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Abstract. Enabling Hoare-style reasoning for low-level code is attrac-
tive since it opens the way to regain structure and modularity in a do-
main where structure is essentially absent. The field, however, has not
yet arrived at a fully satisfactory solution, in the sense of avoiding restric-
tions on control flow (important for compiler optimization), controlling
access to intermediate program points (important for modularity), and
supporting total correctness. Proposals in the literature support some of
these properties, but a solution that meets them all is yet to be found. We
introduce the novel Hoare-style program logic LA, which interprets post-
conditions relative to program points when these are first encountered.
The logic can support both partial and total correctness, derive contracts
for arbitrary control flow, and allows one to freely choose decomposition
strategy during verification while avoiding step-indexed approximations
and global invariants. The logic can be instantiated for a variety of con-
crete instruction set architectures and intermediate languages. The rules
of LA have been verified in the interactive theorem prover HOL4 and
integrated with the toolbox HolBA for semi-automated program veri-
fication, making it applicable to the ARMv6 and ARMv8 instruction
sets.

Keywords: Program Logics · Formal Verification · Theorem Proving ·
Binary Analysis · Hoare Logic

1 Introduction

Many scenarios require verification of machine code: in microkernels [34,19],
the manipulation of processor contexts and hardware configurations have side
effects that are not captured by the semantics of high-level languages; in cryp-
tographic routines, resilience to side-channel attacks may require to analyse the
exact sequence of memory accesses performed by software [8]; in critical soft-
ware components, to minimise the trusted computing base the compiler can be

? This work has been supported by the TrustFull project financed by the Swedish
Foundation for Strategic Research and the KTH CERCES Center for Resilient Crit-
ical Infrastructures financed by the Swedish Civil Contingencies Agency.
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designated as untrusted; in software fault isolation techniques [59], it may be
required to analyse the binary of closed source software.

One of the main difficulties in verifying machine code is the unstructured and
dynamic control flow. This makes it difficult, or in the case of highly optimized
code impossible, to adapt logics for high-level languages by mapping binary frag-
ments to high-level statements: the code may be re-ordered by compilation, and
one high-level statements may be implemented by multiple overlapping frag-
ments and share fragments with other statements. A number of authors have
explored the possibility of regaining Hoare-style reasoning also for the unstruc-
tured case [18,55,35,2,21,10,51,53,28,44]. However, we argue that there is still
room for progress. In order to provide the formal basis for a binary verification
toolkit, it is desirable that a Hoare-style logic for unstructured programs has the
following properties:

1. ability to express and verify both partial and total correctness;
2. support for verification of programs with arbitrary unstructured control flow,

including irreducible loops, i.e., loops with multiple entry points;
3. support for verification of programs with dynamic control flow, e.g., function

abstraction and exception handling;
4. freedom to decompose the verification using several strategies, e.g., splitting

the program into two fragments which may overlap;

We motivate these requirements in Section 2 via two simple but illustrative exam-
ples. Our main contribution is the novel logic LA that meets these requirements,
which is presented in Section 3. In order to provide a general verification frame-
work that supports programs in arbitrary machine and intermediate languages,
the logic abstracts from the axiomatization of primitive state transitions. We
show that the logic is sound and complete, and we present a definitional exten-
sion that simplifies the verification of binary programs. The logical framework is
demonstrated in Section 4, where we verify the two running examples. Finally,
LA has been formalised in the HOL4 interactive theorem prover, integrated into
the HOL4 binary analysis framework HolBA [38]3, and instantiated for two ma-
chine models: the ARMv8 ISA and the HolBA intermediate language, which is
called BIR. This is described in Section 5. In Section 6, LA is compared with
related work, in particular, it is argued how existing solutions do not meet all
of the requirements listed above. The paper ends with some concluding remarks
in Section 7.

2 Two Motivating Examples

We introduce two small programs and their intended properties. Despite their
size, the programs present some important challenges for binary verification.
They are expressed in an assembly-like pseudolanguage, which represents an
abstract unstructured programming language.

3 The HolBA Github repository is located at https://github.com/kth-step/HolBA

and our LA implementation for this paper is available at the commit tagged SEFM2020

in the directory src/theory/abstract hoare logic.

https://github.com/kth-step/HolBA
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// cont1

24: $a   := $c

25: $b   := $c

26: $t   := 28

27: JUMP 40

// cont2

28: ...

// entry

20: $a   := $x

21: $b   := $y

22: $t   := 24

23: JUMP 40 // add

40: $c   := $a + $b

41: JUMP $t

(a) function reuse

// is_even

20: JUMPIF ($n == 0) 40

21: n      := n - 1

22: JUMP   30

// is_odd

30: JUMPIF ($n == 0) 50

31: n      := n - 1

32: JUMP   20

// no

50: ...

// yes

40: ...

(b) optimized mutual recursion

Fig. 1. Example code and control flow graph.

2.1 Example: Function Reuse

The first program consists of a function to add two integers as well as a main
program that calls this function twice. Fig. 1a presents the program code with
its static control flow graph using program fragments as nodes. Each fragment
consists of multiple statements with unique address labels. For example, the
statement 40: $c := $a + $b is located at address 40 and is part of the frag-
ment representing the function add. It evaluates $a + $b, assigns the result to
the variable $c, and gives control to the next statement. In this case, the next
statement is the indirect jump to the value in the variable $t, representing the
return from add.

The main program consists of three fragments and takes the two parameters
$x and $y. It computes 2 ∗ ($x + $y) by calling add twice and assigning the
result to $c. The fragments for entry and cont1 prepare the parameters of the
function, as well as the return address, and call add using direct jumps. The
ellipses in fragment cont2 represent the code that follows afterwards.

The program satisfies the following contract:

[$x = v1 ∧ $y = v2] 20→ {28} [$c = 2 ∗ (v1 + v2)] (1)

It states that whenever an execution reaches the entry point at address 20 and
the precondition $x = v1 ∧ $y = v2 holds, then, execution reaches the exit point
at address 28 and there the desired postcondition $c = 2 ∗ (v1 + v2) holds.

The control flow edges for the first and second calls are represented by solid
black and dashed grey arrows, respectively. Notice that the static control flow
contains two edges from add to the two return targets, while the dynamic control
flow only uses one return edge per call context, i.e., the first call always returns
to cont1 and the second call returns to cont2.

This program illustrates how reuse patterns complicate the treatment of con-
trol flow in unstructured languages.

Apparent loops. The static control flow of the example contains a loop: the
entry of add at the address 40 can reach the exit of add; this exit has a control
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flow edge to 24; the fragment from 24 can jump back to the entry of add at 40.
This is caused by the lack of function abstraction in unstructured languages,
which requires a form of reconstruction of call contexts for the control flow.
Verifying this part of the program as a loop would involve the introduction of
an invariant, which is undesirable.

Individual fragments. It is usually desirable to verify the function add in-
dependently of the rest of the program. The contract for this function has to
capture the initial values of $a, $b and $t when starting execution from address
40:

[$a = v1 ∧ $b = v2 ∧ $t = v3] 40→ {v3} [$c = v1 + v2] (2)

The initial value of $t represents the return address of the function. In the state
where execution reaches this address, the variable $c must be the sum of the
initial parameter values. Notice how the precondition ties the return address
to the exit point of the contract with the free variable v3. This allows express-
ing properties of reusable fragments in terms of generic contracts that can be
instantiated per call.

Overlapping fragments. A natural strategy to verify the whole program is to
sequentially compose the following two contracts, which capture the two steps
of the main program:

[$x = v1 ∧ $y = v2] 20→ {24} [$c = v1 + v2]

[$c = v1] 24→ {28} [$c = 2 ∗ v1]

The two contracts concern overlapping fragments of the program because the
fragment of each contract contains one invocation of the function add: the invo-
cation of the first contract ends in 24, and the other one ends in 28.

2.2 Example: Optimized Mutual Recursion

Fig. 1b presents a program that uses mutual recursion between two functions to
determine the parity of a given integer. The function is_even ends in address
40 if the input is even, otherwise in 50. Likewise, is_odd ends in 40 if the input
is odd, otherwise in 50. The example does not use a stack, which could be the
result of an optimized compilation.

Upon entry to either of the two functions, the control flow has a loop (whose
control flow edges are represented by dashed grey arrows) with two exit points
yes and no. Considering the entry point is_even, the program meets the fol-
lowing contract:

[$n = v1] 20→ {40, 50} [($pc = 40 ∧ v1%2 = 0) ∨ ($pc = 50 ∧ v1%2 = 1)] (3)

Here $pc represents the program counter, and it is used in the postcondition to
specify that the exit point reached depends on the input parity. For example,
execution reaches 40 and not 50 if the initial value of $n modulo 2 is 0. The
program satisfies an analogous contract for entry point is_odd.
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Multiple exit points. The given example consists of two fragments that, both
individually and combined, have two exit points each. To capture this specific
case as well as arbitrary branch structures in a natural way, it is necessary to
express and compose contracts with multiple exit points.

Irreducible loops. The loop of the example is irreducible because it has mul-
tiple entry points, which is not uncommon for optimized code. For this reason,
verification of unstructured programs requires the ability to deal with these types
of loops.

3 The Program Logic LA

We assume a machine model consisting of a deterministic transition system.
Let Σ be the set of machine states ranged over by s. The execution of a single
machine instruction is modeled by the partial function nxt : Σ ↪→ Σ with nxtn

as its nth iteration. The partiality of the transition relation allows one to model
failing executions. We assume a function lbl : Σ → Λ from states to a set of
control states Λ. This function can be used to retrieve the label or address of the
next instruction executed from a state and can be thought of as accessing the
program counter. The generality of lbl allows it to also include stack pointers
and other parts of concrete machine states.

We use the notion of entry/exit points, or labels, to identify program frag-
ments. The weak transition relation weak(s, L, s′) relates an initial state s to
the final state s′ that is reached when executing the fragment whose entry point
is lbl(s) and exit points are L.

Definition 1 (Weak transition relation).

weak(s, L, s′) =∃n. n > 0 ∧ nxtn(s) = s′ ∧ lbl(s′) ∈ L∧

∀n′ : 0 < n′ < n. lbl(nxtn
′
(s)) /∈ L

The weak transition relation is deterministic, partial (since a program may never
reach L from s), and guarantees that no intermediate state has lbl in L. That is,
when weak(s, L, s′) then s′ represents the first encounter of a state with label
in L after s.

The Hoare-style judgment of LA, [P ] l→ L [Q], states total correctness in
terms of pre- and postconditions P and Q, entry point l, and set of possible exit
points L. In the following, we abstract from the assertion language used for pre-
and postconditions.

Definition 2 (Judgment of LA). The judgment [P ] l→ L [Q] is valid iff

∀s. lbl(s) = l ∧ P (s) =⇒ ∃s′.weak(s, L, s′) ∧ Q(s′) .

Notice that due to Definition 1, we call this a first-encounter judgment. A partial-
correctness version can be obtained by exchanging the conjunction in the con-
clusion to an implication. In the following, we use lbl = l and lbl ∈ L for the
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[P ∧ C] l→ L [Q] [P ∧ ¬C] l→ L [Q]
Case

[P ] l→ L [Q]

[P1] l→ L [Q1]
(

� (lbl = l) ∧ P2 =⇒ P1

� (lbl ∈ L) ∧ Q1 =⇒ Q2

)
Conseq

[P2] l→ L [Q2]

[P ] l→ L1 ∪ L2 [Q] [Q]L1 → L2 [Q]
Seq

[P ] l→ L2 [Q]

[I ∧ C ∧ V = x] l→ {l} ∪ L [lbl = l ∧ I ∧ V < x]

[I ∧ ¬C] l→ L [Q]
(� l /∈ L) Loop

[I] l→ L [Q]

Fig. 2. Inference rules for LA

predicates that constrain the label of a state. Since commonly a program frag-
ment must guarantee different properties for different exit points, we use the
notation l 7→ Q for (lbl = l) ∧Q. For instance, the following contract describes
the effects of the first statement of the program in Fig. 1a:

C1 = [>] 20→ {21, 22} [21 7→ $x = $a] (4)

Notice that the postcondition of C1 is equivalent to lbl = 21 ∧ $x = $a, therefore
the contract implicitly guarantees that execution starting from 20 reaches the
address 21 without encountering the address 22.

Since unstructured code can have multiple entry points, many program log-
ics feature multiple-entry judgments [10,51,53,44,26]. These are actually equiv-
alent to conjuncts of multiple judgments. In a slight abuse of notation, we use
[P ]L1 → L2 [Q] to refer to the set of all [P ] l→ L2 [Q] such that l ∈ L1, inter-
preted conjunctively. Multiple-exit judgments cannot be so reduced. Consider
the example of a conditional jump with targets l1 and l2: if it is required that
the contract states that l1 is not visited before l2, this cannot be phrased using
single-exit judgments only.

3.1 Inference Rules

Fig. 2 shows the inference rules of LA. Note that there are no rules for primitive
transitions (execution of only one transition) - these are added when the inference
system is instantiated for a specific ISA (see Section 5), for example, contract
C1 of Eq. 4 is obtained in this fashion.
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The Case rule allows for combining judgments on different paths of execution
(split by a condition C on the initial state) that both end up in states with
program counters in L. This is useful when verifying branching structures.

The Conseq rule can strengthen the precondition and weaken the postcon-
dition. Note that in contrast to the standard Consequence rule [31], Conseq
only requires that the implications hold for states in the entry and exit points (l
and in L, respectively). For instance, contract C1 of Eq. 4 can be weakened to
[>] 20→ {21, 22} [(21 7→ $x = $a) ∨ (23 7→ >)] (since 23 is not in the exit label
set).

The Seq rule allows for sequential composition of two fragments, with the
label set L1 designating the midpoints. As an example, consider the two first
statements of the entry function in Fig. 1a. The contract C1 of Eq. 4 holds for
the first statement. Similarly for the second statement, the contract

C2 = [21 7→ $x = $a] 21→ {22} [22 7→ $x = $a ∧ $y = $b]

holds. In order to sequentially compose these two contracts, the precondition
of C2 and the postcondition of both C1 and C2 has to be identical. Just like
for the composition rule in Hoare logic, it is required the same predicate on
the point(s) of composition holds. Let Q be (21 7→ $x = $a) ∨ (22 7→ $x =
$a ∧ $y = $b). Since 21 7→ $x = $a implies Q, the contract C1 can be weakened
to [>] 20→ {21, 22} [Q]. In fact, since C1 guarantees that 22 is not encountered
between 20 and 21, we can enforce any property in the (impossible) case of ending
the fragment in 22. Also, since 22 is not the entry point and 21 is not an exit point
of C2, the Conseq rule can be used to weaken C2 to [Q] 21→ {22} [Q]. This
enables to use Seq rule to infer [>] 20→ {22} [Q] and Conseq rule to obtain
[>] 20→ {22} [$x = $a∧$y = $b]. Note the shape of the premises of Seq, which
are due to unstructured control flows: the fragment starting from l may reach
the endpoints L2 without encountering the midpoints L1, for instance if the first
fragment contains the compilation of a break statement. For this reason the rule
requires that the first fragment directly establishes Q if it reaches the endpoints
L2 before L1.

The premises of Loop are contracts for the loop body and loop exit. For the
loop body, the invariant I and the condition C entail that execution starting
from l does not reach any of the exit points in L before returning to l, preserves
the invariant, and strictly decreases the variant. For the loop exit, the invariant
I and the negation of the condition C guarantee that execution starting from l
reaches the exit points L and establishes Q. The side condition l /∈ L ensures
that execution with entry point l and exit points L establishes Q on the first
encounter of L also in the case when C holds. Also, notice that if l ∈ L then the
fragment associated with [I] l→ L [Q] corresponds to the loop body, since the
weak transition does not loop through l.

The version for partial correctness simply disregards the variant. Note that
unlike similar rules for structured loops [39], the Loop rule must take into ac-
count possible side effects of exiting the loop as well as multiple exit points.
For this reason, the postcondition in the conclusion is Q and not I ∧ ¬C. Mul-
tiple loop entry points can also be handled by formulating one invariant and
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variant per entry point, allowing for analysis of irreducible loops. Moreover, the
condition C is not syntactically extracted from the program.

The following rule is not necessary for completeness, but is used to unify
contracts stating different properties on the final states:

[P ] l→ L [Q1] [P ] l→ L [Q2]
Conj

[P ] l→ L [Q1 ∧ Q2]

Theorem 1 (Soundness). If [P ] l→ L [Q] can be derived from valid assump-
tions using the inference rules of LA, then [P ] l→ L [Q] is valid.

Proof. By structural induction over the individual rules.

3.2 Completeness of LA

Note that since LA is agnostic with regard to the concepts of programs, state-
ments and instructions, the completeness theorem is formulated relative to a
sound and complete oracle for primitive transitions.

Theorem 2 (Completeness of LA). Given that the logic used for stating pre-
and postconditions is sufficiently expressive to state invariants, variants, weakest
preconditions and strongest postconditions, and that there exists a sound and
complete oracle for contracts of primitive transitions, the first-order theory of the
underlying program and the theory of well-founded orders, then ` [P ] l→ L [Q]
if [P ] l→ L [Q] is valid.

Proof. To prove completeness of LA, the following definition is introduced for
the control-flow graph of [P ] l→ L [Q]:

CFG(P, l, L) =

{
(lbl(nxtn(s)), lbl(nxtn+1(s)))

∣∣∣∣∣ P (s) ∧ lbl(s) = l ∧ n ≥ 0∧
∀0 < n′ ≤ n. lbl(nxtn

′
(s)) /∈ L

}

The edges of the control-flow graph CFG(P, l, L) are the possible transitions
starting from the state with label l for which the precondition P holds, up to
and including edges into the exit label set L.

The proof is then by induction over set inclusion on CFG(P, l, L).
For the base case, only one edge exists. This means that every state that

satisfies P and whose lbl is l immediately reaches L in one transition. The
contract describing this is derivable directly from contracts for the primitive
transitions.

For the inductive case, the induction hypothesis is that if CFG(P ′, l′, L′) is
a strict subgraph of CFG(P, l, L), then [P ′] l′ → L′ [Q′] =⇒ ` [P ′] l′ → L′ [Q′].

First, consider the case where all edges in CFG(P, l, L) go directly from l to
L. Then, ` [P ] l→ L [Q] follows directly from the rules for primitive transitions
and the Case rule.In the case where not all edges go directly to L from l, consider
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the case for which the labels of CFG(P, l, L) \ (Λ × L) can be partitioned into
sequential sets La, Lb such that

(CFG(P, l, L) \ (Λ× L)) ∩ (Lb × La) = ∅ .

Let Cb be the predicate on states in l identifying all states from which execution
reaches Lb before L (this is provided by the oracle in the assumptions of the the-
orem). Furthermore, let Lmid be the subset of Lb which has incoming edges from
La. Then, ` [P ∧ Cb] l→ Lmid ∪ L [R1] follows from the inductive hypothesis
for some strongest postcondition R1 provided by the oracle in the assumptions
(note that this contract will not visit L by definition of Cb). ` [R2]Lmid → L [Q]
follows for similar reasons, where R2 is some weakest precondition provided by
the oracle. After unifying the midcondition using the Conseq rule (by precon-
dition strengthening), then the two contracts can be composed using the Seq
rule to obtain ` [P ∧ Ca] l→ L [Q]. If Cb = >, then this derives the complete
contract [P ] l→ L [Q]. If not, then [P ∧ ¬Cb] l→ L [Q] must be valid, and deriv-
able since it is a strict subgraph of CFG(P, l, L). [P ] l→ L [Q] is then derivable
by the Case rule.

In case the partition into sequential sets is not possible, then l is in the
transitive closure for every label except those in L , and since no edges go
directly from l to L, then l /∈ L. Let Cl be the predicate on states in l identifying
all states such that execution from l goes back to l before reaching L:

Cl =

{
s. I(s) ∧ ∃n. n > 0 ∧ nxtn(s) = s′ ∧ lbl(s) = l∧
∀n′.n′ < n ∧ nxtn

′
(s) = s′ =⇒ s′ /∈ L

}
I is the predicate identifying all possible states in l:

I =


s′. ∃s, n. P (s) ∧ lbl(s) = l ∧ n ≥ 0∧

nxtn(s) = s′ ∧ lbl(s′) = l ∧ ∀n′. n′ < n

nxtn
′
(s) = s′′ =⇒ s′′ /∈ L


and V is a loop variant (which must exist, due to the total-correctness judgment
in the antecedent of the proof obligation). Then the contract for the loop body
[I ∧ Cl ∧ V = x] l→ {l} ∪ L [lbl = l ∧ I ∧ V < x] must be valid, and derivable
since it lacks any edge to L. Also, [I ∧ ¬Cl] l→ L [Q] will be valid by definition
of Cl, and lack all edges going back to l, and accordingly be derivable. Since
P =⇒ I (the invariant also holds by definition in the very initial state) then
the two contracts can be used with the Loop rule to obtain [P ] l→ L [Q], which
was to be proved, completing the proof.

3.3 LAS - Definitional extension of LA

There are some common strategies that simplify verification via LA. First, for
sequential composition it is useful to clearly identify which labels in the exit label
set are not encountered by execution in the first contract, since it is required
to prove the exit label set of the first contract must include the exit points of
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the second contract. Secondly, while analysing concrete binary code it is usually
necessary to demonstrate preservation of invariants, such as the code being in
memory, the stack pointer being outside the code memory, and so on.

For these reasons we introduce a definitional extension of LA. The judgment

for LAS [P ] l
I−→ 〈LW | LB〉 [Q] adds an invariant I, which must hold in the initial

and final states of execution, and two disjoint exit label sets LW and LB . The
sets LW and LB are referred to as whitelist and blacklist respectively: the labels
in LB must not be encountered before reaching exit points in LW .

Definition 3 (Judgment of LAS). Given that the whitelist and blacklist sat-

isfy LW ∩ LB = ∅ and LW 6= ∅, the judgment [P ] l
I−→ 〈LW | LB〉 [Q] is defined

as [P ∧ I] l→ LW ∪ LB [(lbl /∈ LB) ∧ Q ∧ I].

The set of rules for LAS are derived from LA and for brevity we just introduce
them with short comments. It is possible to weaken a contract by freely dropping
labels from the blacklist or moving them to the whitelist:

[P ] l
I−→ 〈LW | LB〉 [Q]

BL-Subset

[P ] l
I−→ 〈LW | LB \ L〉 [Q]

[P ] l
I−→ 〈LW | LB〉 [Q]

(� L ⊆ LB) BL-to-WL

[P ] l
I−→ 〈LW ∪ L | LB \ L〉 [Q]

On the contrary, to move a label from the whitelist to the blacklist, the
postcondition must entail that the label is not encountered:

[P ] l
I−→ 〈LW | LB〉 [Q]

(
� L ⊂ LW

� Q =⇒ lbl 6∈ L

)
WL-to-BL

[P ] l
I−→ 〈LW \ L | LB ∪ L〉 [Q]

Finally, a simplified and more conventional sequential composition is possible
when (i) the whitelist of the second fragment is included in this blacklist of the
first one and (ii) the midpoints LW do not overlap with the final endpoints L′W :

[P ] l
I−→ 〈LW | LB〉 [R] [R]LW

I−→ 〈L′
W | L′

B〉 [Q]
(

� L′
W ⊆ LB

� LW ∩ L′
W = ∅

)
S-Seq

[P ] l
I−→ 〈L′

W | LB ∩ L′
B〉 [Q]

In contrast to LA, the consequence rule has been split up into the two separate
rules to remove the need for unnecessary computation in the implementation
of proof procedures. The rule Pre-Str is for precondition strengthening and
Post-Weak for postcondition weakening.

[P1] l
I−→ 〈LW | LB〉 [Q]

(� (lbl = l) ∧ P2 =⇒ P1) Pre-Str
[P2] l

I−→ 〈LW | LB〉 [Q]
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Abbr. Formula

Padd 40 7→ $a = v1∧$b = v2∧$t = v3
Radd 41 7→ $c = v1 + v2 ∧ $t = v3
Qadd v3 7→ $c = v1 + v2
Pmain 1 20 7→ $x = x ∧ $y = y
Rmain 1 40 7→ $a = x ∧ $b = y ∧ $t = 24

Smain 1 24 7→ $c = x + y

Pmain 2 Smain 1

Rmain 2 40 7→ $a = $b = x + y ∧ $t = 28

Smain 2 28 7→ $c = (x + y) + (x + y)

Qmain 28 7→ $c = 2 ∗ (x + y)
Table 1. Function reuse formulas.

Abbr. Formula

cond 1 < $n

var $n

inv v1%2 = $n%2

Ploop b inv ∧ cond ∧ var = v2
Qloop b inv ∧ var < v2
Ploop e inv ∧ ¬cond
Qloop e (40 7→ v1%2=0)∨(50 7→ v1%2=1)

Rloop inv

Qloop Qloop e

Ploop $n = v1
Table 2. Mutual recursion formulas.

[P ] l
I−→ 〈LW | LB〉 [Q1]

(� (lbl ∈ LW ) ∧ Q1 =⇒ Q2) Post-Weak
[P ] l

I−→ 〈LW | LB〉 [Q2]

The loop rule S-Loop is very similar to Loop of LA. Here the loop invariant
uses the place of the LAS invariant, and the side condition accounts for the split
of the end labels into whitelist and blacklist.

[C ∧ V = x] l
I−→ 〈{l} ∪ LW | LB〉 [lbl = l ∧ V < x]

[¬C ∧ I] l
>−→ 〈LW | LB〉 [Q]

(
� l /∈ LW

� l /∈ LB

)
S-Loop

[I] l
>−→ 〈LW | LB〉 [Q]

4 Verification of the examples

To exemplify the usage of our logic, we verify the programs from Section 2.

4.1 Function Reuse

We first establish a generic contract for the function add that is then instantiated
for the two function invocations. Fig. 3 visualizes the verification flow and Table 1
collects the predicates for this example. In the following, we simply omit the
blacklists if they are empty. The contract add generic corresponds to Eq. 2
and it is generic in terms of the function arguments v1 and v2 as well as the
return label v3. For simplicity, we set the blacklist as the set {20 . . . 28} \ {v3},
which are all the addresses of the example outside of add, except the return
address. In a more general use case, the blacklist is a variable set, where the
return label v3 and all function labels except the entry cannot be included.

The contract add return refers to a single primitive transition; hence it
is not derived from the inference rules of LA. Instead, it is established using
the semantics of the single indirect jump at program address 41, which guar-
antees [Radd] 41→ 〈{20 . . . 28, v3} | 〉 [Qadd]. This contract is weakened to add
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add body

add return

add instance 1

add instance 2

add generic
SEQ

Fig. 3. Verification workflow for function add with the state predicates from Table 1.

main

call 1

add instance 1

SEQ

...

SEQ

Pmain part 2Pmain part 2

main part 1main part 1

Fig. 4. Verification workflow for main program with the state predicates from Table 1.

return with the rule WL-to-BL. Similarly, add body is derived from the
semantics of the single assignment at program address 40, which guarantees
[Padd] 40→ 〈{20, . . . , 28, 41, v3} | 〉 [Radd]. Here, we need to impose the side con-
dition v3 6= 41 in order to use the rule WL-to-BL to obtain add body. The
label v3 is included into the blacklist to allow subsequent sequential composition
with add return to add body.

This contract is instantiated twice for the two function invocations, where
concrete values are substituted for the return address v3 and the function argu-
ments v1 and v2. For the first function call (i.e. add instance 1) v1 = x, v2 = y,
v3 = 24 and for the second function call (i.e. add instance 2) v1 = v2 = x+ y,
v3 = 28. Fig. 4 shows the flow to verify the main program. For brevity, it omits
the source contracts of the second function invocation. The verification consists
of several sequential compositions, where the whitelists of subsequent contracts
have to be included in blacklists of preceding contracts. For example, main part
1 has 28 in the blacklist so that we can compose it with main part 2, where
28 is in the whitelist. Finally, we use weakening to obtain the overall contract
main, which corresponds to Eq. 1.

4.2 Mutual Recursion

The verification steps of the two recursion entry points is even and is odd are
virtually equivalent. Hence, we only present the steps for is even as shown in
Fig. 5. Because the control flow is a loop, we start by identifying the condition to
stay in the loop cond as well as loop variant var and loop invariant inv, which are
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loop

loop exit

loop body

LOOP

Fig. 5. Verification workflow for the recursive function is even with the state predi-
cates from Table 2.

defined together with the state predicates in Table 2. These predicates allow us
to establish the contracts loop body and loop exit using sequential reasoning,
as for the previous example. These contracts are then combined using the loop
composition rule. Finally, precondition strengthening allows us to obtain the
desired contract corresponding to Eq. 3 from loop because Ploop implies Rloop.

5 Implementation

We implemented our logic and verified its soundness in HOL4. We also instan-
tiated the logic for two transition systems: the formal model of ARMv8 and the
machine-independent intermediate language, BIR, of the binary analysis frame-
work HolBA [38].

HolBA supports the following verification workflow: first, the HolBA tran-
spiler translates ARMv8 (among other ISAs) binary code to BIR together with
a bisimulation proof. The bisimulation relation guarantees correspondence of
ARMv8 state components with BIR variable assignments and the BIR program
counter. Second, the BIR program can be verified to meet contracts - for these
examples, this has been done using a weakest precondition generator and prover.
Third, the contracts are transferred to the ARMv8 model using the bisimulation.
Transpilation to and from BIR as well as proving contracts for acyclic program
fragments is fully automated, meaning the verification code consists of specifi-
cation as well as fitting together contracts for acyclic program fragments, where
applying one rule typically takes one LOC. The integration of our logic in HolBA
allows composing ARMv8 contracts either directly, or indirectly by composing
BIR contracts and transferring the result to ARMv8.

The ARMv8 instantiation uses the L3-based machine model [29]. An ARMv8
machine state consists of registers, processor flags and memory. The program
counter is one of the registers and indicates which memory location contains the
next instruction to execute. Consequently, for this model, lbl retrieves the pro-
gram counter from the state and Λ are all memory addresses. The state transition
function NextStateARM8 represents the execution of a single instruction and cor-
responds to nxt. Because the program is stored in memory, it may change by
memory operations. The invariant of LAS can be used to fix the program under
analysis and exclude self-modifying code, by requiring that the program binary
is loaded in system memory.
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Component Total Subcomponents

Logics 863 LA: 372, LAS: 491

Instantiations 1040 BIR: 974, ARMv8: 66

BIR composition tools 742

Examples 1180 Function reuse: 428,
Mutual recursion: 382,
ARMv8: 370

Table 3. HOL4 code sizes in lines of code (LOC).

The BIR instantiation uses the model defined in HolBA. BIR is designed
to have as few language primitives as possible, to simplify the construction of
analysis tools. In fact, it is very similar to the pseudolanguage used in Section 2.
A BIR state consists of a map of variable names to values, a program counter,
and execution status flags to indicate whether the program is running or is in
an exceptional state. The variable map is used to represent both register and
memory assignments. In BIR, the program is not part of the state like in ARMv8
a program is in system memory. It can therefore change only due to an explicit
jump statement. For this model, lbl extracts the program counter of the BIR
state and nxt is the execution of the sequence of BIR statements that simulate
a single machine instruction. The transition function nxt is only defined for
transitions to non-exceptional states.

We chose to use boolean BIR expressions as state predicates in order to reuse
the existing automation of HolBA. Because BIR expressions can only refer to
variable assignments, but not to the program counter, this choice restricts the
expressiveness of pre- and postconditions. For this reason, BIR judgments are
defined as a specialisation of LAS where the postconditions are maps from labels
to BIR expressions following the syntax of 7→ from Section 3. We also proved in
HOL4 a program composition rule for BIR, i.e., contracts of subprograms can
be applied to larger programs.

We extended HolBA to support our specialized BIR judgments in the ex-
isting verification infrastructure. Specifically, we modified the weakest precondi-
tion tool of HolBA to enable automatic proofs of contracts for non-looping BIR
statement sequences without indirect jumps by using the existing SMT solver
integration and contract entailment. This allowed us, for example, to establish
the contracts marked with ∗ in Figs. 3,4 and 5. We created a library to auto-
mate the application of composition rules and used it to verify the two example
programs according to the workflows presented in Section 4. This was also used
together with the HolBA transpiler to verify an ARMv8 program that has been
compiled from C code.

Table 3 shows the code sizes (calculated using cloc [20]) for our verification
of the logics, their instantiations, the supporting HOL4 tools to semi-automate
contract composition, and the verification of the examples. Each example of this
paper amounts to about 10 BIR statements and can be verified in less than 10
seconds on an Intel i7-4800MQ with our proof-of-concept implementations. The
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Logic Total
correctness

Partial
correctness

First
encounter

Overlap.
fragments

Completeness

Myreen, Gordon [44] � � � � �
ISCAP [56] � � Only function ret. � �
Saabas, Uustalu [51,7] � � � � �
Tan, Appel [53] � � � � �
Benton [10] � � � � �

Table 4. Summary of features of existing logics for unstructured programs.

ARMv8 example consists of 48 BIR statements and takes less than 40 seconds
for transpilation and verification.

6 Related Work

When Tony Hoare introduced the formal system that later became known as
Hoare logic in 1969, he did not initially treat arbitrary jumps and noted that
these likely present a problem with complex solutions [31]. The following years,
several extensions of Hoare logic were proposed to deal with unstructured
code [18,17,35,2] which were shown to be unsound [3,2,50].

In 1976, Wang [55] proposed a program logic for total correctness of unstruc-
tured Algol-like programs, introducing multi-exit postconditions with different
postconditions depending on exit label. However, in this logic, the judgments
do not guarantee that the postcondition is met at the initial encounter of an
associated label, unless this happens to entail exiting the program segment. In
1981, de Bruin [21] introduced a logic for partial correctness of unstructured
programs. This logic is dependent on a list of global label invariants, which must
hold every time the corresponding label is reached. This could be cumbersome
to handle during practical verification.

Years later, in the early 2000s, computational resources had made program
verification possible on a larger scale, facilitating the extension of the scope of
analysis from idealized high-level languages to machine code. In particular, typed
assembly languages [41] and proof-carrying code [48,1] originated a renewal of
interest in the logical foundations for reasoning about programs. Table 4 contains
a summary of recently proposed unstructured program logics.

Starting in 2002, the FLINT project began working on the CAP family of
unstructured languages and their program logics [57,28,49,56,15,16]. Various di-
alects of these logics have been formalized in Coq [23,22], instantiated for x86
and SPARCv8 ISAs [58], and used to verify simplified OS kernels [27]. The ini-
tial CAP logics are written in continuation-passing style (in order to support
first-class code pointers easily) and incorporate separation logic. In 2011, they
presented ISCAP, a direct-style logic that supports a partial-correctness judg-
ment only for entire functions [56]. The CAP family does not include any logic
for total correctness like LA.

In 2005, Benton [10] proposed a program logic for partial correctness with
multiple entry points and multiple exit points. Benton formalised a version of
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his logic in Coq [11] and used it for proofs of type safety in a certified compiler
between two languages [13,12]. Benton uses continuation-passing style reasoning
with step-indexed approximations to provide the partial-correctness judgment.
This has some limitations; for example, a label continuation can never be both
in the pre- and postcondition. Also, the logic has global label invariants, similar
to those of de Bruin.

Tan and Appel introduced a program logic for partial correctness similar to
Benton’s, basing it on continuation-passing style reasoning with step-indexed
approximations [53]. This logic was used in the Foundational Proof-Carrying
Code project for type-safety proofs of SPARC machine code. No total-correctness
version of this logic is known to exist by the authors.

In 2006, Saabas and Uustalu [51] constructed a program logic for partial
correctness. Bartels et al. [6,7,5,32,33] used a derived logic with totally correct
judgment formalised in Isabelle/HOL to reason about communicating unstruc-
tured code. Marti et al. [40] used another formalisation in Coq to reason about
MIPS assembly in a minimal OS. In contrast to LA, these logics are composi-
tional only over non-overlapping code fragments.

Another program logic for unstructured code with totally correct judgment
was suggested in 2007 by Myreen and Gordon [44], most famously used in the
CakeML verified compiler [36]. In the implementation of the logic, the axioma-
tization of single instructions is done via decompilation into logic [45,46,42,47]
and the logic has been used to verify a bignum implementation [43], validate
the compilation of seL4 [52], verify device drivers [25,24], and provide machine-
checkable proofs of security properties of realistic executables [54]. Unlike LA,
the judgments of this logic do not guarantee that the postcondition is met at the
first encounter of the exit labels, which is equivalent to relaxing the condition
∀n′ : 0 < n′ < n. lbl(nxtn

′
(s)) /∈ L in the weak transition relation. For this

reason, the judgment of the logic cannot express contracts such as C1 in Eq. 4,
which disallow intermediate visits to certain labels. Also, a counterpart to the
Conj rule of LA is not possible in this type of logic, since it is not possible to
guarantee that if two contracts with the same entry and exit labels hold, then
the program establishes both postconditions at the same time. Having a stronger
judgment comes with other benefits of clarity as well. For example, with first-
encounter judgments stating loop variants and invariants (meaning {l} = L), it
is always known that the invariant holds on every iteration of the loop, whereas
this is impossible in the other case, where invariants could hold only every nth
loop.

Several authors [4,9,14,37] have proposed mechanisms for semi-automatic
verification of contracts for unstructured programs. These approaches use dif-
ferent variations of the weakest precondition calculus to generate verification
conditions in the same style that we followed in Section 5 to verify loop-free BIR
fragments. However, these works do not introduce a general program logic to
enable the composition of contracts that have been established using different
verification methods.
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7 Conclusion

We have presented a Hoare-style program logic LA which combines total cor-
rectness and postconditions stated on the first encounter of the endpoints. This
program logic been defined inside the ITP HOL4, and integrated with the HolBA
toolbox to perform semi-automated verification of binary programs. We also
prove relative completeness of LA. In practical verification, the drawback of a
first-encounter judgment is that the exit points of the final contract to be derived
need to form a subset of the exit labels in every sub-contract. Usually, this is han-
dled by generously populating the blacklist, for example with the complement
of the labels touched by execution in the contract.

The verification procedures we integrated into the toolbox HolBA are un-
optimized prototypes to exemplify the usage of the logic and do not present a
complete verification tool yet. Because of this, a significant amount of code in the
verification examples consists of ad-hoc procedures for special cases and should
be properly factored out into the toolbox. We are currently working on improv-
ing our tool to enable the verification of small and critical low-level components
like, for example, microkernels and cryptographic routines.

In this work, we assume a deterministic transition relation. However, we
believe that a partial correctness version of LA can be straightforwardly extended
to non-deterministic systems. However, the completeness proof might require
changes to the assumption on primitive transitions, since these can be non-
deterministic. Extending the total correctness version of the logic to deal with
non-determinism would likely be more complicated since the contract will have
to reason about execution traces.

Our work abstracts from the assertion language of LA, which is typically
restricted when the logic is instantiated. For instance, in our implementation
for BIR, we restricted the assertion language to use BIR boolean expressions.
Other possibilities for the assertion language can be the assertion language of
separation logic for enabling a frame rule, and rely-guarantee for reasoning about
concurrency. However, these restrictions of the assertion language do not, in
general, allow to directly transfer the completeness proof.

We are currently extending LA with strong invariants in the sense of Hähnle
and Mostowski [30]. This would allow stating properties at every execution step,
as opposed to the existing invariants of LAS which only hold at the initial and
final states. Adding such invariants would allow expressing continuous integrity
of shared memory sections.

References

1. Appel, A.W.: Foundational proof-carrying code. In: Proceedings 16th Annual IEEE
Symposium on Logic in Computer Science. pp. 247–256. IEEE (2001)
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30. Hähnle, R., Mostowski, W.: Verification of safety properties in the presence of
transactions. In: International Workshop on Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices. pp. 151–171. Springer (2004)

31. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (1969)
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