Statically Checking REST API Consumers

Nuno Burnay®, Antonia Lopes®, and Vasco T. Vasconcelos

LASIGE, Faculdade de Ciéncias, Universidade de Lisboa, Lisbon, Portugal

Abstract. Consumption of REST services has become a popular means
of invoking code provided by third parties, particularly in web applica-
tions. Nowadays programmers of web applications can choose TypeScript
over JavaScript to benefit from static type checking that enables validat-
ing calls to local functions or to those provided by libraries. Errors in
calls to REST services, however, can only be found at runtime. In this
paper, we present SRS, a language that extends the support of static
analysis to calls to REST services, with the ability to statically find
common errors such as missing or invalid data in REST calls and misuse
of the results from such calls. SRS features a syntax similar to JavaScript
and is equipped with a rich collection of types and primitives to natively
support REST calls that are statically validated against specifications of
the corresponding APIs written in the HeadREST language.

1 Introduction

During the last decades web services have become an important building block
in the construction of distributed applications. REST web services in particu-
lar have become quite popular [?,?]. These services, through specific application
programming interfaces, allow consumers to access and manipulate representa-
tions of web resources, identified by Unique Resource Identifiers, by using the
operations offered by HT'TP. Nowadays a very large number of APIs are inter-
faces of REST services [?] and many software companies expose REST APIs for
their services.

Since so many applications are designed to offer REST APIs, the consumption
of REST services has become a popular means of invoking code provided by
third parties. However, the support available to programmers for writing code
that consumes these services is extremely limited when compared to the sort of
support offered when invoking external libraries provided by third parties. The
practical impact of this problem is attested by a study on a large-scale payment
company which concluded that errors in invocations of REST services, related
to invalid or missing data, cause most of the failures in API consumer code [?].

The fact that programmers have no way of knowing whether their calls to
REST APIs are correct until runtime was identified as one of the four major
research challenges for the consumption of web APIs [?]. This state of affairs led
to an inter-procedural string analysis proposal to statically check REST calls in
JavaScript [?]. The solution checks whether a request to a service conforms to

http://orcid.org/0000-0001-6613-5192
http://orcid.org/0000-0003-0688-3521
http://orcid.org/0000-0002-9539-8861

2 Nuno Burnay, Anténia Lopes, and Vasco T. Vasconcelos

a given API specification written in OpenAPI', and involves checking whether
the endpoint targeted by the request is valid and the request has the expected
data. Since OpenAPI has severe limitations on what can be expressed about
the exchanged data, there are many errors related to invalid or missing data in
requests that cannot be addressed by this approach. Moreover, since the models
of response data are not taken into consideration, misuse of the result to REST
calls cannot be addressed.

This paper presents an approach to API consumer code development based on
two new languages: HeadREST—a specification language for REST APIs with
a rich type system that supports the specification of semantic aspects of REST
APIs—and SRS (short for SafeRESTScript)—a subset of JavaScript equipped
with (i) types and strong static analysis and (ii) primitives to natively support
REST calls that are statically validated against HeadREST specifications of the
corresponding APIs. The validation system of SRS is based on a general-purpose
verification tool (Boogie). SRS compiler generates JavaScript code for valid SRS
programs, making it easy to use the two languages together and providing a
solution for the execution of SRS programs in many different execution envi-
ronments. The SRS compiler comes in the form of an Eclipse plugin which is
publicly available for download. Alternatively, HeadREST and its validator can
be exercised directly from a browser [?].

The main contributions of this work are an approach to statically check REST
APIT consumption, and SRS, a type-safe JavaScript-like language, together with
its compiler.

The paper starts with a tour through our approach (Section ??) and a brief
introduction to THE HeadREST specification language (Section ??). Then, we
present the SRS programming language and its validation system (Section 77?).
The validation system guarantees the detection of errors in REST calls as well as
common runtime errors (including null dereference, division by zero and accesses
outside arrays bounds). Section ?? presents the evaluation of SRS, Section ??
discusses related work, and Section ?7 concludes the paper by pointing towards
future work.

2 Overview of the Approach

This section presents the motivation for SRS and walks through our approach
by means of an example. First we show how HeadREST allows us to specify
REST APIs and capture properties that are important and cannot be expressed
in currently available Interface Description Languages (IDL) such as OpenAPIL
Then we show how SRS allows programming clients of REST services and how
to rely on the compiler to check whether (i) REST calls conform to the speci-
fied service interface and (ii) the response data is correctly used, thus avoiding
runtime errors.

! https://swagger.io/specification

https://swagger.io/specification

Statically Checking REST API Consumers 3

1 // Get Location ID from lat/long coordinates
2-function getLocation() {

3 var client_id = '813efa314de9%4e61829@0bc8bfcbbblac';

4 // URL for API request to find locations

5 var locationUrl =

6 "https://api.instagram.com/vl/locations/search?lat="+LAT
7 +'&1ng="+LNG+'&distance=5000&client_id="+client_id;
8 var result = $.ajax({

9 url: locationUrl,

10 dataType: "jsonp",

11 type: "GET",

12 b

13 .done(function(result){

14 //grab first ID from results

15 var locationld = result.data[@].id;
16 return locationId

17 b

18 }

Fig. 1. Excerpt of JavaScript code with a call to an endpoint of the Instagram API

2.1 Background

Applications that consume REST APIs communicate with the service provider
through calls to the API endpoints, that is to say, by sending requests for the
execution of a HTTP method over an URL. The URL of the request identifies a
web resource and additionally can provide values for some optional parameters;
additional data can be sent in the request body. The service provider sends back
a response that carries, among other data, a response status code indicating
whether the request has been successfully completed.

Figure ?? shows an excerpt of a JavaScript application [?] that performs a
call to an endpoint of the Instagram API to search for locations by geographic
coordinates. According to the API documentation [?], this endpoint has several
optional parameters, including lat, lng, and distance. The center of the search
must be defined and there are three different ways of doing it. Although lat
and lng are optional, if one is used, the other is also required. The distance
is optional and its maximum value is 5000. In the success case—signalled by
response code 200—the response body is an object with field data containing an
array of objects with field id, among others.

Code that consumes this endpoint may contain different sorts of errors. Calls
may not conform to the specified interface: for instance the request may contain a
value for lat but not for lng, or it may contain a value for distance that exceeds
the maximum value or simply that is not an integer. Moreover, the response data
may not be correctly used. This is the case in the example: if the call succeeds,
then line 15 accesses a possibly non-existent element of the array in field data.

The fact that the model of the response data might depend on the provided
input is an additional source of errors. For example, the endpoint in the GitLab
API to get all wiki pages for a given project [?] features an optional boolean
parameter with-content to indicate whether the pages’ content must be included

4 Nuno Burnay, Anténia Lopes, and Vasco T. Vasconcelos

1 specification Instagram
2
3=type SearchLocation = (o: {

4 ?distance: (x: Integer where x>0 && x<=5000),

5 ?1lat: Integer,

6 ?1lng: Integer,

7 ?facebook_places_id: String,

8 ?foursquare_id: String

9 } where

10= isdefined(lat) <=> isdefined(lng) &&

11 (isdefined(lat) || isdefined(facebook_places_id) || isdefined(foursquare_id))
12)

13

14 type Location = {id: String, name: String, lat: Integer, lng: Integer}

15

16={ !(request in {template: SearchLocation}) }

17 get “/locations/search{?distance,lat,1lng,facebook_places_id, foursquare_id,client_id}"
18 { response.code != 200 }

19

20={ true }

21 get “/locations/search{?distance,lat,1lng,facebook_places_id, foursquare_id,client_id}"
22 { response.code == 200 ==> response in {body: {data: Location[]}} }

Fig. 2. A HeadREST specification for an Instagram API endpoint

in the response. Hence, the response body is an array of objects that contains
field content only when the request has value true for field with-content.

In order to avoid such errors programmers must carefully read the API doc-
umentation. The situation is worsened as this sort of documentation tends to
be vague and imprecise, even when available in a formal document. Limitations
in the expressiveness of existing IDLs—and in particular of OpenAPI, the de
facto standard for specifying REST APIs—make programmers resort to natu-
ral language for conveying extra information. In the case of the two endpoints
considered here this is in fact what happens since most of the properties under
discussion are not expressible in the IDLs used for the documentation.

Such state of affairs lead us to develop an approach to support the detection
of common errors at compile-time by statically checking that calls match APIs’
requirements and that data obtained in the response is correctly used.

2.2 SRS in Action

Our approach builds on two pillars: HeadREST, a specification language for
REST APIs, and SRS, a language with an expressive type system for program-
ming the code that consumes REST APIs.

HeadREST resorts to types to express properties of states and of data ex-
changed in interactions and pairs of pre and post-conditions to express the rela-
tionship between data sent in requests and those obtained in responses, as well
as the resulting state changes. Two type primitives account for its expressive-
ness: refinement types, (x:T where e), consisting of values of type T that satisfy
expression e; and a predicate, e in T, for checking whether the value of e is of

type T.

Statically Checking REST API Consumers 5

1 specification "./specs/Instagram.hrest" of "https://api.instagram.com/v1"
2
3 var string client_id = "813efa314de94e618290@bc8bfcbbblac";
4
5 type Error = {error: string};
6
7=async stringlError getLocation(int lat, int 1ng) {
8 SearchLocation searchLocation = {lat= lat, lng= lng, distance= 5000, client_id= client_id};
9 Request request = {template = searchlLocation};
10 Response result = await get
11 "/locations/search{?distance,lat, 1ng, facebook_places_id, foursquare_id,client_id}"
12 request;
13 if (result.code != 200) {
14 return {error = "No locations found!"};
15 }
@16 Indexoutofbounds pesylt.body.datal[Q].1id;
17 }

7=async stringlError getLocation(int lat, int lng) {
8 Expressiondoes not mateh declared YeerchLocation = {lat= lat, lng=.lng, distance= 50000, client_id= client_id};
9 Request request = {template = searchlLocation};

Fig. 3. Example of SRS code consuming an Instagram API endpoint

The endpoints exposed by an API, together with their behaviour, are spec-
ified by assertions of the form {¢} m u {1} where ¢ is the pre-condition, m is
the HTTP method; u is a URI template and 1 is the post-condition.

Figure 77?7 shows a specification of the endpoint discussed before. It starts
with the declaration of type SearchLocation that represents the search data.
Note how refinement types capture the endpoint requirements for search data;
e.g., line 10 says that fields lat and lng must be both present or absent; the
question marks in front of these two fields indicate that they are optional.

The behaviour of the endpoint is specified by two assertions (lines 16-22).
The first says that, if the requirements for the search data sent in the request are
not met, then the call does not succeed (the response code is different from 200).
The second assertion says that, if the request is successful, then the response
body consists of an array of Location, a type defined in line 14.

HeadREST also supports the specification of conditions concerning resources,
their representations and their identifiers (see [?] for details). For instance, in the
second triple (lines 20-22), we can specify that each Location in the response
is the representation of a resource that can be individually obtained through
the endpoint. Since these properties do not help in avoiding errors in consumer
code (individually, clients have no control over the state of the resources), in this
paper we limit our presentation to a resource-less version of HeadREST.

Figure 7?7 shows an SRS program similar in spirit to the JavaScript code
in Figure ??7. SRS adopts HeadREST types, while featuring direct support for
REST operations. We can see that the type checker spots an error in the use
of the response data in line 16. The specification ensures that the effective type
of result in that execution point is {body:{data:Location[]}} (Figure ??, line
22). This means that it is safe to access result.body.datal[i].id only if i <
length(result.body.data) and, hence, line 16 is incorrect. Would the specifi-
cation be stronger and, in Figure ?7 line 22, read instead response.code ==

6 Nuno Burnay, Anténia Lopes, and Vasco T. Vasconcelos

Scalar types G ::= Integer | String | Boolean | {} | Regexp | URITemplate

Types T == Any | G| {l:T} | T[] | (z: T wheree)

Constants c u=mn|s|true | false | {} | w | r | null

Expressions e == x | ¢ | f(e1,...,en) | e?e:e|einT | {li=e1,...,ln =e€n}
leld | [e1,...,en] | ele] | forallz: T.e | existsx: T.e

Verbs m = get | put | post | delete

Declarations D == {e}mu{e};D | €

Fig. 4. The syntax of HeadREST

200 ==> response in body:{data:(v: Location[] where length(v) > 0)}, then
the program would be valid. Note that the use of type SearchLocation in line
8 makes sure that the data sent in the request meets the stated necessary con-
ditions for the request be successful (Figure ??, line 16). The figure also shows
the type checker signaling an error if, in line 8, the value given for distance ex-
ceeds the maximum value allowed. SRS further supports assert statements that
are statically validated. They are useful to check, immediately before a call to
an endpoint, that a necessary condition for the request to be successful holds.
In the example, we could add assert(request in {template: SearchLocation})
immediately before line 10.

3 The HeadREST Specification Language

HeadREST was designed to support the specification of REST APIs and to
capture important properties that cannot be expressed in currently available
interface description languages. This section briefly introduces the resourceless
version of HeadREST [?].

The syntax and validation system of HeadREST are influenced by the Dminor
language [?]. Extensions and adaptations to Dminor types, expressions and their
respective validation rules were adapted to address the specific needs of REST.
The syntax of HeadREST is in Figure ?7?. It assumes a countable set of identifiers
(denoted by f or x,y, 2), a set of constants (¢), a set of labels (1,11, 15, ...), integer
literals (n), string literals (s), a set of URI template literals (u), and a set of
regular expression literals (7).

Scalar types include standard Integer, String, Boolean, the REST-specific
URITemplate to represent a service endpoint or a group of URI resources and
Regexp for regular expressions. Any is the top type. For types, we additionally
have arrays, refinement types, and the singleton object type {l: T'}.

Constants include integer, string, and boolean literals, to which null was
added. The null value is of type Any but not of object types. The empty object
type, {}, describes empty objects and constitutes the super type of all objects. To
inhabit Regexp and URITemplate types, two sorts of literals were added: regular

Statically Checking REST API Consumers 7

expressions and URI templates values. Regular expressions form a subset of those
in JavaScript. The syntax of URI Templates is conform to RFC-6570 [?].

Ezpressions include variables and constants, (primitive) function calls, a con-
ditional, arrays and object operations, quantification, and the e in T' operator
that allows checking whether a given expression e belongs to type T'. Useful de-
rived expressions include isdefined(e.l) = ein {{:Any} and e && f = e? f:
false.

Although HeadREST features a small core of types, the type language is quite
expressive due to the interplay between refinement types and the in predicate.
A few examples of derived types follow, where x is a variable taken freshly.

T & U = x: Anywhere (zin T & z in U) I'T £ 2: Any where !(x in T)
{2: T} £x: {}where zin {l: Any} = zin {I: T} Natural = z: Integer wherez > 0

The operator e in T is essential for the expressiveness of the type system. The
intersection, union and negation types are derived using this operator, and these
types are the basis for many other derived types. The important multi-field ob-
ject type can be derived thanks to the intersection type; e.g., {l: {}, m: String}
abbreviates (z: Any where (xin {l: {}} & x in {m: String})) which only uses
core types. An important derived type is the optional field type, {?l: T}, as-
serting that if an object has a field [then its type is T. For example, if e is an
expression of type {?/: Boolean}, then expression e in {I: Any} && e.l is valid
since, according to its type, if e has field [its type is Boolean and the good
formation of e.l is only ensured in this case.

Specifications consist of a collection of assertions (triples), each of which
describe part of the behavior of an endpoint. Currently HeadREST supports the
four main HTTP verbs: get, post, put and delete. For the specification of pre- and
post-conditions three variables are added: request and response that correspond
to the call and the reply, and root, the absolute URL of the entry point of the
service. The types of the request and response variables are as follows.

Request = {location: String, ?template: {}, header: {}, ?body: Any}
Response = {code: Integer, header: {}, ?body: Any}

Algorithmic type checking is based on a bidirectional system, composed of
two main relations: one that synthesizes the type of a given expression and one
that checks whether an expression is of a given type [?,?,?]. At the intersection
of these two relations lies semantic subtyping, a relation that establishes that
a type T is subtype of a type U when all values that belong to T also belong
to U. Types and contexts are translated into first-order logic (FOL) formulae.
The thus obtained FOL formulae are then evaluated using an SMT solver. Our
implementation uses Z3 [?].

8 Nuno Burnay, Anténia Lopes, and Vasco T. Vasconcelos

Constants ¢ == ... | undefined

Expressions e == ... | await’ mue

Locations w =z | wl | wle]

Statements S = w=¢e | if (e)thenSelseS | while(e)inveS | returne | S;S | €
Declarations D ::= specificationsofu | varTz =e | async' Tz (Tz){T = = &; S}
Programs P = D;P | e

Fig. 5. The syntax of SRS (extends Figure 77)

4 The SRS Programming Language

The SRS language (a shorthand for SAFERESTSCRIPT) is a type-safe variant
of JavaScript with direct support for REST calls. It was designed to be, at the
syntactic level, as close as possible to JavaScript. It transpiles to JavaScript,
making it easy to integrate REST API consumer code written in SRS with
JavaScript code, namely code of web applications for manipulating the DOM.

Compared with other typed extensions of JavaScript, such as TypeScript [?],
the main novelty of SRS is the incorporation of refinement types, the in-type
predicate and, most importantly, REST endpoints as external functions. More
precisely, a REST endpoint is seen as an impure, external function that re-
ceives a value of type Request, possibly changes a global resource set state, and
then returns a result of type Response. REST calls are then just calls to such
functions. Additional properties of these endpoints-as-functions, namely their
specific return type, are inferred from the HeadREST specification of the REST
APT endpoints. Each triple in the specification specifies a relation between the
input (the request) and the output (the response) of an endpoint: if the re-
quest meets the pre-condition, then the response meets the pos-condition. From
triple {¢} mu{¢}, the return type of endpoint-as-function mu is extracted as
{r: Request where ¢ = ¢}. Note that endpoints-as-functions are, hence, total:
they accept any input of type Request, even those that do not meet the pre-
condition of any of their triples (in the vein of Hoare Logic [?] and as opposed to
that of Design by Contract [?]). JavaScript is single threaded and, hence, func-
tion calls that take time to execute should ideally be executed asynchronously.
REST calls fall into this category; SRS supports asynchronous in addition to
synchronous REST calls.

SRS adopts the HeadREST type system, not only for its support for REST
operations, but also to provide precise static type checking. In SRS, each variable
is declared with a type that restricts the values that can be assigned to the
variable. Each variable also features an effective type that corresponds to the set
of values the variable may have at a given point in a program. The effective type
changes with program flow, but is necessarily a subtype of the declared type.

Statically Checking REST API Consumers 9

4.1 Syntax

The syntax of SRS, presented in Figure 77, extends that of HeadREST in Fig-
ure ?7. The language includes a new constant undefined. Functions that return
undefined are of type void, an abbreviation of (z: Any where z == undefined).

At the level of expressions, SRS introduces REST calls mu e, composed of
an HTTP method m (see Figure ??), an URI template literal u describing the
relative URL of the target resource, and an expression e that should evaluate to a
value of type Request. The endpoint needs to be specified in the SRS specification
imported by the program. Functions can be declared with the async keyword;
calls to these functions are asynchronous while REST calls are asynchronous if
they are preceded by keyword await.

Statements include variable assignment. The left hand side w of an assign-
ment statement (a location) is a variable x, an object field w.l, or a position in
an array wle]. An assignment can thus update a specific element of an object or
an array. Moreover, statements include conditional statements, while loops, and
return statements. Loops may declare an invariant, i.e., an expression that is true
at loop entry and after each loop iteration. Invariants are sometimes necessary
to prove that certain expressions have the right type, for instance, whether the
effective type of the expression used in a return statement matches the return
type of the function. Statement return abbreviates return undefined.

An SRS program is a sequence of declarations: import clauses, global variable
and function declarations. The implementation of SRS further supports type
abbreviations in the form of typex = T. Function definitions are composed of a
return type 7', the function name f, a comma-separated list of parameters with
their respective types U x, and the function body. In order to simplify variable
scope validation, the body opens with the declaration and initialization of all
local variables: V y = e is a semi-colon-separated list of variable declarations.
The initialization is mandatory since some types, such as refinement types, may
not have a default value. The function’s body consists of a statement S that
defines the control flow and the return value.

4.2 Type Checking

Statically type checking SRS programs is a major challenge given the rich type
system of SRS and global imperative variables. It requires flow-sensitive typing
(the effective type of an expression depends on its position in the program).

SRS programs are translated into verification conditions, i.e., logical formu-
lae whose validity entails the correctness of the program. Following a popular
approach initiated by Spec# [?], these conditions are not generated directly but
instead obtained through a translation into Boogie [?], an intermediate language
for program verification. Once a SRS program is translated into a Boogie pro-
gram, it is up to the Boogie validator to generate the verification conditions and,
resorting to an SMT solver, verify whether they hold.

At the basis of the translation is an axiomatization of the typing relation that
is inspired by Whiley [?]. Values and types are modelled as sets. All SRS values,

10 Nuno Burnay, Anténia Lopes, and Vasco T. Vasconcelos

independently of their type, belong to the Boogie type Value. For each type, we
introduce functions and axioms that define its subset of values. More concretely,
given a type X (for example, Integer) and its internal representation Y in Boogie
(int, in the example), the base functions and axioms are the following.

function isX(Value) returns (bool);

function toX(Value) returns (Y);

function fromX(Y) returns (Value);

axiom (forall y: Y :: isX(fromX(y)));

axiom (forall y: Y :: toX(fromX(y)) ==vy);

axiom (forall v: Value :: isX(v) ==> fromX(toX(v)) == v);

Function isX checks whether a value belongs to type X and returns a Boogie
boolean. Function toX converts the Boogie value to its internal representation Y,
and fromX performs the inverse operation. The axioms define the properties of
the functions. The first asserts that all values constructed from type Y belong
to type X. The second and third axioms assert that toX and fromX are inverse
functions. More complex types, such as arrays and objects, are represented by
Boogie maps and require the introduction of additional functions and axioms.

Functions isX, toX and fromX are used for defining the translation of expres-
sions and the predicate that checks whether the value of an expression is of a
given type. This is illustrated below in simple cases: the translation of an SRS
integer literal and an array access, and the predicate for the integer type.

V([n] = fromint(n) F[int](e) = isInt(e)
Ves [e2]] = getindexValue(V[eq], tolnt(Vez]))

The translation of SRS to Boogie is based on the collection of functions
presented below. We discuss some cases that convey the main ideas of how the
translation works. The full set of rules is available in the extended version of this

paper [?].
V[e] = Boogie expression of type Value that represents expression e
F[T]
V*e]

Boogie predicate that checks whether an expression is of type T

Sequence of Boogie statements that validates expression e
and places the corresponding Boogie expression in variable x
WI]T] = Sequence of Boogie statements that validates type T'

B[5]
B[D] = Boogie declaration that represents declaration D

Boogie statement that represents statement S

The translation of REST calls and of specification triples to Boogie are the
most interesting elements of the translation, as they accomplish the view of
endpoints-as-functions discussed before. REST calls are translated to Boogie
using a function, named restCall, that receives as parameters the REST method,
the translation of a string «’ representing the URI template relative path u, and
the request object, and returns the response object. Each specification triple is

Statically Checking REST API Consumers 11

translated into an axiom relating the return value of restCall with the request
call argument as follows.

B[{ei1}mu{es}] = axiom (forall request: Value, response: Value :
restCall(m, V[u'], request) == response A
Vle1] == V[true] = V]ea] == V[true])

The translation of REST calls is defined by the following rules:

V*[mue], = V*[e],; assert F[Request](y);
x := restCall(m, V[u],y); assume F[Response](x)

V*[awaitmue], = V*[mue],; havocg,..., g,

Expression e in a synchronous REST call is validated and placed in a fresh
variable y. Then an assert checks whether y is of type Request. Function restCall
is called and its response is stored in variable x. The response is assumed to be
of type Response. Note that when the request does not meet the pre-condition
of any triple for the target endpoint, the axiomatization of restCall does not
ensure anything about the response; it is only known that it belongs to type
Response. In asynchronous REST calls, the execution is suspended and, when
resumed, the global variables may have changed. This is captured by the havoc
statement, which assigns arbitrary values to variables (while respecting their
declared types).

The type validation takes into account that types may contain expressions
by descending the abstract syntax tree of types. The most important rule is the
rule for where types (y, z are variables taken freshly).

W][(z: T where e)] = W[T]; assume F[T](y); V*[ely/z]].; assert F[Boolean](z)

We complete this brief presentation by addressing the translation of global
variable declaration and functions.

B[T = = e] = var z : Value where F[T](x); V[T f() {returne}]

B[T f (Thz1,....Thzn) {Uryi=€1; ... ; Up Ym =€m; S} =

procedure f(z; : Value, ..., z, : Value) returns (result : Value)
requires F[T1](z1) A --- AF[T,](z,); ensures F[T](result);
modifies g1, ..., gp;

vVaryi, ..., Ym, Wi, ..., Wy, : Value;wy := x1;. .. 5wy, 1= Xp;
WI[T\];...; W[T.]; W[U1]; . . .; WU,]; W[T]
Blyi =e15 ... ; Ym = em; Slwi/x1] ... [wy/x,]; return]

}

In the first rule, the declared type is captured by a Boogie where clause while
the initialization is ignored as it is not relevant: whenever a procedure is called,

12 Nuno Burnay, Anténia Lopes, and Vasco T. Vasconcelos

nothing can be assumed about any global variable besides its declared type. The
validation of 7" and e is achieved via an additional, dummy, procedure f.

In the second rule, the immutability of procedure parameters in Boogie re-
quires the declaration of new variables to use instead of the parameters in the
function body. The requires clause checks whether the arguments belong to the
parameters types and the ensures clause checks whether in all returning points
of the procedure the result of the function matches the function type. The mod-
ifies clause asserts that all global variables can be modified by the procedure.
The body of the procedure makes the validation of parameters types T;, local
variables types Uj, and the return type 7T'. The validation order allows that the
validity of 7" and U, depend on T; and the validity of T; depend on the Tj, for
Jj <i,asin {z:intwherex > b/a} f({z: int where z! =0} a,int b){...}.

4.3 Transpiling to JavaScript

Valid programs are transpiled to JavaScript. The translation of REST calls is
achieved by calling auxiliary functions, one for synchronous and another by
asynchronous calls. The URL to the call is the expansion of the URI template; its
parameters are defined by the field template of the request object. The expansion
follows the RFC 6570 [?], only for the level of URI templates supported by SRS.
The content-type JSON is added to the request headers, so objects sent and
received in the body are ensured to be of JSON format, and therefore having a
direct translation to JavaScript objects. The calls use XMLHttpRequest, an object
that is supported by all browsers and devices.

5 Evaluation

This section addresses the evaluation of our approach. Ideally, we would like
to compare the bug finding efficacy of our approach in “real code” with that of
Wittern at al. [?], the unique approach to statically checking REST calls that we
are aware of. However, this turned out not feasible, since translating JavaScript
code into SRS requires annotating all the libraries used and/or write adaptors
that monitor the interface with libraries.

In this way, to evaluate our approach, we used HeadREST to specify a variety
of REST APIs and SRS to write and validate programs that exercise the different
elements of the language while consuming REST APIs. The goal is to evaluate
to what degree can SRS be used in examples which include complex REST calls
that can be found in real examples.

We used SRS to write programs that consume publicly available APIs and
do not require authentication, including PetStore? and DummyAPI? as well
as programs that consume real-world off-the-shelf services such as Instagram,
GitHub and GitLab. Since API calls in SRS are checked against HeadREST

2 https://petstore.swagger.io
3 http://dummy.restapiexample.com

https://petstore.swagger.io
http://dummy.restapiexample.com

Statically Checking REST API Consumers 13

specifications, we also developed HeadREST specifications for the chosen APIs
describing the behaviour of the relevant endpoints. In what follows we provide
details about three of these case studies. The complete examples are available
in the supplementary material [?].

Instagram We developed in SRS a solution alternative to the JavaScript func-
tion in Section ?7. The application allows users to find Instagram photos by tag
or location and calls the different endpoints of the Instagram API which sup-
ports search for (i) locations by geographic coordinate, (ii) photos by location
and (iii) photos by tag. The solution is based on a SRS program defining asyn-
chronous functions for calling the API, similar to that presented in Figure ?77.
These functions are available in the generated JavaScript code and used by the
program that manipulates the DOM. We additionally developed a program for
showing the recent comments on media for a user, given its identifier, which re-
quires to call three other endpoints: one to get the ids of recent media, another
to get the comments for each of them and a third one to get information about
the user. Both programs use the same specification with the behaviour of the six
endpoints.

GitHub We developed an SRS program that offers a function getUserById(int
id) to obtain a GitHub user given its id with return type (u: User where
u.id == id) |NotFoundError. Since the GitHub REST API does not have an
endpoint that supports this operation (to get the representation of individual
users, one needs to provide the username), our program sends a GET request to
/users?since=id-1 if id is a positive integer. According to the API documenta-
tion, this endpoint lists all users, in the order that they signed up on GitHub.
Retrieval is by pagination: each call retrieves a sublist of all users. The start of
the sublist is defined by the optional parameter since. If case the parameter is
not present, then its value is assumed to be zero. In the HeadREST specification
of GitHub we were able to precisely express this behaviour. One of the assertions
included in the specification states that if the request provides a value for since
that is a natural number, then the array of users provided in the response body
starts with a user whose id is equal to since+1. This assertion is essential to
prove that if a user is obtained, it has the id provided in the function argument
and, hence, that the return type of the function is valid.

The endpoint /get users{?since} can also be used for searching for an user
with certain characteristics. We used it to define a function getSiteAdmin() with
return type (u: User where u.site_admin)|AdminNotFound that searches over
the GitHub users to find an administrator. The search code gets the various
pages of users and stops when one of them contains an user with admin privi-
leges, or when no admin was found on all pages, in which case AdminNotFound is
returned. The fact that the function type checks ensures that the returned user
representation (if any) is an indeed an administrator.

In GitHub each user has a set of repositories, and each repository has a set
of collaborators and a list of commits, each with its author. We programmed
a function that gets the collaborators of a repository that did not contribute

14 Nuno Burnay, Anténia Lopes, and Vasco T. Vasconcelos

HeadREST SRS
#EndP|#Types|LOC|Check (s)|#EndP|#Func|LOC|Check (s)
Instagram#appl 6 9 225 1.3 3 4 82 1.5
Instagram#app2| 6 9 225 1.3 3 3 65 1.8
GitHub 5 9 93 0.8 5 3 86 1.3
GitLab 10 20 435 1.7 8 10 250 50.5
Table 1. Case studies of consuming REST APIs with SRS

to a project, i.e., did not make a commit. The function crosses the information
obtained in two different endpoints: one for retrieving the collaborators of a given
repository for a given user and another for retrieving the list of commits of the
repository. As the repository may be private, the function receives a key that
must give authorization to access the repository information, and that is added
to the request header.

GitLab is the Git manager used by our students to develop their course projects.
We wrote functions that automate tasks we recurrently perform manually. For
instance, we programmed a function to remove a user from all projects owned by
another user. This function uses three endpoints, one of them involving request
and response types particularly large—the request has more than 10 optional
parameters and the response body is an array of an object type with more than
30 fields, several of them also objects. The type of the response is used, for
instance, to validate the expression response.body[i].namespace.name that oc-
curs in the body of the function. Another interesting example is the function
getWikisFromProject(string token, int|string id, boolean withContent) we
defined in SRS to get the wikis from a project, identified by its integer id or
a string that is the URL-encoded path of the project (and, hence, of type
int|string). The function uses an endpoint that features an optional pa-
rameter to indicate whether the response should contain the content of the
wikis. The behaviour of GitLab at this endpoint was specified in HeadREST
as shown below and allows the SRS validator to find errors in accesses to
response.body[i].content, such as when the SRS code does not guarantee that
accesses are performed only if the value sent in request.template.with_content
is true.

{ request in {template: {id: String|Integer, ?with_content:

Boolean}} }

get ‘/projects/{id}/wikis{?private_token,with_content}’
{ (response.code == 200 ==> response in {body: Wiki[]}) &&
(response.code == 200 && request.template in {with_content:
Boolean}
&& request.template.with_content ==>
response.body in (Wiki & {content:String})[]1) }

Table ?? presents additional information about the three case studies. The
first group of columns addresses HeadREST specifications and shows the number

Statically Checking REST API Consumers 15

of endpoints that were specified, the number of types that were defined, the
number of lines and the validation time, in seconds. The second group of columuns,
which addresses SRS client programs, shows the number of endpoints that were
consumed, the number of functions that were defined, the number of lines of code
and the validation time, in seconds. The validation the time of SRS programs
presented in the table does not consider the validation time of the specification.
Benchmarking was performed on a machine with an Intel Core i7-7700HQ CPU,
with 2.80 GHz and 16 GB of RAM memory, under Windows 10. The times
reported are the average of three runs.

Overall, these examples demonstrate that HeadREST supports the specifica-
tion of a variety of API endpoints found in real examples and is able to capture
important properties of these endpoints that were previously available only in
natural language. During the development of the client programs we could wit-
ness that the formalisation of properties allowed SRS to find all sort of errors
in our code, in particular, errors in the invocations of the underlying services
(invalid or missing data in the requests or use of incorrect URLs) and errors in
the use of the data received in the response. We also noted that were we pro-
gramming the same client code in JavaScript, most of the errors we made would
not be found by Wittern at al. [?]. On the one hand, errors caused by invalid
data in the requests were often caused by restrictions on data that are simply
not expressible in OpenAPI. On the other hand, several errors lied in the usage
of the data received in the response, a type of error that is not addressed by the
analysis performed by the tool.

In terms of performance, we witness what is also evident in the results in
Table ?7: the complexity of the types involved in REST calls significantly slows
the validation process when the correctness of the code strongly depends on these
types. This problem can be alleviated by placing functions whose validation is
too demanding in separated source files. Because the validator ignores files that
have not changed, these functions do not need to be validated again if they have
not changed.

6 Related Work

Static verification of JavaScript code has been the main research topic for client-
side coding in the last few years [?]. Nevertheless, research concerning the verifi-
cation of consumer code of REST APIs for JavaScript-like client-side languages
is slim and the solutions proposed tend to be quite limited.

Solutions for helping finding bugs in scripts come in the form of a varied set of
languages and tools. JSHint [?] scans JavaScript code for suspicious usage; Thie-
mann [?] and Anderson et al. [?] propose type system for subsets of JavaScript;
TypeScript [?], Dart [?] and Flow [?] are languages that were developed with
the goal of statically detecting type-related errors in JavaScript-like languages.
Languages such as Dependent JavaScript [?] and Refined TypeScript [?] incor-
porate sophisticated type systems, but the power of the e in T predicate and

16 Nuno Burnay, Anténia Lopes, and Vasco T. Vasconcelos

semantic subtyping (supported by SRS) seems to be particularly suited for pro-
gramming REST clients. Whiley [?] is a programming language that features a
rich type system and flow typing; it uses Boogie only to check the verification
conditions [?]. Contrary to SRS, neither of these solutions specifically addresses
REST calls.

TypeScriptipc [?] extends TypeScript with the ability to describe the pres-
ence or absence of properties in objects, a feature that HeadREST and SRS
can easily describe and for which a derived predicate isdefined was introduced
(cf. Section ?7?). Like all the languages discussed above, TypeScript;p does not
provide explicit support for REST calls.

The tool by Wittern et al. [?], discussed in the introduction, statically checks
web API requests in JavaScript code, focusing on ajax requests made via jQuery?.
The tool uses a field-based call graph to make the necessary string analyses on
the JavaScript method calls and is able to check whether calls to endpoints match
a valid URI template in the API specification and the request has the expected
data. Such errors are easier to check in SRS since the construction of URIs is
limited to URI template instantiation (thus ruling out the construction of new
URIs via string operations such as concatenation). In contrast, the verification
supported by SRS that the request has the expected data is beyond reach of
Wittern et al. for the rich, non-OpenAPI, data definitions. RESTyped Axios [?]
is a client-side tool that verifies REST calls in TypeScript against RESTyped
specifications, with requests made via the Axios framework [?]. RESTyped al-
lows to define strongly-typed routes and Axios checks at compile time whether
the URLs are valid and whether the types of the members passed on requests
and accessed on responses correspond to the ones declared in the specification.
These two approaches fail to detect many of the defects at the reach of SRS,
including those related to complex restrictions on input data of REST calls (not
expressible in the adopted specification languages) or the misuse of the return
data.

Whip [?] is a contract system for services that uses a dependent type system
to monitor services at runtime and check whether they respect their adver-
tised interfaces. Whip offers a high-order contract language that, similarly to
HeadREST, addresses the lack of expressiveness of IDLs to capture non-trivial
properties that can be found in the documentation of popular services. Whip
focus is on the specification of properties that cross-cut more than one service
(e.g., properties that describe how a client of one system should use a reply to
interact with another) and, by using contracts, addresses the specification of the
expectations and promises of a service to other services.

7 Conclusion

We present a framework for statically checking code that consumes APIs. Rel-
evant aspects of APIs are described with HeadREST, a specification language

4 https://api.jquery.com

https://api.jquery.com

Statically Checking REST API Consumers 17

featuring refinement types and semantic subtyping. The consumer code itself is
written in SRS, a variant of JavaScript with explicit primitives for synchronous
and asynchronous REST calls. HeadREST specifications are validated by resort-
ing to an SMT solver to discharge semantic subtyping goals. API consumer code
is checked via a translation to Boogie. We validate our approach by writing in
SRS various benchmarks from the literature. We further report on three case
studies of consumer code for popular APIs (Instagram, GitHub, and GitLab).

Much remains to be done; we sketch a few ideas for future work. The lack
of references is the most relevant difference between SRS and JavaScript. In-
troducing references in objects and arrays is not trivial and adds additional
complexity to the Boogie translation. Dafny [?] devised a clever solution using
object references in its translation to Boogie, but the technique does not carry
straightforwardly to refinement types. A preliminary experience showed that this
extension substantially increases the validation time.

Since SRS compiles to JavaScript, programmers may take advantage of its
standard libraries. To use JavaScript functions in SRS code, their signatures are
required. We plan to address this issue, possibly by following the TypeScript
approach, that is, by introducing declaration files where external JavaScript can
be declared and annotated with the SRS types so they can be used in SRS code.

HeadREST specifications may feature inconsistent triples. This aspect does
not influence the validation of HeadREST specifications, since each triple is vali-
dated independently, but it can affect the validation of SRS programs. Specifica-
tions featuring inconsistent triples induce inconsistent Boogie axiomatizations,
allowing programs with typing errors to be validated. It is therefore important
to detect inconsistent HeadREST specifications.

Acknowledgements This work was supported by FCT through the LASIGE Re-
search Unit, ref. UIDB/00408,/2020, and by project Confident ref. PTDC/EEI-
CTP/4503/2014.

References

1. Anderson, C., Giannini, P., Drossopoulou, S.. Towards type inference for
JavaScript. In: ECOOP 2005 - Object-Oriented Programming, 19th European
Conference. Lecture Notes in Computer Science, vol. 3586, pp. 428—-452. Springer
(2005). https://doi.org/10.1007/11531142 19

2. Aué, J., Aniche, M.F., Lobbezoo, M., van Deursen, A.: An exploratory
study on faults in web API integration in a large-scale payment com-
pany. In: Proceedings of the 40th International Conference on Software En-
gineering: Software Engineering in Practice, ICSE. pp. 13-22. ACM (2018).
https://doi.org/10.1145/3183519.3183537

3. Axios: Promise based HTTP client for the browser and node.js, https://github.
com/axios/axios

4. Barnett, M., Fahndrich, M., Leino, K.R.M., Miiller, P., Schulte, W., Venter, H.:
Specification and verification: The Spec# experience. Communications of the ACM
54(6), 81-91 (June 2011)

https://doi.org/10.1007/11531142_19
https://doi.org/10.1145/3183519.3183537
https://github.com/axios/axios
https://github.com/axios/axios

18

10.

11.
12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

Nuno Burnay, Anténia Lopes, and Vasco T. Vasconcelos

Barnett, M., Chang, B.E., DelLine, R., Jacobs, B., Leino, K.R.M.: Boogie:
A modular reusable verifier for object-oriented programs. In: Formal Meth-
ods for Components and Objects, 4th International Symposium, FMCO. Lec-
ture Notes in Computer Science, vol. 4111, pp. 364-387. Springer (2005).
https://doi.org/10.1007/11804192 17

Bierman, G.M., Abadi, M., Torgersen, M.: Understanding TypeScript. In: ECOOP
2014 - Object-Oriented Programming. Lecture Notes in Computer Science,
vol. 8586, pp. 257—281. Springer (2014). https://doi.org/10.1007/978-3-662-44202-
9 11

Bierman, G.M., Gordon, A.D., Hritcu, C., Langworthy, D.E.: Semantic sub-
typing with an SMT solver. J. Funct. Program. 22(1), 31-105 (2012).
https://doi.org/10.1017/S0956796812000032

Burnay, N., Ferreira, F., Lopes, A., Martins, F., Medeiros, F., Santos, T., Vas-
concelos, V.T.: Communication contracts for distributed systems development,
http://rss.di.fc.ul.pt/confident

Burnay, N., Lopes, A., Vasconcelos, V.T.: SafeRESTScript: Statically checking
REST API consumers. arXiv:2007.08048 (2020), http://arxiv.org/abs/2007.08048
Chugh, R., Herman, D., Jhala, R.: Dependent types for JavaScript. In: Proceed-
ings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA. pp. 587-606. ACM (2012).
https://doi.org/10.1145/2384616.2384659

Dart: The Dart programming language, https://www.dartlang.org/
Dezfuli-Arjomandi, A.: Introducing RESTyped: End-to-end typing
for REST APIs with TypeScript (2017), https://blog.falcross.com/
introducing-restyped-end-to-end-typing-for-rest-apis-with-typescript/

Dunfield, J., Krishnaswami, N.R.: Complete and easy bidirectional type-
checking for higher-rank polymorphism. In: ACM SIGPLAN International
Conference on Functional Programming, ICFP. pp. 429-442. ACM (2013).
https://doi.org/10.1145/2500365.2500582

Facebook: Flow: A static type checker for JavaScript, https://flow.org/

Ferreira, F., Pientka, B.: Bidirectional elaboration of dependently typed pro-
grams. In: Proceedings of the 16th International Symposium on Princi-
ples and Practice of Declarative Programming. pp. 161-174. ACM (2014).
https://doi.org/10.1145/2643135.2643153

Fielding, R.T., Taylor, R.N.: Principled design of the modern web
architecture. =~ ACM Trans. Internet Techn. 2(2), 115-150 (2002).
https://doi.org/10.1145/514183.514185

GitLab: GitLab OpenAPI documentation, https://gitlab.com/gitlab-org/
gitlab-foss/blob /swagger-api/doc/api/wikis.md

Gregorio, J., Fielding, R.T., Hadley, M., Nottingham, M., Orchard, D.: URI tem-
plate. RFC 6570, 1-34 (2012). https://doi.org/10.17487 /RFC6570

Harmony, A.: Instagram API, https://apiharmony-open.mybluemix.net/public/
apis/instagram#get locations search

Herman, M.: Instagram search app, https://github.com/mjhea0/thinkful-mentor/
blob/master /frontend /instagram-search /app.js

Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576-580 (1969). https://doi.org/10.1145/363235.363259

JSHint: JSHint, a static code analysis tool for JavaScript, https://jshint.com/
about/

https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1017/S0956796812000032
http://rss.di.fc.ul.pt/confident
http://arxiv.org/abs/2007.08048
https://doi.org/10.1145/2384616.2384659
https://www.dartlang.org/
https://blog.falcross.com/introducing-restyped-end-to-end-typing-for-rest-apis-with-typescript/
https://blog.falcross.com/introducing-restyped-end-to-end-typing-for-rest-apis-with-typescript/
https://doi.org/10.1145/2500365.2500582
https://flow.org/
https://doi.org/10.1145/2643135.2643153
https://doi.org/10.1145/514183.514185
https://gitlab.com/gitlab-org/gitlab-foss/blob/swagger-api/doc/api/wikis.md
https://gitlab.com/gitlab-org/gitlab-foss/blob/swagger-api/doc/api/wikis.md
https://doi.org/10.17487/RFC6570
https://apiharmony-open.mybluemix.net/public/apis/instagram#get_locations_search
https://apiharmony-open.mybluemix.net/public/apis/instagram#get_locations_search
https://github.com/mjhea0/thinkful-mentor/blob/master/frontend/instagram-search/app.js
https://github.com/mjhea0/thinkful-mentor/blob/master/frontend/instagram-search/app.js
https://doi.org/10.1145/363235.363259
https://jshint.com/about/
https://jshint.com/about/

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Statically Checking REST API Consumers 19

Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Logic for Programming, Artificial Intelligence, and Reasoning - 16th International
Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 6355, pp. 348-370. Springer (2010).
https://doi.org/10.1007/978-3-642-17511-4 20

Levin, G.: The rise of REST API (2015), https://blog.restcase.com/
the-rise-of-rest-api/

Meyer, B.: Object-Oriented Software Construction, 2nd Edition. Prentice-Hall
(1997)

de Moura, L.M., Bjgrner, N.: Z3: an efficient SMT solver. In: Tools and Algo-
rithms for the Construction and Analysis of Systems, 14th International Confer-
ence, TACAS. Lecture Notes in Computer Science, vol. 4963, pp. 337-340. Springer
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

Oostvogels, N., Koster, J.D.; Meuter, W.D.: Static typing of complex presence
constraints in interfaces. In: 32nd European Conference on Object-Oriented Pro-
gramming, ECOOP. LIPIcs, vol. 109, pp. 14:1-14:27. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik (2018). https://doi.org/10.4230/LIPIcs. ECOOP.2018.14
Pearce, D.J., Groves, L.: Whiley: A platform for research in software verifica-
tion. In: Software Language Engineering - 6th International Conference, SLE.
Lecture Notes in Computer Science, vol. 8225, pp. 238-248. Springer (2013).
https://doi.org/10.1007/978-3-319-02654-1 13

Pierce, B.C., Turner, D.N.: Local type inference. In: POPL 98, Proceedings of the
25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, San Diego, CA, USA, January 19-21, 1998. pp. 252-265. ACM (1998).
https://doi.org/10.1145/268946.268967

Richardson, L., Ruby, S.: RESTful web services - web services for the real world.
O’Reilly (2007)

Sun, K., Ryu, S.: Analysis of JavaScript programs: Challenges and research trends.
ACM Comput. Surv. 50(4), 59:1-59:34 (2017). https://doi.org/10.1145 /3106741
Thiemann, P.: Towards a type system for analyzing JavaScript programs. In: Pro-
gramming Languages and Systems, 14th European Symposium on Programming,
ESOP. Lecture Notes in Computer Science, vol. 3444, pp. 408-422. Springer (2005).
https://doi.org/10.1007/978-3-540-31987-0 28

Utting, M., Pearce, D.J., Groves, L.: Making Whiley Boogie! In: Integrated Formal
Methods - 13th International Conference, IFM. Lecture Notes in Computer Science,
vol. 10510, pp. 69-84. Springer (2017). https://doi.org/10.1007/978-3-319-66845-
15

Vasconcelos, V.T., Martins, F., Lopes, A., Burnay, N.: HeadREST: A specification
language for RESTful APIs. In: Models, Languages, and Tools for Concurrent and
Distributed Programming - Essays Dedicated to Rocco De Nicola on the Occasion
of His 65th Birthday. Lecture Notes in Computer Science, vol. 11665, pp. 428—-434.
Springer (2019). https://doi.org/10.1007,/978-3-030-21485-2 23

Vekris, P., Cosman, B., Jhala, R.: Refinement types for TypeScript. In:
Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI. pp. 310-325. ACM (2016).
https://doi.org/10.1145/2908080.2908110

Waye, L., Chong, S., Dimoulas, C.: Whip: higher-order contracts for modern ser-
vices. PACMPL 1(ICFP), 36:1-36:28 (2017). https://doi.org/10.1145 /3110280
Wittern, E.; Ying, A.T.T., Zheng, Y., Dolby, J., Laredo, J.A.: Statically check-
ing web API requests in JavaScript. In: Proceedings of the 39th International

https://doi.org/10.1007/978-3-642-17511-4_20
https://blog.restcase.com/the-rise-of-rest-api/
https://blog.restcase.com/the-rise-of-rest-api/
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.4230/LIPIcs.ECOOP.2018.14
https://doi.org/10.1007/978-3-319-02654-1_13
https://doi.org/10.1145/268946.268967
https://doi.org/10.1145/3106741
https://doi.org/10.1007/978-3-540-31987-0_28
https://doi.org/10.1007/978-3-319-66845-1_5
https://doi.org/10.1007/978-3-319-66845-1_5
https://doi.org/10.1007/978-3-030-21485-2_23
https://doi.org/10.1145/2908080.2908110
https://doi.org/10.1145/3110280

20

38.

Nuno Burnay, Anténia Lopes, and Vasco T. Vasconcelos

Conference on Software Engineering, ICSE. pp. 244-254. IEEE / ACM (2017).
https://doi.org/10.1109/ICSE.2017.30

Wittern, E., Ying, A.T.T., Zheng, Y., Laredo, J.A., Dolby, J., Young,
C.C., Slominski, A.: Opportunities in software engineering research for web
API consumption. In: 1st IEEE/ACM International Workshop on API Us-
age and Evolution, WAPIQICSE. pp. 7-10. IEEE Computer Society (2017).
https://doi.org/10.1109/WAPI1.2017.1

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1109/ICSE.2017.30
https://doi.org/10.1109/WAPI.2017.1
http://creativecommons.org/licenses/by/4.0/

