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Abstract. We present a model-driven approach for the creation of for-
mally verified scenarios involving human-robot interaction in healthcare
settings. The work offers an innovative take on the application of formal
methods to human modeling, as it incorporates physiology-related as-
pects. The model, based on the formalism of Hybrid Automata, includes
a stochastic component to capture the variability of human behavior,
which makes it suitable for Statistical Model Checking. The toolchain is
meant to be accessible to a wide range of professional figures. Therefore,
we have laid out a user-friendly representation format for the scenario,
from which the full formal model is automatically generated and verified
through the Uppaal tool. The outcome is an estimation of the probability
of success of the mission, based on which the user can refine the model
if the result is not satisfactory.
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1 Introduction

Robots are becoming increasingly widespread in non-industrial contexts. Future
applications range from autonoumous means of transportation [28] to personal
assistants [14]. If on one hand factory workers are specifically trained to interact
with this type of machinery and grow familiar with safety practices over time, on
the other hand a much wider range of users awaits robots in the near future [22]
and this poses a new set of challenges. In the area of safety, strong guarantees
of people’s health preservation will be required, beginning from compliance with
the standards. ISO 12100 [18] and ISO 13849-1 [20] provide general guidelines,
whereas ISO 13482 [19] is specifically targeted to service robots. It is common
knowledge for researchers in the field that testing techniques are not sufficient
given the complexity of these systems [25], and there already exist works in lit-
erature that resort to formal verification for safety-critical scenarios [16,30].
In this paper, we focus on human-related aspects in scenarios involving interac-
tions between humans and robots. Service robots will support people in everyday
life situations, and it is, therefore, crucial that human factors are accounted for
in the robot decision-making process. To this end, we have developed a model-
driven approach for the creation and formal verification of scenarios related to
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human-centric robotic applications. Target scenarios feature mobile robots and
their controllers interacting with humans in a defined environment. Separate sce-
narios tackle different interaction strategies, depending on what specific service
the human is requesting. To ease the modeling process, we have identified a set
of usual coordination patterns involving a human and a robot, which the user
of the approach can customize and re-use with minimum effort. The mission of
the robot, as more thoroughly discussed in Section 4, will be to provide all the
services requested in a specific scenario, and the purpose of the approach is to
allow the designer of the application to verify the feasibility of the mission.
The approach considers some physiological features of humans that make it par-
ticularly suited for the healthcare domain, but it is still general enough to befit
a broader range of applications. The policies of the robot controller that drive
the mission to success are designed to prioritise human needs over efficiency.
This can make a difference when robots interact with people in discomfort or
in pain, or when human lives are at stake and the controller has to make a
decision—something that can happen in healthcare settings. Another key is-
sue for practitioners is that modeling the volatility of human behavior is often
considered beyond the capabilities of formal methods [25]. As a first step to-
wards solving this issue, in our approach humans are not treated as rational
agents that unmistakably execute their mission. Instead, their model features
a stochastic component to simulate free will, that causes them to occasionally
make autonomous decisions.
In our approach, scenarios are formally modeled through Hybrid Automata [4],
with the addition of stochastic components. The model is formally verified
through Statistical Model Checking (SMC) [3] against a set of relevant prop-
erties. The toolchain is meant to be used by professional figures with a technical
background, though not necessarily in robotics nor in formal models. Therefore,
the entry point is a user-friendly representation of the key parameters of the sce-
nario that the application designer can smoothly produce and refine. The tool
processes this input, automatically generates the complete formal models, and
performs verification through the Uppaal tool [11,24].
We have selected a use case from the healthcare domain to evaluate the effec-
tiveness of the approach. Some significant experimental results drawn from the
use case are presented in the paper. The experiments are run using a publicly
available prototype of the tool [1].
The paper is structured as follows: Section 2 surveys related works; Section 3
outlines the background; Section 4 presents the approach; Section 5 describes
the formal model; Section 6 presents the use case and the experimental results;
finally, Section 7 concludes. Appendix A presents additional details about the
formal model, and Appendix B describes additional experiments.

2 Related Work

Formal modeling and verification of systems that involve interactions between
humans and robots is a long-standing issue. The work by Webster et al. [31]
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analyses the dynamics of a person assisted by a personal care robot in a smart
home. All the elements of the scenario are modeled as agents using Brahms, and
then verified through the SPIN model-checker: in particular, the human non-
deterministically selects the action to perform from a pre-determined set, and
the robot must act accordingly. Vicentini et al. [30] focus on the risk assessment
procedure of industrial collaborative tasks. The authors propose a framework
based on LTL formulae to verify that the overall level of risk of the system does
not exceed a certain threshold. The work has been extended to also include
manifestations of erroneous human behavior, handled in a black-box manner [7].
Bersani et al. [9] address applications involving robots and humans working in a
shared environment, modeled as networks of Timed Game Automata. Humans
are modeled as uncontrollable agents, to capture the uncertainty of the real
world. A robot controller that also accounts for unpredictable human moves is
then automatically synthesized through the Uppaal-TIGA tool.
Porfirio et al. [27] explore how formal verification can be used to ensure that
robots adhere to social norms while interacting with humans. Norms, expressed
as LTL formulae, constitute the properties to be verified, whereas the sequence
of interactions is modeled as a composition of state machines. Concerning the
social robotics field, Adam et al. [2] propose a framework based on the BDI
architecture to make human-robot interaction feel more natural. The authors
build upon models of human cognition to develop a perception and deliberation
process that drives the robot towards making decisions in a human-like fashion.
Some works exploit SMC to verify robotic systems. Arai and Schlingloff [6] use
SMC to make predictions on the performance of autonomous transport robots
in production plants. Foughali et al. [13] apply SMC to formally verify real-time
properties, like schedulability and readiness, of robotic software. Herd et al. [17]
focus on multi-agent systems, and on swarm robotics in particular: in this case,
SMC helps deal with the size of the problem, which cannot be handled by tra-
ditional model checking techniques.
Finally, Zhao et al. [12] perform probabilistic model-checking of UAV missions,
focusing on advanced aspects of battery prognostics and health management.
As this brief survey shows, although the issue of verifying human-robot interac-
tion has been tackled with different techniques, the combination of sound formal
methods with the modeling of human behavior unpredictability is still an open
question. To the best of the authors’ knowledge, the work in this paper is the
first attempt at formally verifying an explicit model of human-related aspects,
such as free will. In addition, as mentioned in Section 1, service robots will come
into contact with people with different backgrounds, who may not be able to
create complex models while designing their application. Therefore, the accessi-
bility of a tool is a key factor in assessing its effectiveness. The work presented
in this paper addresses these issues and is a first step towards filling the gaps.
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3 Background

The formal models presented in this work are expressed through Hybrid Au-
tomata (HA) enriched with a stochastic component, indicated as HA+ in the
rest of the paper. HA are an extension of Timed Automata. In Timed Automata,
time is modeled through variables (clocks), whose value increases linearly with
time unless they are reset [5]. Conditions on clocks govern the transitions between
states. In HA, locations are also endowed with sets of differential equations (flow
conditions) that constrain the derivatives of real-valued variables of the model,
thus allowing for the modeling of systems with complex dynamics [4].
Automata can be organized in networks, where synchronization between different
automata occurs through channels. Given a channel e and two automata with
complementary enabled transitions labelled as e? and e!—whose guards are both
satisfied—the two transitions fire at the same time and the two automata syn-
chronously change their locations. Non-deterministic choices in the model can be
refined by probabilistic distributions. These constitute the stochastic component
of the formalism and are modeled via probabilistic transitions, as exemplified in
Fig. 1. This type of transition is marked with a probability weight, that deter-
mines how much the system will be biased to evolve in a certain direction rather
than its alternatives.
The stochastic component of the formalism enables the application of statistical
techniques, and SMC in particular. As opposed to traditional model checking,
SMC relies on Hypothesis Testing or Estimation to evaluate the probability that
a property holds on paths starting from a generic state s of the system [3]. There-
fore, it does not fully explore the state space, and is feasible also for complex
systems. The properties to be checked are expressed in the PCTL logic, whose
syntax, shown in Table 1, allows us to express quantitative constraints on prob-
abilities through the P≥θ(φ) operator. Given a HA+ automaton and a PCTL
property ψ, the possible outcomes of SMC are: (a) a binary value, 1 or 0, de-
pending on whether P (ψ) ≥ θ holds or not, where P (ψ) is the probability of
ψ holding, and θ is a threshold; or (b) a probability interval to which P (ψ) is
guaranteed to belong. Section 6 presents some examples of SMC experiments.
The features of HA+ are used for the robot and human models presented in
detail in Section 5. In particular, given the emphasis of the work on human
physiology, the model of the human includes differential equations describing the
time-dynamics of fatigue. Although human fatigue can take different forms [21],
at the moment we focus on the physical strain originated from non-stop walking.
According to Konz [23], the alternate fatigue/recovery cycles can be modeled as
exponential curves, as in Eq.1. Low values of coefficients λ and µ mean slower

Fig. 1: Automaton with probabilistic transitions:
0.4 and 0.6 are the probabilities of reaching s2
and s3 starting from s1.

φ ::= a | ¬φ | φ∨φ′ | φ∧φ′
ψ ::= φ | Xφ | φUφ′ | P≥θ(ψ)
a ∈ AP atomic proposition

θ ∈ [0, 1] probability bound

Table 1: PCTL Syntax
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fatigue accumulation and recovery, while F0 corresponds to the value of fatigue
at the start of the current cycle (it is 0 when the human starts walking for the
first time). Full exhaustion corresponds to F (t) = 1, full recovery to F (t) = 0.

F (t) =

{
1− (1− F0)e

−λt (walking)

F0e
−µt (resting)

(1)

Concerning the model of robot velocity, we use the typical trapezoidal veloc-
ity profile [10] with three phases: acceleration, constant maximum speed, and
deceleration. Maximum acceleration amax and maximum velocity vmax are de-
sign parameters of the robot. For the robot battery, we assume an exponential
charge/discharge cycle typical of electronic devices with lithium batteries [29].
Eq.2 shows the battery charge time-dynamics: ρ and σ represent the charge/dis-
charge rates, whereas C0 is the starting charge value for the current cycle. The
times required for a full charge and a full discharge cycle (Tchg and Tdchg) are
known a-priori given the battery model, therefore rates ρ and σ are approximated
with precision ε as in the following: ρ = 1

Tdchg
ln( 100

100−ε ), σ = 1
Tchg

ln( 100
100−ε ).

C(t) =

{
100− (100− C0)e

ρt (discharging)

100− (100− C0)e
−σt (charging)

(2)

4 Approach

The main contribution of this paper is a model-driven approach for the analysis
of human-robot interaction through formal verification. The approach is tailored
to non-industrial settings, and in particular to the healthcare environment. In-
deed, we focus on scenarios in which the volatility of human behavior is at its
peak, which may not be the case for industrial workers who are methodically
trained to perform a set of actions during their shift. Furthermore, modeling
physiology-related aspects is crucial for healthcare applications, since people in
need of a medical service may find themselves in diverse, even critical, physi-
cal conditions. The toolchain is meant to be used by professionals possibly with
some technical background, but not necessarily in robotics or in formal methods.
Hospitals are subject to a tremendous flow of people on a day-to-day basis, and
this requires dedicated professional figures to be efficiently handled. For example,
clinical workflow analysts [26], who design and analyze work shifts for medical
facilities, perfectly fit this profile.
The application designer is in charge of assigning each of the currently requested
services to one of the available robots. Therefore, a group of humans served by
a robot will constitute the atomic operational unit (referred to as the scenario
hereinafter). Serving everybody in the group will constitute the mission, i.e.,
the high-level goal [8], for the robot. The boundaries of the mission also include
any other parameters that, were they to be modified, the overall outcome would
change accordingly, e.g., the enclosed environment where the agents operate or
the robot starting conditions. Through the tool, the designer can try different



6 L. Lestingi et al.

Fig. 2: Diagram representing all the phases of the approach. Different shades of gray in-
dicate the current progress of implementation: the darker phases are fully implemented,
the lighter ones are to be expanded in the future.

configurations until the estimated probability of success is reasonable. Fig. 2 de-
picts the steps of the design process: (i) configuration of the scenario, performed
by the designer; (ii) automated model generation; (iii) execution of the SMC
experiment; (iv) critical assessment of the verification results, followed by appli-
cation deployment if the results are satisfactory, otherwise by model refinement.
In this paper, we focus on the scenario configuration and on the formal model,
whereas the deployment phase will be elaborated in future works.

4.1 Configuration

The user of the toolchain has the option to customize all the parameters of the
scenario depicted in Fig. 3 and described in the following.
A scenario includes Nh humans to be served and a robot from the fleet that

will serve them. Robots are characterized by maximum speed and acceleration
(vmax and amax in Fig. 3) and are each associated with a battery. An association
between a robot and a battery constitutes a robotic system with its own id.
Batteries possess an initial charge value Cstart ∈ [0, 100], and the two parameters
Tchg and Tdchg that determine the duration of full charge/discharge cycles. For
each scenario, it is also essential to model the environment in which services

Fig. 3: Class Diagram of the user-customizable portion of the model.
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Table 2: Human-Robot Interaction Patterns

Pattern Description

Human
Follower

The human follows the robot while the robot moves towards the destina-
tion. Because of free will, the human can decide to walk freely and whether
to follow or not when the robot issues its command. If they get too far,
the robot stops and waits for them.

Human
Leader

The robot follows the human that moves towards the destination (un-
known to the robot). The human is free to start and stop whenever they
want and the robot follows accordingly.

Human
Recipient

The human waits for the robot to fetch an item from a specific location.
While the robot is delivering the object, the human is free to move and
the robot has to track them. Synchronization occurs when the human and
the robot are close and the human stops to pick up the item.

will be carried out. Specifically, the operational environment is modeled as a
two-dimensional layout. The designer may specify the Cartesian coordinates of
specific points of interest—e.g., wall corners and doorposts. The model capturing
robot navigation takes these elements into account to drive the agent towards
their correct destination and to prevent collisions with walls or humans.
Together with robots, humans are a basic component of the scenario that needs
to be configured by the designer. Each human is identified by a unique id that
determines the order in which they will be served. Furthermore, the user can
specify the human’s walking speed v and the destination point dest. A funda-
mental aspect of humans in the scenario is the way in which they are going to
interact with the robot. We have identified a set of patterns for recurrent human-
robot synchronization mechanisms, focusing on a particular subset suitable for
the mobile robots with a predefined set of functionalities covered by our work.
Currently implemented patterns are described in Table 2. Different patterns im-
pact how the system will evolve while a certain service is being carried out and
the condition that the system needs to verify to state that the service has been
provided. As shown in Fig. 3, the designer can specify the parameter p for each
human to set up how the interaction with the robot will play out.
Finally, it is also possible for the designer to customize the physiological traits
of the humans in the scenario through the pf parameter (see Fig. 3). This draws
from a set of profiles that aggregate potential subjects by age and medical condi-
tion. Since the physiological property currently included in the model is fatigue,
particular care is given to conditions that specifically target the respiratory func-
tions of patients, thus their ability to walk. Providing the designer with this
predetermined set of profiles allows them to match the specific individuals from
their scenario with medically recognized significant cases. This also allows them
to save time while designing the application, although the manual specification
of a different set of parameters is still possible if necessary. Referring to the
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model of fatigue introduced in Section 3, different profiles mean different values
for parameters λ and µ. Therefore, they determine the time needed by a spe-
cific subject to reach full exhaustion and full recovery. With this feature, the
professional assessing the results has the guarantee that the physical condition
of the patient has been taken into account while estimating the outcome of the
mission.

4.2 Model Generation and SMC Experiment

The HA+ models are handled as templates customizable by the user. This sub-
set is, indeed, the result of the configuration phase. By doing so, the designer is
only required to arrange the main elements of the application in a user-friendly
format, which is more suited to their technical background than creating formal
stochastic models from scratch. This input is fed to a script that automatically
generates the formal model with the values laid down by the designer. Once the
generation of the model is completed, the tool initiates the verification process.
The user also has the option to choose whether the tool should produce a simu-
lation of the system or estimate the probabilities of the mission ending in failure
or success—i.e., a typical SMC experiment.

4.3 Result Analysis and Refinement

If the user decides to run an SMC experiment, this yields a probability value.
If the probability of success is smaller than a desirable threshold, the user may
refine the model in one of the following ways: (a) reduce the workload of a
robot, for example, if its current battery charge value is not sufficient to carry
out all the requested services; (b) change the order in which humans are to
be served, which could improve the overall efficiency, e.g., by reducing robot
movements between a service and the next one; (c) choose different services to
be included in the scenario; (d) choose a different robot from the fleet, with
different speed/acceleration parameters or with a different battery charge value.
A different robot model may be useful in case the previous one moved too fast for
the human, whereas issues related to the battery may involve complete discharge
before the mission is done.

5 Model

In this section, for each type of component of a scenario (robots, batteries, hu-
mans) we present the corresponding HA+. The model also features an orches-
trator, which plays the pivotal role of managing the synchronization among all
other components through channels (see Section 3). The decisions of the orches-
trator are based on the state of the system. In particular, specific features of the
model capture the behavior of sensors measuring physical properties of the sys-
tem, which drive the decisions of the orchestrator. Each property is modeled via
a dense counter variable that changes over time as a result of update instructions
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on transitions, but does not possess an explicit time-dependency. We also assume
that these sensors periodically repeat the measurement: constant Tpoll captures
the refresh period and clock tupd measures the time elapsed since the last update.
As mentioned in Section 3, the robot movement follows a trapezoidal velocity
profile, whereas the human moves with constant speed. As for human free will,
we have chosen the straightforward approach [15] of modeling it as a random
phenomenon whose behavior is comparable to a Bernoulli variable X. Finally,
to dampen the complexity of the model, we assume that humans are only free to
choose when to start or stop, and not an arbitrary trajectory. Interested readers
can find additional details about the models in Appendix A.

Robot: the HA+ in Fig. 4 represents the three operating conditions of the
robot, corresponding to idleness, motion and battery recharging. We introduce
two time-dependent variables V and rdist that model, respectively, the velocity
of the robot at a generic time instant t and the distance covered since the be-
ginning of the motion. The automaton features locations ridle, rstart, rmov, rstop,
and rrec corresponding, respectively, to: (1) the idleness of the robot with V = 0;
(2) the acceleration phase of the motion, thus V̇ = amax; (3) the travel phase with
constant speed, V = vmax; (4) the deceleration phase with V̇ = −amax; (5) the
battery recharging phase, thus V = 0. In every location, ṙdist = V holds. When
the orchestrator fires the commands to start or stop recharging (bstart and bstop),
if the robot is at the recharging station, the automaton transitions from ridle to
rrec and back. The switch from ridle to rstart takes place when the command to
start moving (rstart) is issued. Similarly, the automaton switches from rmov to
rstop when rstop is fired. It is also possible to start and stop the robot while it
is accelerating or decelerating, so two transitions are added between rstart and
rstop. In location rstart, velocity is increasing linearly from 0 to vmax, thus when
V = vmax the automaton switches to rmov. While decelerating, the robot stays
in rstop as long as V > 0 and goes back to ridle when V = 0. We model as dense
counters the Cartesian coordinates of the robot in space (rposx and rposy ), and
the angle θr for the orientation with respect to the x -axis. On every self-loop,
and on all transitions in Fig. 4 marked with a ξR, the corresponding update
instruction of Table 3 is executed.

Robot Battery: Fig. 5 shows the HA+ representing the behavior of the bat-
tery. The time-dependent variable in the model is the charge value C . The robot

Fig. 4: Robot automaton.
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battery can be in one of three states, modeled by as many locations: discharging
(bdchg), charging (bchg), and fully discharged (bempty) in which case the robot
cannot move autonomously. The constraints on the derivative of charge C stem-
ming from the model introduced in Section 3 are shown in Eq.3.

Ċ =

{
−(100− C0)ρe

ρt (bdchg)

(100− C0)σe
−σt (bchg)

(3)

The switch from bdchg to bchg and vice versa occurs when the orchestrator de-
cides that a robot needs to start/stop recharging, firing events bstart and bstop,
respectively. An additional location bfull is needed to model the case in which
the battery is back to full charge (condition C = 100) and immediately stops
recharging. This happens thanks to the urgent channel bfull [24] that fires as soon
as the automaton enters location bfull. The sampled charge value is modeled by
dense-counter bch, whose update instructions ξBC and ξBD are shown in Table
3 and correspond, respectively, to the charge and discharge operating conditions.

Human-Follower: the model is depicted in Fig. 6. The time-dependent vari-
ables are hdist, which represents the distance covered by the human, and F ,
which corresponds to the value of the fatigue at a generic time instant. Their
temporal dynamics are given in Eq.4: hdist is either constant, or it increases lin-
early with time (with coefficient v, which is the human’s constant speed) when
the human is moving, whereas F adheres to the model in Eq.1.

hidle =

{
Ḟ = −F0µe

−µt

ḣdist = 0
hbusy =

{
Ḟ = F0λe

−λt

ḣdist = v
(4)

The operating conditions modeled for this component are the idleness of the hu-
man (location hidle) or walking (hbusy). The switch from hidle to hbusy, and back,
occurs when the orchestrator orders it or as a result of the human’s free will. In
the first case, the orchestrator fires hstart or hstop. This leads to a probabilistic
transition (the dashed arrows in Fig. 6) whose possible outcomes represent the
human obeying the order, thus reaching the prescribed destination, or disobey-
ing it, thus staying in the same location. The transition is governed by the two
constant weights obey and disobey. In the second case, two additional transitions
between hidle and hbusy capture autonomous decisions as a result of free will:

Fig. 5: Battery automaton.
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Fig. 6: Human-Follower automaton.

Table 3: Update Instructions

ξR :
r′posx := rposx + V (t)Tpollcos(θr) ξH :

h′posx := hposx − vTpollcos(θh)
r′posy := rposy + V (t)Tpollsin(θr) h′posy := hposy − vTpollsin(θh)

ξBC: b′ch := 100− (100− bch)e−σTpoll ξBD: b′ch := 100− (100− bch)eρTpoll

ξHI: h
′
ftg := hftge

µTpoll ξHB: h′ftg := 1− (1− hftg)e−λTpoll

thus, the human fires hstart and hstop. Sample points of the random variableX are
observations of local variable fw . A success is the decision of the human to start
or stop freely and it occurs when fw > FWth, which is the guard condition of the
transitions between hidle and hbusy. FWth is a constant threshold, and variable fw
is updated every Tpoll instants with a random value in range [0,FWmax]. There-
fore, the probability of making an autonomous decision is E[X ] = p = 1− FWth

FWmax
.

If the p-value is close to 1, humans will behave more erratically, and vice versa
if it is close to 0. Location hfaint models the case in which the human is too
exhausted to proceed: it is reached when F ≥ 1, where 1 corresponds to the
maximum value of fatigue, and it causes urgent channel hfaint to fire immedi-
ately. The dense counters are hftg (for the fatigue), and hposx , hposy , θh for the
Cartesian coordinates and orientation of the human with respect to the x-axis.
Table 3 shows the update instructions (ξHI, ξHB) for the fatigue, which adhere
to the model in Eq.4, and also those (ξH) of the position, where hposx , hposy
represent the projections of the displacement since the last update.

Orchestrator: the automaton is displayed in Fig. 7a. The purpose of this com-
ponent is to orchestrate the synchronization among the other agents and drive
the system towards mission accomplishment. This is realized by monitoring the
sensor outputs described in previous sections, and deciding whether the current
state of the system requires a certain event to be fired. We have identified three
operational paradigms implemented by as many sub-machines: r rech controls
the recharging phase of the robot; r move controls the start and the end of the
movement when, based on the interaction pattern between the human and the
robot carrying out the service, it is initiated by the robot; h move controls the
dual case, in which the movement is initiated by the human. The orchestrator
features both r move and h move since both designs can be included in the same
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(a)
(b)

Fig. 7: Orchestrator automaton and 〈op〉 chk〈x〉pattern.

scenario. Sub-machines in Fig. 7a are endowed with ports: these are not part of
the formalism, but a visual representation of the transitions entering and leaving
the component (arrows in and out of a port constitute the same transition).
Figure 8 shows the details of the sub-machines. They are all built using the
〈op〉 chk〈x〉 pattern of Fig. 7b, which includes a location modeling the current
operating condition of the entire system (e.g., orrech , orflw), generically identified
by oop, and a location ochkx

modeling the orchestrator monitoring the state of
the system, where x is a numerical index. Ports highlight the transitions entering
and leaving the pattern sub-component, guarded by γstart, γstop, γfail and γscs,
where each γ condition is associated with a component-specific formula. The
semantics of the pattern is described in the following.
The orchestrator moves to operating condition oop when the corresponding con-
dition γstart is true. The transition from oop to ochkx

is governed by clock tact,
and it periodically occurs every Tint time instants. Upon entering ochkx , the or-
chestrator runs the monitoring routine (ξO of Fig. 8). If condition γstop holds,
the orchestrator moves to the following operating condition—i.e., a different sub-
component—otherwise it goes back to oop. Table 4 shows the guards for each
sub-machine. Locations ofail and oscs of Fig. 7a correspond to the end of the
mission with failure or success, respectively, and are reached when conditions
γfail and γscs hold. Failure occurs if the battery charge drops to 0 (event bdead),
hence the robot cannot recover autonomously, or if the human fatigue exceeds
1 (event hfaint). Location oscs is reached when the mission has been successfully
completed—i.e., when all humans in the scenario have been served.
The first instance of the pattern is idle chk1 in Fig. 7a, which models the

situation in which the system is idle and periodically checks whether an action
can start. The system enters this component first when the execution starts, and
returns to it whenever an action stops (and the corresponding sub-component is
left). Similarly, the orchestrator exits this component if one of the γstart condi-
tions for the other sub-machines is true.
The recharging routine of Fig. 8a starts when a robot is idle and its current
battery charge bch is below a threshold Bth1 . Sub-machine r rech models two
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(a) r rech sub-automaton.

(b) r move sub-automaton. (c) h move sub-automaton.

Fig. 8: Sub-Machines of the Orchestrator automaton.

Table 4: Orchestrator Guard Conditions

γstart γstop

idle chk1 rrech.γstop∨rlead.γstop∨rflw.γstop rmov.γstart∨rlead.γstart∨rflw.γstart
rmov chk2 ridle∧(bch<Bth1) (rposx =RSx)∧(rposy =RSy)

rrech chk3 tact≥Tint (bch>Bth2)∧rrec
rlead chk4 ridle ∧ ¬(hp=1) (hftg>Hth1)∨(bch<Bth1)∨(hsvd∧¬∀hhsvd)

rflw chk5 hbusy ∧ (hp=1) hidle

〈op〉 chk〈x〉 γscs :∀h hsvd γfail : bdead? ∨ hfaint?

operating conditions: the movement of the robot towards the charging station
(rmov chk2), and the robot recharging its battery (rrech chk3). Upon entering
r rech, the orchestrator fires rstart to instruct the robot to reach the charging
station (Cartesian coordinates RSx and RSy), then rstop when the dock has been
reached. Location ostop bridges the two operating conditions and models the de-
celeration phase of the robot (rstop): this is why the orchestrator waits Tint time
instants before moving on, with Tint > vmax/amax. When the robot has stopped
completely, it can start recharging, and the orchestrator fires bstart. The robot
stops recharging, thus bstop is fired, when variable bch is above a threshold Bth2 ,
then the orchestrator switches back to oidle.
The r move sub-machine of Fig. 8b is entered to initiate the robot movement

when the robot is idle and the human is not a leader. Upon entering r move, the
orchestrator fires rstart and hstart since the human is a follower. The only operat-
ing condition modeled by this sub-component is the robot movement (component
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rlead chk4 in Fig. 8b). The robot movement stops (events rstop and hstop fire,
since the human is a follower) if: (a) human fatigue hftg exceeds a maximum
tolerable value Hth1 , or (b) the battery charge drops below a value Bth1 that calls
for recharging, or (c) the human has been served, but they were not the last one.
If the human is a leader and starts moving, hence its automaton is in loca-
tion hbusy, the orchestrator enters sub-machine h move (Fig. 8c). Upon entering
h move, rstart is triggered and the robot starts moving. The only operating con-
dition is the robot following the human, modeled by rflw chk3. The orchestrator
exits h move when the human has stopped, and stops the robot with rstop.
As per Fig. 7a and Fig. 8, failure is possible for all sub-components. Instead,
only r move and h move have outgoing transitions towards oscs, since recharging
the robot has no impact on service provision: this explains why the scs ports in
Fig. 8a are not connected to the outer component.

6 Experimental Results

As previously discussed, use cases are conveniently found within the healthcare
domain, specifically for the purposes of efficient patient flow handling. The ex-
perimental setting chosen to test the approach involves a human patient who
needs to reach a doctor’s office. The mobile robot is aware of the floor plan and
the patient’s characteristics, and it is able to guide the human towards the desti-
nation. When the service is successfully provided, the robot will have achieved its
mission. Instances of classes and attributes of Fig. 3 are provided by the designer
through a JSON file. The portion of the model that is not customizable by the
user is stored in an XML template. The tool automatically processes the input
of the user to generate a verification-ready version of the HA+ model. The tool
selected for the verification is Uppaal and its extension for SMC [11,24]. In this
work we use Uppaal version 4.1.24 to implement the automata, and run SMC
experiments3 with the default set of statistical parameters. Each experiment
yields the probability for mission success: formula P≤τ≥θ (� osuccess) is verified,
with probability bound θ and time-bound τ .
With this experiment, we are able to test how different fatigue profiles impact

the completion of the mission. The experimental setting features a mobile robot
with vmax = 20cm/s, amax = 5cm/s2, with a fully charged battery (Cstart = 100)
and approximately 2.5h of full charge/discharge time (Tchg = Tdchg = 9000s).
Listing 1.2 shows the portion of the JSON file defining these parameters. The
floor plan used for this experiment, depicted in Fig. 9a, reproduces a T-shaped
hallway of a hospital, with doors leading to different offices. The entrance and
starting point for both agents is on the left-end side (coordinates (200, 300)) close
to the charging station (RSx = 250,RSy = 375). Listing 1.3 shows a snippet of
the JSON file defining the coordinates for the points of the layout.
The mission for this robot is to lead a single human to their destination in
(1300, 500). Therefore, the interaction pattern is Human-Follower. To test the

3 On a machine with 128 cores, 515GB of RAM and Debian Linux version 10.
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(a) Floor plan and trajectories. (b) Fatigue curves.

Fig. 9: On the left, the floor layout for Exp A, with initial positions and destination
marked by a ×, and intermediate points by a •. On the right, the fatigue curves for
all the profiles tested in this experiment (colors as in the legend). Location markers
indicate the time each human has reached the corresponding point of the trajectory.

effectiveness of the fatigue-related policies of the orchestrator, we repeat the ex-
periment with three different versions of the human, with different fatigue profiles
and values of walking speed. Listing 1.1 shows how these data are specified. In
the first case, the human is young and in fine health (pf = 1). Their Maximum
Endurance Time (MET)—i.e., how long they can walk non-stop before F = 1—
is approximately 23 minutes (with reference to Eq.1, it leads to λ = µ = 0.005)
and their walking speed is v = 18cm/s. In the second case, the human is an el-
der in good health (pf = 3), with MET = 14min (λ = 0.008, µ = 0.0035) and
v = 8cm/s. In the third case, the human is affected by a severe respiratory dis-
ease (pf = 5, v = 5cm/s) with MET = 4.6min (λ = 0.025, µ = 0.001).

Listing 1.1: Humans

1 "humans":[

2 {"id": 1,

3 "v": 5,

4 "p": "follower",

5 "p_f": 5,

6 "dest": {
7 "x": 1300,

8 "y": 500}},[..]]

Listing 1.2: Robot

"robots": [

{"id": 1,

"v_max": 20,

"a_max": 5,

"c_start": 100,

"T_chg": 9000,

"T_dchg":9000},
[..]]

Listing 1.3: Floor Plan

"floorPlan": [

{"name":"HALL1",
"x": 200,

"y": 400},
{"name":"HALL2",
"x": 1200,

"y": 400},
[..]]

For the first case study, we have verified through the tool that P (� osuccess) ∈
[0.717, 0.817] with τ = 300s. With the second setting, the property that has
been verified is P (� osuccess) ∈ [0.8, 0.9] with τ = 300s, and in the last case
P (� osuccess) < 0.098 with τ = 1000s. Furthermore, a simulation trace with
τ = 2000s has also been produced for each test case. These results prove that in
the first two cases the destination can be reached in approximately 5min with a
high degree of confidence. In the last case, instead, it is practically impossible to
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Table 5: Experiments Performance Data

Exp. States Time [min] Virtual Memory [KiB] Resident Memory [KiB]

pf = 1 212570 ≈ 1 166488 120800
pf = 3 391311 ≈ 1.5 166484 122376
pf = 5 2927009 ≈ 11.5 166484 123068

complete the mission even in 16min. The reason behind this result is highlighted
by the simulations in Fig. 9: Fig. 9a shows the trajectories of the two agents,
whereas Fig. 9b shows the fatigue curves for the three test cases and the time
instants in which the destination or intermediate points of the trajectory have
been reached within the simulation. The orchestrator commands every agent to
stop walking if human fatigue exceeds a certain threshold, set to Hth1 = 0.9. In
the last test case, motion stops at t = 200s, it resumes at t = 1200s when fatigue
drops to an acceptable value (Hth2 = 0.3) and stops again at t = 1400s when
the destination is yet to be reached. This behavior is caused by the orchestrator
trying to prevent human exhaustion, which inevitably slows down the entire mis-
sion. In the other two cases, thanks to the different pf parameter values, when
the human reaches the destination the value of fatigue is still acceptable, thus
they are not stopped by the orchestrator.
Performance data for each experiment can be found in Table 5. The experiment
demonstrates how the tool can predict the outcome of the mission for various
scenarios with little effort on the designer-side. Moreover, it constitutes a prelim-
inary step towards assessing the soundness of the models presented in Section 5,
specifically the ability of the orchestrator to enable corrective actions if required
by the state of the system.

7 Conclusion

We have presented a model-driven approach for the verification, through SMC,
of human-robot interactions in healthcare scenarios. There are two main future
development directions for the approach presented here. The model can be en-
riched with new interaction patterns to widen the range of applications that can
be assessed. It is also possible to refine the model of human behavior by creating
a correlation between environmental factors and the likelihood of autonomous
decisions, which are a purely random phenomenon in the current version of the
work. The maximum degree of scenario flexibility could also be enhanced by
having the human and the robot dynamically shift from one pattern to another
in particular situations as a result of the orchestrator’s policies. We envisage
the creation of a Domain-Specific Language that designers can use to model
the mission, with finer-grained details and a richer set of physiological factors.
Simultaneously, we plan on developing the deployment phase of the toolchain.
Through a code generation procedure, the orchestrator could be transformed into
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executable code to be deployed on real mobile platforms. This would allow us
to test if the robot can effectively accommodate real people’s needs and comply
with the human-oriented nature of the work. The deployment-ready controller
could also be simulated in a 2D/3D environment: beyond the testing purposes,
this could also help professionals with a different or non-technical background
in visualizing the potential capabilities of the approach.
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Appendix A Additional Models

A.1 Human-Leader Model

Fig. 10: Human-Leader automaton.

The automaton modeling the second pattern in Table 2 is depicted in Fig.
10. Operating conditions, time-dependent variables and dense counters are the
same as the ones described for the Human-Follower pattern in Section 5. In
this pattern, the human is leading the task, thus they are in charge of checking
when the task is complete, and, in that case, end it. This checking mechanism
is modeled by location hchk. The automaton enters this location every time the
value of clock tupd equals Tpoll. The model includes a boolean variable hsvd,
which has value 1 when the service requested by human h has been provided,
0 otherwise. Upon entering location hchk, the automaton checks whether the
destination has been reached or not (update indicated by χ in Fig. 10). If this
is the case, hsvd is set to true, hstop is triggered and the automaton switches
back to hidle. Otherwise, the automaton returns to hbusy and the human keeps
walking. If the human is a leader, their free will manifests itself by stopping even
if the destination is yet to be reached, which is modeled through a transition
from hbusy to hidle, with the guard condition fw > FWth. Free will is modeled
as described in Section 5. Similarly, what is stated about update instructions in
Table 3 for the Human-Follower pattern stands correct for this pattern as well.

A.2 Human-Recipient Model

Fig. 11 represents the automaton for the Human-Recipient pattern. Locations
hidle and hbusy model the same situations described for the previous two patterns.
In this case, there is an additional contingency corresponding to the moment in
which the human collects the item from the robot, modeled by location hrec. This
occurs when the robot has fetched the item and reached the human location: at
this point, the orchestrator triggers hstart to prompt the synchronization. Event
hstop is then triggered to signal the end of the task. Free will is also taken into
account for this pattern, with the same characteristics described in Section 5. The
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Fig. 11: Human-Recipient automaton.

human can freely decide to walk or stop while the robot is fetching the object.
Therefore, two transitions are added between hidle and hbusy, enabled by the
condition fw > FWth, which trigger events hstart and hstop. All variables (time-
dependent, dense counters and parameters) have the same semantics described
for the first pattern.

Appendix B Additional Experiments

The additional experimental setting, presented in the following, demonstrates
how the two patterns in Appendix A work in practice, and how the robot bat-
tery is managed by the orchestrator. The floor layout is the same as in Fig. 9a.
In this case study, the robot needs to serve two humans: one adhering to the
Human-Recipient (see A.2) pattern, and one to the Human-Leader pattern
(see A.1). The specific parameters for the first human are: v = 15cm/s, pf = 3
and dest = (1250, 100). Since this is a recipient pattern, in this case the dest
parameter represents the location of the item needed by the human. For the
second human, they are: v = 10cm/s, pf = 1 and dest = (1250, 500). The robot
has the same characteristics as the one used for the experiment in Section 6, but
we are going to run two versions of the experiment: one with Cstart = 100% and
one with Cstart = 11%.
The experiments are run on the same machine used for the experiment in Sec-
tion 6, with the same version of Uppaal and the same statistical parameters.
Performance data can be found in Table 6.

Fig. 12 and Fig. 13 show two simulation traces, one for each value of Cstart.
When the battery is fully charged, the robot immediately moves towards the
location of the object to fetch and then returns to the location of the first hu-
man, who never moves from the starting point (Fig. 12a). As in Fig. 12a, the

Table 6: Experiments Performance Data

Exp. States Time Virtual Memory [KiB] Resident Memory [KiB]

Cstart = 100% 1138343 ≈ 4.5min 166972 126304
Cstart = 11% 75339267 ≈ 6.5hr 166968 124752
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(a) First human served (recipient).

(b) Second human served (leader).

Fig. 12: Simulation trace of the experiment with Cstart = 100%: robot trajectory is in
both plots, human 1 is in (a) and human 2 in (b).

first human is served (hsvd = 1) at t = 150s. Fig. 12b shows the behavior of the
second interaction pattern: since the second human is a leader, they immediately
start moving as soon as their turn comes. The robot follows and, when it ends
up ahead of the human (e.g., t ≈ 190s), it steps back and resumes the trailing.
The whole mission ends successfully after approximately 270s (see Fig. 12b).
In the second case with low battery charge, the robot initially starts moving
towards the location of the object, but, as soon as bch < Bth1

, with Bth1
= 10%,

the orchestrator orders it to stop and start moving towards the recharge sta-
tion instead. This is allowed since the human is a recipient, thus the robot is
entitled to start and stop the action whenever necessary. The recharging phase
lasts until bch > Bth2

, with Bth2
= 70% for this experiment (t = 1400s), as in

Fig. 13c. When the battery has sufficiently recharged, the robot resumes all its
operations: it fetches the item from point (1250, 100), brings it to the first hu-
man (t ≈ 1600s), then follows the second human to the destination. The whole
mission ends successfully at t ≈ 1700s.
The verified property in both cases is P≤τ≥θ (� osuccess). With Cstart = 100%, the
property is verified with τ = 500s and θ = 0.9. With Cstart = 11%, we have
verified that P (� osuccess) ∈ [0.4, 0.5] with τ = 2000s.
The experiment demonstrates how the orchestrator successfully manages the
battery recharge policy to prevent the failure of the mission, even though this
causes a general slowdown in service provision.
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(a) First human served (recipient).

(b) Second human served (leader).

(c) Robot battery charge and human 2 fatigue.

Fig. 13: Simulation trace of the experiment with Cstart = 11%: robot trajectory is in
both plots, human 1 is in (a) and human 2 in (b), battery charge and fatigue of human
2 in (c).
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