
End-to-End Verification of Initial and Transition
Properties of GR(1) Designs in SPARK?

Laura R. Humphrey1, James Hamil2, and Joffrey Huguet3

1 Air Force Research Laboratory, WPAFB, OH 45433, USA
laura.humphrey@us.af.mil

2 LinQuest Corp., Beavercreek, OH 45431, USA
james.hamil.ctr@us.af.mil

3 AdaCore, F-75009 Paris, France
huguet@adacore.com

Abstract. Manually designing control logic for reactive systems is time-
consuming and error-prone. An alternative is to automatically gener-
ate controllers using “correct-by-construction” synthesis approaches. Re-
cently, there has been interest in synthesis from Generalized Reactiv-
ity(1) or GR(1) specifications, since the required computational complex-
ity is relatively low, and several tools exist for synthesis from GR(1) spec-
ifications. However, while these tools implement synthesis approaches
that are theoretically “correct-by-construction,” errors in tool implemen-
tation can still lead to errors in synthesized controllers. We are therefore
interested in “end-to-end” verification of synthesized controllers with re-
spect to their original GR(1) specifications. Toward this end, we have
modified Salty – a tool that produces executable software implementa-
tions of controllers from GR(1) specifications in a variety of programming
languages – to produce implementations in SPARK. SPARK is both a
programming language and associated set of verification tools, so it has
the potential to enable the “end-to-end” verification we desire. In this
paper, we discuss our experience to date using SPARK to implement con-
trollers and verify them against a subset of properties comprising GR(1)
specifications, namely system initial and system transition properties.
We also discuss lessons learned about how to best encode controllers syn-
thesized from GR(1) specifications in SPARK for verification, examples
in which verification found unexpected controller behaviors, and caveats
related to the interpretation of GR(1) specifications.

Keywords: Reactive synthesis · end-to-end verification · functional ver-
ification.

1 Introduction

Reactive systems must be capable of correctly responding to various inputs,
e.g. originating from human users or events in the system’s operational envi-

? Supported by AFRL contract FA8650-16-C-2642 and AFOSR grant RQCOR20-35.
Distribution Statement A. Approved for public release: distribution unlimited. Case
#88ABW-2020-0649.

2 L. Humphrey et al.

ronment. The process of manually designing the control logic for such systems
is both time-consuming and error prone. An alternative is to use “correct-by-
construction” synthesis approaches to automatically generate a system’s control
logic directly from specifications, which can reduce both the amount of time
needed for design and the likelihood of errors [1], [8], [10], [14]. In general, syn-
thesis is the process of automatically generating a design from a specification.
More specifically, reactive synthesis approaches generate designs in the context
of an uncontrolled environment, assumptions about which are encoded in the
specification. Reactive synthesis approaches tend to have high computational
complexity, so there is particular interest in synthesis from Generalized Reactiv-
ity(1) or GR(1) specifications, the complexity of which is only polynomial in the
size of the game graph encoded by the specification [3]. Synthesis from GR(1)
specifications has been used to generate digital circuits [5] and controllers for
teams of unmanned vehicles [2], ground robots [13], software-defined networks
[16], and aircraft power distribution systems [18], to name a few.

GR(1) is a fragment of linear temporal logic. A GR(1) specification ϕ takes
the form ϕ = ϕe → ϕs, where ϕe encodes assumptions about the environment
in which a system is to operate, and ϕs encodes guarantees the system should
make under those assumptions [6]. More specifically, ϕ takes the form ϕ =
(ϕe

i ∧ ϕe
t ∧ ϕe

l) → (ϕs
i ∧ ϕs

t ∧ ϕs
l), where ϕe

i and ϕs
i are initial properties, ϕe

t and
ϕs
t are transition or safety properties, and ϕe

l and ϕs
l are liveness properties.

For inputs in the set I controlled by the environment and outputs in the set O
produced by the system, terms are defined as:

ϕe
i , ϕ

s
i - Boolean formulas over I and O, respectively, that characterize the

initial state of the environment and system.
ϕe
t , ϕ

s
t - Formulas of the form

∧
j∈J �Bj , where each Bj is a Boolean com-

bination of variables from I ∪ O and expressions of the form ,v,
where v ∈ I for ϕe

t and v ∈ I ∪ O for ϕs
t . These encode properties

that should always hold as well as rules for how inputs and outputs
are allowed to change based on most recent input and output values.

ϕe
l , ϕ

s
l - Formulas of the form

∧
j∈J �♦Bj , where each Bj is a Boolean formula

over I ∪O. These encode properties that should hold infinitely often.

In this context, the temporal operators � “always,” ♦ “eventually,” and ,
“next” have the following meanings. A formula of the form �b holds if b is true
at every time step, ♦b holds if b is eventually true at some future time step, �♦b
holds if b is true infinitely often in the future, and ,b holds if b is true at the
next time step. It is assumed that at each time step, the environment chooses an
input from I, then the system chooses an output from O in response. Synthesis
from GR(1) specifications can therefore be viewed as a two-player game between
the system and the environment, where the goal is for the system to satisfy ϕs

as long as the environment satisfies ϕe. If this goal is achievable, then we say
the specification is realizable, and the result is a control protocol or strategy for
the system that can be expressed as a Moore machine.

Several tools for synthesis from GR(1) specifications are available. For ex-
ample, RATSY [4] has a focus on circuit design and synthesizes designs encoded

End-to-End Verification of GR(1) Designs in SPARK 3

in BLIF, Verilog, and HIF. Similarly, Anzu [12] produces circuit designs in Ver-
ilog. LTLMoP [9] is focused on control of robots modeled as hybrid systems,
and it synthesizes designs as hybrid controllers with handler modules to help
connect controllers to simulated or real-world systems. TuLiP [17] has a simi-
lar focus and can synthesize controller implementations in Python. Slugs [6] is
architected to allow users to tailor synthesis algorithms, e.g. to optimize crite-
ria such as quick response, cost-optimality, and error-resilience, and it produces
mathematical representations of controller designs. Salty [7] provides a front-end
to Slugs that makes specifications easier to write and debug and a back-end that
turns controller designs into executable software implementations in a variety
of programming languages, including Python, C++, Java, and now SPARK.
Though all of these tools implement synthesis algorithms that are theoretically
“correct-by-construction,” tool implementation errors could still result in errors
in synthesized controllers. We are therefore interested in “end-to-end” verifica-
tion of such controllers. Toward this end, we have extended Salty to produce
software implementations of synthesized controller designs in SPARK.

SPARK, which is based on the Ada programming language, is both a pro-
gramming language with a specification language and an associated verification
toolset [11]. Though SPARK aims to perform fully automated verification, man-
ual adaptation of the source code is in general necessary. For example, if one were
to translate source code originally written in Ada to SPARK, one would have to
remove unsupported features such as functions with side-effects, aliased variable
names, exception handlers, etc. Formal verification of user-specified properties
also requires manually writing specifications at the level of the source code in
the form of contracts, e.g. preconditions and postconditions that summarize the
assumptions and guarantees provided by individual subprograms.

There are different levels to which one can use SPARK to verify a program
[15]. Generally, the level of verification performed during development is incre-
mental, going from lowest to highest. Verification at the lowest level, colloquially
referred to as stone level, is achieved when code is accepted by SPARK, since
SPARK has stricter legality rules than Ada. Verification at the bronze level is
achieved when flow analysis returns with no error; flow analysis checks for errors
such as reads of uninitialized data or violations of user-specified data flow con-
tracts. Verification at the silver level ensures that there will be no runtime errors
when executing the program, e.g. division by zero or numeric overflow/under-
flow. Verification at the gold level consists of verifying key user specifications,
such as type invariants and subprogram preconditions and postconditions; how-
ever, at this level, the specifications only partially specify the desired behavior
of the code. Verification at the platinum level consists of verifying a complete set
of specifications. At the moment, the SPARK code generated by Salty proves at
gold level. In particular, SPARK is able to prove the system initial and system
transition portions of the original GR(1) specification, where proof of system
transition properties requires also proving a type invariant on the underlying
Moore machine representation of the controller; this type invariant encodes that
each state is reached by a specific set of input values and produces a specific set

4 L. Humphrey et al.

of output values. Platinum level would be reached if the liveness properties were
expressed and proved, which we leave for future work.

In what follows, in Section 2 we describe the structure of synthesized con-
troller implementations in SPARK by walking through a simple example in-
volving a traffic light. To evaluate whether verification of synthesized SPARK
controllers is feasible and has utility, we collected a corpus of examples from
various sources. In Section 3, we take a detailed look at one of these examples,
a controller that coordinates the actions of a team of unmanned air vehicles
performing an escort mission, and we describe how SPARK revealed an error in
the controller’s specification. In Section 4, we give an overview of results for the
rest of the examples, with a focus on scalability. In Section 5, we discuss lessons
learned, including how to best structure synthesized controllers for proof. We
end with concluding remarks in Section 6, including a discussion of future work.

2 Implementation and Verification of Synthesized
Controllers in SPARK

We have extended the open source tool Salty4 to produce software implemen-
tations of controllers synthesized from GR(1) specifications in SPARK. Given
a GR(1) specification in Salty format, Salty does some preprocessing to sanity
check, optimize, and translate the specification to Slugs format. Salty then calls
Slugs to synthesize a controller design. Slugs provides the option of returning the
controller design as a Moore machine expressed in text format, which is what
Salty uses to create an executable software implementation of the controller.
This Moore machine encodes all the states of the controller. It also encodes the
transition relation between states, i.e. the controller’s next state given the cur-
rent state and the next set of input values. Every state then encodes a set of
output values to be produced each time the controller transitions to that state.
As in all Moore machines, each state produces exactly one set of output values.
Controllers synthesized from GR(1) specifications have the additional property
that for each state, there is a unique set of input values that brings the controller
into that state, regardless of what the previous state was.

If SPARK is chosen as the target programming language, Salty translates
this textual Moore machine representation of the controller to an implementa-
tion in SPARK. To give a brief overview, the Moore machine representing the
controller is encoded as a record (analogous to a struct in C) that stores the
controller’s current state and a copy of the current input and output values, i.e.
the values associated with the most recent transition. There is then a “move”
procedure that implements the transition relation. This procedure changes the
controller’s state based on the next set of input values, produces the next set of
output values, and updates its internal copy of current input and output values
based on these most recent input and output values. Salty also synthesizes all
of the annotations necessary to encode the specifications of interest and verify

4 https://github.com/GaloisInc/salty/

End-to-End Verification of GR(1) Designs in SPARK 5

that the controller satisfies those specifications. In terms of specifications, we
seek to prove that the controller satisfies the system initial properties ϕs

i and
system transition properties ϕs

t . Recall that GR(1) specifications take the form
(ϕe

i∧ϕe
t∧ϕe

l) → (ϕs
i∧ϕs

t∧ϕs
l). Note however that for controllers synthesized from

GR(1) specifications, system initial and transition properties should hold regard-
less of whether environment liveness properties hold. We are therefore interested
in showing that (ϕe

i ∧ ϕe
t) → (ϕs

i ∧ ϕs
t). For the SPARK implementation, Salty

therefore generates functions corresponding to ϕe
i and ϕe

t , which are used in the
precondition for the move procedure. It also generates functions corresponding
to ϕs

i and ϕs
t , which are used in the postcondition for the move procedure. If

SPARK can verify that the move procedure satisfies the postcondition given the
precondition, this verifies (ϕe

i ∧ ϕe
t) → (ϕs

i ∧ ϕs
t). In terms of additional anno-

tations needed to prove this property, Salty generates “state to input mapping”
and “state to output mapping” functions that encode which input and output
values are associated with each state; these are used to define a type invariant
on the controller. This is essentially all that is required to prove system initial
and system transition properties of synthesized controllers in SPARK.

To understand synthesized SPARK controllers and annotations in more de-
tail, consider a simple example involving a traffic light controller. Let the con-
troller’s single input be tick. Color changes occur in every state in which tick is
true. The traffic light’s color cycles infinitely over the sequence red → green →
yellow → red → Let the output variables then be red, yellow, and green.
The environment specifications are ϕe

i = >, ϕe
t = >, ϕe

l = �♦tick, i.e. tick can
be true or false in the initial state and has no constraints on how it transitions
from state to state, but it must be true infinitely often. The system initial and
liveness specifications are ϕs

i = red ∧ ¬yellow ∧ ¬green and ϕs
l = �♦green, i.e.

the light starts as red but should infinitely often be green. The system transition
specification is

�(,((red ∧ ¬yellow ∧ ¬green) ∨ (¬red ∧ yellow ∧ ¬green) ∨ (¬red ∧ ¬yellow ∧ green)) ∧ (1)

(red ∧ ,tick → ,green) ∧ (green ∧ ,tick → ,yellow) ∧ (yellow ∧ ,tick → ,red) ∧ (2)

(red ∧ ,¬tick → red) ∧ (green ∧ ,¬tick → green) ∧ (yellow ∧ ,¬tick → yellow)) (3)

That is, the light should only be one color at a time (1); the color should change
from red → green → yellow → red → . . . whenever tick is true (2); and the color
should remain the same whenever tick is false (3).

In SPARK, subunits consist of a specification and a body. The package spec-
ification for this traffic light example is shown in Figure 1. Type Controller

encodes a Moore machine representing the synthesized controller. In the public
part of the specification, Controller (line 2) is declared as a private type so
that the user cannot arbitrarily manipulate its state. In the private part of the
specification, Controller (lines 33-37) is a record that stores the controller’s
internal state number, current input value(s), and current output value(s). The
internal state number is always initialized to the last possible state number,
i.e. the largest value for State_Num; this “controller initialization” state en-
codes the status of the controller before any inputs are received, and the only

6 L. Humphrey et al.

1 package Tra f f i cL i gh t with SPARK Mode i s
2 type Cont ro l l e r i s private ;
3
4 type System i s record
5 red : Boolean ; ye l low : Boolean ; green : Boolean ;
6 end record ;
7
8 function I s I n i t (C: Cont r o l l e r) return Boolean ;
9 function Env In i t (t i c k : Boolean) return Boolean i s (True) ;

10 function Sy s I n i t (S : System) return Boolean i s
11 (S . red and not S . ye l low and not S . green) with Ghost ;
12
13 function Env Trans (C: Cont r o l l e r ; t i c k : Boolean) return Boolean
14 with Pre => (not I s I n i t (C)) ;
15 function Sys Trans (C: Cont r o l l e r ; t i c k : Boolean ; S : System)
16 return Boolean with Pre => (not I s I n i t (C)) , Ghost ;
17
18 procedure Move(C: in out Cont ro l l e r ; t i c k : in Boolean ; S : out System)
19 with
20 Pre => (i f I s I n i t (C) then Env In i t (t i c k) else Env Trans (C, t i c k)) ,
21 Contract Cases =>
22 (I s I n i t (C) => Sy s I n i t (S) and (not I s I n i t (C)) ,
23 others => Sys Trans (C’ Old , t i ck , S) and (not I s I n i t (C))) ;
24
25 private
26 function State To Input Mapping (C: Cont r o l l e r) return Boolean
27 with Ghost ;
28 function State To Output Mapping (C: Cont r o l l e r) return Boolean
29 with Ghost ;
30
31 subtype State Num i s I n t eg e r range 1 . . 7 ;
32
33 type Cont ro l l e r i s record
34 State : State Num := State Num ’ Last ; t i c k : Boolean ; S : System ;
35 end record
36 with Type Invar iant => (State To Input Mapping (Cont r o l l e r) and
37 State To Output Mapping (Cont r o l l e r)) ;
38
39 end Tra f f i cL i gh t ;

Fig. 1. SPARK specification for a traffic light controller.

transition(s) out of this state are those allowed by ϕe
i . In this example, each

input and output is of type Boolean. (Salty also allows for enumerations and
integers, to be discussed later.) When there are multiple inputs or outputs,
they are wrapped in a record of type Environment (not used here) or System

(lines 4-6), respectively. There is only one input in this example, so it is not
wrapped in a record, which is why there is no Environment record in Fig-
ure 1. Since Controller is a Moore machine, for each internal state, there
is exactly one set of output values produced in that state. Furthermore, re-
call that controllers synthesized from GR(1) specifications have the additional
property that there is exactly one set of input values that brings the con-
troller into each state. Controller therefore includes a type invariant (lines
36-37) that captures this property, where functions State_To_Input_Mapping

and State_To_Output_Mapping evaluate whether the controller’s state corre-
sponds to the expected input and output value(s), respectively. Both of these
functions are declared (lines 26-29) with aspect Ghost, indicating that they are

End-to-End Verification of GR(1) Designs in SPARK 7

intended mainly for proof purposes, i.e. they will create verification conditions
related to type Controller but will not be executed in the actual program,
unless it is specified during compilation that they should be. Executing ghost
code is often used for debugging, e.g. to check an unproved property through
testing. In this case, removing the ghost code can save significant memory,
since State_To_Input_Mapping and State_To_Output_Mapping internally en-
code large lookup tables that have to store information on every state of the
controller, which is often thousands of states or even millions of states for the
largest example in our database. The logic for these functions is given in the body
(not shown), but for instance when C.State = 1, State_To_Input_Mapping(C)
returns True if and only if C.tick = False, since tick being false brings the sys-
tem into state 1; and State_To_Output_Mapping(C) returns True if and only
if C.S = System’(red => True, yellow => False, green => False), since
red is true and yellow and green are false in state 1.

The public function Is_Init (line 8) checks whether the controller is in its
initialization state, i.e. no inputs have yet been received. The public function
Env_Init (line 9) checks whether input(s) satisfy ϕi

e. It is implemented as an
expression function, i.e. the implementation is given directly in the specifica-
tion, because all terms needed to define it are visible in the public part of the
specification. In this example, since ϕi

e = > in the Salty specification, this au-
tomatically generated function always simply returns True. The public function
Sys_Init (lines 10-11) checks whether outputs(s) satisfy ϕi

s. It is implemented
as an expression function for the same reason. From the Salty specification,
ϕs
i = red ∧ ¬yellow ∧ ¬green, so this function returns the value of the ex-

pression S.red and not S.yellow and not S.green. But unlike Is_Init and
Env_Init, it is marked with aspect Ghost because it is mainly used for proof
and does not need to be executed. Is_Init and Env_Init are used for proof but
are also callable in functional code. We chose to make these functions non-ghost
functions for reasons related to the meaning of GR(1) specifications. Recall that
GR(1) specifications have the form ϕe → ϕs. If ϕe ever becomes false, i.e. if the
environment produces input value(s) that violate ϕe, then the specification as a
whole is satisfied regardless of whether the system produces output value(s) that
satisfy ϕs. In theory, the system could then produce arbitrary outputs and still
satisfy the overall specification. In practice, we believe a user would generally
want to know that the environment violated its specification, so that the user
could either choose the system output value(s) explicitly or fall back to some
other routine. Therefore, a user needs to be able to check inputs with Env_Init

if Is_Init returns true, which is why both are callable. At the moment, they
are not used in the code of the Move procedure. Public functions Env_Trans

and Sys_Trans (lines 13-16) check whether the next set of input value(s) and
output value(s) satisfy ϕt

e and ϕt
s, respectively. For the same reasons as above,

Sys_Trans is a ghost function but Env_Trans is not. Note that Env_Trans has
a precondition that the controller must not be in its initialization state, since ϕt

e

can depend on both the current and next set of input value(s). This precondition
is similarly necessary for Sys_Trans, since it can depend on both current and

8 L. Humphrey et al.

next input and output value(s). As with Env_Init and Sys_Init, the logic for
these functions is synthesized from the Salty specification and implemented in
the body (not shown), since they make use of input and output values stored in
the Controller, whose fields are private.

The public procedure Move (lines 18-23) transitions the Controller based
on its current internally stored values (i.e. state number and most recent input
and output values) and next set of input value(s), and it produces the next set of
output value(s). It has a precondition that if Controller is in its initialization
state (i.e. it has not yet received any inputs), inputs must satisfy ϕi

e; otherwise
they must satisfy ϕt

e. The aspect Contract_Cases specifies additional sets of
preconditions paired with postconditions, where the set of all preconditions must
be mutually exclusive and exhaustively cover the entire input space. The others
keyword can be used to cover the set of all input conditions not covered in any
explicit cases of the contract. Note that for the left-hand side of each case (i.e.
left of =>), variable names refer to values before evaluation of the subprogram; for
the right-hand side, they refer to values after evaluation. Therefore, the aspect
Old can be used on the right to reference the value of a variable before evaluation
of the subprogram. Combined with the previous precondition, Contract_Cases
asserts that if the controller is in its initialization state, then after execution
of Move, the first set of output value(s) produced should satisfy ϕi

s and the
controller should no longer be in its initialization state. If the controller is not
in its initialization state, then the output value(s) produced should satisfy ϕt

s,
which is evaluated based on the most recent input and output values stored in
C’Old, the next input value(s) just provided (in this case stored in tick), and
the next output values just generated (in this case stored in the record System).
This set of contract cases embodies our main proof goal, i.e. verification of system
initial and transition properties from the original GR(1) specification.

A fragment of the body of Move is shown in Figure 2. Note that there are
cases that can lead to Program_Error. This is because case statements require
all possible cases to be covered, so we programmatically use others to cover all
possible input combinations that would not be allowed due to ϕi

e or ϕt
e. In the

traffic light example, these are unnecessary because all possible combinations
of input values are allowed out of each state. In any case, SPARK will prove
that such cases are not reachable if the preconditions of Move are met, i.e. if the
environment satisfies its specification.

We briefly note that Salty includes language features that can result in dif-
ferent constructs being used to represent inputs and outputs in synthesized con-
trollers, including enumerations and integers. For instance, enumerations encode
that an enumerated input or output can have exactly one of a set of values at a
time, as in the traffic light being exactly one color as expressed in ϕi

s and part
(1) of ϕt

s. In such cases, enumerations or integers can make both specifications
and code more compact and easier to read and understand. As a technical aside,
during synthesis, enumerations and integers are translated to a bit vector repre-
sentation along with additional initial and transition specifications that encode
properties inherent to these types, such as values being mutually exclusive and

End-to-End Verification of GR(1) Designs in SPARK 9

procedure Move(C: in out Cont ro l l e r ; t i c k : in Boolean ; S : out System) i s
begin

case C. State i s
when 1 =>

case t i c k i s
when False =>

C. State := 1 ;
C. S . red := True ; C. S . ye l low := False ; C. S . green := False ;

when True =>
C. State := 3 ;
C. S . red := False ; C. S . ye l low := False ; C. S . green := True ;

when others =>
raise Program Error ;

end case ;
. . .

when 7 =>
case t i c k i s

when False =>
C. State := 1 ;
C. S . red := True ; C. S . ye l low := False ; C. S . green := False ;

when True =>
C. State := 2 ;
C. S . red := True ; C. S . ye l low := False ; C. S . green := False ;

when others =>
raise Program Error ;

end case ;
end case ;
C. t i c k := t i c k ; S := C. S ;

end Move ;

Fig. 2. The body of the Move procedure.

rules for addition and subtraction over integers. Once synthesis is complete, val-
ues are translated back to their original enumeration or integer representation.

3 Example Controller for a Team of UAVs

In order to evaluate the feasibility and utility of our approach, we collected
GR(1) specifications from a variety of sources. This includes the Salty repos-
itory, which contains examples of GR(1) specifications for control of teams of
unmanned air vehicles (UAVs) performing different missions. One of these en-
codes the rules for a “VIP Escort” mission, in which one UAV is designated as
a “very important person” (VIP) that must always be “escorted” by a friendly
surveillance UAV when it moves, and it must also be protected from an “en-
emy” UAV. The VIP and surveillance UAVs are controlled by the system, while
the enemy UAV is controlled by the environment. The mission map contains
regions that the UAVs can move between. “Escorting” consists of ensuring that
1) the VIP only enters regions previously visited by a surveillance UAV and 2)
whenever the VIP changes regions, a surveillance UAV “tracks” it, i.e. moves
with it between regions. “Protection” consists of ensuring that the VIP is never
in the same region as the enemy UAV. Additional rules include constraints and
liveness requirements on how the UAVs can move between regions and which
regions they start in.

10 L. Humphrey et al.

Fig. 3. A VIP escort multi-UAV mission as simulated in OpenAMASE using a Salty-
synthesized controller that issues commands to the UAVs through OpenUxAS.

A particular instantiation of this mission is shown in Figure 3, as depicted
in the open source Aerospace Multi-Agent Simulation Environment (OpenA-
MASE)5. It includes the VIP, two surveillance UAVs numbered 1 and 2, one
enemy UAV, and five regions numbered 1 to 5. Environment inputs include in-
teger variable loce ∈ {1 . . . 5}, which encodes the current region of the enemy
UAV, and Boolean variables sri for i = {1 . . . 5}, where sri is true if and only if
region i has been visited at some point by a surveillance UAV. System outputs
include integer variables locv, locs1, locs2 ∈ {1 . . . 5}, which indicate the current
region of the VIP and surveillance UAVs 1 and 2, and Boolean variables vTrack1
and vTrack2, which indicate whether surveillance UAVs 1 and 2 are executing a
behavior to follow the VIP. Note that low-level control, e.g. waypoint planning
and sensor steering, is implemented by the open source Unmanned Systems Au-
tonomy Services (OpenUxAS)6. The controller synthesized by Salty implements
high-level decision logic, and OpenUxAS monitors the state of the controller and
translates its current output values to a set of UAV commands that are simu-
lated in OpenAMASE. For example, when locv changes value to 2, OpenUxAS
commands the VIP to follow a path from its current region to region 2, or when
vTrack1 changes from false to true, OpenUxAS commands surveillance UAV
1 to fly next to the VIP. The high-level controller synthesized by Salty makes
some assumptions about the low-level behaviors implemented by OpenUxAS,
in this case, mainly that all UAVs move at the same speed and transition to
new regions at the same time. A workflow for connecting Salty-implemented
controllers with OpenUxAS and OpenAmase is described in [7], and all of the
scripts, configuration files, etc. needed to run this example are available on the
Salty repository.

5 https://github.com/afrl-rq/OpenAMASE
6 https://github.com/afrl-rq/OpenUxAS

End-to-End Verification of GR(1) Designs in SPARK 11

For this mission, the GR(1) specifications for the environment are:

ϕi
e = (loce = 4) ∧ ¬sr1 ∧ ¬sr2 ∧ sr3 ∧ ¬sr4 ∧ sr5 (4)

ϕt
e =

∧
i={1...5}

�
(

(locs1 = i) ∨ (locs2 = i)→,sri
)
∧ (5)

∧
i={1...5}

�
((
¬(locs1 = i) ∧ ¬(locs2 = i) ∧ ¬sri →,¬sri

)
∧ (6)

(
sri →,sri

))
∧ (7)

�¬(loce = 1) ∧�¬(loce = 2) (8)

ϕl
e = �♦¬(loce = 3) ∧�♦¬(loce = 4) ∧�♦¬(loce = 5). (9)

These express that (4) the enemy UAV starts in region 4, and regions 3 and 5
start as surveilled; (5) a region is considered to be surveilled after either one
of the surveillance UAVs is in it; (6) a previously unsurveilled region remains
unsurveilled if neither surveillance UAV is in it; (7) once a region is surveilled,
it remains surveilled; (8) the enemy UAV cannot go to regions 1 or 2; and (9)
the enemy UAV must infinitely often not be in each region 3, 4, and 5.

GR(1) specifications for the system are:

ϕi
s = (locv = 2) ∧ (locs1 = 3) ∧ (locs2 = 5) ∧ ¬vTrack1 ∧ ¬vTrack2 (10)

ϕt
s = �

(
¬(locv = ,locv)→ (,vTrack1 ∨,vTrack2)

)
∧ (11)∧

i={1...2}

�
(
vTracki → (sloci = locv)

)
∧ (12)

∧
i={1...5}

�
(

(locv = i)→ ¬(loce = i)
)
∧ (13)

∧
i={v,s1,s2}

�
((

, (loci = 1)→ (loci = 1) ∨ (loci = 2) ∨ (loci = 3)
)
∧ (14)

(
, (loci = 2)→ (loci = 1) ∨ (loci = 2) ∨ (loci = 3)

)
∧ (15)(

, (loci = 3)→
∨

j={1...5}

(loci = j)
)
∧ (16)

(
, (loci = 4)→ (loci = 3) ∨ (loci = 4) ∨ (loci = 5)

)
∧ (17)(

, (loci = 5)→ (loci = 3) ∨ (loci = 4) ∨ (loci = 5)
))

(18)

ϕl
s = �♦(locv = 1) ∧�♦(locv = 5). (19)

These express that (10) the VIP starts in region 2, surveillance UAV 1 in
region 3, and surveillance UAV 2 in region 5, with neither surveillance UAV
tracking the VIP; (11) the VIP does not change regions unless a surveillance
UAV is tracking it; (12) a surveillance UAV can only track the VIP if they are in
the same region at the same time; (13) the VIP cannot be in the same region as
the enemy UAV at the same time; (14) and (15) the VIP and surveillance UAVs
can move from regions 1 or 2 to regions 1, 2, or 3; (16) the VIP and surveillance
UAVs can move from region 3 to any other region; (17) and (18) the VIP and

12 L. Humphrey et al.

surveillance UAVs can move from regions 4 or 5 to regions 3, 4, or 5; and (19)
the VIP must go to regions 1 and 5 infinitely often.

We have chosen to describe this particular example in detail because during
the process of extending Salty to produce SPARK implementations, we dis-
covered a previously undetected problem with this example’s specification. As
written, the specification is realizable and produces what appears at a glance
to be a reasonable controller with 97 states. In fact, we had previously run this
example with OpenAMASE, OpenUxAS, and a Python controller synthesized
by Salty. However, we did not originally notice in the Python implementation
that 34 of the controller’s 97 states do not have successors. Since no special logic
was added to Salty to handle this situation, the generated SPARK code included
empty case statement alternatives in the Move procedure. For example, in state
2 the case statement alternative is simply when 2 =>, with no statements in the
body. This code failed to compile, since SPARK does not allow for fall-through
behavior in case statements (nor does Ada); explicit statements are expected for
each case statement alternative. In Python, this error went undetected; the tran-
sition relation for the controller is encoded as a map, and entries corresponding
to states without successors simply had an empty list of “next state” values. We
briefly note that if we had encoded the controller using a map in SPARK, the
error would still have been detected through SPARK analysis rather than a syn-
tactic check of the code; the case statement encoding was chosen for efficiency
reasons to be discussed in Section 5.

This error is the result of a subtlety of the semantics of GR(1) specifications.
Recall that GR(1) specifications take the form ϕe → ϕs. Obviously a specifica-
tion of this form is satisfied if ϕe and ϕs are both true, but it is also satisfied
if ϕe is false. Also recall from the introduction that GR(1) specifications are
interpreted in the context of a two-player game in which the environment takes
its turn first and the system takes its turn second. The issue here is that the
environment is able to take transitions that will necessarily cause it to violate ϕt

e

in the next time step. Note that ϕt
e contains terms of the form �¬p, specifically

�¬(loce = i) for i = {1, 2} (8). Note that a term of the form �¬p is not the same
as a term of the form �, ¬p. The distinction is important. If the environment
chooses p for the “next” time step, this does not violate �¬p in the “current”
time step. However, once the next state is reached, p becomes the new “current”
value, and �¬p will now be violated no matter what the environment chooses.
Generally, specifications should follow the latter form � , ¬p, which prohibits
the environment from choosing p in the “next” time step. This was indeed an
error in these specifications, so we changed �¬(loce = 1) ∧ �¬(loce = 2) to
� , ¬(loce = 1) ∧ � , ¬(loce = 2) in (8). However, we also modified Salty
to raise Program_Error in cases with no successors and checked that we were
still able to prove ϕe → ϕs (since reaching these cases would require violating
the precondition ϕe). Such cases amount to instances in which the precondition
on Move would have to be violated, which is why we allow the user to execute
Env_Trans as discussed in Section 2. We also plan to have Salty issue a warning
when there are states with no successors, since such cases are likely unintended.

End-to-End Verification of GR(1) Designs in SPARK 13

4 Results

To further evaluate the utility and feasibility of our approach, we pulled addi-
tional example GR(1) specifications from a variety of sources including Anzu,
LTLMoP, TuLiP, Slugs, and Salty, all of which make their examples publicly
available for download. GR(1) specifications in Salty format, synthesized SPARK
packages, and SPARK analysis results for all of these examples are available on
the Salty GitHub repository, including the traffic light example of the previous
section. We note that while some examples are small and simple, e.g. demos
along the lines of the traffic light example, there are many in our collection that
are more realistic. For instance, Anzu has controller specifications for a general-
ized IBM buffer and an AMBA bus. LTLMoP and TuLiP have specifications for
robot controllers that have been demonstrated on simulated and/or real robots.
And Salty has specifications for controllers to coordinate the actions of teams of
vehicles that have been demonstrated in simulation.

10
1

10
2

10
3

10
4

Number of Transitions

10
0

10
1

10
2

10
3

10
4

T
im

e
 t

o
 P

ro
v
e

 (
s
)

Proven

Partial

Error

Fig. 4. Timing results for example SPARK controllers as a function of number of
transitions in the controller. “Proven” examples were fully verified, “partial” examples
were partially verified, and “error” examples were too big to analyze.

Figure 4 shows the amount of time needed to analyze examples as a function
of total number of transitions in the Moore machine representing the controller,
with examples that could not be analyzed due to memory errors set to 1. Results
were generated on a Linux VM given 24GB RAM and 4 processors on a MacBook
Pro with a 2.9 GHz Intel Core i9 with 32GB RAM. We ran 40 examples in total.
Results for 33 examples are plotted. On most examples with less than 4000
transitions, SPARK was able to completely verify/prove the synthesized code
complies with its specification. Examples that had more than 4000 transitions
(the 7 unplotted examples) required too much memory to analyze, resulting in
errors when attempting to verify them in SPARK.

Of examples with less than 4000 transitions, two resulted in errors. These two
examples had abnormally large specifications consisting of approximately 1000
atomic propositions each, whereas most other examples with a similar number
of transitions had 500 or less. Such cases occur, e.g. when systems include a

14 L. Humphrey et al.

large number of inputs and/or outputs but have very tight specifications on how
they can transition, leading to large specifications and therefore lengthy pre- and
postconditions but relatively small controllers.

Two examples with less than 4000 transitions could only be partially proven.
One was relatively large, with about 2000 transitions. The other had arithmetic
terms in its specification (Salty and Slugs support integer inputs and outputs);
we are investigating why this example does not fully prove, since we feel that
SPARK should be capable of fully proving this example.

5 Lessons Learned

Throughout the process of synthesizing and attempting to verify controllers in
SPARK, we learned several lessons, both about SPARK and about some of the
finer points of GR(1) specifications.

In terms of encoding SPARK controllers for verification, we originally tried
to mirror the approach taken in other Salty language targets by building a
static lookup table for state transitions. To do this, we tried to create an ar-
ray of Formal_Hashed_Maps indexed by State_Num, where keys were derived
from environment input values and used to look up the next State_Num and
corresponding system output values. Ghost functions consisting of nested quan-
tified expressions were used to check that in each state, specification properties
held using input and output values encoded by the current state and all states
reachable as contained in the hashed maps. These functions comprised the post-
condition of a function that initialized the controller’s lookup table. The body of
the Move procedure simply retrieved the outputs and next state from the lookup
table using its stored State_Num and Environment input. The public portion of
the SPARK specification was largely unchanged. This approach was only able
to prove the smallest of examples in a reasonable amount of time.

While the use of formal containers was intuitive, they are more complex to
reason about in terms of proof because they require reasoning about models of
the containers. Encoding the lookup table as a case statement is more straight-
forward, because for instance, it is “obvious” to the underlying solvers that
state transitions are static and that a transition exists for every possible input,
since case statements must be exhaustive. Encoding the Move procedure as a
case statement still has some issues, mainly that (1) the generated code can be
quite long, leading to memory errors when trying to prove the subprogram with
SPARK, and (2) since the solvers prove all case statement alternatives at the
same time and the number of case statement alternatives grows exponentially
with the number of inputs, sometimes the solvers are not able to prove the post-
condition. A solution to both problems could be to split the Move procedure into
several smaller procedures. This would allow SPARK to apply modular analysis
on several smaller procedures, thus enabling the proof on larger files. We are
currently investigating ways to split up the procedure that does not accidentally
create more difficulties for the underlying solvers.

End-to-End Verification of GR(1) Designs in SPARK 15

The process of encoding and analyzing controllers in SPARK did reveal some
unexpected behaviors. First, as discussed in Section 3, there were two example
controllers7 with specifications that resulted in states with no successors. As a
result, these controllers contained empty case statements in the Move procedure.
We had previously tested the Salty-synthesized controller in Python for the ex-
ample in Section 3 and had not noticed the error, though it would have resulted
in an unhandled runtime exception if one of the states without successors had
been reached in the Python implementation. Second, a meta-analysis of SPARK
timing results also revealed that other examples in our database did not have
any inputs, i.e. they amounted to synthesizing a system independent of an en-
vironment. In those cases, we had specifications for a non-existent environment
that were vacuous, and this caused SPARK to take an abnormally long amount
of time to verify these controllers, given their relatively small size. These con-
trollers did not have errors per se, but they were inefficiently encoded. We plan
to modify Salty to handle such cases by removing the environment, functions
over the environment, and all references to the environment in all pre- and post-
conditions. This greatly decreases verification time and also reduces the size and
increases the efficiency of the code.

6 Conclusions

We were able to successfully use SPARK to verify safety and transition properties
of moderately sized controllers synthesized by Salty from GR(1) specifications.
Encoding the controllers and all of the annotations necessary for these controllers
to prove automatically was relatively straighforward, and it was satisfying to be
able to generate proofs using a single tool rather than having to use multiple
tools to perform verification. Furthermore, the act of performing “end-to-end”
verification with SPARK on such controllers was valuable because (1) it revealed
a type of specification error in some examples that would result in runtime errors
in other Salty target languages, and (2) it revealed cases in which controllers were
inefficiently encoded, i.e. when there is no environment.

In terms of future work, we can potentially improve the scalability of our
approach by decomposing the Move procedure into several subprocedures, as dis-
cussed in the previous section. We are also interested in expressing and proving
liveness properties. Liveness properties will be more challenging to verify because
they necessarily require reasoning about future states beyond the “next” state.
Verifying system liveness in SPARK will require something like encoding a looka-
head buffer and showing that certain states will inevitably be reached when the
environment satisfies its specification, which can itself also include liveness terms.
This is likely to result in complex first-order formulas with alternating quantifi-
cation over time, which are notoriously hard to handle in automated solvers,
so discharging the resulting proof obligations may prove to be a challenge. To
tackle this issue, collaboration with a model checker performing verification at
the level of the input language might be more appropriate.

7 Salty’s vip orig.salt and Anzu’s arbiter.salt

16 L. Humphrey et al.

References

1. Alur, R., Moarref, S., Topcu, U.: Compositional synthesis of reactive controllers
for multi-agent systems. In: Int. Conf. Computer Aided Verification (CAV). pp.
251–269. Springer (2016)

2. Apker, T.B., Johnson, B., Humphrey, L.R.: LTL templates for play-calling super-
visory control. In: AIAA Infotech@Aerospace. AIAA (2016)

3. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Yaniv, S.: Synthesis of Reac-
tive(1) designs. J. Computer and System Sciences 78(3), 911–938 (2012)

4. Bloem, R., Cimatti, A., Greimel, K., Hofferek, G., Könighofer, R., Roveri, M.,
Schuppan, V., Seeber, R.: RATSY–a new requirements analysis tool with synthesis.
In: Int. Conf. Computer Aided Verification (CAV). Springer (2010)

5. Ehlers, R., Könighofer, R., Hofferek, G.: Symbolically synthesizing small circuits.
In: IEEE Formal Methods in Computer-Aided Design (FMCAD). pp. 91–100. IEEE
(2012)

6. Ehlers, R., Raman, V.: Slugs: Extensible GR(1) synthesis. In: Int. Conf. Computer
Aided Verification (CAV), pp. 333–339. Springer (2016)

7. Elliott, T., Alshiekh, M., Humphrey, L.R., Pike, L., Topcu, U.: Salty–a domain
specific language for GR(1) specifications and designs. In: 2019 Int. Conf. Robotics
and Automation (ICRA). pp. 4545–4551. IEEE (2019)

8. Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion
planning for dynamic robots. Automatica 45(2), 343–352 (2009)

9. Finucane, C., Jing, G., Kress-Gazit, H.: LTLMoP: Experimenting with language,
temporal logic and robot control. In: IEEE/RSJ Int. Conf. Intelligent Robots and
Systems (IROS). pp. 1988–1993. IEEE (2010)

10. Guo, M., Tumova, J., Dimarogonas, D.V.: Cooperative decentralized multi-agent
control under local LTL tasks and connectivity constraints. In: IEEE Conf. Decision
and Control (CDC). pp. 75–80. IEEE (2014)

11. Hoang, D., Moy, Y., Wallenburg, A., Chapman, R.: SPARK 2014 and GNATprove.
Int. J. Software Tools for Technology Transfer 17(6), 695–707 (2015)

12. Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: A tool for property
synthesis. In: Int. Conf. Computer Aided Verification (CAV). pp. 258–262. Springer
(2007)

13. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Where’s Waldo? Sensor-based tem-
poral logic motion planning. In: IEEE Int. Conf. Robotics and Automation (ICRA).
pp. 3116–3121. IEEE (2007)

14. Kupermann, O., Vardi, M.: Synthesizing distributed systems. In: IEEE Symp.
Logic in Computer Science. pp. 389–398. IEEE (2001)

15. Moy, Y.: Climbing the software assurance ladder-practical formal verification for
reliable software. Electronic Communications of the EASST 76 (2019)

16. Wang, A., Moarref, S., Loo, B.T., Topcu, U., Scedrov, A.: Automated synthesis
of reactive controllers for software-defined networks. In: IEEE Int. Conf. Network
Protocols (ICNP). pp. 1–6. IEEE (2013)

17. Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Murray, R.M.: TuLiP: A soft-
ware toolbox for receding horizon temporal logic planning. In: Int. Conf. Hybrid
Systems: Computation and Control. pp. 313–314. HSCC ’11, ACM (2011)

18. Xu, H., Topcu, U., Murray, R.M.: A case study on reactive protocols for aircraft
electric power distribution. In: IEEE Conf. Decision and Control (CDC). pp. 1124–
1129. IEEE (2012)

