
Model-based Testing under Parametric
Variability of Uncertain Beliefs

Matteo Camilli[0000−0003−2491−5267] and Barbara Russo[0000−0003−3737−9264]

Faculty of Computer Science,
Free University of Bozen-Bolzano, Bolzano Italy

{mcamilli,brusso}@unibz.it

Abstract. Modern software systems operate in complex and changing
environments and are exposed to multiple sources of uncertainty. Consid-
ering uncertainty as a first-class concern in software testing is currently
on an uptrend. This paper introduces a novel methodology to deal with
testing under uncertainty. Our proposal combines the usage of parametric
model checking at design-time and online model-based testing algorithms
to gather runtime evidence and detect requirements violations. As mod-
eling formalism, we adopt parametric Markov Decision Processes where
transition probabilities are not fixed, but are possibly given as a set of
uncertain parameters. The design-time phase aims at analyzing the pa-
rameter space to identify the constraints for requirements satisfaction.
Then, the testing activity applies a Bayesian inference process to identify
violations of pre-computed constraints. An extensive empirical evaluation
shows that the proposed technique is effective in discovering violations
and is cheaper than existing testing under uncertainty methods.

Keywords: Model-based Testing · Parametric Markov Decision Pro-
cesses · Uncertainty analysis · Bayesian inference

1 Introduction

Modern software-intensive systems are often situated in complex ecosystems that
can be hard or even impossible to fully understand and precisely describe at
design-time. Nevertheless, unreliable or unpredictable software behavior cannot
be tolerated as society increasingly depends on it. For this reason, there exists
the increasing need for systematic approaches to deal with incomplete knowledge
and sources of uncertainty while engineering complex systems. Endowing con-
ventional software engineering methodologies with techniques and practices able
to model, quantify, and mitigate uncertainty is becoming increasingly crucial [1].
In particular, research effort in techniques that explicitly consider uncertain ex-
pected behavior in software testing is currently on an evident uptrend (e.g.,
see [2,3,4,5]).

This paper introduces a novel methodology to deal with uncertainty quan-
tification by combining parametric model checking [6] at design-time and online
(or on-the-fly) Model-based Testing (MBT) algorithms [7,8]. MBT is a software

2 M. Camilli et al.

testing technique where run-time behavior of a software System Under Test
(SUT) is checked against a formal model describing the system’s behavior [7].
Our MBT approach allows the design-time probabilistic model to be underspeci-
fied. Namely, the modeler can explicitly represent partial knowledge on the SUT
by means of uncertain model parameters in a Markov Decision Process (MDP).
Parametric model checking is used to verify design-time requirements under vari-
ability of uncertain model parameters. The outcome of this stage is a mapping
from regions of these parameters to truth values encoding the verification con-
ditions to be evaluated at runtime. Thus, our MBT approach leverages these
conditions to drive the testing activity by maximizing the probability to hit the
uncertain components of the SUT multiple times. The objective of the MBT
phase is to gather runtime evidence over uncertain model parameters using a
Bayesian inference approach [9]. Thus, the MBT spots requirements violations
by comparing the incremental posterior knowledge and the pre-computed verifi-
cation conditions on uncertain parameters. The whole methodology is supported
by a software toolchain whose core component is a MBT module which integrates
test case generation, execution and evaluation. The MBT module makes use of
fine grained characteristics of the uncertain model parameters to reduce the ef-
fort required by testing. The design-time analysis of the region space of uncertain
parameters (i.e., the outcome of the parametric model checker) is leveraged to
detect requirements violations and decide over termination.

To illustrate our approach we make use of an existing open-source case study
called SafeHome. It represents an exemplar of Cyber Physical Systems (CPSs)
borrowed from [5]. We conducted an empirical evaluation to study the cost-
effectiveness of our testing method by varying the number of uncertain param-
eters and the distance between actual values and verification conditions. We
also compared our approach with selected existing MBT methods, pointing out
advantages and threats to validity.

The major contribution of this paper can be summarized as follows:

i description of our methodology to MBT under parametric variability of un-
certain beliefs;

ii extensive evaluation to assess the cost-effectiveness of our approach and com-
parison with existing testing methods.

Our empirical evaluation shows that the whole methodology is effective to spot
requirements violations with bounded effort. Furthermore, the developed MBT
method outperforms existing MBT strategies.

The remainder of this article is structured as follows. Section 2 introduces
a preview of our methodology. Section 3 recalls the necessary background con-
cepts. Section 4 presents a running example (i.e., the SafeHome system), used
throughout the article to illustrate the main phases of the methodology. Sec-
tion 5 introduces a formal treatment of our approach. Section 6 reports our
evaluation and discusses threats to validity. Section 7 describes related work.
Section 8 concludes the paper.

Model-based Testing under Parametric Variability of Uncertain Beliefs 3

MDP Parametric
MDP PRISM

verification
conditions

(i) offline analysis

MBT
module

SUT

Bayesian
Inference
module

Ok

Violation
detected

(ii) online MBT

Priors PCTL
Requirements

Fig. 1: High-level schema of our approach.

2 Preview of the Approach

In this work we focus on systems modeled as MDPs and quantitative require-
ments expressed using Probabilistic Computation Tree Logic (PCTL) [10]. MDPs
represent a widely accepted formalism to model and verify software system de-
pendability (e.g., reliability, availability, safety) [11]. Recent research activities
show also the effective usage of MDPs in testing probabilistic systems [2]. As
described in [12], models developed at design-time are often subject to sources of
uncertainty. Namely, certain behaviors of the system itself and the surrounding
environment are hard to predict. For instance, the success probability of a soft-
ware task, or the failure rate of a hardware device (represented by transitions
in the MDP) may be hard to specify in a complete and accurate way. So, to
deal with uncertainty, our approach gives the modeler the ability of represent-
ing partial knowledge (i.e., beliefs) on transition probabilities by means of Prior
probability density functions [9], or simply Priors. On top of these assumptions,
we informally introduce here the two main phases of the approach (see Figure 1):
(i) offline analysis; and (ii) online MBT.

The offline analysis (or pre-computation) aims at studying the parameter
space. We leverage the parametric model checking functionality of PRISM [6]
to analyze how parameters affect the satisfaction of PCTL requirements. The
Prior density functions are used to mechanically build a parametric MDP model
and the search space of each individual uncertain parameter. The result of the
model checker is a mapping from regions of these parameters to truth values (i.e.,
either true or false with respect to requirements satisfaction). It is worth not-
ing that model checking is computationally expensive and requires exhaustive
exploration of the model’s state space to analyze arbitrarily complex proper-
ties [13]. Since the computational cost of model-checking may be prohibitive for
online usage, we keep this pre-computation separated as an offline phase, where
we can execute demanding activities without interfering with the system oper-
ation. The outcome of the pre-computation encodes verification conditions to
be satisfied to meet the requirements. Thus, the online MBT phase performs a
controlled exploration of the SUT by using an uncertainty-aware test case gen-
eration strategy. Such a strategy leverages the structural characteristics of the
model to direct the effort towards transitions associated with uncertain param-

4 M. Camilli et al.

eters. In other words, we aim at concentrating on those components of the SUT
whose behavior is subject to sources of uncertainty. The MBT feeds a Bayesian
inference process that computes the actual value of uncertain model parame-
ters based on the evidence gathered during testing. The actual values are then
checked against the (pre-computed) verification conditions to detect violations
of design-time requirements.

3 Background

This section recalls required background notions to understand the formal as-
pects of the approach we developed. In the following we briefly revisit paramet-
ric MDPs, the quantitative temporal logic PCTL, and Bayesian Inference. For
a complete treatment we let the reader refer to [11,14,9].

3.1 Parametric Markov Decision Processes

Let θ be a finite set of variables. Let Q[θ] denote the set of all rational-coefficient
polynomial functions (i.e., a sum of terms, where each term is given by a co-
efficient and a monomial). A parametric Markov Decision Process (pMDP) M
is a tuple (S, θ,A, s0, δ, AP,L) where S is a (finite) set of states, θ is a finite
set of parameters, A is an alphabet of actions, s0 ∈ S is the initial state, and
δ : S ×A× S → Q[θ] ∪ [0, 1] is the partial probabilistic transition function, AP
is a set of atomic propositions, L : S → 2AP is a labeling function that asso-
ciates to each state the set of atomic propositions that are true in that state.
State transitions occur in two steps: a nondeterministic choice among available
actions; and a stochastic choice of the successor state according to δ. In the rest
of the paper, the notation pai,j will be used as short form for δ(si, a, sj). The
function A(si) is used to denote the actions in A available from the state si.

Note that a parameter-free pMDP coincides with standard MDP, as defined
in [11]. A MDP can be obtained from a pMDP by simply assigning values to
parameters. Formally, we need to create an instantiation val : θ → R s.t. the δ
function is well-defined, i.e.,

∑
sj∈S p

a
i,j = 1 for all si ∈ S and a ∈ A(si). In the

following we use M[val] to denote the MDP obtained from the pMDP M with
instantiation val.

Both MDP and pMDP models can be augmented with rewards to quan-
tify a benefit (or loss) due to the occurrence of a certain transitions. A reward
usually represents non-functional aspects such as average execution time, power
consumption or usability. Rewards are formally specified by using the notion of
reward structure, i.e., a function r : S×A×S → R. Given a standard MDP and a
reward structure r, a deterministic policy π specifies for each state si the action
π(si) ∈ A(si) chosen by a decision maker to solve nondeterminism. The notion
of best policy π∗ refers to the policy able to maximize the expected cumulated
reward over a potentially infinite horizon. The best policy can be computed solv-
ing the following Bellman’s equation 1 using dynamic programming approaches

Model-based Testing under Parametric Variability of Uncertain Beliefs 5

as reported in [11].

π∗(si) = arg max
a∈A(si)

∑
j

pai,j · (rai,j + γV ∗(sj)) (1)

where V ∗(sj) represents the expected cumulated reward when starting from sj
and acting optimally along a infinite horizon; γ ∈ [0, 1] is a discount factor that
alleviates the contribution of future rewards in favor of present rewards.

3.2 Probabilistic Computation Tree Logic

To specify requirements of interest we consider here the logic PCTL. The syn-
tax supports the definition of state formulas φ and path formulas ψ, which are
evaluated over states and paths, respectively. Formally, a formula is defined as
follows:

φ ::= true | a | φ ∧ φ | ¬φ | PBCp[ψ], ψ ::= Xφ | φ U φ, (2)

where a ∈ AP and a path formula ψ is used as the parameter of the proba-
bilistic path operator PBCp[ψ], such that BC ∈ {≤, <,≥, >} and p ∈ [0, 1] is
a probability bound. The symbol X represents the next operator, U is the until
operator. The operators G (i.e., globally) and F (i.e., eventually) can be derived
from the previous ones as for CTL. A state s ∈ S satisfies PBCp[ψ] if, under
any nondeterministic choice, the probability of taking a path from s satisfying
ψ is in the interval specified by BCp.

Parametric model checking [14] is a verification technique able to analyze the
parametric variability of a pMDP modelM and determine how such a variability
affects the satisfaction of a set of target PCTL properties. Formally, the outcome
of the model checker is a mapping between hyper-rectangles and truth values,
where an hyper-rectangle is a multidimensional rectangle h =×x∈θ[lx, ux] with
lx, ux ∈ R lower- and upper-bound for parameter x, respectively. Intuitively,
for each true hyper-rectangle h, the model M[val] satisfies the properties iff
val(x) ∈ [lx, ux] for all x ∈ θ.

3.3 Bayesian Inference

Bayesian inference [15] really comes into its own in domains where uncertainty
must be taken into account. The main goal is to learn about one or more uncer-
tain/unknown parameters θ affecting the behavior of a stochastic phenomenon of
interest. The Prior knowledge (i.e., initial hypothesis or belief) of θ is incremen-
tally updated based on a collected data sample y = (y1, y2, . . . , yn) describing
the actual behavior of the target phenomenon. By using Bayes’ theorem we ob-
tain the Posterior distribution f(θ|y), describing the best knowledge of θ, given
the evidence y.

f(θ|y) ∝ f(θ) · f(y|θ) (3)

The density f(y|θ) is usually referred to as the likelihood function and repre-
sents the compatibility of the data with the hypothesis. The hypothesis is often

6 M. Camilli et al.

s0 s1
setup 1.0 init

S2

x1,3
{idle}

{initializing}

{initError}

check
0.97

s4
0.03reset

s6

{sensorsLost}

{monitoring}
S7

S9

1.0 x8,9

x8,10

{policeNotified}

{communicationError}

s5

{assistance}

θ1

θ3

θ2

1.0

1.0

wait

wait

s3
x1,5

x1,2

retry
1.0

{initiOk}
startMonitor

1.0

intrusion

S8

x6,8
x6,7

{intrusionNotDetected}

{intrusionDetected}0.650.35

check

S10
retry

0.97

0.03

notify

region state-action affected level target states beliefs (i.e., uncertain probability values)

θ1 s1-init application s2, s3, s5 x1,2 =0.95, x1,3 =0.03, x1,5 =1−(x1,2+x1,3)=0.02
θ2 s6-intrusion integration s7, s8 x6,7 =0.05, x6,8 =1− x6,7 =0.95
θ3 s8-notify infrastructure s10, s11 x8,9 =0.98, x8,10 =1−x8,9 =0.02

Fig. 2: MDP model of the SafeHome system.

available from external sources such as expert information based on past expe-
rience or previous studies. This information is encoded by the Prior distribution
f(θ). The posterior distribution can be used in turn to perform point and inter-
val estimation. Point estimation is typically addressed in the multivariate case,
by summarizing the distribution through the Posterior mean E[f(θ|y)] and the
(95%) Highest Density Region HDR[f(θ|y)], defined as follows.

E[f(θ|y)] =

∫
θ · f(θ|y)dθ, HDR[f(θ|y)] = {θ : f(θ|y) ≥ 0.95} (4)

The magnitude of the HDR region yields the highest possible accuracy in the
estimation of the true value of θ and is usually adopted as a measure of the
confidence gained after the inference process. In Bayesian statistics, it represents
the credible region within which parameter values fall with probability 0.95.

4 A Running Example: the SafeHome System

The SafeHome security system represents an open-source benchmarking example
in charge of controlling and configuring alarms and related sensors that imple-
ment a number of security and safety features such as intrusion detection. For
the sake of readability, here we use an extract of the whole SafeHome by em-
phasizing the relevant characteristics for our problem domain. We let the reader
refer to [5] for a comprehensive description.

Figure 2 shows the high-level behavior of the system through a pMDP model.
The system behavior exhibits three main phases: initialization, monitoring and
alarm, in charge of sensor initialization, detection, and alarm handling, respec-
tively. From state s2 the SafeHome system tries to initialize all the available sen-
sors by executing the action init. If the task succeeds, the sensors are correctly
registered and the action startMonitoring can be executed to proceed towards

Model-based Testing under Parametric Variability of Uncertain Beliefs 7

Table 1: PCTL requirement examples for the SafeHome system.

id type description PCTL definition

R1 global reliability The probability of reaching a state
where assistance is required is less
than 0.05

P<0.05 [F assistance]

R2 sensors availability The probability of observing op-
erable sensors without failures is
greater than 0.9

P>0.9 [!sensorsLost U sensorsOk]

R3 network reliability If sensors are operable, the prob-
ability of eventually notifying the
emergency unit is greater than 0.98

sensorsOk → P>0.98 [F policeNotified]

the monitoring and then alarm phase. According to [4], sources of uncertainty in
CPSs affect the behavior of the SUT at different levels: application level, due to
events/data originating from software components running upon physical units
of the CPS; infrastructure level, due to data transmission through networking
and/or cloud infrastructure; integration level, due to interactions among physical
units at either application level or infrastructure levels. For instance, consider
the following common scenario in our target system. When the system is in state
s6 (i.e., monitoring holds), sensors can send the intrusion trigger to the security
system that eventually causes a notification to be sent to an external emergency
service (i.e., policeNotified state). However, the intrusion detection is affected
by uncertainty at integration level. In fact, this capability is conditioned by the
way sensors interact and their individual ability of correctly sensing the phys-
ical environment. Thus, the action intrusion leads to either state s8 (i.e., the
intrusion has been sensed) or state s7 (i.e., the intrusion has not been sensed)
with a substantial degree of uncertainty. This uncertain outcome is explicitly
represented by uncertain parameters (i.e., x6,8 and x6,7, respectively). The un-
certain parameters associated with a state-action pair is called uncertain region
and we denote it as θi. The disjoint union of all θi is θ (i.e., the set of uncertain
parameters). Figure 2 lists all the uncertain regions in SafeHome and affected
levels.

Table 1 lists some requirements for our example, formally specified using
PCTL. It is worth noting that the ability of satisfying these requirements de-
pends on the actual value of model parameters. Figure 2 contains initial (uncer-
tain) beliefs on these parameters.

5 The Testing Framework

This section illustrates the whole testing framework. The presentation is parti-
tioned into two main fragments, reflecting the two main phases of our proposal.

5.1 Offline Analysis

The tester specifies the SUT behavior through a pMDP model (e.g., the Safe-
Home model in Figure 2). The uncertain values of each region θi are formally

8 M. Camilli et al.

defined by a k-dimensional categorical distribution [9], with k the number of tar-
get states from the state-action (s, a) identified by θi. For instance, the region θ1

is defined by the density function Cat(x1,2, x1,3, x1,5), describing the distribution
of transition probabilities from s1 to s2, s3, and s5, respectively, when the action
init is chosen. As described in [9], the natural conjugate Prior of a categorical
distribution is the Dirichlet distribution (i.e., a multivariate generalization of
the Beta). For instance, the mdoeler specifies the Prior knowledge of θ1 by using
either a non-informative Prior Dir(1, 1, 1), or a informative one, such as:

f(θ1) = Dir(47, 2, 1) (5)

when past experience is available. In this latter case, the Prior has been built
based on 50 past observations as follows: 47 · s2, 2 · s3, and 1 · s5.

The Prior knowledge specification provides the baseline for further offline
and online analysis. The initial guess for the uncertain parameters (e.g., values
assigned to parameters in Figure 2) is automatically extracted by summarizing
the Priors through the mean values. The 95% HDR is used instead of computing
the range of possible values for each parameter in θ. Thus, we leverage this
information to limit the search space only to those values that are credible with
respect to the given beliefs. For instance, given the informative Prior defined in
Equation 5, the HDR sets the following bounds.

HDR[f(θ1)] = x1,2 ∈ [0.87, 0.99], x1,3 ∈ [0.00, 0.09], x1,5 ∈ [0.00, 0.05] (6)

Since the Dirichlet is multivariate, the HDR is composed of a number of intervals,
one for each parameter.

It is worth noting that the HDR of each marginal distribution of a Dirichlet
(i.e., univariate Beta distribution) is instead a single interval defining the bounds
of each individual parameter. In the rest of the paper we will use HDR[fx(·)]
to denote the HDR of the marginalized f(·) by retaining the variable x. For
instance, considering the Prior of θ1 introduced in Equation 5, the following
holds.

HDR[Dirx1,2(·)] = [0.87, 0.99] (7)

After computing the HDR of each Prior, we execute the parametric model
checking functionality of PRISM to obtain the hyper-rectangles that meet the
desired PCTL requirements (e.g., SafeHome properties in Table 1). In our run-
ning example, the outcome of this activity is a set of true hyper-rectangles
{h1, . . . , hn} encoding verification condition for the SafeHome. Each element hi
is composed of a number of closed intervals, one for each uncertain parameter.

5.2 Online Model-based Testing

As anticipated in Section 5, the online phase takes as input the model and
the hyper-rectangles to carry out the testing activity. The online MBT aims
at exploring the SUT in a controlled way by directing the effort towards the
uncertain model regions.

Model-based Testing under Parametric Variability of Uncertain Beliefs 9

MDP	model

test

(1)	generation

SUT

MDP	state

(2)	execution

(3)	interpretation

(4)	conformance
checking

Controller Observer

(1)	+	(2)
concretization

(3)	+	(4)
abstraction

Fig. 3: Conformance game iteration.

Conformance Game. Figure 3 shows the main steps of the whole iterative
approach. The idea originally introduced in [7] is to view the SUT as a black
box and distinguish between controllable behavior from the tester (i.e., inputs or
more in general external stimuli from the environment) and observable behavior
from the running software system (i.e., outputs or more in general an observable
stimulus–response). The Controller and the Observer components execute a con-
formance game [7,2] until the termination condition is met. The game starts from
the initial state of the MDP model and, for each step, the controller chooses an
available action in A(s) from the current state s, depending on the adopted test
case generation strategy. The generation step (1) translates the action to a con-
trollable behavior to reach the same level of abstraction of the SUT. Intuitively,
the chosen action maps to a valid input provided by using a service exposed by
the SUT APIs. At this point, the external stimulus is provided to the SUT (2)
that reacts in turn by exposing an observable outcome. Thus, the observer eval-
uates (3) the outcome and interprets it to determine the target model state s′

in order to reach again the level of abstraction of the MDP. Here the evaluation
is conducted by means of a post-condition function mapping to model states.
This way, we can determine the target state s′ s.t. the post-condition, evaluated
on the observed outcome, holds. The last step is the conformance checking (4)
that verifies whether the obtained outcome is feasible in the sense of the formal
specification. Formally, the above steps are used to verify the existence of a con-
formance relation between the model and the SUT. The conformance relation is
formalized in turn by leveraging the notions of probabilistic alternating simula-
tion and refinement, as described in [16]. A comprehensive theoretical discussion
of these aspects is not part of the contribution of this paper, so we let the reader
refer to [16] for further details.

Bayesian inference module. Besides the conformance game, the Observer
component feeds a Bayesian inference process (see Section 3) to calibrate the un-
certain model parameters based on the gathered evidence by testing. An overview
on the statistical machinery used to perform this activity follows. Formally, we
let the parameters of the categorical distribution describing θi be defined by a
Dirichlet Prior as follows:

(xi,j , . . . , xi,k) ∼ Dir(αi), with αi = (αi,j , . . . , αi,k) (8)

Values in αi are the hyper-parameters of the Prior. Based on this formulation,
we can learn the uncertain parameters by belief monitoring during the testing

10 M. Camilli et al.

process. For each executed test, the Prior probability is updated based on the
experience using Bayes’ theorem instroduced in Section 3. In our context, belief
monitoring can be efficiently performed since the Prior and the Posterior belong
to the same family of distributions (i.e., Equation 8 representes a conjugate
Prior). Namely, the conformance game keeps track of the number of occurrences
ni,j that represents how many times the transition (si, sj) has been observed
for all θi and uncertain parameter xi,j . Thus, given a sequence of observations
y (i.e., the runtime evidence), the Posterior is defined as follows.

(xi,j , . . . , xi,k)|y ∼ Dir(α′i), with α′i = (αi,j + ni,j , . . . , αi,k + ni,k) (9)

For instance, considering the SafeHome system, we can compute the Poste-
rior of θ1 by updating the hyper-parameters α′1 = (47 + 93, 2 + 2, 1 + 5) if we
observe: 93 · s2, 2 · s3, and 5 · s5, as outcome of 100 invocations of the action
init from state s1. By summarizing the Posterior with the HDR we obtain the
following updated bounds.

HDR[f(θ1)] = x1,2 ∈ [0.87, 0.99], x1,3 ∈ [0.00, 0.09], x1,5 ∈ [0.00, 0.05]
HDR[f(θ1|y)] = x1,2 ∈ [0.89, 0.97], x1,3 ∈ [0.00, 0.05], x1,5 ∈ [0.01, 0.07]

(10)

Uncertainty-aware test case generation. We introduce here the test case
generation strategy used by our online MBT algorithm. This strategy leverages
the notion of uncertainty-aware reward structure, motivated by the practical
need of identifying those actions that increase the likelihood of testing uncertain
regions (i.e., transitions annotated with uncertain parameters). In fact, our goal
is to equip MBT with the ability of stressing the uncertain components of the
SUT. The uncertainty-aware reward structure is formally defined as follows.

Definition 1 (uncertainty-aware reward structure). Given a pMDP model
M, an uncertain region θi, and two numeric values rh, rl ∈ N>0 s.t. rh � rl,
the uncertainty-aware reward structure u is defined as follows:

uai,j =

{
rh pai,j > 0 and ∃θi for (si, a)

rl otherwise

The rationale is to assign a high reward rh to transitions associated to un-
certain parameters and a low reward rl elsewhere. Then we use the uncertainty-
aware reward structure to automatically compute the best exploration policy
(Equation 1) that maximizes the expected cumulated uncertainty-aware rewards.
Intuitively, given θi, the best policy π∗i drives a decision maker optimally towards
the uncertain model region θi.

Indeed, multiple uncertain regions determine alternative testing scenarios
targeting different portions of the model. The way we sample from available
choices (i.e., actions provided by alternative best policies) determines the whole
test case generation strategy. Our strategy provides control over test scenarios
during MBT based on a probabilistic function as defined below.

Model-based Testing under Parametric Variability of Uncertain Beliefs 11

Definition 2 (HDR-aware strategy). Given a pMDP model M a set of un-
certain regions θ1, . . . , θk and related best policies π∗1 , . . . , π

∗
k, the HDR-aware test

case generation strategy is defined by the following partial probabilistic function:

P(a|s) =

{
0 ω(s, a′) = 0

ω(s, a)/
∑
a′∈A(s) ω(s, a′) otherwise

(11)

where ω represents a per-state weight function that maps a state and an action
to a value in R≥0 such that:

ω(s, a) = max
i:π∗i (s)=a

‖HDR[f(θi|y)]‖ (12)

Intuitively, the weight function selectively increases or decreases the probabil-
ity of certain actions based on the magnitude of the Posteriors associated with
uncertain regions. As anticipated in Section 3, Bayesian statistics uses the mag-
nitude of the HDR as a measure of the degree of confidence in the inference
process: the smaller the magnitude, the higher the confidence. Thus, here we
leverage this measure to selectively increase the probability of actions that drive
testing towards regions associated with a lower degree of confidence.

Termination condition. Our approach uses the ability of detecting vio-
lation of requirements to build the termination condition for the online MBT
algorithm. In particular, since the testing activity incrementally builds the Pos-
terior knowledge of each θi, we can iteratively compare the summarization of the
Posteriors and the (pre-computed) hyper-rectangles encoding verification con-
ditions. Thus, the termination of the MBT can be formalized by means of the
following two alternative cases.

Definition 3 (Successful run). Given a pMDP M, a set of hyper-rectangles
H, and the Posterior f(θi|y) for all i, we say that the MBT is succesful iff there
exists h ∈ H, [lx, ux] ∈ h s.t. [lx, ux] ⊇ HDR[fx(θi|y)] for all i and x ∈ θi.

Definition 4 (Failing run). Given a pMDP M, a set of hyper-rectangles H,
and the Posterior f(θi|y) for all i, we say that the MBT is failing iff for all
h ∈ H there exists i, x ∈ θi s.t. [lx, hx] ∩HDR[fx(θi|y)] = ∅, with [lx, hx] ∈ h.

The intuitive meaning of these two cases follows. The testing activity can
terminate by either confirming that requirements are met (i.e., successful run)
or identifying violated requirements (i.e., failing run) based on the observed ev-
idence. In the first case, the Posterior knowledge tells that the model M[val]
satisfies requirements for all instantiation val constructed by using the Posteri-
ors’ HDR. In fact, all the values that can be drawn from the HDRs meet the
pre-computed verification conditions. In the latter case, the verification con-
ditions cannot be satisfied because the HDR identifies disjoint intervals with
respect to pre-computed hyper-rectangles.

It is worth noting that Definition 3 and Definition 4 identify two disjoint
conditions. Furthermore, termination by satisfying one of the two conditions is
always guaranteed because of the asymptotic behavior of the Posterior in the

12 M. Camilli et al.

limit of infinite observations. Loosely, if consistent estimates are available, then
Bayesian inference is consistent [17]. Moreover, the Posterior converges to a dis-
tribution independent of the initial Prior if the random variable in consideration
has a finite probability space [18].

6 Empirical Evaluation

We introduce our research questions and design of the evaluation in Section 6.1;
we present the results in Section 6.2; we finally discuss threats to validity in
Section 6.3.

6.1 Research Questions and Design

The main goal of the evaluation is to investigate the cost-effectiveness of our
testing method. The cost (or effort) refers to the number of tests required to
achieve termination. The effectiveness here represents the ability of identifying
requirements violations. Thus, we aim at answering three research questions:

RQ1: Is the approach able to detect requirements violations?
RQ2: What is the cost required by our testing method to achieve termination?
RQ3: How does our approach compare with existing MBT methods in terms of

cost-effectiveness?

We addressed these questions by conducting an extensive testing campaign
using different versions of the SafeHome as SUT. In particular, we considered
variations taking control over two main factors of interest: degree of uncertainty
in terms of percentage of uncertain model parameters (varying from 25% to
100%); and distance between actual values of model parameters and verification
conditions given by hyper-rectangles (varying from 0.01 to 0.16). We have tested
each version of the SUT by using the approach presented in this paper and we
compared its cost-effectiveness with a traditional Random MBT approach [19],
and also an existing uncertainty-aware MBT method called Flat [16].

For all experiments, we measured the number of tests spent for each uncertain
region (i.e., the cost) and the failure detection capability (i.e., the effectiveness).
Hereafter we discuss the most relevant results and we refer the reader to our
implementation and dataset for the replicability of the experiments1.

6.2 Results

Results for RQ1. We addressed this question by assessing the ability of ex-
hibiting failing runs when the actual values of uncertain parameters fall outside
the boundaries of the hyper-rectangles. Thus, we took control over actual values

1 The MBT module is open source software publicly available at https://github.com/
SELab-unimi/mbt-module. A replication package of the experiments is available at
https://github.com/SELab-unimi/sefm2020-replication-package.

https://github.com/SELab-unimi/mbt-module
https://github.com/SELab-unimi/mbt-module
https://github.com/SELab-unimi/sefm2020-replication-package

Model-based Testing under Parametric Variability of Uncertain Beliefs 13

●●●●●

1000

3000

5000

7000

9000

25 50 75 100
%uncertainty

#t
es

ts

(a) Distance 0.08

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●●●

●

●●●●●●●●●

●●

●●●●●●●●●●

●

1000

3000

5000

7000

9000

25 50 75 100
%uncertainty

#t
es

ts

(b) Distance 0.04

●●●●●●●●●●

1000

3000

5000

7000

9000

25 50 75 100
%uncertainty

#t
es

ts

(c) Distance 0.02

●●●●●

●●●●●

●

●

●●

●

●

●

●

●●

1000

3000

5000

7000

9000

25 50 75 100
%uncertainty

#t
es

ts

(d) Distance 0.01

Fig. 4: Effort by varying the distance and the degree of uncertainty.

and hyper-rectangles and then we executed the HDR-aware MBT 100 times for
each combination of degree of uncertainty, distance, and truth value (i.e., either
true or false w.r.t. requirements violation). From the results, we observe that,
in all cases, the process effectively returns the expected outcome with bounded
effort. Namely, the MBT process terminated with no more than 9000 tests, rep-
resenting the effort value measured in the worst case (i.e., 100% uncertainty and
0.01 distance). Further details on the evaluation of the effort follow.

Results for RQ2. Figure 4 shows the effort required by the HDR-aware
MBT. Each box-plot has been built considering 100 runs for each degree of
uncertainty and a specific distance value. Since the case “0.16 distance” is com-
parable to the 0.08 one, it has been omitted. From the data reported by each
individual plot, we observe that the effort increases linearly with the degree of
uncertainty. Namely, for each distance value we assessed the existence of a linear
dependency between degree of uncertainty and number of tests with correlation
value greater than 0.5. The slope of the estimated lines varies from 16.4 to 37.5.
The shorter the distance the steeper the growth. This means that parameters
close to hyper-rectangle borders are likely to increase the effort when the number
of uncertain parameters increases. Furthermore, we observe that the variability
of the effort values increases when reducing the distance value. The average

14 M. Camilli et al.

HDR−aware vs Random HDR−aware vs Flat

25 50 75 100 25 50 75 100

0.01

0.02

0.04

0.08

0.16

uncertainty %

di
st

an
ce

0.5
0.6
0.7
0.8
0.9
1.0

effect

(a) Â12 effect size

Random Flat

25 50 75 100 25 50 75 100

0.01

0.02

0.04

0.08

0.16

uncertainty %

di
st

an
ce

0.00

0.25

0.50

0.75

rate

(b) Error rate

Fig. 5: Effectiveness comparison among HDR-aware, Random, and Flat.

variance of the effort is 2998.7, 62815.7, 355587.1, and 2433554.3, for distance
values 0.08, 0.04, 0.02, and 0.01, respectively. In general, we can observe that by
halving the distance value, we increase the variance of an order of magnitude.
The interpretation of this result tells that the closer the actual values to the
hyper-rectangles, the lower the predictability of the effort.

Results for RQ3. To address this research question, we first computed the
effort required by selected (existing) MBT strategies and then we compared it
with the effort required by the HDR-aware MBT by using the standardized non-
parametric Vargha and Delaney’s Â12 effect size measure [20]. In this context,
the Â12 encodes the probability that running the HDR-aware MBT yields less
effort than the Random and the Flat MBT strategies. Figure 5a shows a heat
map of the effect size by varying uncertainty and distance factors. The two plots
refer to the pairwise comparisons: HDR-aware versus Random (left); and HDR-
aware versus Flat (right). Data shows that Random and Flat are similar, i.e.,
the Â12 effect size values are comparable. In general, the probability of observing
less effort when adopting the HDR-aware MBT is high. It represents the certain
event for almost all cases. We observe outliers when the degree of uncertainty
is low (25%) and the distance is short (less than 0.04). In this settings, all the
strategies (HDR-aware, Random, and Flat) are likely to exhibit the same effort.

The effectiveness has been assessed by executing all the selected strategies by
assuming the same total amount of effort. Namely, we fixed the limit according
to the maximum effort required by the HDR-aware method. The rationale is to
execute both Random and Flat by using an effort value that ensures termination
of the HDR-aware method with the correct outcome. At the end of each exe-
cution we summarized the Posteriors to determine whether the run succeeded
or failed with respect to pre-computed hyper-rectangles. Thus, we counted the
number of wrong outcomes to measure the verification error rate when using ei-
ther Random or Flat instead of HDR-aware. Figure 5b shows a heat map of the
error rate by varying uncertainty and distance factors. The two plots refer to the
errors obtained by using: Random (left); and Flat (right). Data shows that both
approaches are likely to terminate by exhibiting a wrong outcome. Thus, the
effectiveness of both Random and Flat is lower w.r.t. the HDR-aware method.

Model-based Testing under Parametric Variability of Uncertain Beliefs 15

The two plots show a comparable pattern: the error rate increases when the dis-
tance decreases and the uncertain parameters increase. In both cases we observe
the worst effectiveness values with distance equal to 0.01 and uncertainty equal
to 100%. In this setting, the error rate values are 0.96 and 0.90 for Random and
Flat methods, respectively.

6.3 Threats to Validity

To limit threats to external validity we conducted a testing campaign on several
versions of the SafeHome by taking control and detailing the important factors
of interest (i.e., uncertain regions, uncertainty degree, and distance) for all exe-
cuted experiments. Further generalization of our findings to different application
domains and model sizes requires additional experiments. We dealt with inter-
nal validity threats in the empirical study by directly manipulating independent
variables. Namely, we have direct assess to both actual values of uncertain pa-
rameters and design-time beliefs expressed by Priors. It is worth noting that
direct manipulation of these factors has been crucial to assess cause-effect be-
tween them and the cost-effectiveness of our approach. Such a fine grained access
to independent variables allows the internal validity to be increased with respect
to conclusions based on an association observed without manipulation. Direct
manipulation permits the creation of the same experimental conditions within
repeated runs. We addressed threats to conclusion validity by reducing the possi-
bility of obtaining results by chance. We repeated experiments 100 for each SUT
variant and for each testing method. Then, we followed the guidelines introduced
in [20] to detect statistical difference. Namely, we conducted a pairwise compar-
ison among testing methods using the Mann-Whitney U test to calculate the
p-value with significance level α = 0.05. We also detected a practical value using
the standardized Vargha and Delaney’s Â12 non-parametric effect size measure.
We handled major threats to construct validity by assessing the validity of the
metrics adopted in our experiments. In particular, the cost has been assessed by
considering the number of tests required to achieve termination. This represents
a traditional metric in assessing randomized testing algorithms [20]. The effec-
tiveness has been measured by verifying the ability of identifying failures (i.e.,
requirements violation in our context). In search-based testing, this represents a
traditional measure to assess the effectiveness.

7 Related Work

A taxonomy of potential sources of uncertainty affecting the development of soft-
ware systems is presented in [21]. Uncertainty is categorized at different stages
such as requirements, design, and production. Testing in this work is almost
neglected. Further effort in categorizing and guiding software engineers in rec-
ognizing different types of uncertainty has been presented in [22]. Probabilistic
models have been adopted extensively to model and analyze uncertainties in the
context of self-adaptive systems. The approach introduced in [23] continuously

16 M. Camilli et al.

updates transition probabilities of discrete time Markov models using efficient
runtime monitoring. Another approach, introduced in [12], describes runtime
quantitative verification and sensitivity analysis to support adaptation in order
to achieve perpetual meeting of nonfunctional requirements. Queueing networks
have been adopted and extended in [24] with adaptation knobs to dynamically
fulfill performance goals. All these lines of research aim at modifying probabilis-
tic models to react to uncertain changes during operation. In [25] MDPs are
extended by attaching confidence intervals to transition probabilities in order to
compute Pareto optimal policies. Our approach does not apply multi-objective
optimization but uses uncertainty to drive MBT.

Recent research activities show increasing effort in delivering approaches and
techniques that jointly consider testing and uncertainty quantification methods.
Uncertainty sampling has been introduced in [26] to generate suitable test data.
Namely, a “Query Strategy Framework” is adopted to infer a behavioral model
and then select those tests on which the behavior of the system is uncertain. This
approach outperforms conventional and adaptive random testing at exposing
faults. A so called uncertainty-wise UML-based modeling framework has been
introduced in [4] with the aim of creating models that can be executed to test
CPSs. A offline MBT approach that leverages on the uncertainty-wise modeling
framework has been presented in [5]. The approach generates test cases in a cost-
effective way by minimizing the number of tests but maintain coverage of models.
The approach presented in [2,16] incorporates uncertainty mitigation into an
online MBT framework. Nevertheless, requirements are neglected during the
testing process which is guided by coarse information of uncertain components.

To summarize, the methodology introduced in this paper differs from the
state-of-the-art since it combines offline analysis of parametric variability of un-
certain model beliefs and online MBT to detect requirements violations.

8 Conclusion

This paper introduces a novel approach to online model-based testing under un-
certainty encoded as parameters of a Markov Decision process. We use design-
time parametric model checking and then online testing algorithms to gather
runtime evidence and detect requirements violations. The design-time phase an-
alyzes the parameter space to pre-compute the constraints for requirements sat-
isfaction. The online testing activity feeds a Bayesian inference process able to
detect violations of pre-computed constraints. We provided a theoretical dis-
cussion of the approach and the description of an empirical evaluation aiming
at assessing its cost-effectiveness. During the evaluation we conducted a large
testing campaign using a number of variations of the SafeHome case study. The
experience collected during our experiments suggests that the approach is able
to spot requirements violations with bounded effort. The HDR-aware method
outperforms both the Random and the Flat strategies considered in our quantita-
tive comparison. Our testing framework has been released publicly to encourage
adoption and repetition of experiments.

Model-based Testing under Parametric Variability of Uncertain Beliefs 17

References

1. N. Esfahani and S. Malek, “Uncertainty in self-adaptive software systems,” in
Software Engineering for Self-Adaptive Systems II: Int. Seminar, Dagstuhl Cas-
tle, Germany, October 24-29, 2010 Revised Selected and Invited Papers. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 214–238.

2. M. Camilli, C. Bellettini, A. Gargantini, and P. Scandurra, “Online model-based
testing under uncertainty,” in 2018 IEEE 29th International Symposium on Soft-
ware Reliability Engineering (ISSRE), Oct 2018, pp. 36–46.

3. M. Camilli, A. Gargantini, R. Madaudo, and P. Scandurra, “Hyppotest: Hypothesis
testing toolkit for uncertain service-based web applications,” in Integrated Formal
Methods, W. Ahrendt and S. L. Tapia Tarifa, Eds. Cham: Springer International
Publishing, 2019, pp. 495–503.

4. M. Zhang, S. Ali, T. Yue, R. Norgren, and O. Okariz, “Uncertainty-wise
cyber-physical system test modeling,” Software & Systems Modeling, Jul 2017.
[Online]. Available: https://doi.org/10.1007/s10270-017-0609-6

5. M. Zhang, S. Ali, and T. Yue, “Uncertainty-wise test case generation and
minimization for cyber-physical systems,” Journal of Systems and Software, vol.
153, pp. 1–21, 2019. [Online]. Available: https://doi.org/10.1016/j.jss.2019.03.011

6. E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang, “Param: A model checker for
parametric markov models,” in Computer Aided Verification, T. Touili, B. Cook,
and P. Jackson, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp.
660–664.

7. M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, Model-Based
Testing of Reactive Systems: Advanced Lectures (Lecture Notes in Computer Sci-
ence). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

8. M. Camilli, A. Gargantini, P. Scandurra, and C. Bellettini, “Towards inverse
uncertainty quantification in software development (short paper),” in Software
Engineering and Formal Methods - 15th International Conference, SEFM 2017,
Trento, Italy, September 4-8, 2017, Proceedings, ser. Lecture Notes in Computer
Science, A. Cimatti and M. Sirjani, Eds., vol. 10469. Springer, 2017, pp. 375–381.
[Online]. Available: https://doi.org/10.1007/978-3-319-66197-1 24

9. C. P. Robert, The Bayesian Choice: From Decision-Theoretic Foundations to Com-
putational Implementation, 2nd ed. Springer, May 2007.

10. V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker, “Automated verification
techniques for probabilistic systems,” in Formal Methods for Eternal Networked
Software Systems: 11th International School on Formal Methods for the Design
of Computer, Communication and Software Systems, SFM 2011, Bertinoro, Italy,
June 13-18, 2011. Advanced Lectures. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2011, pp. 53–113.

11. M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st ed. New York, NY, USA: John Wiley & Sons, Inc., 1994.

12. A. Filieri, G. Tamburrelli, and C. Ghezzi, “Supporting self-adaptation via quan-
titative verification and sensitivity analysis at run time,” IEEE Transactions on
Software Engineering, vol. 42, no. 1, pp. 75–99, Jan 2016.

13. C. Courcoubetis and M. Yannakakis, “The complexity of probabilistic
verification,” J. ACM, vol. 42, no. 4, p. 857–907, Jul. 1995. [Online]. Available:
https://doi.org/10.1145/210332.210339

14. E. M. Hahn, T. Han, and L. Zhang, “Synthesis for pctl in parametric markov deci-
sion processes,” in Proceedings of the Third International Conference on NASA

https://doi.org/10.1007/s10270-017-0609-6
https://doi.org/10.1016/j.jss.2019.03.011
https://doi.org/10.1007/978-3-319-66197-1_24
https://doi.org/10.1145/210332.210339

18 M. Camilli et al.

Formal Methods, ser. NFM’11. Berlin, Heidelberg: Springer-Verlag, 2011, p.
146–161.

15. J. Berger, Statistical Decision Theory and Bayesian Analysis, ser. Springer Series
in Statistics. Springer, 1985.

16. M. Camilli, A. Gargantini, and P. Scandurra, “Model-based hypothesis
testing of uncertain software systems,” Software Testing, Verification and
Reliability, vol. 30, no. 2, p. e1730, 2020, e1730 stvr.1730. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1730

17. J. L. Doob, “Application of the theory of martingales,” in Actes du Colloque In-
ternational Le Calcul des Probabilités et ses applications, 1949, pp. 23–27.

18. D. A. Freedman, “On the asymptotic behavior of bayes estimates in the discrete
case ii,” The Annals of Mathematical Statistics, vol. 36, no. 2, pp. 454–456, 1965.

19. M. Veanes, C. Campbell, W. Schulte, and N. Tillmann, “Online testing with model
programs,” in Proceedings of the 10th European Software Engineering Conf. / 13th
ACM Int. Symp. on Foundations of Software Engineering, 2005, pp. 273–282.

20. A. Arcuri and L. Briand, “A practical guide for using statistical tests to
assess randomized algorithms in software engineering,” in Proceedings of the 33rd
International Conference on Software Engineering, ser. ICSE ’11. New York, NY,
USA: Association for Computing Machinery, 2011, p. 1–10. [Online]. Available:
https://doi.org/10.1145/1985793.1985795

21. A. J. Ramirez, A. C. Jensen, and B. H. C. Cheng, “A taxonomy of uncertainty for
dynamically adaptive systems,” in Proceedings of the 7th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, ser. SEAMS
’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 99–108. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2666795.2666812

22. D. Perez-Palacin and R. Mirandola, “Uncertainties in the modeling of self-adaptive
systems: A taxonomy and an example of availability evaluation,” in Proceedings
of the 5th ACM/SPEC International Conference on Performance Engineering,
ser. ICPE ’14. New York, NY, USA: ACM, 2014, pp. 3–14. [Online]. Available:
http://doi.acm.org/10.1145/2568088.2568095

23. A. Filieri, L. Grunske, and A. Leva, “Lightweight adaptive filtering for efficient
learning and updating of probabilistic models,” in Proceedings of the 37th
International Conference on Software Engineering - Volume 1, ser. ICSE ’15.
Piscataway, NJ, USA: IEEE Press, 2015, pp. 200–211. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2818754.2818781

24. E. Incerto, M. Tribastone, and C. Trubiani, “Software performance self-adaptation
through efficient model predictive control,” in International Conference on Auto-
mated Software Engineering, 2017, pp. 485–496.

25. D. Scheftelowitsch, P. Buchholz, V. Hashemi, and H. Hermanns, “Multi-objective
approaches to markov decision processes with uncertain transition parameters,”
in International Conference on Performance Evaluation Methodologies and Tools,
2017, pp. 44–51.

26. N. Walkinshaw and G. Fraser, “Uncertainty-driven black-box test data genera-
tion,” in 2017 IEEE International Conference on Software Testing, Verification
and Validation (ICST), March 2017, pp. 253–263.

https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1730
https://doi.org/10.1145/1985793.1985795
http://dl.acm.org/citation.cfm?id=2666795.2666812
http://doi.acm.org/10.1145/2568088.2568095
http://dl.acm.org/citation.cfm?id=2818754.2818781

	Model-based Testing under Parametric Variability of Uncertain Beliefs

