
Sound C Code Decompilation for a subset of
x86-64 Binaries

Freek Verbeek1,2, Pierre Olivier3, and Binoy Ravindran1

1 Virginia Tech, Blacksburg VA , USA
2 Open University of The Netherlands

3 University of Manchester, UK

Abstract. We present FoxDec: an approach to C code decompilation
that aims at producing sound and recompilable code. Formal methods
are used during three phases of the decompilation process: control flow
recovery, symbolic execution, and variable analysis. The use of formal
methods minimizes the trusted code base and ensures soundness: the ex-
tracted C code behaves the same as the original binary. Soundness and
recompilablity enable C code decompilation to be used in the contexts
of binary patching, binary porting, binary analysis and binary improve-
ment, with confidence that the recompiled code’s behavior is consistent
with the original program. We demonstrate that FoxDec can be used to
improve execution speed by recompiling a binary with different compiler
options, to patch a memory leak with a code transformation tool, and to
port a binary to a different architecture. FoxDec can also be leveraged to
port a binary to run as a unikernel, a minimal and secure virtual machine
usually requiring source access for porting.

1 Introduction

Research in program analysis, verification, and engineering often assumes a con-
text where source code is available. However, numerous safety-critical systems
in automotive, aerospace, medical and military domains are built out of compo-
nents whose source code is unavailable [41]. In the case of proprietary software,
a customer is dependent on the vendor for maintenance, patching, and verifica-
tion [42]. In such contexts, decompilation can be useful. Decompilation ideally
produces sound (functionally equivalent to the binary) and recompilable C code.

The majority of existing decompilation tools do not satisfy these two proper-
ties [11,1,15,25,33,16,19,17,14]. These papers do not evaluate soundness, focusing
on other metrics such as readability and code size [9]. It is a well-known issue in
many existing tools that decompiled C code is not functionally equivalent to the
binary [9,42]. The only exception is Phoenix [9], which provides decompilation
based on semantics-preserving control-flow recovery. Phoenix, however, does not
define its soundness, nor does it provide a soundness proof of its control-flow
recovery algorithm. We refer to Section 5 for a more detailed comparison to
existing decompilation tools.

2 F. Verbeek et al.

This paper presents FoxDec (Formal x86-64 Decompilation): sound and re-
compilable C code decompilation from x86-64 binaries. During three key stages
of decompilation formal methods are used. First, we formally verified a control-
flow recovery algorithm using the Isabelle/HOL theorem prover [34]. Second, we
present a symbolic execution engine that uses rewrite rules – formally proven cor-
rect using the Isabelle/HOL theorem prover – to aggregate small state-changes
induced by assembly instructions to higher-level programming constructs. Third,
we show how the Z3 theorem prover [13] can be used to formally establish a
relation between symbolic memory regions in the binary and variables in the
decompiled C code. Taken together, these three uses of formal methods increase
the trustworthiness that the decompiled C code is sound.

We show that soundness and recompilability allow FoxDec to be useful in
the following contexts, each of which is discussed on Section 3:
Binary Patching When source code is unavailable, performing a patch at the
machine code or assembly level is highly complex [42]. By decompiling a binary
as C code, one can patch at the source code level, which is significantly easier. As
an example, we take a binary with a memory leak. We decompile to C, apply the
code transformation tool Coccinelle [37] to patch the leak, and recompile [37].
Binary Porting Using FoxDec, one can take an x86-64 binary, decompile, then
recompile it for any other little-endian architecture. It can thus be an alternative
to software emulators such as QEMU [5], which suffers from significant slow-
downs ranging from 5 to 1000x [10]. FoxDec also enables porting binaries to run
as unikernels [28]. Most of the existing unikernel models require recompilation
or relinking to port an existing application, thus requiring source code [35]. As
examples, we port binaries from x86 to ARM, and a binary of the PARSEC [6]
Blackscholes program to a unikernel.
Binary Analysis Verification and analysis tools typically operate on source
code. The low-level intricacies occurring in binaries make analysis difficult. We
show that through C code decompilation, FoxDec enables the application of
standard off-the-shelf source code analysis tools on binaries. For example, we
use Frama-C to determine ranges for variables and check for buffer overflows in
the binary of the GNU Coreutils word-count (wc) program [24].
Binary Improvement Different compilers offer variable program performance,
compilation speed, binary sizes, etc., which vary with the compiled program and
the compilation options. C decompilation enables recompiling a binary with dif-
ferent settings. As an example, we show that it is possible to improve execution
speed of functions in a binary containing implementations of floating-point func-
tions, simply by decompiling and recompiling them.

The approach has limitations. User-interaction is required for 1.) providing
information on function signatures, and 2.) inclusion of header files. Sound-
ness of a specific step – namely, introducing references to variables – cannot be
guaranteed since without type-information it is undecidable whether a value is
a pointer. In that case, the decompiled variable reference is annotated with a
soundness warning and further user-interaction is mandated. Moreover, we can-
not deal with indirect branching and thus consider only a subset of all possible
x86 binaries.

Sound C Code Decompilation for a subset of x86-64 Binaries 3

1: push rbp 10: imul qword ptr [rbp], 3

2: mov rbp, rsp 11: add dword ptr [rbp - 0x4], 1

3: mov dword ptr [rbp - 0x10], edi 12: mov eax, dword ptr [rbp - 0x4]

4: mov dword ptr [rbp - 0x8], 1 13: cmp eax, dword ptr [rbp - 0x8]

5: mov dword ptr [rbp - 0x4], 0 14: jb 9

6: mov dword ptr [rbp - 0xc], 0 15: mov rax, qword ptr [rbp]

7: sub rbp, 8 16: pop rbp

8: jmp 12 17: ret

9: shl qword ptr [rbp], 1

Fig. 1. Running Example

The research contributions of this paper are: 1.) C code decompilation such
that for key stages soundness criteria have been formalized; 2.) the demonstration
that this produces efficiently executable code: to the best of our knowledge, no
related work exists that provides numbers on execution speed of the recovered
code; 3.) the demonstration that sound and recompilable C code recovery can be
used for binary patching, porting, analysis, and improvement. To the best of our
knowledge, no previous decompilation tool targets soundness, recompilability
and is based on formal methods. Project information can be found at: https:
//llrm-project.org/; all code and proofs are available at: https://doi.org/
10.5281/zenodo.3952034.

2 C Code Extraction

We demonstrate the steps of decompilation on the assembly code in Figure 1.
The code first initializes local variables. It then loops over lines 12-14-9-12 until
the carry flag is false (jb looks at that flag).

2.1 Step 1: Binary to Control-Flow Graph

The Control-Flow Graph (CFG) is a graph with basic blocks (i.e., lists of instruc-
tions) as vertices and edges with labels from a set F of flags. In order to obtain
a CFG from a binary, two steps are required: disassembly and CFG recovery.
Both these steps have been extensively studied in literature [22,3,7,44,23,2,4].

In order to express the soundness of a CFG, we use the notion of paths. A
path in the binary is defined as any list of instructions such that there exists
a possible execution of the binary that visits exactly these instructions. Let I
denote the set of instructions, and let [I] denote lists of instructions. We use
is pathbin(π) to denote that a list π of instructions of type [I] is a path in the
binary. A path in the CFG is a list of lists of instructions. Let is pathcfg(π, g)
denote that π of type [[I]] is a path in CFG g. The following notion of soundness
is a reformulation of the concept of an ideal CFG from [44].

CFG Soundness: CFG g is sound, if and only if:

is pathbin(π)⇐⇒ ∃π′ · is pathcfg(π
′, g) ∧ flatten(π′) = π

 https://llrm-project.org/
 https://llrm-project.org/
https://doi.org/10.5281/zenodo.3952034
https://doi.org/10.5281/zenodo.3952034

4 F. Verbeek et al.

FoxDec implementation & argument for soundness: We use Ramblr

for disassembly [42]. A generic and provably sound approach to disassembly is
outside the scope of this paper. However, we limit the applicability of FoxDec
to binaries without indirect branching. As result, the disassembler knows at
all times at which addresses it needs to disassemble instructions. Under this
limitation, disassembly can be done in a provably sound way. Similarly, CFG
extraction is done by a reimplementation similar to angr’s CFGFast [40]. The
algorithm straightforwardly produces a CFG, by starting at a known entry point
and considering for each encountered instruction its effect on the instruction
pointer. Again, the limitation of no indirect branching ensures soundness.

2.2 Step 2: CFG to Abstract Code

We formulate a datatype for abstract code that is able to represent the decom-
piled program at all stages of decompilation. This datatype expresses a program
as a combination of control flow, basic blocks, and branching decisions. Each
basic block is represented by a polymorphic type β; branching decisions are rep-
resented using a polymorphic type φ.

acode(β, φ) := Block β | Skip | Continue | Break ID | acode(β, φ) ; acode(β, φ)
| If φ Then acode(β, φ) Else acode(β, φ) Fi
| Loop acode(β, φ) Pool Resume{(ID, acode(β, φ))}

Abstract code consists of basic blocks, skips, sequential execution, if statements,
and loops. There is only one type of loop that has no exit condition and thus
loops infinitely if it does not contain a break. A Continue has the same semantics
as the C continue statement, i.e., forcing the next iteration of a loop. A Break

is also similar to the C break, but it optionally has an argument. In case of a
loop with multiple exit points, the Break can use an ID to identify which exit
has been used. After the loop, a Resume statement can execute code based on
which exit was taken. For example, if a loop breaks due to a Break i statement
and the loop is followed by a Resume that contains the pair (i, a), then abstract
code a is executed. If the set of Resume is empty, we will omit it.

Let a = acode(β, φ) be abstract code. A path of the abstract code is a list
of elements of type β. Let is pathac(π, a) denote that π of type [β] is a path of
abstract code a.

Step 2 consists of generating abstract code with β = [I] and φ = F , i.e.,
with the same basic blocks and branching decisions as the CFG. It is thus a
function cfg to ac that takes as input a CFG and produces an element a of type
acode([I], F).
Abstract Code Extraction Soundness: Abstract code extraction is sound,
if and only if:

is pathcfg(π, g)⇐⇒ is pathac(π, cfg to ac(g))

FoxDec implementation & argument for soundness: Yakdan et al.
provide an algorithm for extracting control flow structures from a CFG [45].

Sound C Code Decompilation for a subset of x86-64 Binaries 5

The algorithm considers a certain subgraph. Initially, this subgraph is the entire
CFG, but for each loop the body forms a new subgraph. This recursive nature
allows extraction of nested loops. The function breaks down the current subgraph
into sequential statements. Edges back to the entry node of the subgraph are
Continue statements, edges exiting the subgraph are Break statements.

We modeled an adopted version of the method of Yakdan et al. in the Is-
abelle/HOL theorem prover. This provides a formalized function cfg to ac, which
was proven sound (the proof files are made available). Subsequently, we imple-
mented the exact algorithm as formalized in Isabelle/HOL.

Example 1. Control flow reconstruction produces the following for the running
example:
Block 1 −> 12

Loop

Block 12 −> 14

If CF Then Block 14 −> 12 Else Break Fi

Pool

Block 14 −> ret

A block l −> l′ consists of the instructions from l up to (excluding) l′. One
loop has been identified, which is exited if the carry flag is false. The final block
runs until and including the ret instruction.

2.3 Step 3: Symbolic Execution

The next step is to transform the basic blocks in the abstract code to symbolic
state changes. We achieve this by running symbolic execution. The purpose is
twofold: a.) to aggregate the state changes induced by the individual instructions
to a set of larger state changes, and b.) to express those state changes in a more
architecture-independent fashion.

Formally, symbolic execution is a function symb that takes as input a basic
block b of type [I] and produces an element of type {ASP}. Here elements of type
ASP are assignments over state parts, i.e., ASP = {(SP , ESP)}. An assignment
is denoted by sp := v. The left-hand-side is an element of type SP , i,e, a state
part. A state part is either a register, a flag, or a memory region represented
by an address a and a number of bytes s. The latter is denoted by [a, s]. An
assignment [a, s] := v of a value to a memory region is done in little-endian
fashion, i.e., value v is split up into a byte list and then reversed. All assignments
are mutually independent.

The right-hand side is an element of type ESP , i.e., expressions over state
parts. These expressions consist of common bit-vector operations including tak-
ing bit subsets and concatenation as introduced above, logical operators, casting
operators, and floating-point, signed and unsigned arithmetic operators. The
expression ∗[a, s] denotes dereferencing: reading s bytes from memory address a.

To express soundness, we need to compare 1.) the actual behavior of exe-
cuting assembly instructions with 2.) the semantics of the symbolic expressions.
First, let exec(b, σ) denote execution. It takes as input a basic block b of type [I]

6 F. Verbeek et al.

and a concrete state σ and runs each instruction consecutively. Function calls
are treated symbolically (this models non-deterministic user-input). Second, let
evalE(e, σ) denote an evaluation function for expressions. It evaluates the ex-
pression as much as possible, but again leaves results of function calls symbolic.
The execution of an assignment evaluates both the left and the right-hand side
in the current state, and then updates the current state. This leads to a func-
tion eval{ASP} that evaluates a set of assignments, i.e., that evaluates symbolized
basic blocks.

Symbolic Execution Soundness: Symbolic execution is sound, if and only
if, for any basic block b of type [I]:

∀σ · exec(b, σ) = eval{ASP}(symb(b), σ)

This notion of soundness is context-insensitive, i.e., it considers each block sep-
arately. Let symbac(a) apply symbolic execution to all blocks. It thus takes as
input abstract code a of type acode([I], F) and produces symbolized abstract
code of type acode({ASP}, ESP). This ensures that:

is pathac(π, a)⇐⇒ is pathac(map symb π, symbac(a))

Here map is the standard map function. Moreover, soundness of symbolic exe-
cution implies that for any path π of type [[I]] (produced by Step 2):

∀σ · exec(flatten(π), σ) = evalpath(map symb π, σ)

Here function evalpath consecutively runs evaluation on the given list of symbol-
ized basic blocks. It formulates that executing paths from the CFG is equivalent
to evaluating the symbolized abstract code.

FoxDec implementation & argument for soundness: The key elements
of symbolic execution are instruction semantics and rewrite rules. Instruction se-
mantics consists of a set of symbolic assignments per instruction. For example,
the add instruction updates flags and its first operand with symbolic expres-
sions. We use the formal semantics of Roessle et al [39]. They leverage the work
of Heule et al. [21] which produces machine-learned semantics for a large set of
instructions. Their semantics have been proven to be highly reliable. Roessle et
al. translated these into a bitvector language and formalized them in the Isabelle
theorem prover [34]. We have taken the semantics of this model and programmed
them as symbolic assignments. Aggregating the semantics of individual instruc-
tions leads to large expressions. Simplification rules are necessary to maintain
scalability and readability. We have written a simplification engine that uses
arithmetic, logical, and bit-vector based simplification rules. Each of these rules
has been proven correct in the Isabelle/HOL theorem prover.

Example 2. Symbolic execution produces the following for the running example:
Block {rbp := rsp− 8, ∗[rsp− 8, 4] := 1, ∗[rsp− 16, 4] := edi, . . .}
Loop

Block {CF := ∗[rbp− 4, 4] > ∗[rbp− 8, 4], . . .}
If CF Then Block {∗[rbp, 8] := ∗[rbp, 8] ∗ 6, . . .} Else Break Fi

Pool

Block {rax := ∗[rbp, 8], . . .}

Sound C Code Decompilation for a subset of x86-64 Binaries 7

First, one can see that the basic blocks have become sets of mutually independent
assignments. For example, the first block assigns the 4-byte value 1 to address
rsp− 8. This is due to instructions 2 and 4. Second, one can see that semantics
have been aggregated, e.g., multiplication by 6 instead of left-shifting and times
3. Also, instructions 12 and 13 have been aggregated into a single assignment to
the carry flag.

2.4 Step 4: Variable Analysis

The key purpose of variable analysis is to establish which memory regions cor-
respond to which variables. Three types of variables exist: local, global, or heap
variables. Local variables are stored in the stack frame, relative to either the
stack pointer (rsp) or the frame pointer (rbp). Global variables are stored in
the data sections of a binary. Their addresses are typically immediates, i.e, con-
stant values that represent a certain offset with respect to where the binary is
stored in memory. Heap variables are represented by pointers.

Before memory regions can be matched to variables, any address computation
must be expressed relative to the initial state. Consider the running example.
Within the loop, region [rbp, 8] actually overlaps with region [rsp − 8, 4] from
the first block. This is because during the loop, the following invariant holds:
rbp = rsp0 − 8. Expressed in initial values it is easy to see these two regions
should be mapped to the same variable: [rsp0 − 8, 8] and [rsp0 − 8, 4].

The first step of variable analysis is thus invariant propagation. In the running
example, the invariant assigned to line 1 will contain rsp = rsp0. At line 12, it
will contain rbp = rsp0 − 8. In similar fashion, initial values of the form x0 are
propagated for all registers and memory regions. After invariant propagation, it
is checked whether all addresses are expressed in terms of initial values.

The second step replaces memory regions with variables. Local variables are
identified by finding regions whose address computation includes the stack- or
frame pointer. For example, the symbolic expression ∗[rsp0 − 4, 4] is replaced by
a symbolic expression consisting of some 32-bit local variable lv . Global variables
are identified by finding symbolic expressions of the form [i, s] with both i and s
immediates. For example, the symbolic expression ∗[4257968, 8] is replaced by a
64-bit global variable gv . For each global variable, we retrieve the initial value
of the global variable from the data sections of the binary. The remaining set of
memory regions constitute heap variables. These require no modification during
variable analysis. For example, ∗[rax, 4], dereferencing the pointer in register
rax, is not modified by this step.

Generally, regions may be different but still map to the same variable. This
happens if the regions are necessarily overlapping. Two regions [a, s] and [a′, s′]
are necessarily overlapping, notation [a, s] ∼ [a′, s′], if and only if in any state
addresses a and a′ resolve to regions that share at least one byte. Such regions
are merged during variable analysis.

Variable Analysis Soundness: Assume that the addresses of all memory
regions are expressed in terms of the initial state. Let var [a, s] return the variable
that is being substituted for region [a, s]. Variable analysis is sound, if and only if,

8 F. Verbeek et al.

for any two accessed memory regions [a, s] and [a′, s′], anywhere in the abstract
code:

[a, s] ∼ [a′, s′]⇐⇒ var [a, s] = var [a′, s′]

FoxDec implementation & argument for soundness: Invariants are
established via a standard forward propagation algorithm [18]. For loops, the
current invariant is iteratively weakened until a fix-point is reached. To estab-
lish whether two regions are necessarily overlapping, the Z3 theorem prover is
used [13]. The regions are necessarily overlapping if them being separate is un-
satisfiable.

Example 3. Variable analysis produces the following for the running example:
Block {lv0 := 1, lv1 := 0, lv2 := p0 . . .}
Loop

Block {b := lv1 > lv2, . . .}
If b Then Block {lv0 := lv0 ∗ 6, . . .} Else Break Fi

Pool

Block {ret := lv0]}
During the loop rbp = rsp0−8. As result, the region [rbp, 8] in the blocks in the
loop were necessarily overlapping with the regions [rsp− 8, 4] and [rsp− 4, 4] in
the first block. All these regions were thus merged into one variable lv0. Variable b
has been introduced as a Boolean variable for the carry flag. Moreover, the
function signature maps registers edi to parameter p0, and the function returns
a value via variable ret = rax.

2.5 Step 5: References

After variable analysis, there can still be symbolic expressions that are references
to variables. Step 5 identifies such expressions and replaces them. For example,
if region [rsp0 − 4, 4] has been substituted with variable lv , symbolic expression
rsp0 − 4 is replaced by symbolic expression &lv . In case the region was not
encountered, a fresh variable lvf is introduced and the region is translated as
a reference to that fresh variable. Since the size cannot be established, it is
assumed to be 8 bytes. The code is annotated with a possible unsoundness.

References to global variables pose a problem with respect to automation.
Consider the occurrence of an immediate 4257968, and assume that this immedi-
ate value is within the address range of the data sections of the binary. This may
or may not be the address of some global variable. By default, this is considered
not to be a reference to a global variable. However, the code is annotated with
a message indicating that an immediate occurred whose value indicates that it
is likely to be a global variable pointer. The user can then manually modify a
config file, ensuring that 4257968 is translated to &gv .

2.6 Step 6: C code generation

The abstract code produced by variable analysis is the base for C code gener-
ation. The main difference between the abstract code and C is types. For the
abstract code, we know the size of each variable, but not the type.

Sound C Code Decompilation for a subset of x86-64 Binaries 9

Consider the C expression a − b/c. Its semantics depend on whether the
variables are floats, signed, or unsigned ints. The +, and − operator behave the
same for unsigned and signed ints, but division does not. The semantics of the
operators are thus dependent on the types of the variables. In the abstract code,
this is not the case. The operators are well-defined, e.g., the operator in the
symbolic expression is the result of a div, idiv, or fdiv assembly instruction
(division of signed, unsigned, floating point). This means that we do not need
type information for variables.

We thus rely on type punning to translate variables. Consider a 64-bit vari-
able. Depending on which operator is applied to it, it must be accessed in different
ways. This is achieved using a union. When translating an operator, we first
establish the types expected by the operator. For example, an fdiv assembly
instruction expects two doubles. A sub expects (un)signed ints (note that sub-
traction is equal for unsigned/signed arithmetic). We arbitrarily pick unsigned
out of the two options. We then translate the operands and pun them – if nec-
essary – to the types expected by the operator. Punning one type to another
means casting without modifying its contents.

Example 4. The running example produces the following C:

var64_t f(var32_t p0) {

var64_t lv0.u = 1; var32_t lv1.u = 0, lv2 = p0;

while (1) {

bool b = lv1.s > lv2.s;

if (b) lv0.s = lv0.s * 6; else break;

}

return lv0;

}

In contrast to using type punning and unions to derive C, it is also possible
to use type inference [31]. The major advantage of using type inference with
respect to our approach is that the produced C code is much more readable
and humanly understandable. The drawback is that it is not always possible
(i.e., it is undecidable). Type punning thus produces in more cases code that is
recompilable, at the cost of readability.

3 Applications

We have applied C code extraction to binaries containing functions of the FDLIBM
library. We have considered both non-optimized code (O0) and fully optimized
(O3). FDLIBM provides mathematical floating-point functions such as sin, fmod
and log that satisfy the IEEE754 standard. We have chosen FDLIBM as a case-
study for the following reasons:

Complexity: The functions provide highly optimized implementations of
advanced mathematical functions. They contain advanced flow control, includ-
ing nested loops and if-statements, goto’s, switches, and both in- and external

10 F. Verbeek et al.

function calls. They execute a plethora of floating-point, signed and unsigned
arithmetic operations and frequently cast between types. Advanced pointer-
arithmetic is used, both on arrays and on addresses of variables (e.g., splitting
up the high and low part of a 64-bit floating point variable). Type punning is
used, even in the original (vanilla) C code.

Testability: Even though the implementation is complex, the interfaces to
the functions are all simple. They generally are side-effect free functions that
take either one or two floating-points parameters and return a floating point.
Some functions do produce side effects, such as writing certain results into an
array that is passed as a parameter. For all functions, these are well-documented.
The functions are typically fast, allowing execution of millions of test-cases.

The FDLIBM library comprises 84 functions and 8.543 lines of C code. 23
of these functions are simple wrappers that only call other functions. We ex-
clude them from our evaluation, since they do not do anything interesting on
their own. One function, ieee754 lgamma r, uses indirect branching, which is
not supported. The text sections of the remaining 61 functions comprise 13.744
(10.221) lines of assembly code (respectively O0 and O3), not including any data
sections. For each of these 61 functions, we have decompiled C code. In this case
study, all warnings on pointers to global variables were trustworthy, i.e., they
actually were pointers and not constants. At four places, the decompiled C code
has been modified due to fixed-size local arrays. The decompiled C code has
been recompiled. For each function f we thus have the vanilla function fv in the
original binary and the function fr in the recompiled binary.

Test setup Testing consists of running both functions fv and fr on randomly
generated values and comparing their results. For each function, we have run
100.000.000 test cases. All experiments in this section were run on a 1.2 GHz Intel
Core m3 machine with 8 GB RAM. The test setup first requires generation of
random values of type double. We build a random-generator that at the top-level
randomly (but uniformly) calls one of five different random double generators.
Four of the random double generators randomly pick a double from 1.) the range
[−2.0, 2.0], 2.) the range [−20000.0, 20000.0], 3.) the range of subnormals, 4.) a
set of specific values such as plus- and minus infinity, plus- and minus zero and
one, plus- and minus NaN, and values such as maximal and minimal doubles.
The fifth random double generator produces a bit pattern from 64 random Bools
and casts it to a double. The purpose of this test setup is thus to test random
values, likely values and corner cases.

Results We measure running times of the vanilla and the recompiled version
for a comparison. For each function, an array of 50.000 elements is initialized
with random test data for 50.000 test cases. Two arrays are allocated to store
output data. Subsequently, a loop is run that calls the vanilla function fv for each
test case and writes its output to one of the output arrays. Then, a loop is run
for the recompiled function fr. Of both loops, the running times are measured.
After having run both loops, the output data is compared for equality, to ensure
that the functions produced the same results. This is then repeated until a total
of 100.000.000 test cases have been run, accumulating the running times. The

Sound C Code Decompilation for a subset of x86-64 Binaries 11

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

__
ie

e
e
7

5
4

_a
co

s

__
ie

e
e
7

5
4

_a
co

sh

__
ie

e
e
7

5
4

_a
si

n

__
ie

e
e
7

5
4

_a
ta

n
2

__
ie

e
e
7

5
4

_a
ta

n
h

__
ie

e
e
7

5
4

_c
o
sh

__
ie

e
e
7

5
4

_e
x
p

__
ie

e
e
7

5
4

_f
m

o
d

__
ie

e
e
7

5
4

_h
y
p

o
t

__
ie

e
e
7

5
4

_j
0

__
ie

e
e
7

5
4

_y
0

__
ie

e
e
7

5
4

_j
1

__
ie

e
e
7

5
4

_y
1

__
ie

e
e
7

5
4

_j
n

__
ie

e
e
7

5
4

_y
n

__
ie

e
e
7

5
4

_l
o
g

__
ie

e
e
7

5
4

_l
o
g

1
0

__
ie

e
7

5
4

_p
o
w

__
ie

e
e
7

5
4

_r
e
m

_p
io

2

__
ie

e
e
7

5
4

_r
e
m

a
in

d
e
r

__
ie

e
e
7

5
4

_s
ca

lb

__
ie

e
e
7

5
4

_s
in

h

__
ie

e
e
7

5
4

_s
q

rt

__
ke

rn
e
l_

co
s

__
ke

rn
e
l_

si
n

__
ke

rn
e
l_

ta
n

a
si

n
h

a
ta

n

cb
rt

ce
il

co
p

y
si

g
n

co
s

e
rf

e
x
p

m
1

fa
b

s

fi
n
it

e

fl
o
o
r

fr
e
x
p

ilo
g

b

is
n
a
n

ld
e
x
p

lo
g

1
p

lo
g

b

m
o
d

f

n
e
x
ta

ft
e
r

ri
n
t

sc
a
lb

n

si
n

ta
n

ta
n
h

9.9 2.8> 40

O0/O0 O0/O3 O3/O0 O3/O3

Fig. 2. Ratios of execution speed, capped of at a factor 2.6. Series x/y means that
the original binary had been compiled with optimization x, and the recompiled C
is compiled with optimization y. For series O0/O0, factors higher than 2.6 have been
labelled. Excluding ieee754 pow, the average factor for series O3/O0 is 2.3 with a
maximum of 6.6.

reason to do it in batches of 50.000 is to prevent measurement inaccuracy. One
batch of 50.000 function calls typically takes about 5.000 microseconds, which is
accurately measurable.

Figure 2 shows running times for 50 out of 61 functions. The remaining 11
functions are each called by at least one of the 50 functions and therefore not
shown. Let tv and tr denote respectively the running times of all test cases
on the vanilla and recompiled functions. The graph shows the ratio tr

tv
. The

series O0/O0 is the case where the vanilla binary had been compiled without
optimizations, and the decompiled code is compiled without optimizations as
well. The regenerated code is on average a factor 1.5 slower then the vanilla.
There are two notable exceptions: ieee754 pow and cbrt. The recompiled
version of the first is, for all four series in Figure 2, about a factor 40 times
slower. This function consists of a series of if-statements (no loops). Its CFG
consists of a largely irreducible CFG of 93 basic blocks and 144 edges, leading
to an exponential blow-up during control flow extraction. The second is a factor
9.9 slower in this series.

If, however, the decompiled code is compiled with optimizations, then the de-
compiled code is generally either faster than the vanilla, or is at most 50% slower.
This is shown by series O0/O3 and O3/O3 (respectively for a non-optimized and
fully optimized original binary). As expected, the series O3/O0, which decom-
piles code from an optimized binary and recompiles it without optimizations,
produces decompiled code that is significantly slower than its original.

12 F. Verbeek et al.

O0 O1 O2 O3 O3,march=skylake
0

0.5

1

1.5

2

2.5
GCC 6.3
Clang 3.8
GCC 8.3
Clang 9.0

Recompiled code optimization level

R
e

co
m

p
ile

d
 c

o
d

e
 s

p
e

e
d

u
p

/s
lo

w
d

o
w

n
fa

ct
o

r
o

ve
r

g
cc

6
+

O
0

 v
a

n
ill

a
 c

o
d

e

Fig. 3. Original and recompiled performance of PARSEC Blackscholes.

3.1 Use-cases of C Decompilation

Binary Improvement: Decompiling as C code allows us to recompile a pro-
gram with higher optimizations or a different compiler in order to get perfor-
mance gains. We used the PARSEC [6] Blackscholes benchmark which is repre-
sentative of modern compute-intensive data analytics applications. We compile
the vanilla source code with gcc 6.3 and the default optimization level, i.e. O0.
We then decompile that binary and recompile the resulting code varying the
compiler and the level of optimizations. We use gcc 6.3 and clang 3.8, the de-
fault versions available on Debian 9, as well as gcc 8.3 and clang 9.0 which are
the latest versions released. We varied the optimization level from O0 to O3, and
added a fourth case with both O3 and march=skylake which produces binaries
optimized for the particular CPU used for this test: a Xeon E3-1270 v5 clocked
at 3.6 GHz. Blackscholes’s largest data set was used (native size).

We compare the speedup/slowdown of the recompiled code over the original
Blackscholes code compiled with gcc 6.3/O0. As one can observe, the capacity
to decompile and recompile with O1 or higher can bring significant speedups.
Across all compilers, the average speedup is 1.81x for O1, 1.93x for O2, 1.99x for
O3 and 2.01x for O3 with march=skylake. Note that clang 3.8 with this last
option produced invalid code so no result is presented for that particular case.

Binary Patching Coccinelle is a C transformation tool use for software
patching [36]. It takes as input a semantic patch and one or a set of C files,
and produces a patch. As example, we take a binary that contains a function
allocating an array on the heap with malloc(), then initializing it and perform-
ing some computations within that array. The function returns without calling
free() on that array which is a memory leak. We write a Coccinelle seman-
tic patch formulating that the array manipulated by that function should be
freed before it returns. We decompile C from the binary, apply the patch, and
recompile, producing a patched binary.

Binary Porting We have run the x86 binary containing the FDLIBM library
on an ARM64 Cavium ThunderX server machine, by recompiling the decompiled

Sound C Code Decompilation for a subset of x86-64 Binaries 13

C, and successfully reran all test cases. Moreover, we have taken an x86 binary
containing the Blackscholes benchmark and run it as a unikernel. Unikernels [29]
are minimal and single-purpose VMs tailored for cloud execution and presenting
numerous benefits such as low image size, memory footprint, and fast instantia-
tion times. Porting an application to unikernel models typically requires access
to the application’s sources [35]. Using FoxDec we can decompile an application
for which the sources are not available, and recompile it as a unikernel.

We decompiled PARSEC Blackscholes and recompiled it as a unikernel, us-
ing the HermitCore [27] unikernel model. To demonstrate unikernel benefits, we
measured the image size, boot time, and memory footprint of the resulting VM.
We compared these numbers to a regular Linux VM (a minimal Ubuntu 16.04
from Vagrant repositories), which can be used to deploy in the cloud an appli-
cation whose sources are not available. The image size, boot time, and memory
footprint for the recompiled unikernel vs. the Linux VM were resp 2.1MB vs.
781MB, 20ms vs. 26ms, and 12MB vs. 87 MB. We came to similar data for a
Docker container [30] (resp. 116MB, 1500ms, 2MB).

Binary Analysis Frama-C is a tool suite dedicated to source code analysis
of C software. It can be used for, among others, program slicing, test-case genera-
tion, and verification. We have applied Frama-C to the binary of the word-count
program. It indicated one loop with a possible buffer overflow. Manual analysis
showed that this was a false negative.

4 Discussion and Limitations

This section summarizes issues related to soundness and automation and dis-
cusses limitations.

Let a be the abstract code produced after Step 3 (symbolic execution). Sound-
ness of these steps provides as a corollary:

is pathbin(π)⇐⇒ ∃π′ · is pathac(π
′, a) ∧ ∀σ · exec(π, σ) = evalpath(π

′, σ)

Executions of the binary are represented by the symbolized abstract code. Steps 4
to 6 concern the translation to C. Sound variable analysis ensures that the as-
signments in the symbolized state blocks are executed on the proper variables.
Step 5 is possibly unsound, but C code annotations are provided. Step 6 is a
matter of translating symbolized expressions to their C equivalent. Universally,
if the resulting C code does not contain annotations, it is sound.

The subset of supported binaries is limited to binaries without indirect branch-
ing, variadic functions, self-modifying code, setjmp / longjmp, and concurrency.

Some parts of our C code decompilation are x86-64 specific. The symbolic
execution engine is based on semantics for x86 instructions. Variable analysis is
largely generic, but it requires knowledge on which registers are used to relate
local variables to (in x86: rsp and rbp). CF extraction and C code generation are
generic. We thus argue that implementing this approach for other architectures
is a matter of engineering.

14 F. Verbeek et al.

Table 1. Decompilation tools. FM = Based on Formal Methods; RC = recompilability

Name Output FM RC Types Supports Soundness

FoxDec C partial punning x86-64 with SIMD yes
Phoenix C partial yes 32 bit: x86 yes
Ghidra C no partial All
RetDec C / Python partial yes 32 bit: x86, ARM, MIPS
Ramblr Assembly yes x86-64

DiL HOL no 32 bit: x86, ARM, MIPS
IDA PRO Assembly no All
Hex-Rays Pseudo C no partial All
SmartDec C++ partial yes x86-64
McSema LLVM IR yes All

5 Related Work

Decompilation, and C decompilation in particular, has been an active research
field for decades [20,11,38,12,43,9]. Table 1 provides an overview of some of
the available tools. The table does not show disassemblers, such as CapStone
or BAP [8]. Column RC provides information on recompilability. Ramblr and
McSema provide decompilation into a language lower-level then C, but with
recompilation. The bulk of the C code decompilation tools produce pseudo C
or C that requires manual inspection for it to be sound and recompilable. The
notable exception is Phoenix, discussed below [9]. Column Types provides an
overview of how types are dealt with, if applicable. As discussed in the previous
section, we use type punning to enable recompilability, at the cost of readability.

To the best of our knowledge, the only existing C decompilation tool that
targets soundness is Phoenix [9]. Phoenix uses control-flow recovery and type
recovery to produce structured and readable C code. The key difference between
FoxDec and Phoenix is that for Phoenix, soundness is not defined, nor is an
argument provided on why the approach is sound. For example, an algorithm
is provided for control-flow recovery without a soundness criterion or proof. In
contrast, this paper is based on formally proven correct control-flow recovery.
Second, Phoenix uses type recovery, producing much better and readable code.
However, they themselves state that this leads to soundness failures, whereas
type punning does not introduce any soundness issues. Finally, Phoenix works
for x86 in 32-bit and does not support floating-point operations. We have not
been able to install Phoenix for a direct comparison.

Very recently, Ghidra has been released by the US National Security Agency
(NSA) [1]. It is an open-source framework that aims at analyzing malicious code.
It provides a robust C multi-architectural decompilation framework. Moreover,
it supports indirect branching and its C generation relies not on punning and
unions. However, the code it produces is not necessarily sound or recompilable.

RetDec (Retargetable Decompiler) provides an end-to-end binary-to-C de-
compilation suite [15,25]. Their work considers binaries from various 32-bit ar-

Sound C Code Decompilation for a subset of x86-64 Binaries 15

chitectures and provides decompilation via LLVM. Their output is either C or a
Python-like language. Their work has some unique characteristics. First, the use
of LLVM enables the application of LLVM based tools. Second, they have put a
great effort in producing humanly readable source code. Thirdly, they combine
their work with type inference [31], producing C code with arrays and structs.
Finally, they provide an unpacker as a preprocessor [26], that is able to take a
packed binary (e.g., malware) and make it suitable for decompilation.

Ramblr [42] is part of the angr binary analysis framework [40], which provides
binary analysis tools such as CFG recovery. The focus of Ramblr is on symbolized
disassembly, i.e., deriving assembly with symbolic labels instead of immediate
addresses. This allows binary patching, since the assembly can be reassembled.

A special kind of decompilation is decompilation-into-logic (DiL) [32,33]. DiL
embeds disassembled machine code into Higher-Order-Logic. Blocks are given
formal pre- and postconditions and loops are translated to recursive functions.
DiL enables formal verification of binaries in a theorem prover.

Various commercial tools for binary analysis and decompilation exists. IDA-
PRO [16] supports all mainstream architectures and is build on years of research
into binary analysis. An extension of IDA-PRO is Hex-Rays [19]. Hex-Rays ex-
tracts humanly readable C-like pseudocode text. It is extremely fast, providing
a result virtually on-the-fly for many functions. Other commercial tools include
SmartDec [17], which targets C++ code, and McSema [14] which extracts LLVM.

6 Conclusion

This paper presents FoxDec: a C decompilation framework that is based on
formal methods and that aims at soundness and recompilability. We show that C
decompilation allows the application of source-level tools on binaries. We apply,
e.g., a C code patching tool to patch a binary, or we apply a C code verification
framework to verify the binary. Moreover, C decompilation can be useful for
binary porting. We show this by porting an x86-64 binary to a unikernel and to
an ARM machine. We have shown that FoxDec provides decompiled C code with
little overhead in terms of execution speed with respect to the original binary.
FoxDec will be made available online under an open-source license.

In the near future, we want to strengthen the formal relation between the
decompiled C code and the binary. Instead of proving formal correctness of each
individual step, we aim at producing a formal certificate that provides a theo-
rem prover with all the information necessary to establish a simulation relation
between the binary and C code. Moreover, we want to focus on formally verified
type inference algorithms. The result would be a way to largely automatically
retrieve formally proven correct C code from a subset of x86-64 binaries.

Acknowledgments. This work is supported in part by the US Office of Naval
Research (ONR) under grants N00014-17-1-2297, N00014-16-1-2104, and N00014-
18-1-2022.

16 F. Verbeek et al.

References

1. National Security Agency. Ghidra, 2019. https://www.nsa.gov/resources/everyone/
ghidra/.

2. Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowinska, and Herbert
Bos. An in-depth analysis of disassembly on full-scale x86/x64 binaries. In 25th
USENIX Security Symposium (USENIX Security 16), pages 583–600, 2016.

3. Gogul Balakrishnan, Radu Gruian, Thomas Reps, and Tim Teitelbaum.
Codesurfer/x86—a platform for analyzing x86 executables. In International Con-
ference on Compiler Construction, pages 250–254. Springer, 2005.

4. Erick Bauman, Zhiqiang Lin, and Kevin W Hamlen. Superset disassembly: Stati-
cally rewriting x86 binaries without heuristics. In NDSS, 2018.

5. Fabrice Bellard. QEMU, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, FREENIX Track, volume 41, page 46, 2005.

6. Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC
benchmark suite: Characterization and architectural implications. In Proceedings
of the 17th international conference on Parallel architectures and compilation tech-
niques, pages 72–81. ACM, 2008.

7. Guillaume Bonfante, Matthieu Kaczmarek, and Jean-Yves Marion. Control flow
graphs as malware signatures. 2007.

8. David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. BAP:
A binary analysis platform. In International Conference on Computer Aided Ver-
ification, pages 463–469. Springer, 2011.

9. David Brumley, JongHyup Lee, Edward J Schwartz, and Maverick Woo. Native x86
decompilation using semantics-preserving structural analysis and iterative control-
flow structuring. In Presented as part of the 22nd USENIX Security Symposium
(USENIX Security 13), pages 353–368, 2013.

10. Edouard Bugnion, Jason Nieh, and Dan Tsafrir. Hardware and software support
for virtualization. Synthesis Lectures on Computer Architecture, 12(1):1–206, 2017.

11. Cristina Cifuentes and K John Gough. Decompilation of binary programs. Soft-
ware: Practice and Experience, 25(7):811–829, 1995.

12. Cristina Cifuentes, Doug Simon, and Antoine Fraboulet. Assembly to high-level
language translation. In Proceedings. International Conference on Software Main-
tenance (Cat. No. 98CB36272), pages 228–237. IEEE, 1998.

13. Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Inter-
national conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

14. Artem Dinaburg and Andrew Ruef. Mcsema: Static translation of x86 instructions
to LLVM. In ReCon 2014 Conference, Montreal, Canada, 2014.

15. Lukáš Ďurfina, Jakub Křoustek, Petr Zemek, Dušan Kolář, Tomáš Hruška, Karel
Masař́ık, and Alexander Meduna. Design of a retargetable decompiler for a static
platform-independent malware analysis. In International Conference on Informa-
tion Security and Assurance, pages 72–86. Springer, 2011.

16. Justin Ferguson and Dan Kaminsky. Reverse engineering code with IDA Pro.
Syngress, 2008.

17. Alexander Fokin, Egor Derevenetc, Alexander Chernov, and Katerina Troshina.
Smartdec: approaching C++ decompilation. In 2011 18th Working Conference on
Reverse Engineering, pages 347–356. IEEE, 2011.

18. Steven M German and Ben Wegbreit. A synthesizer of inductive assertions. IEEE
transactions on Software Engineering, (1):68–75, 1975.

Sound C Code Decompilation for a subset of x86-64 Binaries 17

19. Ilfak Guilfanov. Decompilers and beyond. Black Hat USA, 2008.
20. Matthew S Hecht and Jeffrey D Ullman. Characterizations of reducible flow graphs.

Journal of the ACM (JACM), 21(3):367–375, 1974.
21. Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. Stratified synthesis:

automatically learning the x86-64 instruction set. In ACM SIGPLAN Notices,
volume 51, pages 237–250. ACM, 2016.

22. R. Nigel Horspool and Nenad Marovac. An approach to the problem of detransla-
tion of computer programs. The Computer Journal, 23(3):223–229, 1980.

23. M. A. B. Khadra, D. Stoffel, and W. Kunz. Speculative disassembly of binary
code. In 2016 International Conference on Compliers, Architectures, and Sythesis
of Embedded Systems (CASES), pages 1–10, Oct 2016.

24. Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-c: A software analysis perspective. Formal Aspects of Com-
puting, 27(3):573–609, 2015.

25. Jakub Křoustek. Retargetable Analysis of Machine Code. PhD thesis, PhD thesis,
Brno, FIT BUT, 2014.

26. Jakub Křoustek and Dušan Kolár. Preprocessing of binary executable files towards
retargetable decompilation. In 8th International Multi-Conference on Computing
in the Global Information Technology (ICCGI’13), pages 259–264, 2013.

27. Stefan Lankes, Simon Pickartz, and Jens Breitbart. Hermitcore: a unikernel for
extreme scale computing. In Proceedings of the 6th International Workshop on
Runtime and Operating Systems for Supercomputers, page 4. ACM, 2016.

28. Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Bal-
raj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft.
Unikernels: Library operating systems for the cloud. Acm Sigplan Notices,
48(4):461–472, 2013.

29. Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Bal-
raj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft.
Unikernels: Library operating systems for the cloud. Acm Sigplan Notices,
48(4):461–472, 2013.

30. Dirk Merkel. Docker: lightweight linux containers for consistent development and
deployment. Linux Journal, 2014(239):2, 2014.

31. Alan Mycroft. Type-based decompilation (or program reconstruction via type re-
construction). In European Symposium on Programming, pages 208–223. Springer,
1999.

32. M. O. Myreen, M. J. C. Gordon, and K. Slind. Machine-code verification for
multiple architectures – an application of decompilation into logic. In Formal
Methods in Computer-Aided Design, pages 1–8, Nov 2008.

33. Magnus O Myreen, Michael JC Gordon, and Konrad Slind. Decompilation into
logic – improved. In 2012 Formal Methods in Computer-Aided Design (FMCAD),
pages 78–81. IEEE, 2012.

34. Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof
assistant for higher-order logic, volume 2283. Springer Science & Business Media,
2002.

35. Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy Ravin-
dran. A binary-compatible unikernel. In Proceedings of the 15th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE19), 2019., 2019.

36. Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller. Document-
ing and automating collateral evolutions in linux device drivers. In Proceedings of

18 F. Verbeek et al.

the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems 2008,
Eurosys ’08, pages 247–260, New York, NY, USA, 2008. ACM.

37. Yoann Padioleau, Julia L. Lawall, and Gilles Muller. Semantic patches, document-
ing and automating collateral evolutions in Linux device drivers. In Ottawa Linux
Symposium (OLS 2007), Ottawa, Canada, 2007.

38. Todd A Proebsting and Scott A Watterson. Krakatoa: Decompilation in java (does
bytecode reveal source?). In COOTS, pages 185–198, 1997.

39. Ian Roessle, Freek Verbeek, and Binoy Ravindran. Formally verified big step se-
mantics out of x86-64 binaries. In Proceedings of the 8th ACM SIGPLAN In-
ternational Conference on Certified Programs and Proofs, pages 181–195. ACM,
2019.

40. Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. SoK: (State of) The Art of War: Offensive Techniques in
Binary Analysis. In IEEE Symposium on Security and Privacy, 2016.

41. Sardar Muhammad Sulaman, Alma Orucevic-Alagic, Markus Borg, Krzysztof
Wnuk, Martin Höst, and Jose Luis de la Vara. Development of safety-critical
software systems using open source software – a systematic map. In Software
Engineering and Advanced Applications (SEAA), 2014 40th EUROMICRO Con-
ference on, pages 17–24. IEEE, 2014.

42. Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John
Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna. Ramblr: Making
reassembly great again. In NDSS, 2017.

43. Tao Wei, Jian Mao, Wei Zou, and Yu Chen. A new algorithm for identifying loops
in decompilation. In International Static Analysis Symposium, pages 170–183.
Springer, 2007.

44. Liang Xu, Fangqi Sun, and Zhendong Su. Constructing precise control flow graphs
from binaries. University of California, Davis, Tech. Rep, 2009.

45. Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-Padilla, and Matthew
Smith. No more gotos: Decompilation using pattern-independent control-flow
structuring and semantic-preserving transformations. In NDSS, 2015.

	Sound C Code Decompilation for a subset of x86-64 Binaries

