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Abstract. Along with the very actively progressing field of autonomous
ground and aerial vehicles, the advent of autonomous vessels has brought
up new research and technological problems originating from the specifics
of marine navigation. Autonomous ships are expected to navigate safely
and avoid collisions following COLREG navigation rules. Trustworthy
navigation of autonomous ships presumes applying provably correct nav-
igation algorithms and control strategies. We introduce the notion of
maritime game as a special case of Stochastic Priced Timed Game and
model the autonomous navigation using UPPAAL STRATEGO. Fur-
thermore, we use the refinement technique to develop a game model in a
correct-by-construction manner. The navigation strategy is verified and
optimized to achieve the goal to safely reach the manoeuvre target points
at a minimum cost. The approach is illustrated with a case study inspired
by COLREG Rule 15.
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1 Introduction

The demand for unmanned ships has risen aiming at reducing operation costs
due to minimal crew on board and safety at sea but also promoting remote work.
Autonomous ships are expected to make more and more decisions based on their
current situation at sea without direct human supervision. This means that an
autonomous ship should be able to detect other vessels and make appropriate
adjustments to avoid collision by maintaining maritime traffic rules. However,
the existence of a ‘virtual captain’ from the shore control centre (SCC) is still
a must to perform critical or difficult operations [2] and there is a need for
reconfirmation when inconsistent or corrupted commands are detected by the
onboard system.

The connectivity between ships and SCC has to guarantee sufficient commu-
nication for sensor monitoring and remote control [10] when SCC intervention
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is needed. This connectivity also plays an important role for the safety of opera-
tions concerning collision avoidance in the remote-controlled scenarios for trans-
forming the data and receiving information regarding the decision from SCC.
Sub-second reaction time is, however, not critical regarding safe navigation in
the maritime sector as it takes up to minutes for the ship to change its course
in case of detection of another ship or an obstacle. In this paper the goal is to
model maritime autonomous systems so that the unmanned ships learn a safe
and optimal strategy for navigation pursuing collisions avoidance.

One of the most critical safety issues in the development of autonomous
vehicles and self-driving cars is their poor performance under adverse weather
conditions, such as rain and fog due to sensor failure [15]. However, when mod-
elling maritime specification, we do not take into account sensor inaccuracies
and possible transmission errors, since there are standard sensor redundancy
design and error correction measures applied on modern vessels to ensure that
ships notice each other in a timely manner. For safety assurance, a ship is able
to communicate with another ship or shore via VHF radio, satellite services, etc.

For unambiguous navigation protocol, the International Maritime Organiza-
tion (IMO) [11] published navigation rules to be followed by ships and other
vessels at sea which are called Convention On the International Regulations
(COLREG).

When developing the autonomous ship navigation system, quality assurance
via tool supported model-based control synthesis and verification is of utmost
importance. UPPAAL STRATEGO [9] is a branch of the UPPAAL [6] synthesis
and verification tool family. It uses machine learning and model checking tech-
niques to synthesize optimal control strategies. Hence, it is a good candidate for
control synthesis tool which satisfies above mentioned needs.

In our research, we aim at adapting formal modelling with UPPAAL STRAT-
EGO for verifying and synthesizing safe navigation of autonomous ships. As an
additional contribution, we improve the autonomous ships navigation perfor-
mance regarding its safety and security at the same time planning for optimal
route and scheduling maneuvers according to COLREG rules.

2 Related work

There has been a variety of studies on autonomous ship navigation obeying COL-
REG rules. Among these fuzzy logic [17], interval programming [7], and 2D grid
map [22] could be mentioned. However, the previous approaches do not deal with
verification for safe navigation. Moreover, (potentially) non-deterministic be-
haviour of autonomous ships, communication delays, sensor failure and weather
conditions are not considered in their models.

Recently, in MAXCMAS project [23], COLREG rules have been implemented
in collision avoidance module (CAM) software where collision avoidance decision
is generated and action taken as soon as collision risk is detected. In spite of their
various simulation tools, verification methods are discussed only implicitly. Fur-
thermore, to the best of our knowledge, our work is the first one that synthesizes
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a safe and optimal navigation strategy that also takes into account some of the
weather conditions.

There is a fair number of publications on autonomous navigation control syn-
thesis methods and tools that rely on various sets of assumptions - for example
continuous, discrete and hybrid dynamics, as well as piece-wise linear and non-
linear processes [12] [18] [16]. The main issue of the controller synthesis is the
scalability of synthesis methods in case of complex control objects. Hierarchical
control architectures, e.g. in SCADA are addressing this issue. While low-level
control typically should tackle with continuous (often nonlinear) processes the
upper control layers deal with the abstract representation which typically de-
scribes hybrid or discrete dynamics. In this work, we model the vessels dynamics
on a high level of abstraction using discrete state space and continuous time.

Among the tools that are oriented to timed discrete-state models and timed
game based control synthesis, UPPAAL STRATEGO has proven its relevance
in several case studies, where optimal strategies have been generated using Sta-
tistical Model Checking (SMC) and machine learning. Examples include, for in-
stance, adaptive cruise control [16], railway systems [13] and autonomous driving
systems [4] [5].

In [16] the authors synthesize a safe control strategy with the goal of main-
taining a safe distance between vehicles where one of them is considered to be
uncontrollable by the given controller. Railway control systems, are modelled as
a Stochastic Priced Timed Game in [13] by using game theory, where a set of
trains considered as an environment and lights, points and sections in the railway,
are assumed to be controllable. In [5] the authors also model a railway signalling
system with autonomously moving blocks as a Stochastic Priced Timed Game,
but in addition they consider stochastic delays in the communication. A safe and
optimal driving strategy for the model is synthesised in UPPAAL STRATEGO.
In [4], on the other hand, SMC has been used for formal modelling uncertainty in
autonomous positioning systems. The safety of the position of a tram is proved
with the levels of uncertainty and possible hazards induced by onboard satellite
positioning equipment.

In our work, we introduce the notion of a maritime game for control synthesis
that is based on navigation specification of the ship where weather conditions
are integrated. We model the navigation problem as a special case of Stochastic
Priced Timed Game with a goal of collisions avoidance between two ships. Fur-
thermore, we use the refinement technique [3] for a stepwise development of the
model for avoiding complexity and ambiguity in the modelling.

3 Case study and navigation specification

3.1 Overview of the Case Study

When modelling navigation manoeuvres of autonomous ships, we focus on stan-
dard situations, addressed in COLREG. As an example, let us consider a scenario
where two ships have intersecting courses as depicted in Figure 1.
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In this example, in spite of the existence of remote monitoring from the SCC,
we assume also that ships have autonomous navigation capability. According
to Rule 15 of COLREG [19]; when two power driven vessels have intersecting
courses with the risk of collision, the vessel which has the other on her own
starboard (right) side shall keep out of the way and avoid crossing ahead of the
other vessel. In this case the vessel giving way should adjust its speed and/or
course to pass behind the approaching vessel. The adjustment will therefore be
made to the starboard side. In the case depicted in Figure 1, shipB should give
way while shipA maintains its direction and speed.

Fig. 1. Autonomous Navigation of Ships

The navigation control of shipB has a choice to slow down instead of altering
its path to pass shipA. By doing this, the expected arrival time might not be as
late as when following a redirected route. However, if for some reason shipA is
slowing down, then the controller should navigate shipB safely to another route
through a sequence of waypoints [1] (see Figure 1).

3.2 Ship waypoints (WP) and path plan

For safe navigation of vessels, we consider a set of waypoints along the route
which define the routing subgoals and that the ship has to traverse during the
maneuver. When a vessel plans the voyage from the current position to its next
waypoint position, a course change may occur. In case of rerouting to a waypoint,
a new heading should be calculated. Figure 2 shows the heading relationship
between the ship and waypoint.
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Fig. 2. Heading relation between ship and waypoint

Assume that (X0, Y0) is the initial position of the ship and (Xi, Yi) are the
coordinates of the targeted waypoint, the bearing angle ψ of the waypoint from
the ship is calculated as follows [1]:

θ′ = a tan 2
(Yi − Y0)

(Xi −X0)
(1)

ψ = θ′ − θ (2)

where θ is the heading of the ship, θ′ is the encountering angle of the waypoint
from the vertical axis. Here, if the value of ψ becomes negative, then 2π (360)
is added to make it positive.

To calculate the position of the ship after altering the course based on the
new heading of the ship (ψ), the following calculations should be performed:

X = X0 + V cos(ψ) Y = Y0 + V sin(ψ) (3)

where (X0, Y0) is the initial position of the ship, (X,Y ) are the coordinates of
the next position of the ship and V is the speed of the ship.

In our scenario with two ships assuming that (XA, YA) are the coordinates
of shipA and (XB , YB) are the coordinates of shipB, the distance between the
two ships is calculated as Euclidean distance. This could require an update of
the position of either one or both ships following Equations 1, 2 and 3. After
the update, the distance between the ships should be re-calculated to evaluate
whether the risk of collision still remains.

3.3 Influence of wind on the ship navigation

When the ship moves in the presence of wind in addition to navigating along
the true course (heading), it will also drift as a consequence of wind which is
called leeway [24]. Thus, leeway (α) is the angle between the heading (TC) and
the drift track (CG). Figure 3 shows the leeway angle with the presence of wind.
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Fig. 3. Leeway angle (α)

If the wind pressure comes from portboard, it deviates the angle of the ship
heading to the right then α is positive ’+’. In case of the pressure from starboard
the α is negative ’-’. The leeway is calculated as follows [24].

α = K(
VW
VE

)2 sinQw (4)

where, VW is the speed of the wind and VE is the speed of the ship. In this formula
Qw is the relative bearing of the wind whereas K is the leeway coefficient. After
calculating the drift angle based on the wind conditions, the heading of the ship
should be corrected periodically.

4 Reinforcement learning and game theory

To analyze the navigation options of autonomous ships, and more importantly,
to verify the navigation decisions, especially in combination with the other ships
we use game theory as a base formalism for modelling and for optimizing the
games.

Reinforcement learning (RL) is commonly used for solving Markov-decision
processes, where an agent interacts with the world and collects rewards [21]. RL
is a powerful method for learning an optimal strategy for the agent from trial and
error. UPPAAL STRATEGO [9] uses RL and model checking by combining the
techniques to synthesize optimal control strategies. Any of the moves (modeled
as transitions) which the agent chooses in its current state, incurs a cost, e.g.
fuel consumption (fc). In Figure 1, the first time derivative of fc is denoted fc’. In
this setting, the priced timed game [8] defines an infinite-state Markov (reward)
decision process with the goal of finding a strategy that will minimize the cost
to reach the goal state.

Reinforcement learning can be considered in the context of a game, often for
one player (agent) or as a two-player game in which the other player is typically
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Fig. 4. An example of a timed game automaton in the UPPAAL STRATEGO

the environment. The agent playing against the environment tries to learn a
policy that maximizes the agent’s reward in the environment.

Our ship navigation control model is based on a game G = (S, E), consisting
of a set S of states and a set E of directed edges between those states, the state
transitions. Since there are two players in the considered game, where the agent
(player) plays against the environment (Agent vs. Env), we also have two types
of transitions, controllable and uncontrollable. As can be seen from the example
in Figure 4, the driver as the playing agent can choose one of the two alternative
roads which are represented as controllable transitions (indicated by the solid
line). However, the actual travel-time depends on the intensity of traffic (envi-
ronment) on a particular day, which is reflected as the upper time-bounds in the
invariants of locations High road and Low road. Since the outgoing edges from
these locations are uncontrollable (indicated by the dashed line), leaving these
locations may occur latest at these time-bounds. Such a two-player (possibly
antagonistic) game is represented by a tuple G= (S, →, 99K, s0, Bad, Goal)
where [13],

– →⊆ S × S : set of controllable transitions (Player).
– 99K⊆ S × S : set of uncontrollable transitions (Environment).
– s0 ∈ S : initial state.
– Bad ⊆ S: set of states where player loses the game.
– Goal ⊆ S: set of states where player wins the game.

We assume that sets Bad and Goal do not intersect.

In game theory, a run is a finite or infinite sequence of states r= (s0, s1, s2,
. . . ). In case of a finite sequence of states, the player reaches its terminal state
that can be a goal state that is a winning state, or a bad state that corresponds
to the winning state of the adversary. We call a run safe, if there is no bad state
(s ∈ Bad) in the run.

The player’s strategy is a complete algorithm for playing the game, telling
what move a player should do for every possible situation throughout the game.
In a state transition system setting a player decides depending on its current state
(s ∈ S) and strategy σ which transition to execute next. Formally, a strategy
for the player is a mapping,
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σ : S → S such that ∀r ∈ ρ, r.s ∈ S : (r.s, σ(r.s)) ∈ E,

where ρ is a set of runs, such that from any state s of a run r in ρ, strategy σ
chooses the next state reachable by an outgoing edge of s.

A strategy is called safe if in the run, any of the outgoing transitions in the
state (s ∈ S) does not lead to bad states:

σsafe = {(si, sj) |si, sj ∈ S ∧ (si, sj) ∈ E ∧ sj 6∈ Bad}.

A strategy is feasible if it is a safe strategy and reaches the goal state (s ∈
Goal) in the run:

σfeasible = {(si, sj) |(si, sj) ∈ σsafe ∧ (∃s : s ∈ S ∧ s = sj ∧ s ∈ Goal)}.

Similarly we define a feasible run. A run r is feasible if it is finite of length
|r|, safe and reaches a goal state (s ∈ Goal):

rfeasible = {r|(∀si : si ∈ r, i ∈ [1, |r| − 1] : si 6∈ Bad)∧
(∃sj : sj ∈ r ∧ j = |r| ∧ sj ∈ Goal)}.

A run is called optimal, if it is feasible and reaches the goal state (s ∈ Goal) in
the run with a minimum cost:

roptimal = {r|r ∈ rfeasible ∧ cost(r) ≤ min(ran(cost))}.

where cost function cost : ρ→ R assigns a real-valued number to each run.
A winning strategy is optimal, if it is a safe and feasible strategy and there

is a run ending up in goal state (Goal) with a minimum cost:

σoptimal = {(si, sj) |(si, sj) ∈ σfeasible ∧ (∃r : r ∈ roptimal ∧ si ∈ r ∧ sj ∈ r)}.

5 Maritime Game

To formally model the navigation problem, we formalise it in the game tuple
GM=(S, →, 99K, s0, Bad, Goal) where,

– S: is a set of states of the ships. To grant the decidability of GM , we consider
S as a finite set.
In principle, S consists of as many partitions as there are ships involved in
the game. For the two ships in the paper we consider S = SA × SB , where
SA denotes the state component of shipA and SB of shipB. Both SA and SB

are composed of the same set of variables and the state vector of a ship has
the following structure:

< P,WP,H,HS, V el,WW,WS >

where the state variables and their domains are defined as follows:
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• P ∈ {(x, y)|x ∈ X ∧ y ∈ Y }: Position of the ship in the 2D coordinate
system. The position will be updated periodically based on the heading
and speed of the ship.

• WP ∈ {(xwp0, ywp0), (xwp1, ywp1), . . . , (xwpn, ywpn)}: Ordered set of way-
points of the ship in the coordinate system. The next waypoint for a ship
may change in case the ship changes course.

• H ∈ [0, 360]: Heading of the ship in the degree interval. Heading of the
vessel will be updated in case of rerouting.

• HS ∈ {initial, deviated}: Heading Status of the ship. Before changing
course, the value of the heading status is initial. As soon as the heading
becomes updated due to navigation to the waypoint, it will be assigned
to deviated. If the heading of the ship is deviated, the ship needs to do
a rerouting to go back to the initial path and original heading.

• V el ∈ [0, 10]: Velocity of the vessel in the normalized integer interval.
During navigation at sea, vessels can accelerate, decelerate or continue its
voyage with the same speed. The discrete interval [0, 10] is a reasonable
approximation for the speed, since we mainly consider big cargo ships
with a cruising speed of about 12 knots. Moreover, the approximated
speed has always been rounded up to the worst case.

In addition to the above state variables, we introduce new variables used in
the model refinement.
◦ (Refinement) WW ∈ BOOL: Windy Weather condition in boolean ex-

pressions. If Windy Weather has the value true, it means that weather
is windy. It is introduced in the refinement step, we introduce environ-
mental condition which affects the vessel course. We consider that the
heading of the ship is drifted due to the wind pressure.

◦ (Refinement) WS ∈ VW ×Qw: Wind Specification of vessels. For calcu-
lation of drift angle by Equation 4 when the wind pressure is present,
we need to know the wind speed (VW ) and angle of the wind (Qw) that
comes to the vessel.

Thus, at each time instant the state variables of the ships’ state vectors ac-
quire one value from their domain as determined by the transition relations,
either → or 99K. We use the same navigation specifications for both ships in
the game, with the difference that shipA does not contain the controllable
navigation variables WP and HS that shipB has or weather features WW
and WS that affect the vessel. This is because we are interested in capturing
the behaviour of shipB as an agent under different circumstances.

– →, 99K: The transition relations are defined as→⊆ S×G(V )×Act×S and
99K⊆ (S ×G(V )× Pr ×Act× S) where,

• G(V ): is the set of constraints in guards and V denotes the set of integer
and boolean variables.

• Act: is a sequence of assignment actions with integer and boolean ex-
pressions. According to player preference, one of the enabled transitions
will be chosen in the current state. We define four functions that define
the effect of player actions. The functions for player transitions are as
follows:
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◦ Update Heading: (P,WP )→ H is a function that calculates a angle
for the ship’s heading angle H from the ship’s current position P and
its next waypoint WP .

◦ Update Speed: (V el, [−2, 2])→ V el is a function that assigns a new
velocity to the vessel based on the current velocity V el and a value
in the interval [−2, 2]. This interval indicates the acceleration/decel-
eration of 0-2 speed units.

◦ Update Position : (H,V el, P ) → P is a function that gives a new
position for the ship given its previous position P , heading H and
velocity V el.

◦ (Refinement) Leeway angle: (WS, V el) → H is a function that as-
signs a calculated drift angle for the ships’s heading H, depending
on the wind specification WS and velocity V el.

• Pr: denotes the set of integer-valued probabilities.

In this two-player game, we model shipB with its controller as a player. As a
consequence, all transition for this player are considered to be controllable.
However, we assume shipA as an Environment for shipB with the same func-
tionality except that shipA has some stochastic transitions with probability
(Pr) in addition to normal transitions.

– s0 ∈ sB0×sA0: is initialized with random speed, initial position and heading
of ships. For analyzing concrete incidents these initial values could be based
on values from existing datasets.

– Bad: is the state where two ships get to collision zone (see Figure 1).
– Goal: is the state that is reached when two ships have passed each other

within a safe distance.

6 Model development in UPPAAL STRATEGO

We model the navigation problem1 as a Stochastic Priced Timed Game using the
tool UPPAAL STRATEGO where the controller of shipB should dynamically
plan its maneuver, while the opponent (shipA) moving according to its preset
trajectory forces shipB to change its route. In this game, we define the fuel
consumption (fc) as a the price to be minimized under the safe strategy. The
change in velocity of the ship is directly related to fc, so that the consumption
of fuel increases if the ship slows down and speeds up again rather than changes
the route, causing the price to increase.

The goal is that the ships move to their target positions in a safe way (without
the risk of a collision) while at the same time optimizing the fuel consumption.

To avoid ambiguity, we use refinement [3], which enables the system to be
created in a stepwise manner gradually adding details into the model and proving
that each refinement step preserves the correctness of the previous steps. Models
can be refined either via superposition refinement [14] [20], where new features
are added to the automaton, or by data refinement, where abstract features are
replaced by more concrete ones.

1 The game model is found in: https://github.com/fshokri/Game-model
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The current refinement process of the model consists of one abstract model
with one refinement step using both superposition and data refinement. The
abstract model presents the general view of safe navigation with given waypoints.
In the refinement step, we introduce weather conditions windy or clear for the
ship navigation. We assume that strong wind from shipB starboard increases fuel
consumption when turning right. The two step timed automata model introduced
here should be seen as a modeling step towards an implementation.

6.1 An Abstract Model Of Autonomous Ships

For synchronizing the state transitions of the two ships, shipB and shipA the
scheduler template is created with two channels for each ship; ShipBgo!, ShipAgo!
as well as Update B! and Update A! (see Figure 5). The first channel enables
each ship to move while the second one updates their positions after moving
action. We define two functions in this automaton namely initialize() and
UpdateDistance(). The former initializes two ships with initial headings and
positions in the coordinate system. The latter calculates the distance between
two ships after movement. If the distance becomes smaller than the defined safe
distance, it means that the ship collides with another ship and the game is over.
For restarting the game, we add one transition from state End to Init. In this
template, we also add exponential rates where the process may be delayed an
arbitrary long time in the worst case. The user-supplied rate (here 5) has been
chosen as an expert estimate for unbounded delays but it can be tuned according
to a particular situation.

Fig. 5. The Scheduler in UPPAAL STRATEGO

In the abstract model the behaviour of shipB is depicted in Figure 6 where the
model is divided into ship (upper) and controller (lower) automata templates.
In the shipB template, we model the different states of a ship that are reachable
from the initial state (Moving), while in the controller we only consider events
for giving permissions to take actions. Since shipB is the player in this game, all
transitions for shipB and its controller are considered to be controllable.
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Fig. 6. The Abstract Model of ShipB (upper) and ShipB Controller (lower)

In Figure 6, shipB starts its move in state Moving if it gets permission via
ShipBgo?. If shipB already did adjustment after detection, it periodically up-
dates its position via the self-loop edge of state Moving that is synchronized
with the scheduler via channel Update B? (see Figure 5). In state Adjustment
shipB sends the request to controller about detection (detection!) (see Figure 6).
If the controller detects a ship by its sensor (distance <= sensor) then it
will non-deterministically change speed or change course. In case of rerout-
ing, the new heading will be calculated by functions Update Heading B() 1
and Update Heading B() 2 in the controller, and the new position of the ship
will be updated in shipB by Update Position B(). Note that the implementa-
tion of the two functions is the same, the only difference is that the function
Update Heading B() 1 uses waypoint1 for calculating the new heading, while
waypoint2 is used for the function Update Heading B() 2. Since the UPPAAL
tool has limited support for simulation of double values, we convert the integer
values to ones of double type by multiplying them by 1.0 (see Figure 7) in the
arc tangent formula in the function Update Heading B() 1.
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When shipB moves to the maneuver waypoint, it deviates from its original
path and the heading status becomes deviated. If the heading of the ship is
deviated, the ship needs to go back to its original path (waypoint2) by moving
to state Back route after the collision risk has been removed.

As can be seen from Figure 6, we add the continuous variable (fc′) as a
hybrid clock in the invariant of the states having non zero duration, i.e. states
Change route, Back route and Changing Speed, to show how much fuel the
ship consumes for adjustment. As the value for the states Change route and
Back route are smaller than state Changing Speed, they will consume less fuel.
Function Update Heading B uses Equation 1 and 2 to calculate the new heading
whereas we use Equation 3 in function Update Position B(). Figure 7 shows
the implementation of function Update Heading B1 according to the Equation
1 and 2. While Figure 8 shows the updating of the position of the ship according
to Equation 3 (left) and calculating the Euclidean distance between two ships
(right).

Fig. 7. C function for updating the heading of the ship

Fig. 8. C function for updating the position (left) and the distance (right) of the ship

We model shipA as an environment for shipB. For this reason, all transitions
in shipA automaton are uncontrollable. We follow the same structure as above
for the shipA template (see Figure 9), except that in shipA both the ship tem-



14 Shokri-Manninen, Vain and Waldén

plate and its controller template are integrated to one. Moreover, we consider
a stochastic behaviour for shipA. According to COLREG, shipA should main-
tain its direction and speed. For this reason, shipA keeps moving straight on
with the probability weight = 8 to indicate that this should happen with a high
probability. The parameters for these probability distributions are defined from
common practice.

Fig. 9. The Abstract Model Of ShipA in UPPAAL STRATEGO

6.2 Introducing weather conditions

In the refinement step, we consider the impact of weather conditions on shipB
navigation using the boolean variable windy which is non-deterministically as-
signed a value true or false in the scheduler template. For shipB, we add two new
states Change route drift and Back route drift where the rerouting includes
the drifting due to windy weather (see Figures 10). We assume that the fuel con-
sumption for these states (fc′ == 5) is greater than in clear weather (fc′ == 2)
as strong wind from shipB starboard increases fuel consumption when turn-
ing right. Changing course even in the windy weather is a better choice than
changing speed due to less fuel consumption. State Changing Speed remains
unchanged in windy weather, since wind cannot considerably change the speed
of the ship [24].

The correction of the ship heading under windy circumstances is performed
by functions Update HeadB wind1() and Update HeadB wind2() in the con-
troller by updating the heading of the ship from the new calculated drift angle by
function leeway angle() (Equation 4). The difference between updating heading
functions in windy weather (Update HeadB wind1(), Update HeadB wind2())
and without wind (Update Heading B() 1, Update Heading B() 2) (see Fig-
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ure 7) is only that leeway angle is added to the new heading of ship.

newHeading = deg − headingB + leeway;

For the controller template, we add two new transitions in the Choose state
regarding windy weather where drift angle will be considered in case of changing
course.

Fig. 10. The Refined Model Of ShipB and Controller in UPPAAL STRATEGO

The weather conditions are superimposed as a new feature to the abstract
model by strengthening the guards in the model and adding assignments to the
variables of the new feature. The variables of the heading are data refined to
take the leeway into accout, but otherwise the behaviour of the model remains
the same.
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6.3 Verification and Validation

UPPAAL STRATEGO provides an extended query language, where strategies
can be verified and optimized (by reinforcement learning) for stochastic priced
timed games. The constructed strategies can be used as constraints in performing
SMC of a game (like Query 3 and 4 in Table 1). Table 1 presents verifed Queries
1 to 4.

The main objective of the maritime game model is to synthesise a safe strat-
egy such that shipB never collide with shipA. Furthermore, ShipB should choose
the action in case of collision avoidance that consumes less fuel in the windy
weather or without wind just under the safe circumstance. To satisfy require-
ments, a safe and optimal strategy needs to be synthesised.

Table 1. UPPAAL STRATEGO Queries

Id Query Result

1 strategy Safe= control: A[] not Scheduler refined.End Satisfied

2 strategy OptSafe = minE(fc)[<=200]: <> ShipB refined.Maneuver ended
under Safe

Satisfied

3 Pr[<=200](<> ShipB refined.Change route) under OptSafe >=
Pr[<=200](<> ShipB refined.Changing Speed) under OptSafe

Satisfied

4 Pr[<=200](<> windy && ShipB refined.Change route drift) under Opt-
Safe >= Pr[<=200](<> windy && ShipB refined.Changing Speed) under
OptSafe

Satisfied

Query 1 defines the Safe strategy where two ships never collide by checking
if for every possible path, the state End of the component Scheduler is never
visited. This particular state is reached only when two ships collide and the game
is over.

Query 2 synthesizes the optimal strategy with a goal of minimizing the value
of the hybrid clock fc within 200 time units under the safe strategy. Note that
this hybrid clock is used to measure the fuel consumption of shipB. The synthe-
sised strategy is, thus, both safe and it strives for an optimal fuel consumption
for shipB.

Query 3 presents the comparison of the selection of states Change route
and Changing Speed by shipB in case of adjustment after detecting the other
ship within 200 time units under the previously computed Opt (near-optimal)
strategy. The probability of state Change route to get selected are greater than
Changing Speed. This is because Change route has a lower fc′ rate compared
to other locations. UPPAAL STRATEGO executes this query for 62 runs and
estimates the probability to be true (value=1) with confidence 0.95.

Query 4 presents the same comparison as Query 3 with the difference that
weather conditions are taken into account. It states that the likelihood for shipB
to opt for action Change route drift in windy weather within 200 time units
under the safe and optimal strategy is higher than selection of Changing Speed.
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UPPAAL STRATEGO executes this query for 582 runs and estimates the prob-
ability for it to be true with confidence 0.95.

Note that Queries 1 to 3 are proved both in the abstract and the refined mod-
els. Query 4 is provable only in the refinement model, because of the new variable
windy and the new state Change route drift introduced in the refinement.

7 Conclusions and Future Work

The novelty of this paper is introducing the notion of maritime game as a special
case of Stochastic Priced Timed Game and constructing the respective model of
the autonomous navigation using UPPAAL STRATEGO. The practical usability
of our approach (maritime game) is to develop the theory of autonomous ships
safe navigation and for that purpose to analyze the navigation problem in a
rigorous state-based model setting. We use the refinement technique to develop
a game model in a correct-by-construction manner. The stepwise refinement
approach helps to avoid ambiguity in the modelling to verify the satisfiability of
the safety requirements of the model.

In this paper, the approach for the strategy synthesis of safe navigation has
been presented as a stochastic two players priced game with the goal of collision
avoidance. Taking into account several practically important side constraints
such as wind, currents, navigation mistakes by the vessel of the adversary, and
involvement of other obstacles (nautical signs, small boats) complicates the syn-
thesis task and presumes the validation of the approach under extra constraints
not studied in standard game-theoretic setting yet. Though limited with two
ships navigating in offshore scenarios, our work is the first attempt to synthe-
size a safe and optimal navigation strategy that also takes into account weather
conditions. The navigation problem is exemplified based on navigation specifica-
tion and COLREG Rule 15. Further developing the Maritime theory to capture
multi-vessel navigation situations in traffic-intensive harbour zones and integra-
tion of winter navigation remain as future work.
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