eq UNIV-2 sq-mtx-vec-mult-eq
by (clarsimp simp: overdamped-door-arith)

Notation PRE P HP X POST @ is syntactic sugar for the Hoare triple
{P}X{Q}, meaning that if the system starts satisfying precondition P, then
after the execution of the hybrid program X, postcondition @ will hold. In the
lemma above we assume a < 0 and b > 0 because a = —%, = —% and,
in physics, the constants k, d and m are often positive. The condition ¢ > 0
guarantees the verification for a positive lapse of time.

The hybrid program is the finite iteration of a discrete door-opening, mod-
elled by the state transformer As. {s§1 > 0 A s$2 = 0}, followed by the ODE
't = A - (xt). The loop-invariant of this iteration is the same as the desired
postcondition. As we do not deal with boundary conditions, we use variable G
for the guard of the evolution command. The first two lines in the proof of this
lemma apply the Hoare-rules for loops and evolution commands respectively.

The remaining lines simplify the emerging proof obligations.

Ezample 4 (Automatic docking). A space ship is aligned with its docking station
d and approaching it with velocity vy > 0. The ship needs to stop exactly at
d and its current position is xg, where d > xy. In order to do this, the ship
calculates that it needs a constant deceleration of a = —2(%‘10). Its motion
follows the system of Example [2]

z't 010 xt xt
vVt =1001]-[ovt]| =K-|ovt
a't 000 at at

We formalise the position, velocity and acceleration of the ship with state
s = (881, 5%$2, s83) and its discrete behaviour with an assignment of s$3 to the

14 J. J. Huerta y Munive

value of the safe acceleration. Under these assumptions, we need to guarantee
that the ship will stop (s$2 = 0) if and only if its position coincides with d
(s$1 = d). The formalisation is shown below.
lemma docking-station-arith:
assumes (d::real) > z and v > 0
shows (v=v2%t/(2%xd—2xa)) = (vsxt—v2xt>2/(4*xd—4xz)+z=4d)
(proof)
lemma docking-station:
assumes d > zo and vo > 0
shows PRE (As. s$1 = zg A s$2 = o)
HP ((8 = (As. —(vo "2/(2x%(d—z0))))); z'=(xv) K & G)
POST (As. 582 = 0 «— s$1 = d)
apply(clarsimp simp: le-fun-def local-flow.fboz-g-ode[OF local-flow-sq-mtz-linear[of K]])
unfolding exp-mtz-cnst-acc-vec-mult-eq using assms by (simp add: docking-station-arith)

In the proof of this hybrid program, as before, the first line applies the Hoare-
rule for evolution commands. The second line simplifies the emerging proof obli-
gation by calling the lemma docking-station-arith which we proved separately.

9 Conclusion

We have developed new mathematical components for affine and linear systems
of ODEs that improve a modular semantic framework for verification of hybrid
programs based on Kleene algebras [19] in Isabelle. These extend the tactics of
the framework and simplify the verification procedure by eliminating uniqueness
and existence requirements for solutions to these systems of ODEs.

As many systems in physics and engineering are linear, our work impacts
a wide range of applications for our verification components. Furthermore, our
extension showcases the advantages of using a general purpose proof assistant.
It demonstrates that our components can handle exponentiation and other tran-
scendental functions beyond first-order real arithmetic, to which traditional de-
ductive verification of hybrid programs is confined [21].

Our work is also an extension to Isabelle’s HOL-Analysis library as it adds
lemmas from linear algebra and the theory of ODEs. Previous formalisations
in Isabelle/HOL intersect with our components in both fields, but none of
them combines them. For instance, there are two formalisations of Jordan Nor-
mal forms in Isabelle’s archive of formal proofs (AFP) [236]. They have been
combined and made executable in their exported versions to Standard ML or
Haskell [56]. An integration of this work and our verification components to han-
dle more than just diagonalisable matrices is a pursuable endeavour. On the other
hand, there is much work in extending Isabelle’s libraries for ODEs[I3IT2/TT]. The
AFP contains a definition for bounded linear operators and a proof that linear
systems expressed with these have unique solutions [I3]. However, the affine ver-
sion of this result has not yet been formalised and it requires further work to
make it compatible with the type of vectors real” n and our components.

Yet, much work remains to make this approach widely-adoptable in current
practice. The general solution for non-autonomous linear systems of ODEs using
resolvent matrices remains to be formalised in a proof assistant. Also, our work

Affine Systems of ODEs in Isabelle/HOL for Hybrid-Program Verification 15

can only certify diagonalisations and solutions, but the generation of these is
left to the user. An alternative approach would automate our procedure in Ex-
ample [I} That is, a computer algebra system (CAS) would obtain the solution
(or diagonalisation) and another tool would generate the Isabelle theory with a
certification of the solution provided. This is left for future work.

Acknowledgements. The author wishes to thank the reviewers for their insightful
comments. He also thanks Georg Struth, Harsh Beohar, Rayna Dimitrova, Kirill
Bogdanov and Michael Foster for discussions.

References

10.

11.

12.

13.

14.

15.

. Althoff, M., Bak, S., Forets, M., Frehse, G., Kochdumper, N., Ray, R., Schilling,

C., Schupp, S.: ARCH-COMP19 category report: Continuous and hybrid systems
with linear continuous dynamics. In: ARCH19. pp. 14-40 (2019)

Alur, R.: Formal verification of hybrid systems. In: EMSOFT 2011. pp. 273-278.
ACM (2011)

Armstrong, A., Gomes, V.B.F., Struth, G.: Building program construction and
verification tools from algebraic principles. Formal Aspects of Computing 28(2),
265-293 (2016)

Desharnais, J., Moller, B., Struth, G.: Algebraic notions of termination. Logical
Methods in Computer Science 7(1) (2011)

Divasén, J., Aransay, J.: Gauss-Jordan algorithm and its applications. Archive of
Formal Proofs (2014)

Divasén, J., Kuncar, O., Thiemann, R., Yamada, A.: Perron-Frobenius theorem
for spectral radius analysis. Archive of Formal Proofs (2016)

Foster, S., y Munive, J.J.H., Struth, G.: Differential Hoare logics and refinement
calculi for hybrid systems with Isabelle/HOL. In: RAMiCS 2020[postponed]. pp.
169-186 (2020)

Friedland, B., Director, S.W.: Control Systems Design: An Introduction to State-
Space Methods. McGraw-Hill Higher Education (1985)

Gomes, V.B.F., Struth, G.: Modal Kleene algebra applied to program correctness.
In: FM 2016. LNCS, vol. 9995, pp. 310-325 (2016)

Hirsch, M.W., Smale, S., Devaney, R.L.: Differential equations, dynamical systems,
and linear algebra. Academic Press (1974)

Immler, F.: Formally verified computation of enclosures of solutions of ordinary
differential equations. In: NFM 2014. LNCS, vol. 8430, pp. 113-127. Springer (2014)
Immler, F., Holzl, J.: Numerical analysis of ordinary differential equations in Is-
abelle/HOL. In: ITP 2012. LNCS, vol. 7406, pp. 377-392. Springer (2012)
Immler, F., Hoélzl, J.: Ordinary differential equations. Archive of Formal Proofs
(2012), https://www.isa-afp.org/entries/Ordinary Differential_ Equations.shtml
Jeannin, J., Ghorbal, K., Kouskoulas, Y., Schmidt, A., Gardner, R., Mitsch,
S., Platzer, A.: A formally verified hybrid system for safe advisories in
the next-generation airborne collision avoidance system. STTT 19(6), 717-
741 (2017). https://doi.org/10.1007/510009-016-0434-1, https://doi.org/10.1007/
s10009-016-0434-1

Kozen, D.: Kleene algebra with tests. ACM TOPLAS 19(3), 427-443 (1997)

https://www.isa-afp.org/entries/Ordinary_Differential_Equations.shtml
https://doi.org/10.1007/s10009-016-0434-1
https://doi.org/10.1007/s10009-016-0434-1
https://doi.org/10.1007/s10009-016-0434-1

16

16.

17.

18.

19.

20.

21.

22.
23.

J. J. Huerta y Munive

Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: Hybrid, distributed,
and now formally verified. In: FM 2011. LNCS, vol. 6664, pp. 42-56. Springer
(2011)

Huerta y Munive, J.J.: Verification components for hybrid systems. Archive of
Formal Proofs (2019), https://www.isa-afp.org/entries/Hybrid_Systems_VCs.html
Huerta y Munive, J.J.: Matrices for odes. Archive of Formal Proofs (2020), https:
//www.isa-afp.org/entries/Matrices_for ODEs.html

Huerta y Munive, J.J., Struth, G.: Predicate transformer semantics for hybrid sys-
tems: Verification components for Isabelle/HOL (2019), arXiv:1909.05618 [cs.LO]
Huerta y Munive, J.J., Struth, G.: Verifying hybrid systems with modal Kleene
algebra. In: RAMiCS 2018. LNCS, vol. 11194, pp. 225-243. Springer (2018)
Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer (2018)
Teschl, G.: Ordinary Differential Equations and Dynamical Systems. AMS (2012)
Thiemann, R., Yamada, A.: Matrices, Jordan normal forms, and spectral radius
theory. Archive of Formal Proofs (2015)

https://www.isa-afp.org/entries/Hybrid_Systems_VCs.html
https://www.isa-afp.org/entries/Matrices_for_ODEs.html
https://www.isa-afp.org/entries/Matrices_for_ODEs.html
https://arxiv.org/abs/arXiv:1909.05618

	Affine Systems of ODEs in Isabelle/HOL for Hybrid-Program Verification

