
Available

Artifact
Difference Verification with Conditions

Dirk Beyer1 , Marie-Christine Jakobs2,1, and Thomas Lemberger1

1 LMU Munich, Munich, Germany
2 TU Darmstadt, Department of Computer Science, Darmstadt, Germany

Abstract. Modern software-verification tools need to support develop-
ment processes that involve frequent changes. Existing approaches for
incremental verification hard-code specific verification techniques. Some
of the approaches must be tightly intertwined with the development
process. To solve this open problem, we present the concept of difference
verification with conditions. Difference verification with conditions is in-
dependent from any specific verification technique and can be integrated
in software projects at any time. It first applies a change analysis that
detects which parts of a software were changed between revisions and
encodes that information in a condition. Based on this condition, an
off-the-shelf verifier is used to verify only those parts of the software
that are influenced by the changes. As a proof of concept, we propose
a simple, syntax-based change analysis and use difference verification
with conditions with three off-the-shelf verifiers. An extensive evaluation
shows the competitiveness of difference verification with conditions.

1 Introduction

Software changes frequently during its life-cycle: developers fix bugs, adapt
existing features, or add new features. In agile development, software construction
is an intrinsically incremental process. Every change to a working system holds
a risk to introduce a new defect. Since software failures are often costly and
may even endanger human lives, it is an integral part of software development
to find potential failures and ensure their absence.

However, running a full verification after each change is inadequate: Changes
rarely affect the complete program behavior. For example, consider pro-
gram absSum (Fig. 1, middle). If the assignment of program variable r is changed
in the else-branch at location 5 (absSummod, Fig. 1, right), only program exe-
cutions that take that else-branch show different behavior. Program executions
that take the if-branch (highlighted in gray) are not affected by the change.
This is typical for program changes: A modified program P ′ exhibits some new
or changed program executions compared to an original program P , but some
executions also stay the same (Fig. 1, left). To ensure the safety of P ′, it is
sufficient to inspect only the changed behavior ex(P ′) \ ex(P).

Replication package available on Zenodo [12].
Funded in part by the Deutsche Forschungsgemeinschaft (DFG) – 418257054 (Coop)
and 378803395 (GRK ConVeY).

https://doi.org/10.5281/zenodo.3954933
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0003-0291-815X
http://gepris.dfg.de/gepris/projekt/418257054
http://gepris.dfg.de/gepris/projekt/378803395

2 D. Beyer, M.-C. Jakobs, and T. Lemberger

ex(P ′)ex(P)

0 r=0;

1 if(a<0)

2 while(a<0)

3 r=r-a;

4 a=a+1;
else

5 r=a+a+1;

6 r=r/2;

0 r=0;

1 if(a<0)

2 while(a<0)

3 r=r-a;

4 a=a+1;
else

5 r=a*(a+1);

6 r=r/2;

Fig. 1: Relation between program executions of original and modified program
(left) and an example: Program absSum (middle) and its modified version
absSummod (right). The modification at location 5 is shown in blue. Program
parts unaffected by the modification are highlighted in gray.

Many incremental verification approaches [39, 40] use this insight: Regression-
test selection [62] tries to only execute those tests in a test suite that are
relevant w.r.t. the change, and incremental formal verification techniques adapt
existing proofs [33, 49, 53, 54], reuse intermediate results [16, 59], or skip the
exploration of unchanged behavior [21, 47, 60, 61]. However, they (a) all focus on
one fixed verification approach, (b) require a strong coupling between the original
verification approach and the incremental technique, and (c) require an initial,
full verification run. Often, this inflexibility makes an approach prohibitive.

As an alternative, we define the concept of difference verification with con-
ditions: Given the original and the changed software, difference verification with
conditions first identifies all executions that are affected by changes and en-
codes them in a condition, an exchange format already known from conditional
model checking [10]—we call this first part diffCond. Then, a conditional
verifier uses that condition to verify only the changed program behavior. For
this step, any existing off-the-shelf verifier can be turned into a conditional
verifier with the reducer-based approach [13].

Difference verification with conditions allows us to (a) use varying verification
approaches for incremental verification, (b) automatically turn any existing
verifier into an incremental verifier, and (c) skip an initial, costly verification run.
Contributions. We make the following contributions:

– We propose difference verification with conditions, which is an incremental
verification approach that combines existing tools and approaches.

– We provide the algorithm diffCond, an integral part of difference verification
with conditions, which outputs a description of the modified execution paths
in an exchangeable condition format. We also prove its correctness.

– We implemented diffCond in the verification framework CPAchecker and
combined it with existing verifiers to construct difference verifiers.

– To study the effectiveness and efficiency of difference verification with condi-
tions, we performed an extensive evaluation on more than 10 000 C programs.

– diffCond and all our data are available for replication and to construct
further difference verifiers (see Sect. 7).

Difference Verification with Conditions 3

`0

`1

`2 `5

`3

`4

`6

`7

r=0;

a<0 ¬a<0

a<0
¬a<0

r=r-a;a=
a+

1;

r=a+a+1;

r=r/2;

(a) Original program

`′0

`′1

`′2 `′5

`′3

`′4

`′6

`′7

r=0;

a<0 ¬a<0

a<0
¬a<0

r=r-a;a=
a+

1;

r=a*(a+1);

r=r/2;

(b) Modified program

q0

q1

q2 q3

q4

r=0;

a<0 ¬a<0

r=a*(a+1);

(c) Condition

Fig. 2: CFA of absSum (Fig. 1), CFA of absSummod, and a condition that describes
the common executions of both programs, as created by our approach

2 Background

Programs. For ease of presentation, we consider imperative programs with
deterministic control-flow, which execute statements from a set Ops. Our im-
plementation supports C programs. Following literature [8, 9, 30], we model
programs as control-flow automata.

Definition 1. A control-flow automaton (CFA) P = (L, `0, G) consists of
– a set L of program locations with initial location `0 ∈ L, and
– a set G ⊆ L×Ops× L of control-flow edges.

CFA P is deterministic if (`, op, `′), (`, op, `′′) ∈ G ⇒ `′ = `′′.

Figure 2 shows the CFA of the example program absSum from Fig. 1. A se-
quence `0

op1→ `1 · · ·
opn→ `n is a syntactical path through CFA P = (L, `0, G),

if ∀i ∈ [1, n] : (`i−1, opi, `i) ∈ G. We rely on standard operational semantics
and model a program state by a pair of (1) the program counter, whose value
refers to a program location in the CFA, and (2) a concrete data state c, whose
shape we do not further specify [8]. We denote the set of all concrete data
states as C. The function spop : C → 2C describes the possible effects of
operation op ∈ Ops on concrete data state c ∈ C. Based on this, a sequence
(`0, c0)

op1→ (`1, c1) · · ·
opn→ (`n, cn) is a program path through CFA P = (L, `0, G), if

`0
op1→ `1 · · ·

opn→ `n is a syntactical path through P and ∀i ∈ [1, n] : ci ∈ spopi(ci−1).
We denote the set of all program paths by paths(P). Program executions are
derived from program paths. If p = (`0, c0)

op1→ (`1, c1) · · ·
opn→ (`n, cn) is a program

path, then ex(p) = c0
op1→ c1 · · ·

opn→ cn is a program execution. The executions
of a program P are defined as ex(P) := {ex(p) | p ∈ paths(P)}.
Conditions. A condition describes which program executions were already veri-
fied, e.g., in a previous verification run. We use automata to represent conditions
and use accepting states to identify already verified executions [13].

4 D. Beyer, M.-C. Jakobs, and T. Lemberger

Definition 2. A condition A = (Q, δ, q0, F) consists of:
– a finite set Q of states,
– a transition relation δ ⊆ Q×Ops×Q ensuring ∀(q, op, q′) ∈ δ : q∈F ⇒ q′∈F ,
– the initial state q0 ∈ Q, and a set F ⊆ Q of accepting states.3

The goal of absSum (left program in Fig. 2) is to compute r =
∑|a|
i=0. However,

the original program is buggy: In location `5, it must compute the product of a
and a+ 1, not the sum. The fixed program is shown in the middle of Fig. 2—the
fix is highlighted in blue. The original and modified version of the program only
differ in the else-branch. If we assume that the original program was already
verified, we know that program executions passing through the if-branch have
already been verified and do not need to be considered during a reverification. In
contrast, executions that pass through the else-branch and reach the modified
statement must be verified. The condition shown on the right of Fig. 2 encodes
this insight. Program executions that pass through the if-branch (a < 0) lead to
the accepting state q2—we say they are covered by the condition. In contrast,
program executions that pass through the else-branch (¬a < 0) never reach q2
—they are not covered by the condition, and must be analyzed.

Definition 3. A condition A = (Q, δ, q0, F) covers an execution
π = c0

op1→ c1 · · ·
opn→ cn if there exists an index k ∈ [0, n] and a run

ρ = q0
op1→ q2 · · ·

opk→ qk, s.t. qk ∈ F and ∀i ∈ [1, k] : (qi−1, opi, qi) ∈ δ.

Next, we introduce a simple and efficient way to systematically compute a con-
dition that covers the common executions of an original and a modified program.

3 Component diffCond for Modular Construction

The ultimate goal of difference verification with conditions is to speed up reverifi-
cation of modified programs. To achieve this goal, we aim at ignoring unmodified
program behavior during verification. Conditions are a well-fitting format to
describe the unmodified program behavior. However, to benefit from difference
verification with conditions, the construction of such conditions must be efficient,
i.e., consume only a small portion of the overall execution time of the verification.
Therefore, we use a syntactic approach to compute the condition, diffCond
(Alg. 1), which is linear in time regarding the size of the modified program.

diffCond gets as input the original program P and the modified program P ′.
In lines 1 to 11, diffCond traverses the modified and the original program
in parallel, stops traversal if the original and the modified program differ, and
remembers the edge that differs in the modified program.

It uses three data structures: Set E ⊆ L×L′×Ops×L×L′ stores all compared
edges (`1, op, `2) and (`′1, op, `

′
2) that are equal in both programs. These edges are

3 In general [10, 13] the transition relation of a condition also specifies assumptions
on the program states. Since difference verification with conditions requires no
assumptions on the program states, we omit this additional characteristic.

Difference Verification with Conditions 5

Algorithm 1 diffCond(P, P ′)

Input: CFA P = (L, `0, G) // original program
Input: CFA P ′ = (L′, `′0, G

′) // modified program
Output: A = (Q, δ, q0, F) // difference condition
Variables: Set E ⊆ L×L′×Ops×L×L′ of composite CFA edges equal in the original

and the modified program, set D ⊆ L× L′ ×Ops× L′ of CFA edges that differ in
the modified program, set waitlist ⊆ L × L′ of program locations in original and
modified program for which to compare outgoing edges.

. Change detection
1: E := ∅; D := ∅
2: waitlist := {(`0, `′0)}
3: while waitlist 6= ∅ do
4: pop (`1, `

′
1) from waitlist

5: for each (`′1, op, `
′
2) ∈ G′ do

6: if ¬∃`2 ∈ L : (`1, op, `2) ∈ G then
7: D :=D ∪ {((`1, `′1), op, `′2)}
8: else
9: E := E ∪ {((`1, `′1), op, (`2, `′2))}
10: if (·, ·, (`2, `′2)) /∈ E then
11: waitlist := waitlist ∪ {(`2, `′2)}

. Condition Generation
12: Q := {q | ∃(·, ·, q) ∈ D}
13: waitlist :=Q
14: while waitlist 6= ∅ do
15: pop q′ from waitlist
16: for each (q, op, q′) ∈ E ∪D with q /∈ Q do
17: Q :=Q ∪ {q}
18: waitlist := waitlist ∪ {q}
19: if Q = ∅ then
20: . No difference edges, automaton always accepts
21: return ({(`0, `′0)}, ∅, (`0, `′0), {(`0, `′0)})
22: else
23: F := {q′ | ∃(q, op, q′) ∈ E ∧ q ∈ Q ∧ q′ /∈ Q}
24: Q :=Q ∪ F
25: δ := {(q, op, q′) ∈ E ∪D | q, q′ ∈ Q ∧ q /∈ F}
26:
27: return (Q, δ, (`0, `

′
0), F)

called standard edges. They are stored in the composite form ((`1, `
′
1), op, (`2, `

′
2)).

Set D ⊆ L×L′×Ops×L′ stores all edges (`′1, op, `′2) of the modified program P ′

that represent a change from the original program P at `1, called difference edges.
They are stored in the form ((`1, `

′
1), op, `

′
2). Set waitlist ⊆ L×L′ stores all pairs

of program locations (`1, `′1) for which a program path with the same syntactic
structure exist in P and P ′, and for which no outgoing edges have been considered
yet. Initially, E and D are empty—no edges were checked so far, and the algorithm

6 D. Beyer, M.-C. Jakobs, and T. Lemberger

(`0, `
′
0)

(`1, `
′
1)

(`2, `
′
2) (`5, `

′
5)

(`3, `
′
3)

(`4, `
′
4)

`′6

(`7, `
′
7)

r=0;

a<0 ¬a<0

a<0
¬a<0

r=r-a;a=
a+

1; r=a*(a+1);

Fig. 3: Parallel composition of absSum and absSummod as computed by diffCond

starts at the two initial program locations, i.e., waitlist = {(`0, `′0)} (lines 1 and 2).
As long as waitlist contains program locations, the algorithm picks one of them,
here depicted as (`1, `′1) (line 4). It considers all outgoing edges (`′1, op, `′2) of `′1
in the modified program. If the same operation op does not exist at any outgoing
edge of `1, it is considered to be changed and the difference edge ((`1, `

′
1), op, `

′
2)

is stored in D before continuing with the next state in waitlist. However, if the
same operation op exists at an outgoing edge (`1, op, `2), it is considered to be
equal and the standard edge ((`1, `

′
1), op, (`2, `

′
2)) is stored in E before continuing

with the next state in waitlist. To this end, diffCond explores the syntactical
composition of the original and modified program. In addition, if the tuple (`2, `′2)
of locations has not been detected before (line 10), it is added to the waitlist for
further exploration. Figure 3 shows the graph built from edges E (black) and
D (blue and dashed) when executing diffCond on absSum and absSummod.

To compute the condition, we first determine the condition’s states. Lines 12 to
18 compute all nodes that can reach a successor of a difference edge. Figure 3 high-
lights these nodes in green. Nodes that are not discovered in lines 12–18 cannot
lead to a difference edge and, thus, not to different program behavior. Conse-
quently, undiscovered nodes that are successors of nodes discovered in lines 12–18
become final states (line 23). Figure 3 highlights these nodes in gray (only node
(`2, `

′
2)). The union of discovered and final states become our condition states.

To complete the construction, we use the pair of initial program locations as the
initial state (`0, `′0) and add to the transition relation all transitions from E and D
that connect condition states. Figure 2c shows the condition created from Fig. 3.

Finally, note that lines 19–21 handle the special case that the set D of
difference edges is empty, thus resulting in Q = ∅ in line 19. The set D is empty if
the original and the modified program only differ in the names of their program
locations 4 or if the modified program is empty ((`′0, ·, ·) /∈ G′). In both cases, all
executions of the modified program are covered by the executions of the original
program. As a result, the condition covers all executions: its only state is both
initial and accepting state, and the condition has no transitions.

The purpose of algorithm diffCond is to compute a condition that sup-
ports skipping unchanged behavior during reverification of a modified program.

4 In practice, this can happen if empty lines are added or removed from the program.

Difference Verification with Conditions 7

To still have a sound reverification, the produced condition must not cover
executions that do not occur in the original program. The following theorem
states this property of algorithm diffCond.

Theorem 1. Let P = (L, `0, G) and P ′ = (L′, `′0, G
′) be two CFAs. diff-

Cond(P,P’) does not cover any execution from ex(P ′) \ ex(P).

Proof. Assume ex(P ′) \ ex(P) 6= ∅. Hence, diffCond(P, P ′) = (Q, δ, q0, F)

is returned in line 27. Let (Q, δ, q0, F) = A, let π = c0
op1→ c1 · · ·

opn→ cn ∈
ex(P ′) \ ex(P), and let ρ = q0

op1→ q1 · · ·
opk→ qk be a run through A, s.t. 0 ≤ k ≤ n

and ∀1 ≤ i ≤ k : (qi−1, opi, qi) ∈ δ. By construction, (1) q0 /∈ F , (2) ∀1 ≤ i < k :
(qi−1, opi, qi) ∈ E ∧ qi /∈ F , and (3) (qk−1, opk, qk) ∈ E ∪ D. We need to show
that qk /∈ F . Case k = 0 follows from (1).

Next, consider the case k = n. If (qk−1, opk, qk) ∈ E, by construction there
exists syntactical path sp = `0

op1→ `2 · · ·
opn→ `n in P and due to program semantics,

π ∈ ex(P). Since π ∈ ex(P ′)\ex(P), we infer (qk−1, opk, qk) ∈ D and thus qk /∈ F .
Finally, consider the case k < n. If (qk−1, opk, qk) ∈ D, we infer qk /∈ F .

Assume (qk−1, opk, qk) ∈ E. By construction, there exists a syntactical path sp =

`0
op1→ `2 · · ·

opk→ `k in program P and a syntactical path sp′ = `′0
op1→ `′2 · · ·

opk→ `′k in
program P ′, s.t. ∀0 ≤ i ≤ k : qi = (`i, `

′
i). Let `0

op1→ `2 · · ·
opk→ `k

opk+1→ `k+1 · · ·
opm→

`m be an extension of the syntactical path sp s.t. m = n or (`m, opm+1, ·) /∈ G.
Due to program semantics and π ∈ ex(P ′) \ ex(P), we conclude k ≤ m < n.
Due to program semantics, P ′ being deterministic, and π ∈ ex(P ′), there exists
an extension `′0

op1→ `′2 · · ·
opk→ `′k

opk+1→ `′k+1 · · ·
opm→ `′m of the syntactical path

sp′. By construction, ∀1 ≤ i ≤ m : ((`i−1, `
′
i−1), opi, (`i, `

′
i)) ∈ E and there

exists ((`m, `′m), opm+1, ·) ∈ D. Hence, ∀0 ≤ i ≤ m : (`i−1, `
′
i−1) ∈ Q \ F . Since

qk = (`k, `
′
k) and k ≤ m, qk /∈ F .

Theoretical Limitations. The effectiveness of difference verification with con-
ditions depends on the amount of program code potentially affected by a change,
which is determined by the diffCond component. diffCond only excludes
program parts that cannot be syntactically reached from a program change.
Therefore, difference verification is ineffective if some initial variable assign-
ments at the very beginning of the program or some global declarations change.
Moreover, the structure of a program strongly influences the effectiveness of
difference verification. For example, programs like absSum∞ (Fig. 4) that mainly
consist of a loop are problematic. Program absSum∞ (Fig. 4) is similar to absSum,
but has an additional, outer loop that dominates the program. So when loca-
tion `7 is changed in absSum∞, difference verification with conditions can only
exclude the if-branch for the very first iteration of the outer loop. Thereafter,
the change in location `7 may propagate into the if-branch.

In contrast, difference verification with conditions can be effective on pro-
grams that allow the exclusion of program parts, e.g., if the program is modular
and, thus, consists of multiple, loosely coupled parts. Examples for modular-
ity are the strategy design pattern, object-oriented software, or software appli-
cations with multiple program features.

8 D. Beyer, M.-C. Jakobs, and T. Lemberger

0 while (1)

1 r=0;

2 a=input();

3 if(a<0)

4 while(a<0)

5 r=r-a;

6 a=a+1;
else

7 r=a+a+1;

8 r=r/2;

(a) Program code

`0

`1

`2

`3 `4

`5

`6

`7

`8

r=0;

a=input();

a<0 ¬a<0

a<0

¬a<0

r=r-a;a=
a+

1; r=a+a+1;

r=r/2;

(b) CFA of program

Fig. 4: Example program absSum∞ with loop dominating the whole program

When designing our experiments, we will consider these limitations of dif-
ference verification with conditions. Before we get to our experiments, we must
describe the modular composition of the diffCond component with a veri-
fier, which specifies the difference verifier.

4 Modular Combinations with Existing Verifiers

The diffCond algorithm can be combined with any off-the-shelf conditional
verifier [10] to produce a difference verifier in a modular way. The goal of a
difference verifier is to verify only modified program paths. To this end, it first
uses diffCond to discover potentially modified program paths and then runs a
conditional verifier to explore only those paths identified by diffCond. Figure 5
shows the construction template for difference verification with conditions. diff-
Cond gets the original and modified program as input and encodes the modified
paths in a condition. The constructed condition is forwarded to a conditional
verifier, which uses the condition to restrict its analysis of the modified program to
those paths that are not covered by the condition (i.e., the modified paths). Based
on this template, we can construct difference verifiers from arbitrary conditional
verifiers. Moreover, we can construct difference verifiers from non-conditional
verifiers by using the concept of reducer-based conditional verifiers [13]. The
idea of a reducer-based conditional verifier is shown on the right of Fig. 5. To
turn an arbitrary verifier into a conditional one, a reducer-based conditional
verifier puts a preprocessor (called reducer) in front of the verifier. The reducer
gets a program and a condition and outputs a new, residual program that
represents the program paths not covered by the condition. A full verification

Difference Verification with Conditions 9

diffCond Conditional Verifier

original program P

modified program P’

Reducer-Based
Conditional Verifier [13]

residual
program

Reducer Verifier
condition

Fig. 5: diffCond + conditional verifier = difference verifier

of this residual program is then equivalent to a conditional verification of the
original program with the produced condition. However, note that the existing
reducers are designed for model checkers and do not necessarily work with
other verification technologies like deductive verifiers.

In this paper, we transform three verifiers into difference verifiers: CPA-Seq,
UAutomizer, and Predicate. The first two are the best verifiers from SV-
COMP 2020 [5], and the third is a predicate-abstraction approach. We use the
off-the-shelf verifiers CPA-Seq and UAutomizer as non-conditional verifiers and
thus add a reducer, while we use Predicate as conditional verifier. Since a
difference verifier can now be built from any off-the-shelf verifier, we can also
combine difference verification with other incremental verification techniques. As
an example, we can use precision reuse [16]. This technique is implemented in
CPAchecker [16] and UAutomizer [49] and can be used with the previously
mentioned approaches. Next we explain the technologies of the selected verifiers.
CPA-Seq uses several different strategies from the CPAchecker verification
framework [6, 11, 14]. CPA-Seq first analyzes different features of the program
under verification. The program features considered are: recursion, concurrency,
occurrence of loops, and occurrence of complex data types like pointers and
structs. Based on these features, CPA-Seq uses one of five different verification
techniques (cf. [6]). For non-recursive, non-concurrent programs with a non-trivial
control flow, CPA-Seq uses a sequential combination of four different analyses:
It uses value analysis with and without Counterexample-guided Abstraction
Refinement (CEGAR) [24], a predicate analysis similar to Predicate, and k-
induction with invariant generation [7]. Invariants are generated by numerical
and predicate analyses and are forwarded to the k-induction analysis.
UAutomizer is the automata-based approach from the Ultimate verification
framework [29, 31]. It uses a CEGAR approach to successively refine an over-
approximation of the error paths, which is given in form of automata. In each
refinement step, a generalization of an infeasible error path is excluded from the
over-approximation. The generalization of the error path is described by a Floyd-
Hoare automaton [31], which assigns Boolean formulas over predicates to its states.
The predicates are obtained via interpolation along the infeasible error path [43].
Predicate is the predicate-abstraction approach from the CPAchecker frame-
work [14] with adjustable-block encoding (ABE) [15]. ABE is instructed to
abstract at loop heads only. CEGAR together with lazy refinement [34] and
interpolation [32] determines the necessary set of predicates.

10 D. Beyer, M.-C. Jakobs, and T. Lemberger

PrecisionReuse is a competitive incremental approach that avoids recomput-
ing the required abstraction level [16]. The idea is to start with the abstraction
level determined in a previous verification run. To this end, it stores and reuses
the precision, which describes the abstraction level, e.g., the set of predicates
to be tracked. We use the version as implemented in CPAchecker.

5 Evaluation

We systematically evaluate our proposed approach along the following claims:

Claim 1. Difference verification with conditions can be more effective than a
full verification. Evaluation Plan: For all verifiers, we compare the number of
tasks solved by difference verification with conditions and by the pure verifier.

Claim 2. Difference verification with conditions is more effective when using
multiple verifiers. Evaluation Plan: We compare the number of tasks solved by
each difference verifier with the union of tasks solved by all difference verifiers.

Claim 3. Difference verification with conditions can be more efficient than a
full verification. Evaluation Plan: For all verifiers, we compare the run time of
difference verification with conditions and of the pure verifier.

Claim 4. The run time of difference verification with conditions is dominated by
the run time of the verifier. Evaluation Plan: We relate the time for verification
to the time required by the diffCond algorithm and the reducer.

Claim 5. Difference verification with conditions can complement existing in-
cremental verification approaches. Evaluation Plan: We compare the results of
difference verification with conditions with the results of precision reuse [16],
a competitive incremental verification approach.

Claim 6. Combining difference verification with conditions with existing incre-
mental verification approaches can be beneficial. Evaluation Plan: We compare
the results of difference verification with the results of a combination of dif-
ference verification with conditions and precision reuse.

5.1 Experiment Setup

Computing Environment. We performed all experiments on machines with
an Intel Xeon E3-1230 v5 CPU, 3.4GHz, with 8 cores each, and 33GB of memory,
running Ubuntu 18.04 with Linux kernel 4.15. We limited each analysis run
to 15GB of memory, a time limit of 900 s, and 4 CPU cores. To enforce these
limits, we ran our experiments with BenchExec [17], version 2.3.

Verifiers. For our experiments, we use the software verifiers CPA-Seq5 [6, 14] and
UAutomizer6 [29, 31] as submitted for SV-COMP 2020, and CPAchecker [14, 15]
5 https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/raw/master/2020/cpa-seq.zip
6 https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/raw/master/2020/uautomizer.zip

https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/raw/master/2020/cpa-seq.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/raw/master/2020/uautomizer.zip

Difference Verification with Conditions 11

in revision 32864 7. CPA-Seq and UAutomizer are used as verifiers. CPAchecker
provides the verifier Predicate, but also the new diffCond component and the
Reducer component for reducer-based conditional verification. The difference
verifier based on Predicate is realized as a single run. In contrast, the difference
verifiers based on CPA-Seq and UAutomizer are realized as composition of two
separate runs. The first run executes the diffCond algorithm followed by the
reducer to generate the residual program. It is only executed once per task, i.e., the
same residual programs are given to CPA-Seq and UAutomizer. In a second run,
CPA-Seq and UAutomizer, respectively, verify the residual program. To deal with
residual programs, we increased the Java stack size for CPA-Seq and UAutomizer.

Existing Incremental Verifier. We use Predicate with precision reuse [16].

Verification Tasks. We use verification tasks from the public repository
sv-benchmarks (tag svcomp20)8, which is the most diverse, largest, and well-
established collection of verification tasks. Since difference verification with
conditions is an incremental verification approach, we require different program
versions. We searched the benchmark repository for programs that come with
multiple versions and for which at least one version is hard to solve, i.e., at least
one of the three considered verifiers takes more than 100 s for verification of
that version, but is successful. From these programs, we arbitrarily picked the
following: eca05 and eca12 (event-condition-action systems, both have 10 ver-
sions each), gcd (greatest common divisor computation, has 4 versions), newton
(approximation of sine, has 24 versions), pals (leader election, has 26 versions),
sfifo (second-chance FIFO replacement, has 5 versions), softflt (a software
implementation of floats, has 5 versions), square (square-root computation,
has 8 versions), and token (a communication protocol, has 28 versions). Un-
fortunately, all of these programs are specialized implementations with a single
purpose. Thus, their implementation is strongly coupled and any reasonable
program change affects the complete program. As explained before, this pro-
hibits effective difference verification with conditions.

To get benchmark tasks that instead contain independent program parts,
we create new combinations from the selected programs. We choose two pro-
grams, e.g., eca05 and token. We then combine these two programs accord-
ing to the following scheme: We create a new program with all declarations
and definitions of both original programs, but a new main function. This new
main function randomly calls the main function of one of the two original pro-
grams. Name clashes are resolved via renaming. Figure 6 shows the conceptual
structure of each program created through this combination. For our experi-
ments, we consider the following combinations of programs: (1) eca05+token,
(2) gcd+newton, (3) pals+eca12, (4) sfifo+token, (5) square+softflt. To cre-
ate different versions of our combinations, we replace one of the two program
parts with a different version of that part. For example, to get a different

7 https://gitlab.com/sosy-lab/software/cpachecker/-/tree/230d2ca5
8 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20

https://gitlab.com/sosy-lab/software/cpachecker/-/tree/230d2ca5
https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20

12 D. Beyer, M.-C. Jakobs, and T. Lemberger

0 extern int __VERIFIER_nondet_int();

1 int main1() { /* main method of task 1 ... */ }

2 /* other definitions of task 1 ... */

3 int main2() { /* main method of task 2 ... */ }

4 /* other definitions of task 2 ... */

5 int main() {

6 if (__VERIFIER_nondet_int())

7 main1();

8 else

9 main2();

10 }

Fig. 6: Conceptual example of combination of verification tasks

version of the original program eca05+token, we change the version of the
eca05 part or the token part, but never both.

With this procedure, we get a large amount of different versions of our program
combinations. For our evaluation, we consider each pair (O,N) of versions O and
N of program combinations that fulfills the following two conditions: (1) N reflects
a change, i.e., the two programs are different. (2) Version O, version N , or both
versions are bug-free. This ensures that verification and difference verification
can only find the same bugs. With this construction of benchmark tasks for incre-
mental verification we get a total of 10 426 tasks that we use in our experiments.

5.2 Experimental Results

Claim 1 (Difference verification with conditions more effective). Table 1
gives an overview of our experimental results. Each column represents one task
set. The rows refer to verifiers, i.e., pure verifiers (X) and difference verifiers
(X∆). The last two rows are the union of the results of all three verifiers. For
each task set and verifier, the table provides the number of tasks for which the
verifier finds a proof (3), finds a bug (!), and only the difference verifier gives
a conclusive answer (H). It also shows the number of tasks (u) that cannot be
solved. Neither the pure nor the difference verifiers reported incorrect results.

The table shows that for each verifier there exist task sets on which the
number of solved correct tasks (3) is higher for the difference verifier. Look-
ing at columns H, we observe that typically there exist tasks that only the
difference verifier can solve. Thus, this shows that our new difference verifi-
cation with conditions can be more effective.

Difference verification with conditions is not always more effective. Especially,
CPA-Seq∆ and UAutomizer∆ sometimes perform worse. For example, CPA-Seq∆

finds significantly less bugs than CPA-Seq for eca05+token. The reason for this
is the residual program constructed by the reducer, which is necessary to turn

Difference Verification with Conditions 13

Table 1: Experimental results for Predicate, CPA-Seq and UAutomizer, as pure
verifiers (X) and difference verifiers (X∆) showing how many correct tasks (3)
and tasks with a bug (!) are solved, how many tasks are only solved by the
difference verifier (H) and which are too hard to solve (u)

eca05+token gcd+newton pals+eca12 sfifo+token square+softflt
(3 640) (1 924) (2 750) (1 872) (240)

3 ! H u 3 ! H u 3 ! H u 3 ! H u 3 ! H u

Predicate∆ 1 447 999 451 1 194 48 572 48 1 304 15 55 20 2 680 655 494 98 723 81 75 70 84
Predicate 1 080 944 1 616 0 572 1 352 0 50 2 700 558 507 807 33 53 154
CPA-Seq∆ 966 671 350 2 003 48 572 48 1 304 183 50 233 2 517 480 390 108 1 002 61 69 61 110
CPA-Seq 755 1 268 1 617 0 572 1 352 0 0 2 750 372 619 881 0 75 165
UAutomizer∆ 270 260 270 3 110 16 0 16 1 908 0 0 0 2 750 349 234 112 1 289 61 45 49 134
UAutomizer 0 325 3 315 0 520 1 404 0 48 2 702 341 258 1 273 44 57 139

All∆ 1 527 999 448 1 114 48 572 48 1 304 183 95 228 2 472 655 494 98 723 81 75 40 84
All 1 080 1 295 1 265 0 572 1 352 0 50 2 700 558 626 688 55 75 110

CPA-Seq into the required conditional verifier. The created residual programs,
on which the off-the-shelf verifiers run, have a different structure than the original
program. They make heavy use of goto statements and deeply nested branching
structures. While semantically equivalent, this can have unexpected effects on
analyses: In the case of the tasks in eca05+token, CPA-Seq was not able to detect
required information about loops and thus aborts its verification. Note that this
is not a direct issue of difference verification with conditions, but an orthogonal
issue. To fix the problem, verification tools must be improved to better deal
with the generated residual programs or the structure of the residual program
must be improved. Despite of the problem with residual programs, difference
verification can solve many tasks that a full verification run cannot solve.

Since Predicate is already a conditional model checker, Predicate∆ does
not suffer from the residual program problem. Thus, the effectiveness of differ-
ence verification with conditions becomes even more obvious when comparing
Predicate with Predicate∆. For the first three task sets, Predicate∆ solves all
tasks that Predicate solves plus a significant amount of additional tasks that
Predicate cannot solve. For the last two task sets Predicate∆ fails to solve a
few tasks that Predicate can solve. However, Predicate∆ still solves more tasks
in total. One reason for this is that the predicate abstraction used by Predicate
may compute different predicates (due to a slightly different exploration of the
state space), which may result in a more expensive abstraction, if the explored
state-space looks different. For some tasks, these different predicates may be less
suited to solve the task and thus require more time, which results in the analysis
hitting the time limit. Typically, we observe this phenomenon when Predicate
is expensive already (in our experiments, when it takes at least 700 s). While for
complicated tasks with large changes, difference verification may produce worse
results, Predicate∆ is still more effective than Predicate in all categories.

Claim 2 (Better with several verifiers). To study the usefulness of using
several verifiers in difference verification, we look at the tasks solved by the three
difference verifiers together. We observe that Predicate∆ solves the most tasks
in all task sets except for pals+eca12, in which CPA-Seq∆ is better. Moreover,

14 D. Beyer, M.-C. Jakobs, and T. Lemberger

0 450 900

CPU time CPA-Seq

0

450

900

C
P

U
ti

m
e

C
P

A
-S

e
q

∆

(a) CPA-Seq, CPA-Seq∆

0 450 900

CPU time UAutomizer

0

450

900

C
P

U
ti

m
e

U
A

u
t
o
m

iz
e
r

∆

(b) UAutomizer, UAutomizer∆

0 450 900

CPU time Predicate

0

450

900

C
P

U
ti

m
e

P
r
e
d
ic

a
t
e

∆

(c) Predicate, Predicate∆

Fig. 7: CPU time (in s) of full verification vs. difference verification, per task

when looking at All∆, which takes the union of all results, we observe that for
eca05+token multiple tasks without a property violation exist that cannot be
solved by the best difference verifier of this task set (Predicate∆). Thus, the
difference verification is more effective when using several verifiers.

Claim 3 (Difference verification with conditions more efficient). We
compare the run times of the verifiers with the run times of the difference
verifiers. For all three verifiers, the scatter plots in Fig. 7 show the CPU time
required to check a task without (x-axis) and with difference verification (y-axis).
If a task was not solved, because the verifier either runs out of resources or
encountered an error, we assume the maximum CPU time of 900 s. Figures 7a
and 7b compare the two non-conditional verifiers CPA-Seq and UAutomizer,
for which we use the reducer-based conditional verifier approach. For a signifi-
cant number of tasks (below diagonal), the difference verifier is faster than
the respective verifier CPA-Seq and UAutomizer, and the tasks on the right
edge can only be solved by the difference verifier. There are tasks for which
difference verification is slower (above diagonal). Note that the problem is the
residual program, not our approach. For example, many tasks located at the
upper edge do not represent timeouts of the difference verification, but failures of
the verifier caused by the structure of the residual program. Figure 7c compares
the conditional verifier Predicate. For the majority of tasks, the CPU time
required by Predicate∆ is equal to or less than the time required by Predicate
(tasks below the line). Moreover, there are only few tasks for which Predicate∆

is slower than Predicate (tasks above the line). The reason for this slow-down
is most likely the computation of worse predicates (see Claim 1). To sum up,
difference verification with conditions can successfully increase efficiency.

Claim 4 (Verifier dominates run time). We aim to show that the diffCond
component and the residual program construction (in the reducer-based approach
to construct conditional verifiers) require a negligible run time compared to the
complete verification run time. We show in Fig. 8a for each task verified with
CPA-Seq∆ and UAutomizer∆, the CPU time required by the full verification
run (x-axis) and the CPU time of that run spent for diffCond plus the reducer (y-
axis). The time required by diffCond + reducer does not depend on the run
time of the verifier, and it is below 60 s for all tasks.

Difference Verification with Conditions 15

0 450 900

CPU time verification

0

450

900
C

P
U

ti
m

e
di

ff
.

co
m

p
on

en
ts

(a) Full verification,
diffCond + reducer

0 450 900

CPU time Predicate���

0

450

900

C
P

U
ti

m
e

P
r
e
d
ic

a
t
e

∆

(b) Predicate���, Predicate∆

0 450 900

CPU time Predicate∆

0

450

900

C
P

U
ti

m
e

P
r
e
d
ic

a
t
e

∆
�� �

(c) Predicate∆, Predicate∆���

Fig. 8: CPU time (in s) of (a) full difference-verification runs and the time spent
for the two diff. components diffCond + reducer, (b) Predicate with precision
reuse (Predicate���) vs. Predicate with difference verification (Predicate∆), and
(c) Predicate∆ vs. Predicate∆ with precision reuse (Predicate∆���)

Claim 5 (Difference verification with conditions complementary). To
show that difference verification with conditions complements existing incre-
mental verification, we need to compare difference verification with conditions
against an existing incremental approach. Looking at existing approaches that
are (1) available as replication artifact and (b) able to run on verification tasks
from sv-benchmarks, we identified two: both based on precision reuse, one im-
plemented in CPAchecker [16] and one in Ultimate [49]. We use the one in
CPAchecker. Figure 8b shows the CPU time of precision reuse with Predicate,
called Predicate��� (x-axis) against our difference verification with Predicate,
called Predicate∆ (y-axis). Many tasks are solved efficiently by both techniques
(large cluster in lower left). For the remaining hard tasks, difference verification
is often faster than precision reuse, or precision reuse cannot even solve the task
(points below the diagonal and on right edge). This shows that difference verifi-
cation with conditions can improve on precision reuse for a significant number
of tasks. It can thus complement existing incremental techniques.

Claim 6 (Combinations sometimes beneficial). We combined difference
verification with conditions with precision reuse, called Predicate∆���. Figure 8c
shows that this combination rarely becomes faster than difference verification
Predicate∆ alone. In the worst case, the combination even slows down because
precision reuse tracks previously used predicates from the beginning while differ-
ence verification would only detect the necessary ones lazily. This more precise
abstraction leads to more, sometimes unnecessary computations. Nevertheless,
the combination can solve 29 tasks that neither Predicate, its difference veri-
fier, nor precision reuse can solve alone. Thus, while a combination of the two
incremental techniques is not beneficial in general, it can be.

5.3 Threats to Validity

External Validity. (1) Our benchmark tasks might not represent real program
changes, and thus, our results might not transfer to reality. However, we built

16 D. Beyer, M.-C. Jakobs, and T. Lemberger

our tasks from a well-established collection of software-verification problems,
which are considered relevant in the verification community. Moreover, many of
the combined programs implement known algorithms (greatest common divisor,
Newton approximation of a sine function, Taylor expansion of a square root) or
are derived from real applications (OpenSSL, SystemC design, leader election).
Also, our combination is not uncommon in practice. Such combination patterns
e.g. result from implementing the strategy pattern. Finally, our task set contains
pairs of programs whose only difference is a bug fix to eliminate the reachability
of the __VERIFIER_error() call. We believe that similar fixes are done in
practice to eliminate bugs. (2) We compared our approach only with a single
existing approach for incremental verification, and this comparison is restricted
to a single verifier. Our observations may not apply to different incremental
verification approaches or different verifiers. The same holds for the combination
of difference verification with orthogonal, incremental verification approaches.
Internal Validity. (3) The implementation of the diffCond algorithm may
contain bugs, and thus, produces conditions that also exclude modified paths. We
would expect that such a bug also excludes error paths. Since we never observed
false proofs, we assume this is unlikely. (4) Difference verification with CPA-Seq
and UAutomizer could appear improved simply because we separated verification
from the execution of diffCond + Reducer and granted both runs a limit of 900 s.
But the sum of the two times are always below 900 s for all correctly solved tasks.

6 Related Work

Equivalence Checking. Regression verification [27, 28, 55, 56], SymDiff [23],
UC-Klee [48], and other approaches [4, 26] check whether the input-output be-
havior of the original and modified method or program is the same. Differential
assertion checking [38] inspects whether the original and modified program
trigger the same assertions when given the same inputs. Equivalence checking
does not need to be restricted to a simple yes or no answer. Semantic Diff [35]
reports all dependencies between variables and input values that occur either
in the original or modified program. Conditional equivalence [37] infers under
which input assumption the original and modified program produce the same
output. Over-approximation of the differences between the original and modi-
fied program was also investigated [45]. Differential symbolic execution [46]
compares function summaries and constructs a delta that describes the input
values on which the summaries are unequal. Partition-based regression verifi-
cation [19] splits the program input space into inputs on which original and
modified program behave equivalently and those on which the two programs
are unequal. Equivalence checking is not directly tailored to property verifica-
tion, but determining when the original and modified programs may behave
differently is similar to the goal of the diffCond algorithm.
Result Adaption. Incremental data-flow analysis [51], Reviser [3], and
IncA [57, 58] adapt the existing data-flow solution to program modifications.
Similarly, incremental abstract interpretation [52] adapts the solution of the
abstract interpreter. Incremental model checking in the modal-µ calculus [54]

Difference Verification with Conditions 17

adapts a previous fixed point and restarts the fixed-point iteration. Other ap-
proaches [18, 20] model data-flow analysis and verification as computation of
attributed parse trees. A change results in an update of the attributed parse
tree. Extreme model checking [33] reuses valid parts of the abstract reachability
graph (ARG) and resumes the state-space exploration from those nodes with
invalid successors. Incremental state-space exploration [41] reuses a previous
state-space graph to prune the current exploration. HiFrog [1] and eVolCheck [25]
implement an approach that reuses function summaries and recomputes invalid
summaries [53]. UAutomizer adapts a previous trace abstraction [49], a set of
Floyd-Hoare automata that describe infeasible error paths, to reuse it on the
modified program. While result adaption uses the same verification technique for
original and modified program, our approach may use different techniques.
Reusing Intermediate Results. Green [59], GreenTrie [36], and Recal [2]
support the reuse of constraint proofs. Similarly, iSaturn [44] supports the reuse
of SAT results of Boolean constraints that are identical. Precision reuse [16] reuses
the precision of an abstraction, e.g., which variables or predicates to track, from
a previous verification run. These approaches are orthogonal to our approach. In
the experiments, we even combined precision reuse [16] with our approach.
Skipping Unaffected Verification Steps. Regression model checking [60]
stops exploration of a state as soon as no program change can be reached from
that state. Directed incremental [47, 50] and memoized [61] symbolic execution
restrict the exploration to paths that may be affected by the program change.
Additionally, memoized symbolic execution does not check constraints as long as
the path prefix is unchanged. The Dafny verifier rechecks methods affected by a
change reusing unchanged verification conditions [42]. iCoq [21, 22] detects and
only rechecks those Coq proofs that are affected by a change in the Coq project.
These ideas are similar to ours but are tailored to specific techniques.

7 Conclusion

Software is frequently changed during development. Verification techniques must
deal with repeatedly verifying nearly the same software again and again. To be
able to construct efficient incremental verifiers from off-the-shelf components,
we introduce difference verification with conditions, which steers an arbitrary
existing verifier to reverify only the changed parts. Compared to existing tech-
niques, our approach is tool-agnostic and can be used with arbitrary algorithms
for change analysis. We provide an implementation of a change analysis as
reusable component, which we combined with three existing verifiers. In a thor-
ough evaluation on more than 10 000 tasks, we showed the effectiveness and
efficiency of difference verification with conditions.

Data Availability Statement. diffCond and all our data are available for
replication and to construct further difference verifiers on our supplementary
web page 9 and in a replication package on Zenodo [12].

9 https://www.sosy-lab.org/research/difference/

https://www.sosy-lab.org/research/difference/

18 D. Beyer, M.-C. Jakobs, and T. Lemberger

References

1. Alt, L., Asadi, S., Chockler, H., Even-Mendoza, K., Fedyukovich, G., Hyväri-
nen, A.E.J., Sharygina, N.: HiFrog: SMT-based function summarization for
software verification. In: Proc. TACAS. pp. 207–213. LNCS 10206 (2017).
https://doi.org/10.1007/978-3-662-54580-5_12

2. Aquino, A., Bianchi, F.A., Chen, M., Denaro, G., Pezzè, M.: Reusing con-
straint proofs in program analysis. In: Proc. ISSTA. pp. 305–315. ACM (2015).
https://doi.org/10.1145/2771783.2771802

3. Arzt, S., Bodden, E.: Reviser: Efficiently updating IDE-/IFDS-based data-flow
analyses in response to incremental program changes. In: Proc. ICSE. pp. 288–298.
ACM (2014). https://doi.org/10.1145/2568225.2568243

4. Backes, J., Person, S., Rungta, N., Tkachuk, O.: Regression verification using
impact summaries. In: Proc. SPIN. pp. 99–116. LNCS 7976, Springer (2013).
https://doi.org/10.1007/978-3-642-39176-7_7

5. Beyer, D.: Advances in automatic software verification: SV-COMP
2020. In: Proc. TACAS (2). pp. 347–367. LNCS 12079, Springer (2020).
https://doi.org/10.1007/978-3-030-45237-7_21

6. Beyer, D., Dangl, M.: Strategy selection for software verification based on boolean
features: A simple but effective approach. In: Proc. ISoLA. pp. 144–159. LNCS 11245,
Springer (2018). https://doi.org/10.1007/978-3-030-03421-4_11

7. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-
refined invariants. In: Proc. CAV. pp. 622–640. LNCS 9206, Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4_42

8. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-
flow analysis. In: Handbook of Model Checking, pp. 493–540. Springer (2018).
https://doi.org/10.1007/978-3-319-10575-8_16

9. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model
checker Blast. Int. J. Softw. Tools Technol. Transfer 9(5-6), 505–525 (2007).
https://doi.org/10.1007/s10009-007-0044-z

10. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: A technique to pass information between verifiers. In: Proc. FSE. ACM
(2012). https://doi.org/10.1145/2393596.2393664

11. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification:
Concretizing the convergence of model checking and program analysis. In: Proc.
CAV. pp. 504–518. LNCS 4590, Springer (2007). https://doi.org/10.1007/978-3-
540-73368-3_51

12. Beyer, D., Jakobs, M.C., Lemberger, T.: Replication package for
article ‘Difference verification with conditions’. Zenodo (2020).
https://doi.org/10.5281/zenodo.3954933

13. Beyer, D., Jakobs, M.C., Lemberger, T., Wehrheim, H.: Reducer-based con-
struction of conditional verifiers. In: Proc. ICSE. pp. 1182–1193. ACM (2018).
https://doi.org/10.1145/3180155.3180259

14. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable soft-
ware verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1_16

15. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD. pp. 189–197. FMCAD (2010)

16. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse
for efficient regression verification. In: Proc. FSE. pp. 389–399. ACM (2013).
https://doi.org/10.1145/2491411.2491429

https://doi.org/10.1007/978-3-662-54580-5_12
https://doi.org/10.1145/2771783.2771802
https://doi.org/10.1145/2568225.2568243
https://doi.org/10.1007/978-3-642-39176-7_7
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.5281/zenodo.3954933
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1145/2491411.2491429

Difference Verification with Conditions 19

17. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In:
Proc. SPIN. pp. 160–178. LNCS 9232, Springer (2015). https://doi.org/10.1007/978-
3-319-23404-5_12

18. Bianculli, D., Filieri, A., Ghezzi, C., Mandrioli, D.: Syntactic-
semantic incrementality for agile verification. SCICO 97, 47–54 (2015).
https://doi.org/10.1016/j.scico.2013.11.026

19. Böhme, M., d. S. Oliveira, B.C., Roychoudhury, A.: Partition-based
regression verification. In: Proc. ICSE. pp. 302–311. IEEE (2013).
https://doi.org/10.1109/ICSE.2013.6606576

20. Carroll, M.D., Ryder, B.G.: Incremental data-flow analysis via domina-
tor and attribute updates. In: Proc. POPL. pp. 274–284. ACM (1988).
https://doi.org/10.1145/73560.73584

21. Çelik, A., Palmskog, K., Gligoric, M.: iCoq: Regression proof selection for
large-scale verification projects. In: Proc. ASE. pp. 171–182. IEEE (2017).
https://doi.org/10.1109/ASE.2017.8115630

22. Çelik, A., Palmskog, K., Gligoric, M.: A regression proof selection tool
for Coq. In: Proc. ICSE (Companion Volume). pp. 117–120. ACM (2018).
https://doi.org/10.1145/3183440.3183493

23. Chaki, S., Gurfinkel, A., Strichman, O.: Regression verification for multi-threaded
programs (with extensions to locks and dynamic thread creation). FMSD 47(3),
287–301 (2015). https://doi.org/10.1007/s10703-015-0237-0

24. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003).
https://doi.org/10.1145/876638.876643

25. Fedyukovich, G., Sery, O., Sharygina, N.: eVolCheck: Incremental upgrade
checker for C. In: Proc. TACAS. pp. 292–307. LNCS 7795, Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7_21

26. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Au-
tomating regression verification. In: Proc. ASE. pp. 349–360. ACM (2014).
https://doi.org/10.1145/2642937.2642987

27. Godlin, B., Strichman, O.: Regression verification. In: Proc. DAC. pp. 466–471.
ACM (2009). https://doi.org/10.1145/1629911.1630034

28. Godlin, B., Strichman, O.: Regression verification: Proving the equivalence of similar
programs. Software Testing, Verification, and Reliability 23(3), 241–258 (2013).
https://doi.org/10.1002/stvr.1472

29. Heizmann, M., Chen, Y.F., Dietsch, D., Greitschus, M., Hoenicke, J., Li, Y., Nutz,
A., Musa, B., Schilling, C., Schindler, T., Podelski, A.: Ultimate Automizer and
the search for perfect interpolants (competition contribution). In: Proc. TACAS (2).
pp. 447–451. LNCS 10806, Springer (2018). https://doi.org/10.1007/978-3-319-
89963-3_30

30. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Proc.
SAS. pp. 69–85. LNCS 5673, Springer (2009). https://doi.org/10.1007/978-3-642-
03237-0_7

31. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people
who love automata. In: Proc. CAV. pp. 36–52. LNCS 8044, Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8_2

32. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs.
In: Proc. POPL. pp. 232–244. ACM (2004). https://doi.org/10.1145/964001.964021

33. Henzinger, T.A., Jhala, R., Majumdar, R., Sanvido, M.A.A.: Extreme
model checking. In: Verification: Theory and Practice. pp. 332–358 (2003).
https://doi.org/10.1007/978-3-540-39910-0_16

https://doi.org/10.1007/978-3-319-23404-5_12
https://doi.org/10.1007/978-3-319-23404-5_12
https://doi.org/10.1016/j.scico.2013.11.026
https://doi.org/10.1109/ICSE.2013.6606576
https://doi.org/10.1145/73560.73584
https://doi.org/10.1109/ASE.2017.8115630
https://doi.org/10.1145/3183440.3183493
https://doi.org/10.1007/s10703-015-0237-0
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-642-36742-7_21
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/1629911.1630034
https://doi.org/10.1002/stvr.1472
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1145/964001.964021
https://doi.org/10.1007/978-3-540-39910-0_16

20 D. Beyer, M.-C. Jakobs, and T. Lemberger

34. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc.
POPL. pp. 58–70. ACM (2002). https://doi.org/10.1145/503272.503279

35. Jackson, D., Ladd, D.A.: Semantic Diff: A tool for summarizing the
effects of modifications. In: Proc. ICSM. pp. 243–252. IEEE (1994).
https://doi.org/10.1109/ICSM.1994.336770

36. Jia, X., Ghezzi, C., Ying, S.: Enhancing reuse of constraint solutions to
improve symbolic execution. In: Proc. ISSTA. pp. 177–187. ACM (2015).
https://doi.org/10.1145/2771783.2771806

37. Kawaguchi, M., Lahiri, S., Rebelo, H.: Conditional equivalence. Tech. rep., Microsoft
Research (2010)

38. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differen-
tial assertion checking. In: Proc. FSE. pp. 345–355. ACM (2013).
https://doi.org/10.1145/2491411.2491452

39. Lahiri, S.K., Murawski, A., Strichman, O., Ulbrich, M.: Program Equiv-
alence (Dagstuhl Seminar 18151). Dagstuhl Reports 8(4), 1–19 (2018).
https://doi.org/10.4230/DagRep.8.4.1,

40. Lahiri, S.K., Vaswani, K., Hoare, C.A.R.: Differential static analysis: Opportu-
nities, applications, and challenges. In: Proc. FoSER. pp. 201–204. ACM (2010).
https://doi.org/10.1145/1882362.1882405

41. Lauterburg, S., Sobeih, A., Marinov, D., Viswanathan, M.: Incremental state-space
exploration for programs with dynamically allocated data. In: Proc. ICSE. pp.
291–300. ACM (2008). https://doi.org/10.1145/1368088.1368128

42. Leino, K.R.M., Wüstholz, V.: Fine-grained caching of verification results. In: Proc.
CAV. pp. 380–397. LNCS 9206, Springer (2015). https://doi.org/10.1007/978-3-
319-21690-4_22

43. McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. CAV. pp.
1–13. LNCS 2725, Springer (2003). https://doi.org/10.1007/978-3-540-45069-6_1

44. Mudduluru, R., Ramanathan, M.K.: Efficient incremental static analysis using
path abstraction. In: Proc. FASE. pp. 125–139. LNCS 8411, Springer (2014).
https://doi.org/10.1007/978-3-642-54804-8_9

45. Partush, N., Yahav, E.: Abstract semantic differencing for numerical programs. In:
Proc. SAS. pp. 238–258. LNCS 7935, Springer (2013). https://doi.org/10.1007/978-
3-642-38856-9_14

46. Person, S., Dwyer, M.B., Elbaum, S.G., Păsăreanu, C.S.: Differen-
tial symbolic execution. In: Proc. FSE. pp. 226–237. ACM (2008).
https://doi.org/10.1145/1453101.1453131

47. Person, S., Yang, G., Rungta, N., Khurshid, S.: Directed incremen-
tal symbolic execution. In: Proc. PLDI. pp. 504–515. ACM (2011).
https://doi.org/10.1145/1993498.1993558

48. Ramos, D.A., Engler, D.R.: Practical, low-effort equivalence verification
of real code. In: Proc. CAV. pp. 669–685. LNCS 6806, Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1_55

49. Rothenberg, B., Dietsch, D., Heizmann, M.: Incremental verification using
trace abstraction. In: Proc. SAS. pp. 364–382. LNCS 11002, Springer (2018).
https://doi.org/10.1007/978-3-319-99725-4_22

50. Rungta, N., Person, S., Branchaud, J.: A change impact analysis to charac-
terize evolving program behaviors. In: Proc. ICSM. pp. 109–118. IEEE (2012).
https://doi.org/10.1109/ICSM.2012.6405261

51. Ryder, B.G.: Incremental data-flow analysis. In: Proc. POPL. pp. 167–176. ACM
(1983). https://doi.org/10.1145/567067.567084

https://doi.org/10.1145/503272.503279
https://doi.org/10.1109/ICSM.1994.336770
https://doi.org/10.1145/2771783.2771806
https://doi.org/10.1145/2491411.2491452
https://doi.org/10.4230/DagRep.8.4.1,
https://doi.org/10.1145/1882362.1882405
https://doi.org/10.1145/1368088.1368128
https://doi.org/10.1007/978-3-319-21690-4_22
https://doi.org/10.1007/978-3-319-21690-4_22
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-642-54804-8_9
https://doi.org/10.1007/978-3-642-38856-9_14
https://doi.org/10.1007/978-3-642-38856-9_14
https://doi.org/10.1145/1453101.1453131
https://doi.org/10.1145/1993498.1993558
https://doi.org/10.1007/978-3-642-22110-1_55
https://doi.org/10.1007/978-3-319-99725-4_22
https://doi.org/10.1109/ICSM.2012.6405261
https://doi.org/10.1145/567067.567084

Difference Verification with Conditions 21

52. Seidl, H., Erhard, J., Vogler, R.: Incremental abstract interpretation. In: From
Lambda Calculus to Cybersecurity Through Program Analysis - Essays Dedicated
to Chris Hankin on the Occasion of His Retirement. pp. 132–148. LNCS 12065,
Springer (2020). https://doi.org/10.1007/978-3-030-41103-9_5

53. Sery, O., Fedyukovich, G., Sharygina, N.: Incremental upgrade checking by means of
interpolation-based function summaries. In: Proc. FMCAD. pp. 114–121. FMCAD
Inc. (2012)

54. Sokolsky, O.V., Smolka, S.A.: Incremental model checking in the modal mu-calculus.
In: Proc. CAV. pp. 351–363. LNCS 818, Springer (1994). https://doi.org/10.1007/3-
540-58179-0_67

55. Strichman, O., Godlin, B.: Regression verification — a practical way to ver-
ify programs. In: Proc. VSTTE. pp. 496–501. LNCS 4171, Springer (2008).
https://doi.org/10.1007/978-3-540-69149-5_54

56. Strichman, O., Veitsman, M.: Regression verification for unbalanced recursive func-
tions. In: Proc. FM. pp. 645–658. LNCS 9995 (2016). https://doi.org/10.1007/978-
3-319-48989-6_39

57. Szabó, T., Bergmann, G., Erdweg, S., Voelter, M.: Incrementalizing lattice-based
program analyses in Datalog. PACMPL 2(OOPSLA), 139:1–139:29 (2018).
https://doi.org/10.1145/3276509

58. Szabó, T., Erdweg, S., Voelter, M.: IncA: A DSL for the definition of
incremental program analyses. In: Proc. ASE. pp. 320–331. ACM (2016).
https://doi.org/10.1145/2970276.2970298

59. Visser, W., Geldenhuys, J., Dwyer, M.B.: Green: Reducing, reusing, and recy-
cling constraints in program analysis. In: Proc. FSE. pp. 58:1–58:11. ACM (2012).
https://doi.org/10.1145/2393596.2393665

60. Yang, G., Dwyer, M.B., Rothermel, G.: Regression model checking. In: Proc. ICSM.
pp. 115–124. IEEE (2009). https://doi.org/10.1109/ICSM.2009.5306334

61. Yang, G., Păsăreanu, C.S., Khurshid, S.: Memoized symbolic execution. In: Proc.
ISSTA. pp. 144–154. ACM (2012). https://doi.org/10.1145/04000800.2336771

62. Yoo, S., Harman, M.: Regression testing minimization, selection, and prioritization:
A survey. STVR 22(2), 67–120 (2012). https://doi.org/10.1002/stv.430

https://doi.org/10.1007/978-3-030-41103-9_5
https://doi.org/10.1007/3-540-58179-0_67
https://doi.org/10.1007/3-540-58179-0_67
https://doi.org/10.1007/978-3-540-69149-5_54
https://doi.org/10.1007/978-3-319-48989-6_39
https://doi.org/10.1007/978-3-319-48989-6_39
https://doi.org/10.1145/3276509
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1145/2393596.2393665
https://doi.org/10.1109/ICSM.2009.5306334
https://doi.org/10.1145/04000800.2336771
https://doi.org/10.1002/stv.430

	Difference Verification with Conditions
	1 Introduction
	2 Background
	3 Component diffCond for Modular Construction
	4 Modular Combinations with Existing Verifiers
	5 Evaluation
	5.1 Experiment Setup
	5.2 Experimental Results
	5.3 Threats to Validity

	6 Related Work
	7 Conclusion

